
Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

4. Amortized analysis and merge-find data structures

4.1 What is amortized analysis (A.A.)?

Setting Suppose we are dealing with an algorithm or data structure where

• most operations are fast, i.e. ”cheap”

• a few, sparsely used operations are slow, i.e. ”expensive”

Key Ideas • express every expensive operation as a finite sequence of k cheap operations

• show that the worst-case cost for the entire sequence of k cheap operation is lower
than the sum of worst-case costs for each of the k individual operations, i.e.

cost(
k∑

i=1

operationi) ≤
k∑

i=1

cost(operationi)

where operation consists of k operations (from operation1 to operationk).

Definition Amortized Analysis is a set of techniques we can employ to estimate the worst-
case cost for an entire sequence consisting of k operations.

Example suppose we are dealing with the following individual operations:

• PUSH (worst case time is Θ(1))

• POP (worst case time is Θ(1))

• MULTIPOP(j) (worst case time is Θ(n) for j ≤ n elements)

MULTIPOP pops 1 ≤ j ≤ n elements, where there are n elements in total.

Group Work What is the worst case time for a sequence of n called to a combined mix of
PUSH, POP, and MULTIPOP?

Answer Every one of the n elements can be pushed/popped out at most once, so the overall
worst-case time is Θ(n). For example, there cannot be n calls to MULTIPOP (at a cost
of Θ(n) each) as there are only a total of n elements to pop, i.e. the overall worst-case
time is not Θ(n2).

Conclusion Key Idea: In order to get accurate boundaries for the execution time for an
entire sequence of k operations, we need to take into account how those k operations
influence each other.

45



Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

4.2 The potential method

Key Ideas • we are performing a sequence of k individual operations, denoted

opi with i ∈ {1, 2, . . . , k}

• each operation opi is assigned an amortized cost (costam(opi)) which may differ
from the actual cost (costreal(opi)) with the operationi is actually executed.

• Note:

– costam(opi) may be <, =, > than costreal(opi).

– the am. cost typically constitutes our best guess of the cost of operation
op + i in situations where we cannot specify the worst-case running time of
operation opi as a function of input site n up-front.

• when we execute the sequence of k operations and we are dealing with operation
opi, we:

1. we ”pay” costam(opi)

2. if costreal(opi) < costam(opi) {
save costam(opi)− costreal(opi) in ”bank” (to be spent later, if needed)

}
else {
take costreal(opi)− costam(opi) from bank if our balance allows this.
(the bank balance at any time has to be ≥ 0!!)

}

• in the above, interpret

– the bank balance, which is a function of i, 1 ≤ i ≤ j, as overall cost of the
algorithm up to operation i

– Di = data structure after operations 1 to i, i ≤ i ≤ k

– Φ(Di) = bank balance or total cost of executing operations 1 to i, i ≤ i ≤ k

(function Φ is also called a potential function)

Properties of the potential function 1.
Φ(Di) ≥ 0 ∀i ∈ {1, . . . , k}
interpretation: cannot borrow execution time or cost if we haven’t correctly bud-
geted for it by amortized costs up front (”bank cannot go broke”)

2. Φ(D0) = 0

3. Φ(Di) = Φ(Di−1) + costam(opi)− costreal(opi) for all i ∈ {1, . . . , k}

Logical flow in the following and in practice: • Start by defining a potential func-
tion Φ and then determine the amortized costs by enforcing the above properties of
Φ rather than first defining the amortized costs which are difficult to guesstimate
up front.

46



Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

• if we are dealing with a sequence of n operations, we want to show that

n∑

i=1

costreal(opi) ≤
n∑

i=1

costam(opi)

as we then know that the worst case running time for this sequence of n operations
is

O(
n∑

i=1

costam(opi))

Example • stack with operations PUSH, POP, MULTIPOP, n elements, k ≤ n ops.

• choose Φ(Di) = size of Di

• want (from previous list):

1. Φ(Di) ≥ 0 ∀i ∈ {1, . . . , k}

2. Φ(D0) = 0

3. Φ(Di) = Φ(Di−1) + costam(opi)− costreal(opi)

Group Work Choose costam so 1. and 3. above are satisfied.

Idea • For 1 ≤ i ≤ k, consider opi = PUSH in 3., i.e.

Φ(Di) = Φ(Di−1) + costam(PUSH)− costreal(PUSH)

costam(PUSH) = (size of Di)− (size of Di−1) + 1 = 2

• for opi = POP, get costam(POP ) = 0 in a similar manner

• for opi = MULTIPOP(j) with i ≤ j ≤ (size of Di−1)

(3) = costam(MULTIPOP (j))

= (size of Di)− (size of Di−1) + costreal(MULTIPOP (j))

= (size of Di)− (size of Di + j) + costreal(MULTIPOP (j))

= −j + costreal(MULTIPOP (j))

= n− j

4.3 The union-find data structure

Goal We wish to create a data structure that supports the following operations:

1. return the name of the set that contains element x (find(x). If two elements x

and y, x 6= y, are in the same set then find(x) = find(y).

2. merge the data structures corresponding to two sets A and B into one data struc-
ture (union(A,B))

47









Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Implementation Suppose graph G has n nodes and m edges

1. • Sort the edges in G by cost l(e) → requires O(m log(m)) time

• As we have at most one edge between any possible pairs of nodes, we know
that m < n2

→ sorting the edges in G by cost l(e) requires O(m log(n)) time

2. • we store each of the connected components of the emerging graph G′ in a
union-find data structure.

• when an edge e = (v, w) is considered to be added to G′, we computer find(v)
and find(w) and test if find(v) = find(w) in order to determine if nodes v and
w belong to different components

• if edge e is included in G′, we merge the corresponding two components using
union(find(v), find(w))

3. • throughout the algorithm we are executing at most

– 2m find operations at a cost of O(log(n) each

– (n− 1) union operations at a cost of O(1) each

overall this requires O(m log(n)) time

Conclusion Using a union-find data structure and an input graph G with n nodes and m

edges, Kruskal’s algorithm can be implemented to run in O(m log(n)) time.

Further Implementation Improvements: Path Compression

• assume that v is a node for which find(v) takes log(n) time

• realize: after the first execution of find(v), we already know the name x of the set
containing v and the same holds for all nodes that we encounter on our path to
the root node

Idea • after each find(v) call, reset all pointers along the path from v to the root
node to point directly to the root node

• result: all subsequent find calls to any node on a previously encountered find
path are faster

• By bounding the total time of a sequence of n find operations rather than
the worst-case time for any one of them separately, we can show that n find
operations take

O(nα(n))time

where α is the inverse Achermann function which is such a slow-growing
function of n that nα(n) is almost linear (and α(n) ≤ 4 for values of n that
are typically encountered in practice)

Note: Using path compression does not lower the time requirements for Kruskal’s
algorithm as we will still need O(m log(n) time for the initial sorting of edges.

51


