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ABSTRACT

A memory model specifies a correctness requirement for a dis-
tributed shared memory protocol. Sequential consistency (SC) is
the most widely researched model; previous work [1] has shown
that, in general, the SC verification problem is undecidable. We
identify two aspects of the formulation found in [1] that we con-
sider to be highly unnatural; we call these non-prefix-closedness
and prophetic inheritance. We conjecture that preclusion of such
behavior yields a decidable version of SC, which we call decisive
sequential consistency (DSC). We also introduce a structure calle
aview window(VW), which retains information about a protocol’s
history, and we define the notion olaV-boundwhich essentially
bounds the size of the VWs needed to maintain DSC. We prove
that the class of DSC protocols with VW-boukds decidable; left
conjectured is the hypothesis that all DSC protocols have such a
bound, and further that the bound is computable from the protocol
description. This hypothesis is true for all real protocols known to
us; we verify its truth for the Lazy Caching protocol [2].
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A distributed shared-memory protoc(sr, simply protoco)) is
an algorithmic and architectural description of how multiple CPUs
share a common memory spacem@mory modetlefines a set of
allowable behaviors for a protocol, and formally specifies how the
memory system will appear to the programmer [3]. Hence the cor-
rectness of a protocol is always with respect to a specific memory
model.

Much research has be conducted on the shared memory model
sequential consistency (SGince its inception [4]. A large por-
tion of this research has pertained to the formal verification of this
property. Verification techniques have been proposed that range
on the automation axis from being manual hand-proof methodolo-
gies [5, 6], to fully automatic procedures [7, 8], and many points
between [9, 10, 11]. Here we focus on fully automatic verification
of SC, and reserve the tenerificationto refer to such.

The seminal definition of SC [4] was informal. The subsequent
literature bore several non-equivalent formalizations. Most con-
sider only finite behaviors, though recent work has examined the
ramification of interpreting SC over infinite runs [12]. An impor-
tant disagreement actually arises from how the notioprofocol
is modeled. Some works take a protocolasy regular set over
the alphabet of memory actiorf®, while others further require
that the set be prefix-closed. We call these modetsnecessarily
prefix-closed (NNPCandprefix-closed (PC)

Alur et al. have shown that SC under the NNPC protocol model
is undecidable [1]. This formulation admits a protocol behavior,
which we entitleprophetic inheritancgin which a read event re-
ceives a data value from a write event that occurs in the former’s
temporal future. The proof of the undecidability theorem depends
upon the allowance of prophetic inheritance.

We believe that the PC protocol model more tightly fits the realm
of real protocols. Indeed, protocol designers typically describe the
protocol as an automaton where all reachable states are implicitly
accepting [13]. We also believe that a prudent formalization of SC
should disallow prophetic inheritance, since a protocol that sup-
ports this oddity must either predict the future with 100% accuracy,
or govern the value a processor may write. Both of these features
fall well outside of what a protocol can and should-do

1At first glance, prohibiting prophetic reads might appear to pre-
clude the recently proposed optimization loid value predic-
tion[14]. In reality, however, load value prediction does not rely
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The primary contributions of this paper are as follows. A new that no value has been assigned. Given tra@nd processor
version of SC, called decisive sequential consistency (DSC), is p, the index of the last action irfx, p,*,*) is extracted via
defined. Informally, DSC requires that when a memory read event Ipa(t, p) = max({i | proc(t(i)) = p} U{0}). Here, the acronym
occurs, the protocol “knows” which write event the data value |pa stands fotast processor action
stemmed from, and the protocol never needs to “change its mind” We typically useo to represent a serial trace, whileéepresents
in the future in order to maintain SC. It is shown that DSC is atrace that is not necessarily serial.
equivalent topast-time sequential consisten(®TSC), the latter A reorderingof a tracet is a permutationton Ny, and we de-
being SC with the restriction that no read event inherits its data fine the traca™to bet(rr1(1))...t(Tr 1(|t])). We allow applying

from a ertethat has yet .tO occur. All SC pl’OtOC0|S with which a reordering‘[ to a prefix of |engt|'k < "[| by deﬁning the permu-
we are famllllar actual[y |mplemeqt the .sllghtly stronger DSC. tation 17 : Ny — Ny such thatr(i) < 7(j) < (i) < n(j) for all
We then define an object calledvéew window(VW). A VW i,j € Ny, and then defining the reordered prefik]™ to be equal

is essentially a compressed representation of a memory trace b : : : ; ;
. i X to 1[k]". Associated with a trace is a partial order which places
We define subclasses of DSC that are bounded in the size of theactions of the same processor in the order they occur in the trace;

VWs needed to maintain DSC, and show that these classes Arhe resulting relation is called thpocessor orderFormally, given

decidable. For illustration of the power of this approach, we show
that Lazy Caching [2] is in such a class. It is our intuition that any
DSC protocolmustimplicitly have a finite set of VWs associated
with any state; these VWSs describe what has been “remembered”
by the protocol regarding its execution history, and are utilized
to maintain DSC in the future. We formalize this intuition in a
conjecture. If our conjecture holds, it follows that DSC itself is
decidable.

2. DEFINITIONS

For a naturah, letN, = {1,...,n}. Given an alphabei, ase-
quenceor string over X is a mappingr : N, — X for some/, and
we defingt| = £. We sometimes refer toc N, as anindex(of 1).
A sequence can be expressed by writing its symbols in order, i.e.
1(1),...,7(T]). Hence the use of the terrfeft andright to refer to
features of the sequence makes sense, we sometimes use the ter
last to mean rightmost. The prefix afof lengthi is denotedt|i].
Given a sequence and a set, the projectionof T onto A is the
sequence 1A obtained by deleting all symbols not/ Fora €
we say that a string € =* is obtained front by insertinga at po-
sition jif U =1(1)...1(j)at(j+1)...1([t]), wherej may be any
element ofN ;| U {0}

The set ofmemory actiongs the setM (P,B,V) = {RW} x
Np x Np x Ny. Intuitively, P, B, andV are respectively the num-
ber of processors, addresses, and data values under consideratio
For the remainder of this article, we fix B, andV and abbreviate
M =M (PB,V). Fora = (0,p,b,v) € M, we defineop(a) = o,
proc(a) = p, addr(a) = b, andval(a) = v. We call a string over
M a memory traceg(or simply trace), and the set®Np, Ng, and
Ny respectively theprocessorsaddressesandvalues We also
define subsets aM using the wild-card symbot. For instance,
(*,p,b,x) is the set{a € M | proc(a) = pAaddr(a) =b}. The
set (R x,*,%) constitutes theead actionswhile the elements of
(W, %, %, %) are thewrite actions

Given a memory traca, an indexi, and addresd, we
define lw(t,i,b) to be the greatest inde¥ < i such that
op(t(j)) € (W,*,b,*) or to be 0 if no suchj exists. Intuitively,
Iw(t,i,b) is the index of the last write to addrebsthat is not
greater thani. A memory traceo is said to beserial if, for all
indicesi, we haveop(i) = R implies bothlw(o,i,addr(a(i))) # 0
andval(a(i)) = val(o(lw(ao,i,addr(c(i))))). In other words, in
a serial trace each read action returns the value of the last write
action to the same addréss As a notational convenience, we
defineval(o(0)) to be a distinguished constant which signifies

2For simplicity’s sake, we have chosen to disallow initial values;

this approach is also taken in [15]. It should be clear that all the-
ory herein can be generalized to handle formalizations that allow
reading of initial data values.

a tracet we define the partial order?® on the indices such that
i <POjiff (proc(i) = proc(j)) A (i < j). A serial reorderingof T is
a reorderingtsuch that™ is serial, and furthemrespects<f°, i.e.

i <P°jiff m(i) <m(j), or equivalently, for all processops we have
TT(*, py*, %) = TV (%, p,*,%). A trace is said to beequentially
consistent (SCIf it has a serial reordering. If is SC and has se-
rial reorderingr, then we define aimheritance relation—I on the
indices oft by i —T j if op(t(i)) =W, op(t(j)) = R, addr(t(i)) =
addr(t(j)), andm(i) = Iw(t™,7(j),addr(t(j))). Wheni —I' j and
T andmtare understood from context, we sginherits from i If

a traceo is serial, then we uses to denote#f,’, where id is the
identity permutation.

Let o be a serial trace. For anysuch thatop(a(i)) =W, we
define thelast read of iby Ir(g,i) = max({i’ |i—gsi'} U{i}).
Intuitively, Ir (o,i) provides thdast readthat inherits fromi. For
any j € {0,...,|o]} and addres®, we define theinheritance
range predicatelIR(o, j,b) that is true iff lw(g,j,b) # 0 and
j <Ir(o,lw(o, j,b)). ThuslR(o, j,b) holds whenever positiopis
between a write to addrebsand a read that inherits from the write.

A protocol 2 is a 4-tuple(S(P), 4(P),d(P),1(P)). P) is the
set ofstatesand must be finite4(P) is the set of protocdctions
where we requireM C 4(®P). Thetransition relationd(®) is a
subset o5(?) x 4(P) x §(P). Letd"(P) C §(P) x A(P)* x §P)
be the natural generalization &f?) to strings:(so, T,Sy|) € 8*(P)
if and only if there exists a sequence of stades, Sp)-1 in

%(EP) such that for all, 1 <i < |t|, (§-1,1(i),s) € O(P). The set

I1(?) C §(P) are theinitial states A run of 2 is a sequence =
a,...,ay over 4 such that there exists states...,s; 1 € SP)
with s; € [(P) and(s,a,s5+1) € 8(P) for all i € N,. Thetrace of
a runr is the sequenceace(r) =r M. Given a protocol?, the
trace setof 2 is the settrace§?) = {trace(r) | r is a run ofP}.
A protocol is characterized arial if all of its traces areserial,
similarly, a protocol is SC if all of its traces are SC.

3. DECISIVE SEQUENTIAL
TENCY

In this section, we define two SC variants, DSC and PTSC, and
we prove their equivalence.

CONSIS-

Definition 1 (Decisive SC)A tracet is said to bedecisive sequen-
tially consistent (DSCIf there exists a serial reorderingof t such
that for any prefixt[¢] and1 <, j < ¢ we have: (1)x[(]" is serial,
and (2) inm j < i—Tj. In this case we say thatis a DSC-
reorderingof 1.

A protocol is DSC if all of its traces are DSC and we denote

the set of all such protocols HSC On an intuitive level, a DSC
protocol is a SC protocol that never needs to “change its mind”



regarding which write wrote-to a given read. A trace being DSC transitions3( G..) contains all tripleo, o, 0’) wherea is a memory
implies that all prefixes of the trace are SC (moreover they are all action, andy’ is a serial trace obtained by insertiagit some posi-
DSC). However, having all prefixes SC is insufficient for DSC, as tion j in g, wherej > Ipa(o,proc(a)). Suppose we writeg —t O
this example trace demonstrates. To aid comprehension, we at- if (0g,T,0) € 8*(Gw). Then, it can be shown by induction ¢rj
tach a number underneath each memory action giving its position that

in p.
p=(W,2,1,2)(W,2,1,1)(W,2,2,1)(R 1,2,1)(W,3,2,1)(R 1,1,2) Claim 1 For all tracest, op — o if and only if t is DSC and
1 / 2 ‘ 3 / / 4 5 ' 6 o = 1" for some DSC reordering of G.
A serial reorderingtexists: Thus, the trace set of the protocgl, is exactly the set of DSC
PT=(W,3,2,1)(R 1,2,1)(W,2,1,2)(R 1,1,2)(W,2,1,1)(W,2,2,1)  traces. ] ) o ) o
5 4 1 6 2 3 Intuitively, to obtain a (restricted) finite state version@, it is

necessary to avoid storing all of a serial tracén the state. The
view window presented in section 4.1 is a condensed version of a
serial trace, developed for this purpose. View windows generalize
the concept ofvindowfound in [10]. We also need operations to
update view windows in a manner consistent with the trace pro-

It can be shown thanyserial reordering must have 4 inherit from
5; this follows from the fact that any serial reordering must order 6
prior to 2. However, restricting such a reordering to the prefik
length 4 will not give a serial reordering. Continuing our example,

we find duced by the protocol. The needed operations and assertions of
p[4"=(R 1,2,1)(W,2,1,2)(W,2,1,1)(W,2,2,1) their correctness are presented in section 4.2.
4 1 2 3 . . .
. . : 4.1 View Window Defined
which is clearly not serial. The reader may confirm that all prefixes ) ) ) ) )
of T are SC, for instancg[4] may be serially reordered as A view window is an abstraction of a serial tragethat can be
used to determine, for a few positiopsnd any memory actioa,
(W,2,1,2)(W,2,1,1)(W,2,2,1)(R 1,2,1) whether the string’ obtained frono by insertinga at position] is
1 2 3 4 serial. Accordingly, for certain positiorjsa view window contains

We now present a seemingly different SC variant, PTSC, and @ view (of position j). For each addreds the view contains the
prove that it is equivalent to DSC. Our motivation for presenting following information:
DSC in the guise of PTSC is to provide greater intuition regarding

what type of behaviors these models allow and disallow. e The value of the last write operation bobefore positionj

of 0. This can be used to determine what is the acceptable

L . . . . | far ration réssnser ition.
Definition 2 (past-time SC) A tracet is said to bepast-time se- value of a read operation to addréssnserted at position

quentially consistent (PTS@)there exists a serial reordering of e A pair of tags. One tag indicates whether or not the predi-

T such that i~ j implies i < j. In this case we say thatis a catelR(a, j,b) holds; that is, position is between a write to

PTSC-reorderingf 1. address in ¢ and a read that inherits from the write. This
tag can be used to determine whether the protocol is free to

Theorem 1 mtis a DSC-reordering of iff tis a PTSC-reordering insert a write operation to addrebsat positionj. The tag

oft. has valud= (free to write) oiO (readsonly). The other tag is
needed to help update the’O tag. It has valué (last) orN

Proof: (=) Suppose there exisandj such that —I' j andi > j.

Consider the prefix[i — 1]. Clearlyi '7L’F[i71] j, sincei isn't an (notlast).

index of1fi — 1]. (<) Now assumatis a PTSC-reordering af. In addition to views, the view window contains additional informa-
We prove by (decreasing) induction drthat properties 1 and 2  tion, called thdp function, which is useful in determining whether
from definition 1 hold w.r.tt[¢]. For ¢ = [t] we havet[(] =T, insertion ofa respects processor order.

hence the properties hold trivially. Now assume that the properties We now formally define view windows. An example of a serial
hold int[¢]. If T(¢) is a write, then there does not existuch that tracec and a corresponding view window is given in parts (a), (b)
¢ T i, thust[¢ — 1]™ satisfies both properties. Now1if/) is a of Table 1. Define the set dagged values = (Ny U {L}) x

T/ . o
read, therx[¢ — 1]" is trivially serial, since removing a read from {L,N} x {O,F}. leen a tagged value = (vt,tp), we extract
the components vigal(z) = v, tag;(z) = t, andtag,(z) =t. A

a serial trace will always yield a serial trace; property 2 is also .~ . . ! - -
sy property viewis a functionv: Ng — T. Given a serial stringg € M*, a

satisfied given the inductive hypotheskk.
9 P subsequences of 0,...,|o| such thatps includes|a] is called a
position sequence (far).

4. VIEW WINDOWS

Ideally, we would like to construct a protocol whose trace set is
exactly the set of all DSC memory traces, which would allow auto-
matic verification of protocols. In section 5, we partly realize this
goal. In this section, we introduce concepts and notation needed to
describe the protocol of section 5. 1. val(v(i)(b)) = val(a(lw(a, ps(i),b)))

As motivation, we first describe informally an infinite-state pro-
tocol, Go, Whose trace set is the set of all DSC memory traces, 2. tag (v(i)(b))
and then consider how the state space&gfcould be made finite. o ) ) .
The states of;., are simply the serial memory traces, with the ini- — { L ifi=1Vv[i>1Aps(i—1) <lw(o,ps(i),b)]
tial state being the empty trace, which we refer t@gsThe set of N otherwise

Definition 3 (VW-set,VW) Giveno and an accompanying posi-
tion sequences, we define the VW-set ¥, ps) to be the set of
all pairs (v, Ip) that satisfy the followingy is a sequence of views
with |v| = |ps| defined as follows.



O if IR(o,ps(i),b)
F otherwise

tag,(v(i) (b)) = {

andlp is a functionNp — N,| which must satisfy

4. ps(Ip(p)) > Ipa(o, p) for all p € Np.
A pair w= (v,lp) is called aview window (VW) (of o) if there

existsps such that(v,Ip) € VW(o,ps). Thesizeof a VW(v,Ip) is
[(v,Ip)[ = |v].

4.2 Operations on View Windows

Recall that in the infinite-state protocGl,, upon each transition,
the state (a serial trace) is updated by insertion of a memory action.

e bind((v,Ip),p,b,v): Here we requirev € Ny. This
function leaveslp unchanged, and ifp(p) = |v|, then
v/ = v. Otherwise, letj be minimal such thaj > Ip(p)
andtag; (v(j)(b)) =L; if no suchj exists takej = |v| + 1.
ThenV' is the same as, with the exception that for all
ke {lp(p)+1,...,j—1} we have/'(k)(b) = (v,N,F).

We define the partial ordef,, on VWs such thak <,y Yy iff y
can be obtained fromby 0 or moredeleteandhopoperations.

Just as in our protocol;,, where the protocol “evolves” on
memory actions from serial trace to serial trace, we can also define
what it means to evolve on a memory action from view window to
view window.

Definition 4 Given VWs w= (v,lp) and w and a € M, we say

In a protocol that abstracts states as view windows, we need oper-that w can directlya-evolve tow if the following conditions are

ations (state transitions) that update view windows upon insertion
of a memory action. We define five such operations, or functions
that take VWs to VWs. Thdeletefunction removes a view from a
view window (in order to keep the view small). Thesertfunction
inserts a view into a view window (corresponding to the insertion
of a memory actioru into the serial trace that the view window
abstracts). Theopfunction makes it possible to advarig¢p) for
any processop (in order that an operation of procesgus inserted
after the appropriate view). Finally, thua f reeandbind operations
update the view tags appropriately. Example applications of these
functions are given in Table 1.

We now formally define the five operations. In all descriptions,
(v',1p’) is the VW returned by the function, aqglandb may be
any processor and address, respectively.

o deletd(v,Ip),h) requiresh € Nj,|_1. The new view' is de-
fined according to

v(j)(b) if j<h
(valtv(n+)(b) L tage(v(h+)(0)
if j=
Atag (v(h)(b)) =
Atagy (v(h+1)(b)
otherwise

V(i) (b) .
)=N
V(i +1)(b)

Finally, for all p € Np we havelp’(p) = Ip(p) if Ip(p) < h,
andlp’(p) = Ip(p) — 1 otherwise.

hop((v,Ip), p,h) requireslp(p) < h < |v| . hopleavesv un-
changed, i.ev’ = v. Ip’ is everywhere equal ttp with the
exceptionp’(p) = h.

insert((v,Ip), p,v) is called against a view. Intuitively, v/

is obtained fromv by insertingv at positionlp(p). Ip’ is

defined bylp’(q) = Ip(q) if Ip(q) < Ip(p) A p # g; otherwise
Ip'(a) = Ip(p) +1.

unfred(v,Ip), p,b): Let®
j=max({i|i <Ip(p)Atagy(v(i)(b)) =L}).

Then V' is everywhere equal tos, with the possible
exceptions:  for allk € {j,...,Ip(p)—1} we have
v/ (K)(b) = (val(v(k)(b)),tag; (v(k)(b)),0). Finally, Ip’ is
simply equal tdp.

Sunfreeis only used wherip(p) > 1 and def. 3.2 ensures that
tag; (v(1)(b)) =L, hencej is well-defined.

satisfied.

1. Ifa = (R p,b,v), then we require v val(v(lp(p))(b)) # L,
and the following equation must hold:

w = unfredinsert(w, p,v), p,b)

wherev is given by

V() = (vllv(p(p)) (@), N-tag5(v((P)) 3)for ach o
B-

2. If a = (W, p,b,v), then we must have

(a) tag(v(Ip(p))(b)) =F
(b) W = bind(insert(w, p,v), p,b, V), wherev is given by

(vL,F) ifa=Db
v(a) = { (val(v(Ip(p))(a)),N,tagy(v(Ip(p))(a)))
otherwise

If there exists Wsuch that w directlyx-evolves to ¥ we say that w
isdirectlya-enabled If there exist w = (v1,Ipy) and wp = (v2,1p5)
such that W<y Wy and w <\wW, and w directlya-evolves to w,
we say wa-evolves tow', denoted wsy W'. If there exists Wsuch
that w~»q W we say that w isi-enabled

This completes our description of operations on view windows
and the associated-evolves relation. Before proving properties
of this relation in the rest of this section, we provide some infor-
mal intuition. First we note that we can generalize the notion of
a-evolves to sequencasof memory operations, whemg ~»; W
if and only if there is a sequenag,wy, ... Wy _1 of view win-
dows such thav ~»g(1) Wy, Wi—1 ~y Wi for 1 <i <[t[ -1, and
Wr(jt|-1) ~1(jT)) w. Letwg be the view window of the empty trace,
that is,wp = (vo,lpg) Wherevg is a singleton view sequence with
vo(b) = (L, L,F) for each addredsandlpy(p) = 1 for all p € Np.

It turns out that

Claim 2 For all tracest, wg ~+ w if and only ift is DSC and w is
a view window of™ for some DSC reordering of 1.

Claim 2 is analogous to Claim 1 for serial traces given at the start
of section 4, except the former pertains to view windows. Roughly,
Claim 2 can be proved by induction ¢rj, using Theorem 2 which

is given at the end of this section. The next three lemmas build
up to the proof of Theorem 2. We don't actually prove Claim 2,
but rather prove a variant in section 5, in which the sizes of view
windows are bounded.
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Lemma 1 If wis a VW ofo, and w<y,, W then W is a VW ofo.

Proof: We show that ifvis a VW of g, then applying a singleop
or deleteoperation gives another VW af; the lemma follows by
induction. Letps be such thawv € VW(o, ps).

Case: W = (V/,Ip’) = hop(w, p,h). Then we havep(p) <
Ip’(p) = h < ||, this being the sole discrepancy betweaeandw’.
Let x = min({i | Ipa(o, p) < ps(i)} U{0}). Sincew € VW(a,ps),
we have from def. 3 thdp(p) > x, and thus alstp’(p) > x. Thus
w € VW(a, ps).

Case: W = (V/,Ip') = deletdw,h). Let ps’ be ps with the hth
entry removed. We claim that € VW(g,ps’), and show that’
andlp’ are compliant with the conditions of def. 3. Note that since
deleterequiresh < |v|, we have thaps’ has|o| as the final element,
and hences’ is a legal position sequence for

Let v be v with v(h) removed, and leps’ be ps with the hth
entry removed. Clearly, for all€ N|,¢| we haveval(V(i)(b)) =
o(lw(o,ps'(i),b)). Furthertag,(V(i)(b)) = O iff IR(o,ps/(i),b).
Thusv' andps’ are compliant with def. 3.1 and def. 3.3, sinde
only differs fromv'in tag; components. In generaldoes not sat-

Our claim is thatw = (V/,Ip) € VW(d’,ps’), and we note that
VW(0’,ps') is well-defined, since from Lemma 2 we hawése-
rial. We case split on. For convenience in this proof, we introduce
the functionc : N|,¢| — N, given byc(i) =i wheni <Ip(p) or
c(i) =i— 1 otherwise. Alsoy is the inserted view, as in def. 4.

Case 0= R: Clearly def. 3.1 is satisfied w.rt, since for all ad-
dressesiwe haveval(v(a)) = val(v(Ip(p))(a)) . This follows from
the fact thatw(o’, ps'(Ip’(p)), a) = lw(a, ps(Ip(p)), a), which also
implies that def. 3.2 is satisfied, since for all addresse® have
tag; (v(a)) = N andlp’(p) > 1.

Now for all addresses # b and indexes of ps’, we have
IR(d’,ps/(i),a) < IR(o,ps(c(i)),a). Thus, the fact that for all
sucha, we havetag,(V/(i)(a)) = tagy(v(c(i))(a)) is compliant
with def. 3.3. Also, if ¢ = Ir(o,lw(o,Ip(p),b)) > ps(lp(p)),
then we have bothlR(d’,ps'(i),b) < IR(o,ps(c(i)),b) and
tagy(V/(i)(b)) = tagy(v(c(i))(b)) for all indexesi of ps’. Then
def. 3.3 is satisfied. However, #f < ps(Ip(p)) then for each
in the nonempty set = {i|i<Ip/(p)Al<ps'(i)} we have
IR(d’,ps/(i),b) A =IR(a, ps(c(i)),b). In this caseunfreehas the
effect that for alli € I, tag,(v/(i)(b)) = O, which hence preserves

isfy def. 3.2. This is because the boolean expression in def. 3.2 compliance with def. 3.3.

depends on other entries in the position sequence, which was al-

tered. The only case wherecan potentially be in violation is at
positionh, which can be seen as follows. We hayl)=v(h+1)
andps’(h) = ps(h+1). Itis possible that for some addresswe
have that

ps(h—1) <lw(a,ps(h),b) =
(taking ps(0) = 0 if necessary) which implies both
tag; (Vv(h)(b)) = N andps’(h— 1) < Iw(o,ps’(h),b). In this case
we find a noncompliance. Howevedelete returnsv’, which
differs fromv by correcting precisely such scenarios. Therefére
is compliant. Sincép’ is obtained fromip by simply decrementing

Iw(o, ps(h+1),b)

values where appropriate to reflect the deleted view, it follows that '

Ip’ adheres to def. 3.4. Again we conclude tWat VW(a,ps). il

Lemma 2 Suppose w= (v,lp) € VW(g,ps) and w is directlya-
enabled. Then the string’ obtained by insertingx at position
ps(Ip(proc(a))) in o is serial.

Proof:
of a

Since o is serial, we must argue that the insertion
(o,p,b,v) maintains seriality. We case-split
on op(a). Supposea is a read. From def. 4 we have
val(v(lp(p))(b)) = v # L, and from def. 3 we have that
val(v(Ip(p))(b)) = val(lw(o,ps(lp(p)),b)). Thus o’ maintains
seriality in this case. Now assumeis a write. From def. 4
we havetag (v(lp(p))(b)) = F, hence from def. 3 we have
=IR(a, ps(Ip(p)),b). Thus the insertion ofi will not interfere
with any inheritance fronw(o, ps(Ip(p)), b), or any other write to
addres®. Thereforeo’ is serial in both casedl

Lemma 3 Suppose w= (v,lp) € VW(g,ps) and w directly
a-evolves to W Then wis a VW of the strings’ obtained by
insertinga at positionps(Ip(proc(a))) in o.

Proof: Let (0,p,b,v) = a. Let ps’ be the position sequence of
o obtained by insertings(Ip(p)) + 1 into ps at Ip(p), and then
incrementing all entries right dp(p), i.e
;ps(Ip(p)), ps(ip(p)) +1,...

ps' =ps(1),... ,ps(|ps|)+1

Finally, we have def. 3.4 satisfied w.igs’ and Ip’ since
ps'(Ip'(p)) = ps(lp(p)) + 1 = lpa(d’,p). A similarly simple
argument handles the other processors.

Case o= W: Similar to the previous case, def. 3.1 is satis-
fied w.r.tv/. The slight complication here is that for alin | =
{Ip'(p),-.., imin} Where
jmin =min({j | j > Ip'(p) Atagy (v'(j)(b)) = L} U{[V'| +1}) —
we havelw(a’,ps'(i),b) = ps'(Ip'(p)) # (o ps(cl).b) how-
ever, def. 4.2 correctly setgl(v(b)) = val(d’(ps'(Ip'(p)))) = v,
andbind setsval(v/(i)(b)) = vforalli 1.

Now for all addresses a # b, we have
w(o’,ps'(Ip'(p),a) = Iw(o,ps(lp(p)),a),  and since
we have tag;(v(a)) = N and Ip/(p) > 1, def. 3.2

is satisfies w.rt all sucha. For addressb, we have
Iw(a’,ps'(Ip’(p)).b) = ps'(Ip"(p)) = ps'(Ip'(p) — 1) + 1, and
thus,ps’(Ip’(p) — 1) < lw(d’, ps’(Ip’(p)),b). Thus the assignment
tag (val(v(b))) = L is consistent with def. 3.2.

Similar to the previous case, we have def. 3.3 satisfied. Def. 4.2
assignstag,(v/(i)(a)) = tagy(v(c(i))(a)) for all addresses and
indexesi of ps/, i.e. thetag, components are preserved. The cor-
rectness of this preservation follows from the fact that for all such
aandi we havelR(d’,ps’(i),a) = IR(o, ps(c(i)), a).

The argument that def. 3.4 is satisfied is the same as in the pre-
vious case.

For both cases, we conclude thdte VW(o’,ps’). B

Theorem 2 LetT have DSC-serial reordering, w be a VW of ™,
anda € M be such that werg W. Then there exists a DSC-serial

reorderingT of T = ta such thatt™ = 1™, and W is a VW oft™.

Proof: From def. 4, there exist VWg1 andw, such thatv <yww;
andw, <,wW, andw; directly a-evolves tow,. From Lemma 1
we have thatvy is a VW of ™.

Chooseps to be a position sequence such that= (v1,Ip;) €
VW(1™, ps), and defingo, p,b,v) = a. Let ¥ be the permutation

of T such thatt’™ is the string obtained by insertirm into ™ at
positionlp; (p). From this definition oft we haver™ = 1™

We must show that' is a DSC-serial reordering of. ' adheres
to the processor order of, sincem adheres to the processor order
of 1, and by the def. 3 we haves(Ip(p)) > Ipa(t™, p). Thus our



construction oft’™ is such thatt respects<f,°, while Lemma 2 Proof Sketch: Here we employ some notation of [2]. The
guarantees that™ is serial. abstractedR,i,a,d) and (W,i,a,d) events are identified with the

Finally, from Lemma 3 we have that, is a VW of ™ and Lazy Caching events ReadRetydia) and WriteReturr(d,a),

. T respectively.
hence by Lemma 1 we havé is a VW of U B For any state of Lazy Caching, we associate a finite set of pos-

sible VWsw, wherew = (v,lIp) is as follows. For convenience,
we shift the index set of the sequencgand hence the range of

5. VW-BOUNDEDNESS the functionlp) leftwards byj+1,i.e.v =v(—j)...v(0)...v(P¢).

In this section we define the concept of the VW-bound of a DSC Theval components 0 (0) always represents the contentadzm

: -~ Whenlp(i) <0, this corresponds tpn;| = —Ip(i) and|Out| = 0.
how that th fD I h ; : .
Ziﬂlrj:jﬂcise H:gi?j:blgvf\lo: aar:yt. @ set of DSC protocols with a given The P¢ possible views to the right af(0) are to accommodate the

views corresponding to the/ potentialOut queue entries that may

be buffered in the system at any given time.

Definition 5 (VW‘bOUnd) Let T be a trace such that there exists Prior to performing an evemw’ha’ V), the Operatiorrno FKW7 i7 h)

VWs w,...,w; such that must be performed for sorfhd > 0. The actual value di is non-
deterministic; the relative ordering of the views to the right ()
reflect a “prediction” made regarding the order that the associated
W events are seen tytemvia MemoryRead actions.

Other Lazy Caching actions result in the following updates to
where w is the view window of the empty trace. Then we say that W- ReadRequest, WriteRequest, and Cgchelnvalidate produce no
T hasVW-boundk and also we write w~sy i W. change. MemoryWrite causes no effective change, though under

’ our shifted view naming convention, all names would be decre-
mented.  MemoryRead inserts a new view with the sarale
components ag(0) immediately followingv(0). CacheUpdaie
simply incrementsp(i).

To see thatj + P¢+ 1 is an upper bound ofw|, we note that
the leftmost view inv can always be deleted (without impeding
any possible future events) whenever we hip(@) > —j for all
processors. i

1. forall1<i </ we have w1 ~re(iy Wi and

2. there exists k 1 such that for all0 <i < ¢ we havew;| <k,

Theorem 3 If wg ~¢ kW, thent is DSC.

Proof: Follows from a simple induction using theorem 2 and the
fact thatwp is a VW of the empty tracell

Definition 6 (DSG,) DSG is the set of all protocol® such that

all traces of? have VW-bound k. Thus we have a procedure to verify Lazy Caching. Itis important
to note, however, that bounded VWs can be employed to produce

Lemma 4 For any integer k> 1, there is a protocolgy, such that traces that Lazy Caching cannot generate. For instance, @ven

traceq Gy is precisely the set of tracessuch thatr has VW-bound has traces that are not traces of Lazy Caching. Table 2 provides an
K. example of a trace that is DSC with VW-bound 2, but is not a trace

of Lazy Caching.

Proof: The state space afy is the set of all VWsw such that We note, however, that the work of this paper lies primarily in the
|w| < k; note that this is a finite set. The initial state gf is the domain of theoretical interest. As the following complexity analy-
view windowwp. The set of actiong1(Gy) of the protocol is the ~ Sis reveals, the procedure suggested by the proof of Theorem 4 is
setM. The set of transition§( Gy) is {(w,a, W) | W~q W'} worst case exponential in the size of the descriptio# aind dou-

If T € traceg Gi), then clearlywp ~+ x w. Conversely, ift has bly exponential ink. We first obtain an upper bound on the size
VW-boundk, from the definition ofG, and def. 5 we have that  of the state space afi. There are(4V)® possible views, hence
T ctraceg Gy). at most(4V)Bk possible view sequences . Each may have at

mostkP logical pointer functions, thu$( Gi)| < kP (4V)Bk =20
Now, to perform the checlkraceg?) C traceg Gk), we must de-

Theorem 4 For any k> 1, DSG is decidable. terminize Gy in order to complement it, producing deterministic
Gy Which can be exponentially larger. Theref¢8G,)| = 2279,
Proof: Given a protocolP, we can decide whethet in DSG, by Lettingn = |§(P)|, the usual complement-and-intersect solution to
simple trace containment against the protogplgiven in Lemma language containment may thusly yield an automaton nads®
4.1 states to explore. Note thatitself might be exponential in the

length of the description aP; also this analysis treaf B, andV
as constants.
6. DISCUSSION The objective of proving decidability dSChas not quite been

All sequentially consistent protocols we have found in the liter- achieved. This result would of course follow from:

ature are DSC with VW-bound. Furthermore, the bound is always
very small. For instance, any protocol with all traces being serial is Conjecture 1 Any protocol? € DSC has VW-bound k for some k,
in DSG,. The following theorem states that Lazy Caching is also and further k is computable given a descriptionof

VW-bounded.

4This may seem counterintuitive, since Lazy Caching allows write
. - . events to be performed by processeven ifIn; is nonempty. How-
Theorem 5 Lazy Caching [2] is in DS, 1, where j and’ are ever, after performingW,1,a,Vv), processoi cannot perform any
the respective capacities of the In and Out queues, and P is theread event untiln; is flushed of all entries present at the time the
number of processors. write took place.



Here “computable” is probably far too general of a term; it is likely
thatk is always bounded byS(P)| and in practise this bound is
very loose.

The intuition behind Conjecture 1 is as follows. L€tbe a
protocol; the ensuing discussion is simplified if we consider an
automaton®’ with £(?') = traceg?P) rather than? itself. For
statess; ands, of 7/, lettracegs;) to be the set of traces that
drive 7' to 5, and lettraceqs;, ;) be the set of traces that take
to sy in 7', DefineW = {w|wis a VW of somet € traceg?’)},
and letf be a functionS(?') — 2. We call f a VW labeling
function if we have that for anys;,s, € S(?') we have for
any 11 € trace§s)) and 12 € tracegs;,sp) that there exists
wy € f(s1) andw, € f(sp) such thatw; is a VW of 11 and
Wy is @ VW of 1112 and wy ~q, Wp. If f(s) is finite for all
statess, then f is a finite VW labeling function For any
DSC protocol a labeling function exists; the functidn(s) =
{w|wis a VW oft™ for somet € tracegs) with DSC-reorderingt}
demonstrates this. Howevdt, is not finite in general.

Conjecture 2 Any protocol ? € DSC has a finite VW labeling
function.

Note that since any finite set of finite sets of VWs must contain a
largest VW, Conjecture 2 implies Conjecture 1. (In fact, the two
statements are equivalent).

Our discussion is concluded by highlighting some alternate uses
of VWs. First, since VWs are generalizations of thiedowsfound
in [10], they could be employed in a similar fashion. This is a
semi-automatic protocol verification technique in which the de-
signer essentially augments the protocol description to periodically
output a window, which summarizes the current reordering of the
trace history. Verification proceeds though an automaton called the
Checker which observes the protocol and determines if consecu-
tive windows are consistent; this notion of consistency is similar to
our notion of VW evolution. Second, VWs can be incorporated as
a mathematical tool in hand proofs. One can prove that a protocol
is DSC by defining a VW labeling function for the protocol. Third,
having the VW labeling function formally defined during protocol
design will not only yield protocols that are “correct by construc-
tion”, but may illuminate subtle optimizations that preserve DSC
while increasing protocol efficiency.

Finally, we note that (hand) proof of Lazy Caching’s sequen-
tial consistency has received considerable interest from the formal
methods community. Indeed, a special issu®istributed Com-
puting[6] is devoted to this problem and contains six papers, each
giving a distinctive proof. A detailed proof of our theorem 5 (which
implies the sequential consistency of Lazy Caching) would proba-
bly span at most two pages if the VW definitions and theory are
assumed. A two page proof is arguably more succinct than any of
the six in theDistributed Computingssue [6].

7. RELATED WORK

The protocol ofGy of Lemma 4 is an example of maximally
general model Park and Dill have implemented maximally
general models for the SPARC architecture memory models
(TSO/PSO/RMO) using mgr [16, 17]. The goal of this research
is to construct arexecutable specificatiowhich can be used to
verify that given parallel code is correct under a memory model, as
opposed to verification that a shared memory protocol implements
a model.

Only two algorithmic schemes for automatic SC verification
have emerged in the literature [7, B].More accurately, these

51t was originally asserted that the Test Model Checking ap-

verify proper subclasses of SC. Here we contrast the decided
classes withDSC and focus on the characterization of these
classes rather than delve into the actual verification procedures.

7.1 Qadeer’'s Approach

Qadeer’s work [8] verifies protocols of a class specified by sev-
eral assumptions, and the theory is developed under the NNPC pro-
tocol model. The approach inherently supports simultaneous ver-
ification of an infinite family of protocol 1, ?,...} where the
number of data values (i.e. our paramatgnof B isi. Hence the
problem solved by Qadeer is fundamentally different than ours. To
make a fair comparison, then, we fikand consider the class of
protocolsQ consisting of all? such that? is a protocol withV
values in a family that the technique can verify.

Some of the involved assumptions are mandatory prerequisites
for his technique (i.e. they are characteristic)f while others
support symmetry reductions that deflate the complexity of the al-
gorithm. Here we consider only the former, which are as follows:

Data independenceconstrains how thefs relate to each other,
hence this assumption has no relevanc®;in whichV is
fixed.

Causality is an assumption that is primarily related to the use of
initial function€. Under our definitions (which preclude the
use of initial functions) causality is an implication of SC.
Thus, the causality assumption is not a significant difference
between thd®SCandQ protocol classes.

Simple witness s equivalent to the property that each tradeas
a serial reorderingrthat preserves the order of writes to the
same address. Formally, for all indexeand j such that
op(t(i)) = op(t(j)) = W andaddr(t(i)) = addr(t(j)), we
havei < j < 1(i) < 11(j). Many SC protocols have the sim-
ple witness, however Lazy Caching is an example of one that
does not.

SinceQ contains NNPC protocol€) has members that are not
in DSG; for anyk, sinceDSG; assumes the PC model. However
Lazy Caching is a protocol that residedi8G; for a finitek, but is
notinQ (since it lacks the simple witness). If we accept that all real
SC protocols are prefix-closed and DSC, then Conjecture 1 implies
that all real protocols iIQ are inDSG for somek.

7.2 Condon and Hu’s Approach

Condon and Hu'’s approach [7], which pertains only to PC pro-
tocols, requires that a protocol has the attributesawtking labels
and astore order generatofSOG).

Tracking labels are motivated by a property that most real proto-
cols have: the protocol involves a setloktorage locations
(where each location might be a cache or memory line, a
queue or buffer entry, a field in a network packet, etc.), and
protocol transitions involve copying data directly between
these locations. Tracking label’s allow on-the-fly inference
of the inheritance relation.

proach [18] could automatically verify SC. Subsequent research
showed that it actually verifies a weaker class than SC [19]. As
such, the approach is a valuable debugging aid, but does not pro-
vide verification of SC.

6An initial function init maps a trace and an addressto a data
valueinit (t,b). Then the notion of aerial trace is defined so that

a traceo may have index such thatw(a,i,addr(o(i))) =0 and
op(o(i)) =R, as long awal(a(i)) = init (o,addr(a(i))).



the protocol itself. The machine takes as input a rusf

the protocol, and outputs a description of the digraph defined
by thestore order Given a serial-reordering of the trace

T =trace(r), the store order is the partial ordeg; defined by

i <st ] iff op(t(i)) = 0p(1(j)) =W, addr(1(i)) = addr(x(j)),
andr(i) < 1(j). A SOG can only exist if the protocols transi-
tions involving actions of2(?) \ M are labeled in a manner
that provides enough information to deduce the store order.
Implicit in Condon and Hu’s work is the fact that since the

(4]

(5]

SOG state space is bounded in size, a procedure could theo- 6]

retically enumerate all possible SOGs for a protocol, hence
providing full automation. In practise, the SOG would be ei-
ther elementary (for protocols with Qadeer’s simple witness)

or user-supplied.

Given any nontrivial protocaP with tracking labels and a SOG,
we can derive a protoc@ such thatraceq?) = traceg?’) and

P’ has neither tracking labels nor a SOG. Tracking labels can be
foiled by introduction of an encoding mechanism when moving

(7]

(8]

data between locations. For example, a protocol modeled at a level

that includes use of error correction encoding of data waad

have tracking labels. Although one could in principle identify a
tracking label scheme for such a protocol, it would be difficult or
perhaps impossible to concoct an algorithm that performs this iden-
tification automatically. The SOG could be disabled by renaming

all actions of4 () \ M with a new silent action. This modification

would typically “hide” the run information needed by the SOG to

construct the store order.
As an example, we again call upon Lazy Caching [2].

Lazy

El

[10]

Caching has both tracking labels and a SOG. The SOG observes

instances of the MemoryWrite action to determine the store order.
We define Lazy Cachifido be obtained from Lazy Caching via the

modifications suggested above. Lazy Cachwayld perform data

encoding by, say, performing a bijective mapping on values when

appending to th@ut queues, and applying the inverse mapping [11]

upon MemoryWrite (which has actually been renamed). Clearly

traceqLazy Caching =tracegLazy Caching), yet Lazy Caching

can be verified via Theorems 4 and 5, but not by Condon and Hu'’s

method.
In summary, we find that our cla&SCcontains:

e all protocols in Qadeer's clasl that do not demonstrate
“prophetic inheritance” and are prefix closed, and

e all protocols in the class of Condon and Hu, and
e natural protocols that are not in either class.

Whether the same statement can be made with respect to our clas
UxDSG is an open problem and is of course implied by conjec-

ture 1.
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