
Deep Learning for Predicting
Human Strategic Behavior

Jason Hartford, James R. Wright, Kevin Leyton-Brown
Department of Computer Science
University of British Columbia

{jasonhar, jrwright, kevinlb}@cs.ubc.ca

Abstract

Predicting the behavior of human participants in strategic settings is an important
problem in many domains. Most existing work either assumes that participants
are perfectly rational, or attempts to directly model each participant’s cognitive
processes based on insights from cognitive psychology and experimental economics.
In this work, we present an alternative, a deep learning approach that automatically
performs cognitive modeling without relying on such expert knowledge. We
introduce a novel architecture that allows a single network to generalize across
different input and output dimensions by using matrix units rather than scalar units,
and show that its performance significantly outperforms that of the previous state
of the art, which relies on expert-constructed features.

1 Introduction

Game theory provides a powerful framework for the design and analysis of multiagent systems
that involve strategic interactions [see, e.g., 16]. Prominent examples of such systems include
search engines, which use advertising auctions to generate a significant portion of their revenues
and rely on game theoretic reasoning to analyze and optimize these mechanisms [6, 20]; spectrum
auctions, which rely on game theoretic analysis to carefully design the “rules of the game” in order to
coordinate the reallocation of valuable radio spectrum [13]; and security systems, which analyze the
allocation of security personnel as a game between rational adversaries in order to optimize their use
of scarce resources [19]. In such applications, system designers optimize their choices with respect
to assumptions about the preferences, beliefs and capabilities of human players [14]. A standard
game theoretic approach is to assume that players are perfectly rational expected utility maximizers
and indeed, that they have common knowledge of this. In some applications, such as the high-stakes
spectrum auctions just mentioned, this assumption is probably reasonable, as participants are typically
large companies that hire consultants to optimize their decision making. In other scenarios that
allow less time for planning or involve less sophisticated participants, however, the perfect rationality
assumption may lead to suboptimal system designs. For example, Yang et al. [24] were able to
improve the performance of systems that defend against adversaries in security games by relaxing the
perfect rationality assumption. Of course, relaxing this assumption means finding something else to
replace it with: an accurate model of boundedly rational human behavior.

The behavioral game theory literature has developed a wide range of models for predicting hu-
man behavior in strategic settings by incorporating cognitive biases and limitations derived from
observations of play and insights from cognitive psychology [2]. Like much previous work, we
study the unrepeated, simultaneous-move setting, for two reasons. First, the setting is conceptually
straightforward: games can be represented in a so-called “normal form”, simply by listing the utilities
to each player in for each combination of their actions (e.g., see Figure 1). Second, the setting is
surprisingly general: auctions, security systems, and many other interactions can be modeled naturally

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



0 5 10 15 20 25 30

10,10

5,3

8,18

3,5

20,20

25,0

18,8

0,25

15,15

T

M

B

T

M

B

LCR Counts of Actions
Figure 1: An example 3 × 3 normal form
game. The row player chooses from actions
{T,M,B} and the column player chooses
from actions {R,C,L}. If the row player
played action T and column player played ac-
tion C, their resulting payoffs would be 3 and
5 respectively. Given such a matrix as input
we aim to predict a distribution over the row
player’s choice of actions defined by the ob-
served frequency of actions shown on the right.

as normal form games. The most successful predictive models for this setting combine notions of
iterative reasoning and noisy best response [21] and use hand-crafted features to model the behavior
of non-strategic players [23].

The recent success of deep learning has demonstrated that predictive accuracy can often be enhanced,
and expert feature engineering dispensed with, by fitting highly flexible models that are capable of
learning novel representations. A key feature in successful deep models is the use of careful design
choices to encode “basic domain knowledge of the input, in particular its topological structure. . . to
learn better features" [1, emphasis original]. For example, feed-forward neural nets can, in principle,
represent the same functions as convolution networks, but the latter tend to be more effective in
vision applications because they encode the prior that low-level features should be derived from the
pixels within a small neighborhood and that predictions should be invariant to small input translations.
Analogously, Clark and Storkey [4] encoded the fact that a Go board is invariant to rotations. These
modeling choices constrain more general architectures to a subset of the solution space that is likely
to contain good solutions. Our work seeks to do the same for the behavioral game theory setting,
identifying novel prior assumptions that extend deep learning to predicting behavior in strategic
scenarios encoded as two player, normal-form games.

A key property required of such a model is invariance to game size: a model must be able to take
as input an m× n bimatrix game (i.e., two m× n matrices encoding the payoffs of players 1 and
2 respectively) and output an m-dimensional probability distribution over player 1’s actions, for
arbitrary values of n and m, including values that did not appear in training data. In contrast, existing
deep models typically assume either a fixed-dimensional input or an arbitrary-length sequence of
fixed-dimensional inputs, in both cases with a fixed-dimensional output. We also have the prior belief
that permuting rows and columns in the input (i.e., changing the order in which actions are presented
to the players) does not change the output beyond a corresponding permutation. In Section 3, we
present an architecture that operates on matrices using scalar weights to capture invariance to changes
in the size of the input matrices and to permutations of its rows and columns. In Section 4 we evaluate
our model’s ability to predict distributions of play given normal form descriptions of games on a
dataset of experimental data from a variety of experiments, and find that our feature-free deep learning
model significantly exceeds the performance of the current state-of-the-art model, which has access
to hand-tuned features based on expert knowledge [23].

2 Related Work

Prediction in normal form games. The task of predicting actions in normal form games has been
studied mostly in the behavioral game theory literature. Such models tend to have few parameters and
to aim to describe previously identified cognitive processes. Two key ideas are the relaxation of best
response to “quantal response” and the notion of “limited iterative strategic reasoning”. Models that
assume quantal response assume that players select actions with probability increasing in expected
utility instead of always selecting the action with the largest expected utility [12]. This is expressed
formally by assuming that players select actions, ai, with probability, si, given by the logistic quantal
response function si(ai) = exp(λui(ai,s−i))∑

a′
i
exp(λui(a′i,s−i))

. This function is equivalent to the familiar softmax

function with an additional scalar sharpness parameter λ that allows the function to output the best
response as λ → ∞ and the uniform distribution as λ → 0. This relaxation is motivated by the
behavioral notion that if two actions have similar expected utility then they will also have similar
probability of being chosen. Iterative strategic reasoning means that players perform a bounded

2



number of steps of reasoning in deciding on their actions, rather than always converging to fixed
points as in classical game theory. Models incorporating this idea typically assume that every agent
has an integer level. Non-strategic, “level-0” players choose actions uniformly at random; level-k
players best respond to the level-(k − 1) players [5] or to a mixture of levels between level-0 and
level-(k − 1) [3]. The two ideas can be combined, allowing players to quantally respond to lower
level players [18, 22]. Because iterative reasoning models are defined recursively starting from a
base-case of level-0 behavior, their performance can be improved by better modeling the non-strategic
level-0 players. Wright and Leyton-Brown [23] combine quantal response and bounded steps of
reasoning with a model of non-strategic behavior based on hand-crafted game theoretic features. To
the best of our knowledge, this is the current state-of-the-art model.

Deep learning. Deep learning has demonstrated much recent success in solving supervised learning
problems in vision, speech and natural language processing [see, e.g., 9, 15]. By contrast, there have
been relatively few applications of deep learning to multiagent settings. Notable exceptions are Clark
and Storkey [4] and the policy network used in Silver et al. [17]’s work in predicting the actions
of human players in Go. Their approach is similar in spirit to ours: they map from a description
of the Go board at every move to the choices made by human players, while we perform the same
mapping from a normal form game. The setting differs in that Go is a single, sequential, zero-sum
game with a far larger, but fixed, action space, which requires an architecture tailored for pattern
recognition on the Go board. In contrast, we focus on constructing an architecture that generalizes
across general-sum, normal form games.

We enforce invariance to the size of the network’s input. Fully convolutional networks [11] achieve
invariance to the image size in a similar by manner replacing all fully connected layers with convolu-
tions. In its architectural design, our model is mathematically similar to Lin et al. [10]’s Network in
Network model, though we derived our architecture independently using game theoretic invariances.
We discuss the relationships between the two models at the end of Section 3.

3 Modeling Human Strategic Behavior with Deep Networks

A natural starting point in applying deep networks to a new domain is testing the performance of a
regular feed-forward neural network. To apply such a model to a normal form game, we need to flatten
the utility values into a single vector of length mn+ nm and learn a function that maps to the m-
simplex output via multiple hidden layers. Feed-forward networks can’t handle size-invariant inputs,
but we can temporarily set that problem aside by restricting ourselves to games with a fixed input
size. We experimented with that approach and found that feed-forward networks often generalized
poorly as the network overfitted the training data (see Section 2 of the supplementary material for
experimental evidence). One way of combating overfitting is to encourage invariance through data
augmentation: for example, one may augment a dataset of images by rotating, shifting and scaling
the images slightly. In games, a natural simplifying assumption is that players are indifferent to the
order in which actions are presented, implying invariance to permutations of the payoff matrix.1
Incorporating this assumption by randomly permuting rows or columns of the payoff matrix at every
epoch of training dramatically improved the generalization performance of a feed-forward network in
our experiments, but the network is still limited to games of the size that it was trained on.

Our approach is to enforce this invariance in the model architecture rather than through data aug-
mentation. We then add further flexibility using novel “pooling units” and by incorporating iterative
response ideas inspired by behavioral game theory models. The result is a model that is flexible
enough to represent the all the models surveyed in Wright and Leyton-Brown [22, 23]—and a huge
space of novel models as well—and which can be identified automatically. The model is also in-
variant to the size of the input payoff matrix, differentiable end to end and trainable using standard
gradient-based optimization.

The model has two parts: feature layers and action response layers; see Figure 2 for a graphical
overview. The feature layers take the row and column player’s normalized utility matrices U(r) and
U(c) ∈ Rm×n as input, where the row player has m actions and the column player has n actions.
The feature layers consist of multiple levels of hidden matrix units, H(r)

i,j ∈ Rm×n, each of which
calculates a weighted sum of the units below and applies a non-linear activation function. Each

1We thus ignore salience effects that could arise from action ordering; we plan to explore this in future work.

3



H
(r)
1,1

H
1
,1
↓

H1,1 ↓

...

H
(r)
1,j

H
1
,j
↓

H1,j ↓

H
(r)
2,1

H
2
,1
↓

H2,1 ↓

...

H
(r)
2,j

H
2
,j
↓

H2,j ↓

. . .

. . .

f1

...

fj

Feature Layers

O
u
tp

u
t

In
p
u
t
U
n
it
s

S
o
ft
m
a
x

U
n
it
s

H
(c)
1,1

H
1
,1
↓

H1,1 ↓

...

H
(c)
1,j

H
1
,j
↓

H1,j ↓

H
(c)
2,1

H
2
,1
↓

H2,1 ↓

...

H
(c)
2,j

H
2
,j
↓

H2,j ↓

. . .

. . .

f1

...

fj

U(r)

U
(r

)↓

U(r) ↓

U(c)

U
(c

)↓

U(c) ↓

a
r
(r
)

0

a
r
(r
)

1 ...

a
r
(r
)

k−
1

a
r
(r
)

k

a
r
(c)
0

a
r
(c)
1 ...

a
r
(c)
k−

1

y

Action Response Layers

Figure 2: A schematic representation of our architecture. The feature layers consist of hidden matrix
units (orange), each of which use pooling units to output row- and column-preserving aggregates
(blue and purple) before being reduced to distributions over actions in the softmax units (red). Iterative
response is modeled using the action response layers (green) and the final output, y, is a weighted
sum of the row player’s action response layers.

layer of hidden units is followed by pooling units, which output aggregated versions of the hidden
matrices to be used by the following layer. After multiple layers, the matrices are aggregated to
vectors and normalized to a distribution over actions, f (r)i ∈ ∆m in softmax units. We refer to these
distributions as features because they encode higher-level representations of the input matrices that
may be combined to construct the output distribution.

As discussed earlier, iterative strategic reasoning is an important phenomenon in human decision
making; we thus want to allow our models the option of incorporating such reasoning. To do so, we
compute features for the column player in the same manner by applying the feature layers to the
transpose of the input matrices, which outputs f (c)i ∈ ∆n. Each action response layer for a given
player then takes the opposite player’s preceding action response layers as input and uses them to
construct distributions over the respective players’ outputs. The final output y ∈ ∆m is a weighted
sum of all action response layers’ outputs.

Invariance-Preserving Hidden Units We build a model that ties parameters in our network by
encoding the assumption that players reason about each action identically. This assumption implies
that the row player applies the same function to each row of a given game’s utility matrices. Thus, in
a normal form game represented by the utility matrices U(r) and U(c), the weights associated with
each row of U(r) and U(c) must be the same. Similarly, the corresponding assumption about the
column player implies that the weights associated with each column of U(r) and U(c) must also be
the same. We can satisfy both assumptions by applying a single scalar weight to each of the utility
matrices, computing wrU(r) + wcU

(c). This idea can be generalized as in a standard feed-forward
network to allow us to fit more complex functions. A hidden matrix unit taking all the preceding
hidden matrix units as input can be calculated as

Hl,i = φ


∑

j

wl,i,jHl−1,j + bl,i


 Hl,i ∈ Rm×n,

where Hl,i is the ith hidden unit matrix for layer l, wl,i,j is the jth scalar weight, bl,i is a scalar bias
variable, and φ is a non-linear activation function applied element-wise. Notice that, as in a traditional
feed-forward neural network, the output of each hidden unit is simply a nonlinear transformation of
the weighted sum of the preceding layer’s hidden units. Our architecture differs by maintaining a

4



Figure 3: Left: Without pooling units, each element of every hidden matrix unit depends only on the
corresponding elements in the units from the layer below; e.g., the middle element highlighted in
red depends only on the value of the elements of the matrices highlighted in orange. Right: With
pooling units at each layer in the network, each element of every hidden matrix unit depends both on
the corresponding elements in the units below and the pooled quantity from each row and column.
E.g., the light blue and purple blocks represent the row and column-wise aggregates corresponding to
their adjacent matrices. The dark blue and purple blocks show which of these values the red element
depends on. Thus, the red element depends on both the dark- and light-shaded orange cells.
JH: TODO: add level labels

Action Response Layers The feature layers described above are sufficient to meet our objective203

of mapping from the input payoff matrices to a distribution over the row player’s actions. However,204

this architecture is not capable of explicitly representing iterative strategic reasoning, which the205

behavioral game theory literature has identified as an important modeling ingredient. We incorporate206

this ingredient using action response layers: the first player can respond to the second’s beliefs,207

the second can respond to this response by the first player, and so on to some finite depth. The208

proportion of players in the population who iterate at each depth is a parameter of the model; thus,209

our architecture is also able to learn not to perform iterative reasoning.210

More formally, we begin by denoting the output of the feature layers as ar
(r)
0 =

Pk
i=1 w

(r)
0i f

(r)
i ,211

where we now include an index (r) to refer to the output of row player’s action response layer212

ar
(r)
0 2 �m. Similarly, by applying the feature layers to a transposed version of the input matrices,213

the model also outputs a corresponding ar
(c)
0 2 �n for the column player which expresses the row214

player’s beliefs about which actions the column player will choose. Each action response layer215

composes its output by calculating the expected value of an internal representation of utility with216

respect to its belief distribution over the opposition actions. For this internal representation of utility217

we chose simply a weighted sum of the final layer of the hidden layers,
P

i wiHL,i, because each218

HL,i is already some non-linear transformation of the original payoff matrix, and so this allows the219

model to express utility as a transformation of the original payoffs. Given the matrix that results from220

this sum, we can compute expected utility with respect to the vector of beliefs about the opposition’s221

choice of actions, ar(c)
j , by simply taking the dot product of the weighted sum and beliefs. When222

we iterate this process of responding to beliefs about one’s opposition more than once, higher level223

players will respond to beliefs, ari, for all i less their level and then output a weighted combination224

of these responses using some weights, vl,i. Putting this together, the lth action response layer for the225

row player (r) is defined as226

ar
(r)
l = softmax

 
�l

 
l�1X

j=0

v
(r)
l,j

 
kX

i=1

w
(r)
l,i H

(r)
L,i

!
· ar(c)

j

!!
, ar

(r)
l 2 �m, l 2 {1, ..., K},

where l indexes the action response layer, �l is a scalar sharpness parameter that allows us to sharpen227

the resulting distribution, w
(r)
l,i and v

(r)
l,j are scalar weights, HL,i are the row player’s k hidden units228

from the final hidden layer L, ar(c)
j is the output of the column player’s jth action response layer and229

K is the total number of action response layers. We constrain w
(r)
li and v

(r)
lj to the simplex and use230

�l to sharpen the output distribution so that we can optimize the sharpness of the distribution and231

relative weighting of its terms independently. We build up the column player’s action response layer,232

ar
(c)
l , similarly, using the column player’s internal utility representation, H(c)

L,i, responding to the row233

player’s action response layers, ar(r)
l . These layers are not used in the final output directly but are234

relied upon by subsequent action response layers of the row player.235

6

Figure 3: Left: Without pooling units, each element of every hidden matrix unit depends only on the
corresponding elements in the units from the layer below; e.g., the middle element highlighted in
red depends only on the value of the elements of the matrices highlighted in orange. Right: With
pooling units at each layer in the network, each element of every hidden matrix unit depends both on
the corresponding elements in the units below and the pooled quantity from each row and column.
E.g., the light blue and purple blocks represent the row and column-wise aggregates corresponding to
their adjacent matrices. The dark blue and purple blocks show which of these values the red element
depends on. Thus, the red element depends on both the dark- and light-shaded orange cells.
JH: TODO: add level labels

Action Response Layers The feature layers described above are sufficient to meet our objective203

of mapping from the input payoff matrices to a distribution over the row player’s actions. However,204

this architecture is not capable of explicitly representing iterative strategic reasoning, which the205

behavioral game theory literature has identified as an important modeling ingredient. We incorporate206

this ingredient using action response layers: the first player can respond to the second’s beliefs,207

the second can respond to this response by the first player, and so on to some finite depth. The208

proportion of players in the population who iterate at each depth is a parameter of the model; thus,209

our architecture is also able to learn not to perform iterative reasoning.210

More formally, we begin by denoting the output of the feature layers as ar
(r)
0 =

Pk
i=1 w

(r)
0i f

(r)
i ,211

where we now include an index (r) to refer to the output of row player’s action response layer212

ar
(r)
0 2 �m. Similarly, by applying the feature layers to a transposed version of the input matrices,213

the model also outputs a corresponding ar
(c)
0 2 �n for the column player which expresses the row214

player’s beliefs about which actions the column player will choose. Each action response layer215

composes its output by calculating the expected value of an internal representation of utility with216

respect to its belief distribution over the opposition actions. For this internal representation of utility217

we chose simply a weighted sum of the final layer of the hidden layers,
P

i wiHL,i, because each218

HL,i is already some non-linear transformation of the original payoff matrix, and so this allows the219

model to express utility as a transformation of the original payoffs. Given the matrix that results from220

this sum, we can compute expected utility with respect to the vector of beliefs about the opposition’s221

choice of actions, ar(c)
j , by simply taking the dot product of the weighted sum and beliefs. When222

we iterate this process of responding to beliefs about one’s opposition more than once, higher level223

players will respond to beliefs, ari, for all i less their level and then output a weighted combination224

of these responses using some weights, vl,i. Putting this together, the lth action response layer for the225

row player (r) is defined as226

ar
(r)
l = softmax

 
�l

 
l�1X

j=0

v
(r)
l,j

 
kX

i=1

w
(r)
l,i H

(r)
L,i

!
· ar(c)

j

!!
, ar

(r)
l 2 �m, l 2 {1, ..., K},

where l indexes the action response layer, �l is a scalar sharpness parameter that allows us to sharpen227

the resulting distribution, w
(r)
l,i and v

(r)
l,j are scalar weights, HL,i are the row player’s k hidden units228

from the final hidden layer L, ar(c)
j is the output of the column player’s jth action response layer and229

K is the total number of action response layers. We constrain w
(r)
li and v

(r)
lj to the simplex and use230

�l to sharpen the output distribution so that we can optimize the sharpness of the distribution and231

relative weighting of its terms independently. We build up the column player’s action response layer,232

ar
(c)
l , similarly, using the column player’s internal utility representation, H(c)

L,i, responding to the row233

player’s action response layers, ar(r)
l . These layers are not used in the final output directly but are234

relied upon by subsequent action response layers of the row player.235

6

Input Units

Hidden Layer 1

Hidden Layer 2

Figure 3: Left: Without pooling units, each element of every hidden matrix unit depends only on the
corresponding elements in the units from the layer below; e.g., the middle element highlighted in
red depends only on the value of the elements of the matrices highlighted in orange. Right: With
pooling units at each layer in the network, each element of every hidden matrix unit depends both on
the corresponding elements in the units below and the pooled quantity from each row and column.
E.g., the light blue and purple blocks represent the row and column-wise aggregates corresponding to
their adjacent matrices. The dark blue and purple blocks show which of these values the red element
depends on. Thus, the red element depends on both the dark- and light-shaded orange cells.

matrix at each hidden unit instead of a scalar. So while in a traditional feed-forward network each
hidden unit maps the previous layer’s vector of outputs into a scalar output, in our architecture each
hidden unit maps a tensor of outputs from the previous layer into a matrix output.

Tying weights in this way reduces the number of parameters in our network by a factor of nm,
offering two benefits. First, it reduces the degree to which the network is able to overfit; second and
more importantly, it makes the model invariant to the size of the input matrices. To see this, notice
that each hidden unit maps from a tensor containing the k output matrices of the preceding layer
in Rk×m×n to a matrix in Rm×n using k weights. Thus our number of parameters in each layer
depends on the number of hidden units in the preceding layer, but not on the sizes of the input and
output matrices. This allows the model to generalize to input sizes that do not appear in training data.

Pooling units A limitation of the weight tying used in our hidden matrix units is that it forces
independence between the elements of their matrices, preventing the network from learning functions
that compare the values of related elements (see Figure 3 (left)). Recall that each element of the
matrices in our model corresponds to an outcome in a normal form game. A natural game theoretic
notion of the “related elements” which we’d like our model to be able to compare is the set of payoffs
associated with each of the players’ actions that led to that outcome. This corresponds to the row and
column of each matrix associated with the particular element.

This observation motivates our pooling units, which allow information sharing by outputting ag-
gregated versions of their input matrix that may be used by later layers in the network to learn to
compare the values of a particular cell in a matrix and its row- or column-wise aggregates.

H→ {Hc,Hr} =








maxi hi,1 maxi hi,2 . . .
maxi hi,1 maxi hi,2 . . .

...
...

maxi hi,1 maxi hi,2


 ,




maxj h1,j maxj h1,j . . .
maxj h2,j maxj h2,j . . .

...
...

maxj hm,j maxj hm,j . . .








(1)

A pooling unit takes a matrix as input and outputs two matrices constructed from row- and column-
preserving pooling operations respectively. A pooling operation could be any continuous function that
maps fromRn → R. We use the max function because it is a necessary to represent known behavioral
functions (see Section 4 of the supplementary material for details) and offered the best empirical
performance of the functions we tested. Equation (1) shows an example of a pooling layer with max
functions for some arbitrary matrix H. The first of the two outputs, Hc, is column-preserving in that
it selects the maximum value in each column of H and then stacks the resulting vector n-dimensional
vector m times such that the dimensionality of H and Hc are the same. Similarly, the row-preserving
output constructs a vector of the max elements in each column and stacks the resultingm-dimensional
vector n times such that Hr and H have the same dimensionality. We stack the vectors that result
from the pooling operation in this fashion so that the hidden units from the next layer in the network
may take H,Hc and Hr as input. This allows these later hidden units to learn functions where each
element of their output is a function both of the corresponding element from the matrices below as
well as their row and column-preserving maximums (see Figure 3 (right)).

5



Softmax output Our model predicts a distribution over the row player’s actions. In order to do this,
we need to map from the hidden matrices in the final layer, HL,i ∈ Rm×n, of the network onto a
point on the m-simplex, ∆m. We achieve this mapping by applying a row-preserving sum to each
of the final layer hidden matrices HL,i (i.e. we sum uniformly over the columns of the matrix as
described above) and then applying a softmax function to convert each of the resulting vectors hi
into normalized distributions. This produces k features fi, each of which is a distribution over the
row player’s m actions:

fi = softmax
(
h(i)

)
where h

(i)
j =

n∑

k=1

h
(i)
j,k for all j ∈ {1, ...,m}, h(i)j,k ∈ H(i) i ∈ {1, ..., k}.

We can then produce the output of our features, ar0, using a weighted sum of the individual features,
ar0 =

∑k
i=1 wifi, where we optimize wi under simplex constraints, wi ≥ 0,

∑
i wi = 1. Because

each fi is a distribution and our weights wi are points on the simplex, the output of the feature layers
is a mixture of distributions.

Action Response Layers The feature layers described above are sufficient to meet our objective
of mapping from the input payoff matrices to a distribution over the row player’s actions. However,
this architecture is not capable of explicitly representing iterative strategic reasoning, which the
behavioral game theory literature has identified as an important modeling ingredient. We incorporate
this ingredient using action response layers: the first player can respond to the second’s beliefs,
the second can respond to this response by the first player, and so on to some finite depth. The
proportion of players in the population who iterate at each depth is a parameter of the model; thus,
our architecture is also able to learn not to perform iterative reasoning.

More formally, we begin by denoting the output of the feature layers as ar
(r)
0 =

∑k
i=1 w

(r)
0i f

(r)
i ,

where we now include an index (r) to refer to the output of row player’s action response layer
ar

(r)
0 ∈ ∆m. Similarly, by applying the feature layers to a transposed version of the input matrices,

the model also outputs a corresponding ar
(c)
0 ∈ ∆n for the column player which expresses the row

player’s beliefs about which actions the column player will choose. Each action response layer
composes its output by calculating the expected value of an internal representation of utility with
respect to its belief distribution over the opposition actions. For this internal representation of utility
we chose a weighted sum of the final layer of the hidden layers,

∑
i wiHL,i, because each HL,i is

already some non-linear transformation of the original payoff matrix, and so this allows the model to
express utility as a transformation of the original payoffs. Given the matrix that results from this sum,
we can compute expected utility with respect to the vector of beliefs about the opposition’s choice of
actions, ar(c)j , by simply taking the dot product of the weighted sum and beliefs. When we iterate
this process of responding to beliefs about one’s opposition more than once, higher-level players will
respond to beliefs, ari, for all i less than their level and then output a weighted combination of these
responses using some weights, vl,i. Putting this together, the lth action response layer for the row
player (r) is defined as

ar
(r)
l = softmax

(
λl

(
l−1∑

j=0

v
(r)
l,j

(
k∑

i=1

w
(r)
l,i H

(r)
L,i

)
· ar(c)j

))
, ar

(r)
l ∈ ∆m, l ∈ {1, ...,K},

where l indexes the action response layer, λl is a scalar sharpness parameter that allows us to sharpen
the resulting distribution, w(r)

l,i and v(r)l,j are scalar weights, HL,i are the row player’s k hidden units

from the final hidden layer L, ar(c)j is the output of the column player’s jth action response layer,

and K is the total number of action response layers. We constrain w(r)
li and v(r)lj to the simplex and

use λl to sharpen the output distribution so that we can optimize the sharpness of the distribution and
relative weighting of its terms independently. We build up the column player’s action response layer,
ar

(c)
l , similarly, using the column player’s internal utility representation, H(c)

L,i, responding to the row

player’s action response layers, ar(r)l . These layers are not used in the final output directly but are
relied upon by subsequent action response layers of the row player.

Output Our model’s final output is a weighted sum of the outputs of the action response layers.
This output needs to be a valid distribution over actions. Because each of the action response layers

6



also outputs a distribution over actions, we can achieve this requirement by constraining these weights
to the simplex, thereby ensuring that the output is just a mixture of distributions. The model’s output
is thus y =

∑K
j=1 wjar

(r)
j , where y and ar

(r)
j ∈ ∆m, and wj ∈ ∆K .

Relation to existing deep models Our model’s functional form has interesting connections with
existing deep model architectures. We discuss two of these here. First, our invariance-preserving
hidden layers can be encoded as MLP Convolution Layers described in Lin et al. [10] with the two-
channel 1× 1 input xi,j corresponding to the two players’ respective payoffs when actions i and j are
played (using patches larger than 1× 1 would imply the assumption that local structure is important,
which is inappropriate in our domain; thus, we do not need multiple mlpconv layers). Second, our
pooling units are superficially similar to the pooling units used in convolutional networks. However,
ours differ both in functional form and purpose: we use pooling as a way of sharing information
between cells in the matrices that are processed through our network by taking maximums across
entire rows or columns, while in computer vision, max-pooling units are used to produce invariance
to small translations of the input image by taking maximums in a small local neighborhood.

Representational generality of our architecture Our work aims to extend existing models in
behavioral game theory via deep learning, not to propose an orthogonal approach. Thus, we must
demonstrate that our representation is rich enough to capture models and features that have proven
important in that literature. We omit the details here for space reasons (see the supplementary
material, Section 4), but summarize our findings. Overall, our architecture can express the quantal
cognitive hierarchy [23] and quantal level-k [18] models and as their sharpness tends to infinity, their
best-response equivalents cognitive hierarchy [3] and level-k [5]. Using feature layers we can also
encode all the behavioral features used in Wright and Leyton-Brown [23]. However, our architecture
is not universal; notably, it is unable to express certain features that are likely to be useful, such as
identification of dominated strategies. We plan to explore this in future work.

4 Experiments

Experimental Setup We used a dataset combining observations from 9 human-subject experi-
mental studies conducted by behavioral economists in which subjects were paid to select actions
in normal-form games. Their payment depended on the subject’s actions and the actions of their
unseen opposition who chose an action simultaneously (see Section 1 of the supplementary material
for further details on the experiments and data). We are interested in the model’s ability to predict the
distribution over the row player’s action, rather than just its accuracy in predicting the most likely
action. As a result, we fit models to maximize the likelihood of training data P(D|θ) (where θ are the
parameters of the model and D is our dataset) and evaluate them in terms of negative log-likelihood
on the test set.

All the models presented in the experimental section were optimized using Adam [8] with an initial
learning rate of 0.0002, β1 = 0.9, β2 = 0.999 and ε = 10−8. The models were all regularized using
Dropout with drop probability = 0.2 and L1 regularization with parameter = 0.01. They were all
trained until there was no training set improvement up to a maximum of 25 000 epochs and the
parameters from the iteration with the best training set performance was returned. Our architecture
imposes simplex constraints on the mixture weight parameters. Fortunately, simplex constraints fall
within the class of simple constraints that can be efficiently optimized using the projected gradient
algorithm [7]. The algorithm modifies standard SGD by projecting the relevant parameters onto the
constraint set after each gradient update.

Experimental Results Figure 4 (left) shows a performance comparison between a model built
using our deep learning architecture with only a single action response layer (i.e. no iterative
reasoning; details below) and the previous state of the art, quantal cognitive hierarchy (QCH) with
hand-crafted features (shown as a blue line); for reference we also include the best feature-free model,
QCH with a uniform model of level-0 behavior (shown as a pink line). We refer to an instantiation
of our model with L hidden layers and K action response layers as an N + K layer network. All
instantiations of our model with 3 or more layers significantly improved on both alternatives and thus
represents a new state of the art. Notably, the magnitude of the improvement was considerably larger
than that of adding hand-crafted features to the original QCH model.

7



50 20, 20 50, 50 100, 100 50, 50, 50 100, 100, 100
940

960

980

1000

1020

1040

N
L

L
(T

es
t

L
os

s)

50 20, 20 50, 50 100, 100 50, 50, 50 100, 100, 100

Model Variations (# hidden units)

7500

8000

8500

9000

9500

N
L

L
(T

ra
in

in
g

L
os

s)
50, 50

(no pooling)
50, 50

(pooling)
100,100,100
(no pooling)

100,100,100
(pooling)

940

960

980

1000

1020

1040

N
L

L
(T

es
t

L
os

s)

50, 50
(no pooling)

50, 50
(pooling)

100,100,100
(no pooling)

100,100,100
(pooling)

Pooling Comparison (# units)

7500

8000

8500

9000

9500

N
L

L
(T

ra
in

in
g

L
os

s)

1 2 3 4
940

960

980

1000

1020

1040

N
L

L
(T

es
t

L
os

s)

1 2 3 4

Action Response (# layers)

7500

8000

8500

9000

9500

N
L

L
(T

ra
in

in
g

L
os

s)

Figure 4: Negative Log Likelihood Performance. The error bars represent 95% confidence intervals
across 10 rounds of 10-fold cross-validation. We compare various models built using our architecture
to QCH Uniform (pink line) and QCH Linear4 (blue line).

Figure 4 (left) considers the effect of varying the number of hidden units and layers on performance
using a single action response layer. Perhaps unsurprisingly, we found that a two layer network with
only a single hidden layer of 50 units performed poorly on both training and test data. Adding a
second hidden layer resulted in test set performance that improved on the previous state of the art.
For these three layer networks (denoted (20, 20), (50, 50) and (100, 100)), performance improved
with more units per layer, but there were diminishing returns to increasing the number of units per
layer beyond 50. The four-layer networks (denoted (50, 50, 50) and (100, 100, 100)) offered further
improvements in training set performance but test set performance diminished as the networks were
able to overfit the data. To test the effect of pooling units on performance, in Figure 4 (center)
we first removed the pooling units from two of the network configurations, keeping the rest of the
hyper-parameters unchanged. The models that did not use pooling layers under fit on the training
data and performed very poorly on the test set. While we were able to improve their performance
by turning off dropout, these unregularized networks didn’t match the training set performance of
the corresponding network configurations that had pooling units (see Section 3 of the supplementary
material). Thus, our final network contained two layers of 50 hidden units and pooling units.

Our next set of experiments committed to this configuration for feature layers and investigated
configurations of action-response layers, varying their number between one and four (i.e., from no
iterative reasoning up to three levels of iterative reasoning; see Figure 4 (right) ). The networks with
more than one action-response layer showed signs of overfitting: performance on the training set
improved steadily as we added AR layers but test set performance suffered. Thus, our final network
used only one action-response layer. We nevertheless remain committed to an architecture that can
capture iterative strategic reasoning; we intend to investigate more effective methods of regularizing
the parameters of action-response layers in future work.

5 Discussion and Conclusions

To design systems that efficiently interact with human players, we need an accurate model of
boundedly rational behavior. We present an architecture for learning such models that significantly
improves upon state-of-the-art performance without needing hand-tuned features developed by
domain experts. Interestingly, while the full architecture can include action response layers to
explicitly incorporate the iterative reasoning process modeled by level-k-style models, our best
performing model did not need them to achieve set a new performance benchmark. This indicates
that the model is performing the mapping from payoffs to distributions over actions in a manner that
is substantially different from previous successful models. Some natural future directions, besides
those already discussed above, are to extend our architecture beyond two-player, unrepeated games to
games with more than two players, as well as to richer interaction environments, such as games in
which the same players interact repeatedly and games of imperfect information.

8



References
[1] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 2013.
[2] C.F. Camerer. Behavioral game theory: Experiments in strategic interaction. Princeton

University Press, 2003.
[3] C.F. Camerer, T.H. Ho, and J.K. Chong. A cognitive hierarchy model of games. Quarterly

Journal of Economics, 119(3), 2004.
[4] C. Clark and A. J. Storkey. Training deep convolutional neural networks to play go. In

Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, 2015.
[5] M. Costa-Gomes, V.P. Crawford, and B. Broseta. Cognition and behavior in normal-form games:

An experimental study. Econometrica, 69(5), 2001.
[6] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the generalized second-

price auction: Selling billions of dollars worth of keywords. The American Economic Review,
97(1), 2007.

[7] A. Goldstein. Convex programming in hilbert space. Bulletin of the American Mathematical
Society, 70(5), 09 1964.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In The International
Conference on Learning Representations (ICLR), 2015.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 2015.
[10] M. Lin, Q. Chen, and S. Yan. Network in network. In International Conference on Learning

Representations, volume abs/1312.4400. 2014.
[11] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.

In CVPR, June 2015.
[12] R.D. McKelvey and T.R. Palfrey. Quantal response equilibria for normal form games. GEB, 10

(1), 1995.
[13] P. Milgrom and I. Segal. Deferred-acceptance auctions and radio spectrum reallocation. In

Proceedings of the Fifteenth ACM Conference on Economics and Computation. ACM, 2014.
[14] D. C. Parkes and M. P. Wellman. Economic reasoning and artificial intelligence. Science, 349

(6245), 2015.
[15] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 2015.
[16] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-theoretic, and

Logical Foundations. Cambridge University Press, 2008.
[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, Grewe D, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529, 2016.

[18] D.O. Stahl and P.W. Wilson. Experimental evidence on players’ models of other players. JEBO,
25(3), 1994.

[19] M. Tambe. Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[20] H. R. Varian. Position auctions. International Journal of Industrial Organization, 25, 2007.
[21] J. R. Wright and K. Leyton-Brown. Beyond equilibrium: Predicting human behavior in normal-

form games. In AAAI. AAAI Press, 2010.
[22] J. R. Wright and K. Leyton-Brown. Behavioral game-theoretic models: A Bayesian framework

for parameter analysis. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2012), volume 2, pages 921–928, 2012.

[23] J. R. Wright and K. Leyton-Brown. Level-0 meta-models for predicting human behavior in
games. In Proceedings of the Fifteenth ACM Conference on Economics and Computation, pages
857–874, 2014.

[24] R. Yang, C. Kiekintvled, F. Ordonez, M. Tambe, and R. John. Improving resource allocation
strategies against human adversaries in security games: An extended study. Artificial Intelligence
Journal (AIJ), 2013.

9


	Introduction
	Related Work
	Modeling Human Strategic Behavior with Deep Networks
	Experiments
	Discussion and Conclusions

