Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

4. Amortized analysis and merge-find data structures

4.1 What is amortized analysis (A.A.)?

Setting Suppose we are dealing with an algorithm or data structure where

e most operations are fast, i.e. ”cheap”

e a few, sparsely used operations are slow, i.e. ”expensive”

Key Ideas e express every expensive operation as a finite sequence of k£ cheap operations

e show that the worst-case cost for the entire sequence of k cheap operation is lower
than the sum of worst-case costs for each of the k individual operations, i.e.

k k
cost(z operation;) < Z cost(operation;)

i=1 =1
where operation consists of k operations (from operation; to operationy,).

Definition Amortized Analysis is a set of techniques we can employ to estimate the worst-
case cost for an entire sequence consisting of k operations.

Example suppose we are dealing with the following individual operations:

e PUSH (worst case time is O(1))
e POP (worst case time is ©(1))
e MULTIPOP(j) (worst case time is ©(n) for j < n elements)

MULTIPOP pops 1 < j < n elements, where there are n elements in total.

Group Work What is the worst case time for a sequence of n called to a combined mix of
PUSH, POP, and MULTIPOP?

Answer Every one of the n elements can be pushed /popped out at most once, so the overall
worst-case time is ©(n). For example, there cannot be n calls to MULTIPOP (at a cost
of ©(n) each) as there are only a total of n elements to pop, i.e. the overall worst-case
time is not O(n?).

Conclusion Key Idea: In order to get accurate boundaries for the execution time for an
entire sequence of k operations, we need to take into account how those k operations
influence each other.

45

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

4.2 The potential method
Key Ideas e we are performing a sequence of k individual operations, denoted
op; with i € {1,2,... k}

e cach operation op; is assigned an amortized cost (costum(op;)) which may differ
from the actual cost (cost,eq(op;)) with the operation; is actually executed.

e Note:

— ¢oStam(0p;) may be <, =, > than cost,.cq(0p;).

— the am. cost typically constitutes our best guess of the cost of operation
op + ¢ in situations where we cannot specify the worst-case running time of
operation op; as a function of input site n up-front.

e when we execute the sequence of k operations and we are dealing with operation
op;, we:
1. we "pay” costam(op;)

2. if costreqr(0p;) < costam(opi) {
save oSt (0p;) — €oStreqi(0p;) in "bank” (to be spent later, if needed)

}
else {

take costyeqi(0p;) — costam(op;) from bank if our balance allows this.
(the bank balance at any time has to be > 0!!)

}

e in the above, interpret
— the bank balance, which is a function of 7, 1 < ¢ < j, as overall cost of the
algorithm up to operation ¢
— D; = data structure after operations 1 toi, 1 <i <k

— ®(D;) = bank balance or total cost of executing operations 1 to i, 7 <i <k
(function @ is also called a potential function)

Properties of the potential function 1.
®(D;)>0Vie{l,... k}
interpretation: cannot borrow execution time or cost if we haven’t correctly bud-
geted for it by amortized costs up front ("bank cannot go broke”)

2. ®(Dy) =0
3. ®(D;) = ®(D;_1) + costom(op;) — costreq(op;) for all i € {1,... k}
Logical flow in the following and in practice: e Start by defining a potential func-
tion ® and then determine the amortized costs by enforcing the above properties of

® rather than first defining the amortized costs which are difficult to guesstimate
up front.

46

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

e if we are dealing with a sequence of n operations, we want to show that

Z COStreal(Opi) S Z COStam(Opi)
i=1 =1

as we then know that the worst case running time for this sequence of n operations
is

O(Z oSt am (0p;))

Example e stack with operations PUSH, POP, MULTIPOP, n elements, k < n ops.
e choose ®(D;) = size of D;
e want (from previous list):
1. ®(D;)) >0Vie{l,... k}
2. ®(Dy) =0
3. ®(D;) = ®(D;_1) + costom(op;) — costyrea(0p;)

Group Work Choose cost,,, so 1. and 3. above are satisfied.

Idea e For 1 <1 <k, consider op; = PUSH in 3., i.e.

O(D;) = ®(D;—1) + costoym(PUSH) — costreq(PUSH)
co8tym(PUSH) = (size of D;) — (size of D;_1) +1 =2

e for op; = POP, get costy,,(POP) = 0 in a similar manner
e for op; = MULTIPOP(j) with ¢ < j < (size of D;_;)

(3) = costam(MULTIPOP(j))
= (size of D;) — (size of D;_1) + cost,eqi(MULTIPOP(j))
= (size of D;) — (size of D; + j) + costyeq(MULTIPOP(j))
= —j + costrea(MULTIPOP(}))

4.3 The union-find data structure

Goal We wish to create a data structure that supports the following operations:

1. return the name of the set that contains element x (find(x). If two elements x
and y, x # y, are in the same set then find(z) = find(y).

2. merge the data structures corresponding to two sets A and B into one data struc-
ture (union(A, B))

47

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

3. create a data structure where every element xz € S corresponds to a separate set
(makeUnionFind(S5))

Motivation We would like to define a data structure which facilitates the operations inside
the while-loop of Kruskal’s algorithm.

Ideas Use a tree-like data structure where every node v in the tree corresponds to an element
of the corresponding set, v € S, and where each node v in the tree has a corresponding
pointer which points to the name of the set that contains v.

Name every set after one of its elements.

Example: S = {i, j,z,y} is given name j € S

1. if we are dealing with a set of |S| = n elements, the find(z) operation requires
up to O(n) to follow the pointers starting at z to reach the node (j in the above
example) after which the set containing x is named.

To further reduce the time for find(x), we will in the following adopt the name of
the larger set as the name of the union of two sets A and B.

Replace every

1\

above by

T

* m

where m denotes the size of the set to which x belongs (m = 4 in the above
example).

48

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2. When we want to merge two data structures, one representing set A and one
representing set B, using union(A, B) we
e check if set A or B is larger (this takes O(1), see 1.)
o if say |A| > |B|, and v € A is the name of A and v € B is the name of
B, we adopt the name v for AU B and merge the two data structures by
only adjusting the pointer of u € B to point to v € A.

@ Q

of |% w| [3

l
R-\\ FE

A ?

Btfuﬁrxiig

A={u® n
/ !!&j rare of 8w

r&meflﬂ@ur

: -
'n\l? A T
< T7] z| 7]

Ao B ={uy0n 450 o x 28

The name of AU B is v and we only need to update the number of elements
of set AU B at node v.

? denotes entries that have been set before, but that we do not need to
know or change when executing union(A, B)

union(A, B) requires O(1) time.

3. creating a data structure where every element x € S corresponds to a separate
set (make UnionFind(S)) takes O(n) time as we need to create n separate entities

49

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

of the following kind where |S| = n:

%] 1]

Insight 1 1. Revisited: We already know that find(z) requires at most O(n) time. If we
keep track of the size of elements in a set (using a size field for every node) and if we
adopt the convention that the union of any two sets is named after the largest set (see
2.), it follows that every time the name of the set containing node x changes, the size
of the current set at least doubles in size.

Insight 2 The cost of find(x is equal to the number of pointers it takes to read the node
after which the set is named, i.e. the number of times that the set containing node =z
changes its name. As the set containing node x starts with a size of 1 (z itself), and is
never larger than n , it can double its size at most k = log,(n) times as 2¥ = n.

— There can be at most log,(n) name changes for the set containing z.
— find(x) requires O(log(n)) time.
Summary The union-find data structure introduced above allows us to execute
e find(z) in O(log(n)) time
e union(A, B) inO(1) time
e makeUnionFind(S) in O(n) time
if we are dealing with a set S, |S| = n, and two subsets A, B C S.

Definition For every node in a union-find data structure we can also assign a rank which
corresponds to the depth of the subtree rooted at that node.

Note A leaf node has rank 0.

4.4 Implementing Kruskal’s algorithm using a union-find data struc-
ture

Reminder Kruskal’s algorithm identifies a minimum spanning tree (see 3.2.3)
e start with a subgraph G’ which contains only the isolated nodes from G (i.e. no
edges)
e while the number of edges in G' is < |[V| — 1{

— of all the edges in G that have not yet been added to G, pick the edge e with
the lowest I(e)

— add this edge to G’ unless it creates a cycle in G

}

50

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Implementation Suppose graph G has n nodes and m edges

1. e Sort the edges in G by cost I(e) — requires O(mlog(m)) time

e As we have at most one edge between any possible pairs of nodes, we know
that m < n?
— sorting the edges in G by cost I(e) requires O(mlog(n)) time

2. e we store each of the connected components of the emerging graph G’ in a
union-find data structure.

e when an edge e = (v, w) is considered to be added to G’, we computer find(v)
and find(w) and test if find(v) = find(w) in order to determine if nodes v and
w belong to different components

e if edge e is included in G’, we merge the corresponding two components using
union(find(v), find(w))
3. e throughout the algorithm we are executing at most
— 2m find operations at a cost of O(log(n) each
— (n — 1) union operations at a cost of O(1) each

overall this requires O(mlog(n)) time

Conclusion Using a union-find data structure and an input graph GG with n nodes and m
edges, Kruskal’s algorithm can be implemented to run in O(mlog(n)) time.

Further Implementation Improvements: Path Compression

e assume that v is a node for which find(v) takes log(n) time

e realize: after the first execution of find(v), we already know the name z of the set
containing v and the same holds for all nodes that we encounter on our path to
the root node

Idea e after each find(v) call, reset all pointers along the path from v to the root
node to point directly to the root node

e result: all subsequent find calls to any node on a previously encountered find
path are faster

e By bounding the total time of a sequence of n find operations rather than
the worst-case time for any one of them separately, we can show that n find
operations take

O(na(n))time

where « is the inverse Achermann function which is such a slow-growing
function of n that na(n) is almost linear (and a(n) < 4 for values of n that
are typically encountered in practice)

Note: Using path compression does not lower the time requirements for Kruskal’s
algorithm as we will still need O(mlog(n) time for the initial sorting of edges.

o1

