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Abstract

Instrumental variable methods are powerful, but rely on strong and untestable
assumptions. In particular, it can be difficult to defend the exclusion restriction,
which requires that there exist no unblocked direct paths from instrument to out-
come, because there may be many plausible but unlikely ways for the instrument
to affect the outcome directly. We consider settings in which there exist multiple
candidate instruments but only a subset are valid. Our main result shows how to
identify the set of valid instruments under an “effect agreement” assumption that
requires that direct instrument effects do not offset the instrument’s indirect effects
that are mediated by the treatment. Leveraging this result, we give a practical
backward-selection algorithm for estimating a set of valid instruments and show
empirically that (1) we can identify sets of valid instruments with the number of
false positives decreasing with data set size and (2) that the resulting parameter
estimates compare favourably with those of an oracle that knows in advance which
of the instruments are valid.

1 Introduction

Instrumental variable (IV) methods are a powerful approach for estimating treatment effects: they
are robust to unobserved confounders and they are compatible with a variety of flexible nonlinear
function approximators [see e.g. Newey and Powell, 2003; Darolles et al., 2011; Hartford et al., 2017;
Lewis and Syrgkanis, 2018; Singh et al., 2019; Bennett et al., 2019], thereby allowing nonlinear
estimation of heterogeneous treatment effects.

However, some of the key assumptions that support IV approaches are not testable. IV methods all
assume:

1. Relevance: the treatment is not independent of the instrument.
2. Exclusion: the instrument’s effect on the outcome is entirely mediated through the treatment

(i.e., there are no unblocked direct paths from instrument to outcome).
3. Unconfounded instrument: the instrument and outcome do not share any common causes

(i.e., there are no unblocked back-door paths between the instrument and outcome).

Relevance is the only one of these assumptions that is testable. The unconfounded instrument
assumption is often justified by appealing to knowledge of the system (e.g. the instrument may
be explicitly randomized or may be the result of some well understood random process), but the
exclusion restriction assumption is often difficult to defend.1

1Discrete treatment variables also require a monotonicity assumption to estimate ‘local average treatment
effects’ (see [Angrist and Pischke, 2008, Section 4.4.1] for details). The methods presented here have the same
requirements and causal interpretation.
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Weaker assumptions are required in the presence of multiple potential instruments, some of which
are valid and some of which fail to satisfy the exclusion restriction. In this case, exclusion becomes
testable [Frandsen et al., 2019], and there exist methods that give consistent estimation of average
treatment effects under weaker assumptions than exclusion. For example, the mode of treatment
effect estimates will typically be unbiased because the subset of valid instruments will all estimate the
same treatment effect [Hartwig et al., 2017]; similarly, assuming independence of direct and indirect
instrument effects enables consistent treatment effect estimates [Kolesár et al., 2015].

These approaches are appealing because they offer the promise of automated instrument variable
methods: one can search for relevant instruments among a set of variables that we can assume to
meet the unconfounded instrument assumption and then simply assume some “reasonable” fraction
of them meet the exclusion restriction in order to estimate casual effects. Indeed, this approach
is already growing in popularity in the epidemiology literature: Mendelian randomization studies
use different genetic variations as instruments and apply this automated approach [Hemani et al.,
2017]. However, these existing approaches treat each instrument estimate independently, and test
implications and estimate parameters by leveraging the fact that only the valid instruments will agree
on the true relationship. In this work we ask a stronger question: given multiple potentially valid
instruments, can we identify which are valid?

In this work, we show that the subset of valid instruments is asymptotically identified for linear
models2 if we make an “effect agreement” assumption which says that direct instrument effects share
the same sign as indirect treatment effects. To see the implications of this assumption, consider the
following examples from economics and epidemiology where multiple potentially valid instruments
are available,

• Judge fixed effects research designs use random assignment of trial judges as an instrument
and leverage differences between different judges’s propensity to incarcerate to infer the
effect of incarceration on some outcome of interest. Mueller-Smith [2015] points out that
exclusion is violated if judges also hand out other forms of punishment (e.g. fines, a stern
verbal warning etc.,) that are not observed. The “effect agreement” assumption in this setting
amounts to assuming that all of these latent acts by judges amount to different forms of
punishment having the same effect direction on the outcome as the treatment.

• Mendelian randomization studies use genetic variation to study the effects of some ex-
posure on an outcome. For example, some genes are associated with heavier smoking. If
exclusion holds, we could use expression of these genes as an instrument to test the effect
of smoking on lifespan. However, if some of these genes also affect lifespan directly (for
example, if they are also associated with other forms of substance addiction that are not
observed), the effect agreement assumption requires that their direct effect also leads to
shorter lifespans. Conversely, if the same genes are also associated with an unobserved
addiction to exercise which offsets the negative effect of smoking, then effect agreement is
not satisfied.

Thus effect agreement amounts to assuming that direct effects do not offset the indirect effect of the
instrument via the treatment. We note that this assumption can be viewed as as stronger version of
the faithfulness assumption [Spirtes et al., 2000] which is used in the causal discovery literature. In
this context, faithfulness amounts to assuming that the direct and indirect effects don’t cancel each
other out exactly (rather than just agreeing on signs); here we need the stronger effect agreement
assumption because we allow for unobserved confounding.

Given our identification result, we present a practical, greedy backward-selection algorithm for
estimating a set of valid instruments. We show experimentally (1) that our algorithm identifies sets
of valid instruments with the number of false positives decreasing with data set size and (2) that the
parameter estimates that result from running two-stage least squares using our estimated instruments
compare favourably with those of an oracle that knows in advance which of the instruments are valid.

2Linearity is convenient but we believe that similar approaches will be possible under weaker assumptions.
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2 Methodology

We assume that our data are drawn from the following data generating process,
zi ∼ Di for i in [1 . . .K], u, εx, εy ∼ Di for i in [u, x, y]

x←
K∑
j=1

αjzj + ρu+ εx

y ← βx+

K∑
j=1

δjzj + u+ εy =

K∑
j=1

(βαj + δj)zj + (1 + ρ)u+ εy

δi = 0 for all i ∈ V, δi 6= 0 for all i ∈ I, V ∪ I = {1, . . . ,K}, |V| ≥ 1

Effect agreement: (βαj)(δj) ≥ 0 for all j, (1)
where the instruments zi and error terms εx, εy are each generated independently according to some
distribution Di. The unobserved confounder u induces a correlation between x and y parameterized
by ρ. V denotes the index set of valid instruments; I denotes the invalid instruments; and the true
causal effect to be estimated is β. Finally, Equation 1 formalizes the effect agreement assumption
that direct effects do not offset indirect effects.

Now consider the regression sum of squares statistic that we evaluate after regressing each of x and y
on a candidate set of instruments, C,

s(y, Z; C) =
1

n

n∑
i=1

(ȳ − yi)2 −

∑
j∈C

α̂yj zi,j − yi

2
 ,

where s(x, Z; C) is defined analogously for the treatment x. Call φ(C) = s(y,Z;C)
s(x,Z;C) the score of a

candidate set of instruments.
Proposition 1. Under the assumptions given above and in the infinite data limit, if α̂xj and α̂yj are
fit using ordinary least squares, φ(C) is minimized when C is any non-empty subset of the valid
instruments, V .

Proof. In the infinite data limit, α̂xj
p−→ αj and α̂yj

p−→ (βαj + δj) converge to their expected values,
and the expected value of each of s(x, Z; C) and s(y, Z; C) scores are given by

E[s(x, Z; C)] =
∑
i∈C

(αi)
2σ2
zi E[s(y, Z; C)] =

∑
i∈C

(βαi + δi)
2σ2
zi .

Now, notice that for any set of valid instruments V ′ ⊆ V , φ(V ′) = E[s(y,Z;V′)]
E[s(x,Z;V′)] = β2 since δi = 0

for all i in V . Furthermore, for any invalid instrument i ∈ I, φ({i}) > β2 since

φ({i}) =
(βαi + δi)

2

α2
i

>
(βαi)

2

α2
i

because |βαi + δ| > |βαi| by effect agreement.

Hence for any C 6⊆ V , φ(C) > φ(V ′) for all V ′ ⊆ V as required.

Corollary 1.1. The set of valid instruments, V , is uniquely identified as the largest subset of instru-
ments that minimizes φ(·). That is, V = arg maxC s.t. φ(C)=minC′ φ(C′) |C|.

Corollary 1.1 establishes that the valid set of instruments can be identified, but only in the asymptotic
limit of the φ(C) for all 2K − 1 non-empty subsets {1, . . . ,K}.

Greedy backward IV selection. Algorithm 1 gives a practical alternative to the asymptotic idea
presented in Corollary 1.1. We replace φ(·) with its empirical analogue, φ̂(·), and we perform the
combinatorial optimization procedure implied by the arg min by running greedy backward selection
on φ̂(·). At each step, the algorithm greedily removes the candidate instrument that leads to the
largest reduction in the empirical scoring function. It terminates either when no further progress can
be made or when the algorithm is left with a prespecified minimum number of instruments.
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Algorithm 1: Greedy backward IV selection
Input :(Z, x, y) a set of candidate instruments, treatment and response, γ min valid instruments
Output :A set of instruments estimated to be valid
s∗ ← φ̂(x, y, Z)
while |Z| > d|Z| ∗ γe do

forall i ∈ Z do
si ← φ̂(x, y, Z \ i)

end
if mini si > s∗ then

return Z
else

s∗ = mini si
Z ← Z \ j where j = arg mini si

end
end
return Z

Est. Oracle

Beta: 0.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
st

im
a
te

d
b

et
a

Est. Oracle

Beta: 0.2

Est. Oracle

Beta: 0.5

Est. Oracle

Beta: 1.0

Est. Oracle

Beta: 2.0

Figure 1: Estimated β from two stage least squares using the instruments returned by Algorithm
1 (labeled ‘Est’) and the true valid instruments (labeled ‘Oracle’) on 100 000 data points. For this
example only 10 out of the 30 instruments were valid and the γ hyper-parameter in Algorithm 1 was
set such that the minimum number of valid instruments was 5.

3 Simulated experiments

We evaluate our approach on the simulated data from Hartwig et al. [2017], which is designed
to reflect violations of the exclusion restriction in Mendelian randomization studies. We refer the
reader to Hartwig et al. for full details of the simulation, only noting important details here. The
data generating process matches the structural equations given in Section 2. Instruments, zi, are
discrete random variables drawn from a Binomial(2, p) distribution with p ∼ Uniform(0.1, 0.9). The
treatment and response are both continuous functions of the instruments with Gaussian error terms.
Both αi and δi are drawn from Uniform(0.1, 0.9) distributions for all i. For all experiments we use
30 candidate instruments and vary the number of valid instruments from 5 to 25 in increments of 5;
we set δi to 0 for all valid instruments.

Every experiment was run with 100 random seeds. We tested data set sizes of 1000, 10 000 and
100 000 and let β values vary between 0 and 2.

Average treatment effect estimation In order to evaluate the effect of the approach on the estimate
of β, we compared the performance of two stage least squares using the instruments returned by
Algorithm 1 to the true valid instruments. Figure 1 gives typical performance for β values from 0 to
2. We observed that while the estimated instruments exhibited larger variance, they were unbiased
with respect to the true β. For smaller values of n we observed a small negative bias. Figure 2 (left)
summarizes the performance we observed vs number of observations for different numbers of valid

4



0 25000 50000 75000 100000

N observations

10−4

10−3

10−2

10−1

M
S

E
(l

o
g

sc
a
le

)

Est-5

Est-15

Est-25

Oracle-5

Oracle-15

Oracle-25

0 25000 50000 75000 100000

N observations

0.0

0.2

0.4

0.6

0.8

P
er

ce
n
t

Acc-10

Acc-15

Acc-25

FP-10

FP-15

FP-25

Figure 2: (left) Mean squared error between estimated β̂ and true β as a function of data set size. The
numbers in the legend indicate the number of valid instruments (out of 30). (right) Accuracy and
false positive rates for the identification of instruments. Notice that while false positive rates were not
driven to zero at the sample sizes we considered, invalid instruments introduced relatively small bias.

instruments. While our method gave rise to clearly worse MSE scores than the oracle, its performance
was relatively invariant to the number of biased instruments (e.g., it achieved similar performance
with 5 valid instruments and with 25 valid instruments).

Instrument identification Figure 2 (right) shows the performance of Algorithm 1 for identifying
instruments. As the sample size grew from 1000 to 100 000 observations, accuracy increased from
about 60% to about 80%. While we observed false positive rates above zero for problems with a large
number of instruments, we found that these biased instruments did not bias the estimated treatment
effect much. Intuitively, this occurred because these instruments were selected by the algorithm
precisely because they had small values of δ; invalid instruments with small direct effects have similar
scores as valid instruments with no direct effects, but the former also introduce correspondingly small
amounts of bias to the parameter estimate.

4 Summary and conclusions

In this extended abstract we presented an approach for estimating causal effects given a candidate
set of instruments, only some of which are valid. We leveraged an effect agreement assumption and
showed that under this assumption, the set of valid instruments is identified. Clearly the next step for
this work is extending these results beyond the linear case to see how they may be combined with
more flexible nonlinear IV methods.
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