
Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

8. NP-completeness

So far: We have considered a wide range of problems that can be solved efficiently, i.e.
where algorithm exists

• That solve the problem and

• Whose worst-case running time is polynomial

Motivation: • What about problems that seem ”difficult” to solve?

• In case we cannot come up with an efficient algorithm that is able to solve the
problem in polynomial time, does this imply that no such algorithm exists?

• Moreover, is it possible to mathematically prove that no efficient algorithm for
solving those problems exists?

Note: If we do not happen to know any efficient algorithm to solve a given ”difficult”
problem, this does not imply that no such algorithm exists.

Question: Given the above answer, is there any way to categorize ”difficult” problems into
different classes according to how difficult they are?

Answer: Yes (at least to some extent)

Definition: We can define the class of NP-complete problems as the set of those ”difficult”
problems for which

• there currently does not exist an efficient, i.e. polynomial-time algorithm to solve
any of them,

• but which are of similar difficulty in the sense that if we know an efficient algorithm
to solve one of those problems, this would allow us to derive efficient algorithms
for all of those problems.

Remark: You can think of NP-complete problems as being of similar difficulty.

8.1 Polynomial time reductions

Goal: We want to rank computationally hard problems (i.e. those for which no efficient
algorithm is known) via pairwise comparisons, e.g. ”problem X is at least as hard as
problem Y ”

(main idea behind this reduction approach)

Strategy: In order to apply the above reasoning, we have to ensure that problems X and
Y have a closely related degree of hardness. We thus make the following definition:

112

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Definition: Given two problems X and Y , we say that problem Y is (polynomial-time) re-
ducible to problem X and write ”Y ≤p X” if arbitrary instances of problem Y can be
solved using a polynomial number of standard computational steps plus a polynomial
number of calls to the algorithm that solves problem X.

We also say problem X is at least as hard as problem Y with respect to polynomial
time.

Theorem 1: Given two problems X and Y such that Y ≤p X. If X can be solved in
polynomial time, than Y can be solved in polynomial time.

Proof: According to the above definition of Y ≤p X, problem Y can be solved using a
polynomial number of steps and a polynomial number of calls to the algorithm that
solves X. So, if the algorithm to solve X is polynomial, we can therefore solve Y in
polynomial time.

Strategy: Typically, we want to use Y ≤p X in order to prove properties of X given
properties of Y (and not the other way around as in Theorem 1). More specifically,
we often want to show that

Theorem 2: Given two problems X and Y such that
−→

Y ≤p X. If Y cannot be solved in
polynomial time, then X cannot be solved in polynomial time.

(−→ indicates the direction of the logical flow)

Proof:

Group work (hint: how is Theorem 2 related to Theorem 1)

Answer: Theorem 2 is the contrapositive of Theorem 1, i.e. the two statements are equiv-
alent. 2.

Example 1: Independent set and vertex cover

Problem 1: (independent set) Given an undirected graph G and a number k ∈ N , does G
contain an independent set of size k or larger? Typically, we are interested in large
independent sets rather than small ones.

Definition: Given and undirected graph G = (V,E), we call a set S of nodes, S ⊆ V ,
independent if there is no pair of nodes in S that are connected by an edge.

Group work:

113

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Lemma 2: (vertex cover) ≤p (independent set)

Proof: Analogous to the proof of lemma 1, i.e. simply reverse the roles of the two problems.

Example 2: vertex cover to set cover

Motivation: Replace previous problem 1 (independent set) by the more general problem
of determining a so-called set cover.

Definition: Givan a set U of n elements, a collection of sub-sets S1, ..., Sm of U and a num-
ber k ∈ N .

A set cover of U of size k ∈ N is a sub-set of k of the subsets S1, ..., Sm of U such that
their union is equal to U .

Note:

– the sub-sets of the set cover may overlap each other, i.e. may have non-empty
intersection

– the elements in set U need to be numbers.

Example:

• U = N10 = {1, 2, ..., 10}
• S1 = {1, 2}
• S2 = {3, 4, 5}
• S3 = {6, 7, 8}
• S4 = {9, 10}
• S5 = {4, 7}
• S6 = {5, 8}
• S7 = {1, 3, 6, 9}
• S8 = {2, 3, 4, 5}
• S9 = {6, 7, 8, 10}

Group work: Is there a set cover of size 3?

Answer: Yes. Take S7, S8 and S9

Problem 1: (set cover) Given a set U of n elements and a collection of sub-sets of U, S1, S2, ..., Sm,
does a set cover of size ≤ k, k ∈ N , exist?

Note: Typically, the goal is to find a set cover of minimal size.

Problem 2: vertex cover (see example 1)

116

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Theorem: (vertex cover) ≤p (set cover)

Concern: The vertex cover problem deals with an undirected graph G = (V,E), whereas
the set cover problem deals (more generally) with a set of n elements (which could
mean anything).

Does the theorem compare apples and branches?

Yes, it does (to some extent), but this is ok, provided it makes sense in the context of
the definition of what X ≤p Y means.

We will see that this is case in the following...

Proof (of the theorem):

(Def.) Reminder: In order to show that X ≤p Y , we need to show that

(1) arbitrary (!) instances of Y (not X!) can be solved by

(2) using a polynomial number of standard computational steps and by

(3) making a polynomial number of calls to the algorithm that solves X (not Y).

In this case, i.e. for Y = (vertex cover) and X = (set cover), suppose we have an
algorithm to solve (set cover). Let us consider an arbitrary (!) instance of (vertex
cover), specified by graph G = (V,E) and a number k ∈ N .

key step in proof (getting the mapping right) The goal in (vertex cover) is to find a
sub-set of V that covers the edges E in G. In order to establish a meaningful mapping
to a corresponding instance of (set cover), we pick a specific (!) instance of (set cover)
and identify set U with set E, i.e. the edges in graph G of (vertex cover).

Whenever we pick a vertex (i.e. node) in (vertex cover), we cover all the edges in G
incident on it. In (set cover), this corresponds to adding subset Si containing all edges
in G that are incident to node i to the emerging set cover.

Claim: U can be covered with a set cover of size ≤ k ⇔ the corresponding graph G has a
vertex cover of size ≤ k

Need to consider an arbitrary (!) graph G = (V,E)

117

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• X = {x1, x2, . . . , xn} a set of Boolean variables

• term over X = one xi ∈ X or its negation, i.e. x̄i

• a clause of length l = t1 ∨ t2 ∨ . . . ∨ tl, where sign “∨” means “OR” and where
ti ∈ {x1, . . . , xn, x̄1, . . . , x̄n}

• a truth assignment V = a function V : X → {0, 1}, where ¯V(xi) = v(x̄i)

• V satisfies a clause C = t1 ∨ . . . ∨ tl if V causes C to evaluate to 1 (“true”), i.e.
where

V(C) = V(t1) ∨V(tl) = 1

• V satisfies clauses C1 to Ck if V causes every clause Ci, i ∈ {1, . . . , k}, to evaluate
to 1, i.e. where

V(C1) ∧ . . . ∧ (Ck) = 1

and where sign “∧” means “and”.

We then say that “V satisfies an assignment w.r.t. C1 to Ck” or we say that “the
set of clauses C1 to Ck is satisfying under assignment V”

Special Cases • truth assignment V : X → {1}, i.e. this assignment sets all variables
in X to 1, i.e. “true”

• truth assignment V ′ : X → {0}, i.e. this assignment sets all variables in X to 0,
i.e. “false”.

Example

C1 = (x1 ∨ x̄2)

C2 = (x̄1 ∨ x̄3)

C3 = (x2 ∨ x̄3)

Question • Can we find a truth assignment V that satisfies C1, C2 and C3?

Group Work 1. Does the truth assignment V : X → {1} satisfy C1 to C3

2. What about truth assignment V ′ : X → {0}?

Answer 1.

V(C1) = (1 ∨ 1̄) = (1 ∨ 0) = 1
√

V(C2) = (1̄ ∨ 1̄) = (0 ∨ 0) = 0 (no!)

V(C3) = (1 ∨ 1̄) = (1 ∨ 0) = 1
√

⇒ no, V doesn’t satisfy C1 to C3, because of C2

119

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2.

V ′(C1) = (0 ∨ 0̄) = (0 ∨ 1) = 1
√

V ′(C2) = (0̄ ∨ 0̄) = (1 ∨ 1) = 1
√

V ′(C3) = (0 ∨ 0̄) = (0 ∨ 1) = 1
√

⇒ yes, V ′ satisfies C1 to C3

Goal in the following (Definition: Satisfiability problem or SAT)

Given a finite set of clauses C1 to Ck over a finite set X of Boolean variables X =
{x1, x2, . . . , xn}, is it possible to find a truth assignment that satisfies C1 to Ck?

Special Case (Definition: 3-Satisfiability problem or 3-SAT) Given a finite set of clauses
C1 to Ck of length 3 each over a set of Boolean variables X = {x1, x2, . . . , xn} is it
possible to find a truth assignment that satisfies C1 to Ck?

Comment The 3-SAT problem can be shown to be of equivalent difficulty as the more
general SAT problem.

Key Observation (Why are 3-SAT and SAT computationally hard to solve?)

• for a set X of n Boolean variables, we have to make only n 0/1 decisions when
defining any possible truth assignment V : X → {0, 1}

• however, there are typically several possible ways of satisfying each of the k con-
straints Ci in isolation and

• we have to arrange our decisions so all k constraints C1 to Ck are simultaneously

satisfied

Goal We want to show that

(3-SAT) ≤p (independent set) (∗)

Concern Any instance of (3-SAT) deals with Boolean variables for a given set of k con-
straints C1 to Ck, whereas any instance (independent set) deals with an undirected
G = (V,E).

When testing if the above statement (∗) holds, do we need to compare apples to
bananas?

Response Yes, at least to some extent, but this is ok and correct, as long as we can find a
valid mapping between any arbitrary (!) instance of (3-SAT) and a corresponding, i.e.
particular (!) instance of (independent set).

In order to prove statement (∗), we need to refer back to the definition of “≤p”.

One example on how to successfully establish a valid mapping between “apples and
bananas” was shown when proving that

(vertex cover) ≤p (set cover) (see 8.1)

120

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

variables and where we have k clauses C1 to Ck. In order to convert this arbitrary
instance of (3-SAT) into a corresponding graph G, we apply the rules that we just
introduced above.

We know claim that:

a given 3-SAT problem with k clauses is satisfiable ↔ the corresponding graph G has
an independent set of size k

Proof “⇒”

If 3-SAT is satisfiable, then every sub-graph Gi contains exactly one chosen node (and
not more, as the sub-graph is fully connected thereby ensuring that no pair of nodes
in the sub-graph can ever be part of the same independent set).

(Why not fewer? This would imply that one sub-graph Gi has no node in the inde-
pendent set which would contradict the fact that the 3-SAT problem is satisfiable)

We thus have an independent set of size k in graph G

Proof “⇐”

We know that graph G has an independent set of size k. Given the way that graph G
was constructed, we can conclude that each sub-graph Gi has exactly one node xi in
the independent set.

In order to find a truth assignment V that satisfies all clauses C1 to Ck, we assign:

V(Xi) =

{

1 if xi ∈ (independent set)

0 else

This truth assignment V satisfies clauses C1 to Ck as V(Xi) = 1 for one Boolean
variable Xi in every Ci

Remember : V(Ci) = 1 if v(xi) = 1 for at least one xi in clause Ci 2

Lemma (Transitivity of reduction)

If X ≤p Y and Y ≤p Z ⇒ X ≤p Z

Proof (Omitted here. The strategy employed by the proof is to apply the definition of “≤p”
twice.)

Example As we already know that

1. (3-SAT) ≤p (independent set)

2. (independent set) ≤p (vertex cover)

3. (vertex cover ≤p (set cover)

We can conclude that

(3-SAT) ≤p (Set cover)

123

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

8.3 Efficient certification and the definition of NP

Observation/Motivation For many algorithms that are computationally hard to solve,
we can fairly efficiently check if a proposed solution is correct or not.

Definitions • s = binary string of finite length that encodes the input to a problem. i.e.
describes a particular instance of that problem.

|s| = length of the above string, i.e. |S| ∈ N0

• X = a decision problem which we identify with the set of strings s for which the
answer to the decision problem is “yes”. (e.g. set of strings describing all possible
3-SAT problems)

• A = algorithm to solve decision problem X, it takes as input a string s and returns
as output A(s), i.e. as answer, either “yes” or “no”.

• we say that algorithm A solves decision problem X if A(s) = yes ⇔ s ∈ X

• A has polynomial running time if there exists a polynomial function p(n), p : N →
R+, so that for every input string s, algorithm A terminates in at most O(p(|s|)
steps.

• P = the set of all problems for which a known algorithm exists that solves the
problem in polynomial time.

Group Work Given a 3-SAT problem of k clauses C1 to Ck given n Boolean variables X̃
and a proposed solution, i.e. a truth assignment V : X̃ → {0, 1} that is supposed
to satisfy that 3-SAT problem. Can you think of an efficient algorithm to check if V
satisfies the given 3-SAT problem?

Answer We need to compute V(C1) to V(Ck) and check of V(Ci) = 1 for ∀i ∈ {1, . . . , k}.
We know that this requires O(k) time. We thus have an efficient algorithm to check
if a proposed solution is correct or not. (We call this kind of algorithm a checking
algorithm in the following).

Definitions • an algorithm B is called an efficient certifier or efficient checking algorithm
for a problem X if

1. B is a polynomial-time algorithm that takes as input a string s (i.e. an input
string s describing a particular instance of problem X) and a certificate string
t that describes a proposed answer to problem X for input string s, and

2. there exists a polynomial function p(n), n ∈ N, so that for every string s, we
have the equivalence:
s ∈ X ⇔ there exists a certificate string t with |t| ≤ p(|s|) and B(s, t) = yes.

• NP = set of all problems for which an efficient certifier exists.

Example • X = 3-SAT

• s = a particular 3-SAT problem, e.g. a set of k particular clauses C1 to Ck given
n Boolean variables. e.g. for k = 3 and n = J (x1 ∨ x2 ∨ x̄5), (x3 ∨ x̄4 ∨ x̄5),
(x1 ∨ x2 ∨ x3)

124

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Answer We don’t know. Most people believe that P (NP , i.e. that there are problems
X ∈ NP solutions to which can be efficiently checked, but which cannot be efficiently
solved.

Remark If you think you can prove or disprove P = NP , you can win 106 $US. To find
out more, go to: www.claymath.org/millennium/P_vs_NP/

8.4 More about NP-Complete Problems

Motivation As we currently do not know if P = NP , we focus instead on finding out what
the computationally most difficult problems in NP are.

Definition A problem X is called NP-complete if

1. X ∈ NP , AND

2. y ≤p X for all y ∈ NP

Comments • X ∈ NP does not imply that X is NP-complete.

• an NP-complete problem X is a problem that is at least as hard to solve as every
other problem Y] ∈ NP

Concern The definition of NP-complete requires us to go through all problems Y ∈ NP .
Is this feasible?

Theorem Suppose X is an NP-complete problem. Then the following equivalence holds.

X ∈ P ⇔ P = NP

Proof We know that X is NP-complete, i.e. we know that X ∈ NP and Y ≤p X for all
Y ∈ NP (see definition)

“⇒” If X ∈ P , i.e. if X can be solved in polynomial time, and Y ≤p X for all Y ∈ NP
(because we know that X is NP-complete), it follows directly that all Y ∈ NP can be
solved in polynomial time. ie. P = NP

“⇐” If P = NP , every X ∈ NP is automatically X ∈ P

Conclusion If there is an NP-Complete problem X ∈ NP that cannot be solved in poly-
nomial time

Warning X ∈ NP is not equivalent to X being NP-complete (see definition of NP-
complete)

Theorem If Y is an NP-complete problem X ∈ NP and Y ≤p X then X is also NP-
complete.

126

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof To show that X ∈ NP is NP-Complete, we need to show that for all Z ∈ NP ,
Z ≤p X. As Y is known to be NP-complete, we know that Y ∈ NP and Z ≤ PY
for all Z ∈ NP . As we already know that Y ≤p X and because of the transitivity of
≤p and Z ≤p Y for all Z ∈ NP , we can thus conclude that Z ≤p X for all Z ∈ NP .
Hence, X is also NP-complete.

Comment It is possible to show that the following problems are NP-complete: (independent
set), (3-SAT), (set cover), and (vertex cover).

Idea Behind Proof (example: 3-SAT)

We already know that (3-SAT) ∈ NP . We thus still need to show that Z ≤p (3-SAT)
for all Z ∈ NP . For this, we need to show that Z ≤p (3-SAT) for all Z ∈ NP can be
mapped to a corresponding instance of a 3-SAT problem in such a way that solving any
arbitrary instance of problem Z is equivalent to solving the corresponding, particular
instance of the 3-SAT problem.

127

