Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2. Asymptotic Notation

Motivation: For a given algorithm, we want to quantify how the algorithm’s running time
grows as the input of size n grows.

Normally, we are interested in knowing the worst-case running time as function of
n, but sometimes we may also be interested in knowing the average (expected) run-
ning time or the best-case running time.

Not unimportantly, we want to come up with a notion of running time which is inde-
pendent of features such as processor speed etc.

Definition: In the following, a step in the algorithm will refer to assigning a value to a
variable. An example of a step is looking up one entry in an array.

Goal: Given an algorithm in pseudo-code such as the Gale-Shapley algorithm, specify the
running time (in steps) as function of the input size n.

As our pseudo-code provides a high-level description of the algorithm, a particular
step in the pseudo-code may correspond to 25 low-level machine instructions when a
particular implementation of the algorithm is compiled on a computer with a particular
architecture.

e g(n) = 1.62n% + 3.5n + 8 is the number of steps required on pseudo-code level for
an input of size n
e g(n) = 40.5n%+87.5n+ 200 may be the number of steps required by the algorithm

on a particular piece of hardware for an input of size n

The goal is to measure the running time of an algorithm in a way that is independent
of the particular hardware and a good reflection of the features of the algorithm on
pseudo-code level, i.e. we want to capture the running time in a way that is

e insensitive to constant factors and

e lower order terms

For the above example g(n) we would want to state that the running time grows like
n?, up to constant factors.

2.1 Asymptotic upper bounds O
Motivation: Given an algorithm in pseudp-code which requires at most 7'(n) steps to

complete for an input of size n € N,T : N — R, find a function f : N — R, which,
if multiplied by a constant, positive factor ¢ € R, ¢ > 0, provides an upper bound to

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

T'(n) for sufficiently large n, i.e. for alln € N,n > ny € N.
In other words, find a function f: N — R, such that

T(n) <c-f(n),VYne N,n >ng,ce€ Ry

Note: c is a constant, i.e. does not depend on n.

Fl)-c

T@)

o g
N

Reminder def.

N := set of natural numbers = {1,2,3,...}

Ny := N U {0}

R := set of real numbers

R, := set of all non-negative real numbers = {z € R,z > 0}
Vv is short hand for "all”

3 is short hand for ”exists”

Example: T(n) = 7n*>+5
Would f(n) = n?® work, i.e. T(n) = O(n?)?

Check: T(n) =Tn*+5 < Tn*+5n*=12n% for Vn € N,n > 1
< 12n3
=T(n)<c-f(n)for¥Yne Nyn>ny=1and c=12€ R,

Definition: Let T'(n),T : N — R, be the function that describes the worst-case running
time of a given algorithm in terms of steps to be completed per sitesize of input n. We
say that T'(n) is O(f(n)) (read "T'(n) is of order f(n)”) if T is asymptotically upper
bounded by f(n), f: N — R, i.e. if there is a constant ¢ € R, and ng € N such that
T(n) <c- f(n) for Yn € N,n > ng. If T(n) is O(f(n)), we also write T'(n) = I(f(n)).

7

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Note: O(-) only expresses an upper bound, budt does not necessarily provide a precise de-
scription of the worst-case running time, i.e. a tight upper bound.

example: T'(n) = 7n? 4+ 5 is O(n?), but also O(n?).

2.2 Asymptotic lower bounds {2 (greek ”Omega”)

Motivation: Given a function T'(n),T : N — R, , which describes the worst-case running

time of a given algorithm, find a function f(n), f : N — Ry, which provides a lower
bound to T

Definition Let T'(n),T : N — R, be a function that describes the worst-case running time
of a given algorithm in terms of steps to be completed per size of input n.
We say that T'(n) is Q(f(n)) i.e. we say that (T'(n) is asymptotically lower bounded
by f(n),f : N — R,, ie. if there is a constant ¢ € R, and ny € N such that
T(n) > c- f(n) for Yn € N, n > ng. If T(n) is Q(f(n)) we also write T'(n) = Q(f(n))

T)

ol

Example: T(n) =7n?+5
Find a function f(n) so T'(n) = Q(f(n)).

Would f(n) = n? work, i.e. T(n) = Q(f(n))?
Check: T'(n) = % +5 > ™n? for Vn € N
=T(n)>c-f(n),Yyne N;n>ng=0,c=7¢€ R,.

Notes:

e similar to O(f(n)), Q(f(n)) only express a lower bound to f(n), which is not
necessarily a tight bound.

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Example: T'(n) = Q(n?), but also T'(n) = Q(n).

e (2 is most useful is used in conjunction with O, e.g. in order to give a tight bound
on the running time of an algorithm.

e (2 is also useful for providing a lower bound on the worst-case running-time of
all algorithms that address a specific problem as we can then, for example, show
that the problem is difficult.

2.3 Asymptotically tight bounds © (greek ”Theta”)

Motivation: Often, for a given algorithm, we do not only want to know an upper and a
lower bound to the worst-case running time of the algorithm, but we would like a tight
bound which gives us a precise description of the algorithm’s worst-case running time.

Definition: We say that f(n) is an asymptotically tight bound for 7'(n) or that T'(n) is
6(f(n) if T(n) = O(f(n)) = ©(f(n), where T, f : N — R,.

~N -F(n) c
)
6 ¢

Given T : N — R, ,T(n) = Tn? + 5, find a tight bound.
Answer: T'(n) = ©(n?) because

(a) T'(n) = O(n?):

Proof: T(n) =Tn?+5<7n>+5n*Vne N,n>1
= 12n?

i.e. T(n) <c- f(n), where f(n) =n?and c=12>0and alln € N,n > ng = 1.

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: T(n) =7n*+5>n?VYne N
i.e. T(n) >c- f(n), where f(n) =n?and c=1>0 for all n € N.

O

Note: Asymptotically tight bounds on worst-case running times are very useful as they
characterize the worst-case performance of an algorithm in a precise way up to constant
factors.

2.4 Properties of asymptotic growth rates

Motivation: one strategy for deriving an asymptotically tight bound is to compute the
limit of n to infinity for the function f(n) which describes the worst-case running time
of a given algorithm.

Theorem: Let f,g: N — R, be two functions for which

lim M =ceRy
n—o g(n)

Then f(n) = ©(g(n)).

Interpretation: If the ration of two functions f and g converges to a positive constant for
infinitely large values of n, then f has an asymptotically tight bound g.

How do you go about proving this theorem?

Proof: Use f(n) = ©(g(n)) & (f(n) = O(g(n)) and f(n) = 2g(n)).

N

limnﬁoom:c>0:>5|n0€]\fsothat%-cgf((—zg%.

g9(n) g(n)
This implies (a) f(n) < 2cg(n),¥n € N,n > ng, i.e. f(n)=0(g(n)),
and (b) 5g(n) < f(n),¥n € N,n > ng, i.e. f(n) = Q(g(n)).

Note:

(a) f(n) < 2cg(n) & 3:f(n) < g(n),Vn € N;n > no, ie. g(n) = Q(f(n))
(b) §g(n) < f(n), < g(n) < 2f(n),¥n € N.n = no, ie. g(n) = O(f(n))

(e}

Conclusion: f not only has as asymptotically tight bound g, but ¢ also has f as asymp-
totically tight bound.

Assumption: For the rest of this section, assume that f, g and h are functions N — R,.

10

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Lemma: Transitivity of O, and © If a function f is asymptotically upper-bounded by
a function g and g is asymptotically upper-bounded by a function A, then f is asymp-
totically upper-bounded by h.

Likewise for lower bounds and tight bounds.
In other words:

(a) f=0(g) and g=O(h) = f = O(h)
(b) f=29Q(g) and g = Q(h) = f = Q(h)
(c) f=0(g) and g = O(h) = f = O(h)

Proof:
(a)
f=0(g) ie f(n)<® ¢, -g(n), ¢, € Ry, ¥n >mn, and
g=0(h)ie. g(n) < ¢, -h(n), ¢, € Ry, ¥n > ny.
We can combine this as follows

f(n) <M e, gn) < ¢, e - h(n),¥n > max{ng, ny}

Which implies f = O(h). O
(b) similar proof to (a)

(c) From f = O(g) and g = O(h) follows with the definition of © and (a) that
f = O(h). It also follows with (b) that f = Q(h). Again using the definition of
©, we can summarize both as g = ©(g). O

Lemma: (Additivity of O) f=0O(h) and g =0O(h) = f+ g = O(h)
Proof: We have f = O(h), i.e. f(n) <cs-h(n),¥n>nyscp € Ry
and likewise we have g(n) < ¢;h(n),¥n > ny, ¢, € Ry.
We can combine this into
f(n)+g(n) < (cf+ cy)h(n),¥n > max{ns,ny},¢ = (c; + ¢,) € Ry
O

Lemma: (Additivity of O) Given k € N and k functions f; : N — R ;i € {1,2,....k}
with f; = O(n), then

k
Z fi=0(n).
i=1

Reminder: ¥ denotes the summation sign. Example: Zle fi=fA+fo+..+ fr

11

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Proof: Extension of proof for previous lemma. Omitted here.
Lemma: Given g = O(f), then f+ g = O(f).
Prove the lemma.

Proof: g = O(f) implies that g(n) < c¢-g(n),¥n > ng,c € R,.
This means that f(n)+g(n) < f(n)+c- f(n) = (1+c)f(n),Vn > ng,c = (c+1) € Ry.
This implies f + g = O(f).
We also have f + g = Q(f), because for Vn € N, we have f(n)+ g(n) > f(n).

As f+g=0(f), and f+ g = Q(f), we thus obtain f + g = O(f).

2.5 Asymptotic bounds for some common functions

Reminder:

e A polynomial function F is a function F': R — R, where: F(z):= >_ a; x 2, where all
i=0
a; € R and a,, does not equal to 0 and n € degree of the polynomial.

Examples:

o F(x) = 32”4 52°, F(z) = x/2

Lemma:

e Let F be a polynomial of degree d, then F = O(n?)

Proof of lemma:

d .
e ['(n) = > a;*n', for each term a; *x n' can be viewed as a separate function F;. Then
i=0
a;xn' <la;|xn’, Vn € N, ¢ = |a;] € R+, i.e. F; = O(n'). For every function F; we can
also find a n; € N such that F; = a; *n® < |a;|*n® < |ag|*n?, Vn > n;; ¢; = |aq| € R+,
i.e. F; € O(n%). Based on the additivity of O, we can thus conclude that F = O(n?).

12

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Conclusion:

e The asymptotic growth rate of polynomial is determined by their highest-order term.

Lemma:

e Let F be a polynomial of degree d with ag > 0, then F*Q(n¢) = ©(n?).

Proof:

e omitted here (idea: apply first theorem in 2.4 to g=a4 * n¢ and f as above.)

Lemma:

e For every b,r € R,b > 1 and r > 0, we have log,(n) = O(n")

Reminder:

e log,(n) = x € R i.e. x is the solution to n = b*.

e log,(n) = (log,(n))/(log(b)), for k>1, i.e. we can switch from the base b to another
base k simply by a multiplying by a constant factor that dose not depend on n

e log.(n) <nforallneN n>1.

Proof:

e omitted.

Conclusion:
e The logarithm (for any base b > 1) grows much slower than any power function n’
with r > 0, r € R.
Reminder:

e An exponential or exponential function is a function of the form F(x) = r*, x € R,
reR, r>1.

13

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Lemma:

e n=0(@") forevery n € N, r,d € R, 7 > 1 and d > 0.

Proof:

e omitted.

Conclusion:

e The exponential function r™, r > 1, grows faster than any polynomial function.

Warning:

e Two logarithm functions logy(n) and logy(n) differs only by a constant factor, but for
different bases b > k >1, the two corresponding exponential functions " and k™ don’t!
We thus have b" # ©(k").

Conclusion:

e When dealing with an exponential function, we have to explicitly specify its level. It
is inaccurate to say "the running time of this algorithm grows exponentially.”

2.6 A survey of common running times

2.6.1 Algorithm that require O(n) i.e. linear time

Example: Merging two already sorted lists into one sorted list.

given: two sorted lists A = (a1, a9,...,a,) and B = (by,bs,...,b,)

goal: derive sorted list C = (¢1,¢a,...,¢2,) so that the entries are arranged in the
same (say ascending) order

idea for an efficient algorithm

Algorithm: 1: for each list A and B, have a pointer which points to the next element in
the list.

loop starts: while we haven’t reached the end of any list

let a; and b; be the next element pointed to

14

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

append min{a;,b;} to list C and advance corresponding pointers in list from
which the element derives.

loop ends: append rest of list whose end has not yet been reached to list C.
Proof that the algorithm is of order O(n):

e It is clear that the algorithm is O(n?) as every element in one list is compared
to at most all elements in the other list. It is possible to come up with an even
tighter asymptotic upper bound as follows:

e There are 2n elements in the merged list. Once each of these elements is put
into list C, it is never again considered in the algorithm. The algorithm therefore
requires 2n iterations at most to complete and every iteration results in exactly
one element (either from A or B) to be inserted into list C. On average, each of 2
elements is considered twice before it ends up in list C. = The worst-case running
time of the algorithm is of order O(n), i.e. requires linear time.

2.6.2 Algorithm that require O(n?) i.e. quadratic time

Example: Given a set of n points (z;,3) € R? i € 1, ... n find the closest euclidean
distance d between two points (x;,v;) and (z;,y;) and i # j.
diy = d((zi,9:),(25,9;) = /(@ — 2)? 4+ (i — y;)2 > 0

nx(n—1)
2

Observation: for n points, there are unsorted pairs to consider as d;; = dj;

15

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

Algorithm :

for each input point (x;,y;) {
for each input point (x;,y;) with i # j {
compute d;
if d; ; us smaller than current minimum distance d, update d

}

The worst-case running time of this algorithm is O(n?) as we have two nested loops which
each require O(n) time.

remark : the task can also be computed more efficiently in O(nlog(n)) time

2.6.3 Algorithms that require O(n?) i.e. cubic time

Example: Given a subset of N,, = {1, 2, 3, ... , n}, i € N, find out if there is a pair of
subsets S; and S;, ¢ # j, that is disjoint, i.e S; N .S; =0

Algorithm :

for each set S; {

for each other set S; with 7 # j {
for each element f € S; {
determine if f € S; [assume we can do this in constant time]

}

if no element of S; finds in \S; then they are disjoint

}

The worst case running time of this algorithm is O(n?) as we have three nested loops which
require O(n) time each.

16

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2.6.4 Algorithm that require O(n*) time

N .,

ﬁ'

o e of fﬂ;«w_u&
(bare 0= 1)

Example: Given a graph with n nodes, check if the graph contains an independent set of
size k < n, i.e. a set of k nodes where there are no edges between any pair of nodes.

Algorithm :

for each subset S of k nodes {
check if S is an independent set
if S is an independent set {
stop and declare success

}
}

if no k-node independent set was found {
declare failure

}

for k € N, & < n, there are the following number of subsets of S of size &k to consider in the

for-loop:
(n) _ n! nx(n—1)*..x1 _ nx(n—1)*..x(n—k+1) < n®
k kl(n—k)! (k*(k D#.x1)((n—k)x(n—k—1)*...x1) (kD — k!

As we regard k as a fixed parameter, time is is O(n*)

inside the for - loop, each k-node subset is tested for independence. This requires looking at
(S) pairs which is O(k?). As we regard k as a constant, the overall worst case running
time can be written as O(n*).

remark : This problem is believed to be computationally hard as it is thought that there is
no algorithm to find k-node independent sets in arbitrary graphs with a running time
which does not have a dependence on k in the exponent.

17

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

2.6.5 Algorithm that require beyond polynomial time

Example: Similar to 2.6.4, we are given a graph of n nodes. The task now, however, is to
identify an independent k-node set of maximize k € N, k<n.

Algorithm :

for each subset S of nodes {

decide if S constitutes an independent set
if S is independent and larger than any independent set found so far {

record the size of S as the current maximum

}
}

On the contrast to the previous algorithm, this algorithm requires considering all subsets

of S. This number is: . .
n _ n k n—k _ on
Z(k)_z<k)1*1 =2

k=0 k=0
reminder : (a+b)" =Y}, (}) **0" ", a,beR, neN
The for-loop is thus of order O(2"). Inside the for-loop, we need to check if the current
subset S is independent. As each subset has at most n elements, this requires at
most O(n?) time.

The overall worst-case running time of this algorithm is therefore O(2" * n?)

: Can you think of ways of making the above algorithm more efficient? Remem-
ber the definition of independent set. For example, if you have found an independent
k-node sets, then all of its subsets are independent as well.

2.6.6 Algorithm that require less than linear time. e.g. O(log(n))

Example : Suppose we are given an array of n € N already sorted numbers. The task is to
find out if a number p € R is stored in the array or not.

: Can you think about an efficient algorithm for doing this?

Algorithm : If p is smaller than the first array entry or larger than the last entry, it cannot
be part of the array. Else, look at the middle entry q of the array. If p = ¢, we are
done. If p < ¢, probe the remaining array to the left of q. If p > ¢, probe the remaining
array to the right of q.

At every step in the algorithm, we are halving the remaining interval to be investigated.
After k steps, we are left with an interval of size (1/2)* * n

18

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

How many steps k do we need for this interval length to be constant C € R, C' > 07

ie. want: (1/2)*xn & n = c*2F & log,(n) =log, c+k < k = logy(n) - log, ¢ choose c=1,
then k = log,(n).

We therefore require at most O(log(n)) steps until we can finish the task in constant time.

s ¥ Ahepe i e atgite
59, 4 - 4 = et of Da array i
fj f EP I e oré;’fw,h'mh d
T 4
13,
.F = q_tf =) oJr A
fy=f

2.6.7 Algorithms that require O(nlog(n)) time

Example: Given a set S which contains an even number of numbers, divide the set into
two disjoint subset S7 and S, of same size, sort the numbers in each subset, do this
recursively and finally combine them in the form of two sorted lists into a single sorted
list (see 2.6.1 for how to do this efficiently)

e assume in the following that we stop the recursion when we are left with pairs of
numbers

e some upfront consideration on the running time of the recursive algorithm
— let T(n) here denote the worst-case running time of the algorithm for an input
of size n

— because the above procedure is recursive, we have
(%) T(n) < 2T(n/2) + O(n)
because the algorithm requires O(n) time to split the initial set into two sets,
2T(n/2) time to run for the two resulting sets (S; and S») and O(n) time to
finally combine the final results of the algorithm S; and S, into a single list
(see 2.6.1).

— Inequelity (*) constitutes a recurrence relation because it describes T'(n)
as function of itself. Note that for n=2, we have T(2) < ¢,c¢ >0

— How do we solve (*)? In other words, how do we find an expression for 7'(n)
that does not express it as function of itself?

Idea: We can visualize the recursive algorithm as follows (figure 1):

19

Intermediate Algorithm Design & Analysis by Prof. Irmtraud M. Meyer, Spring 2013

CN
w0 T

R

AANN o o
2 e

ad o Oh i
ak are Bt i ?Ocup 9P mambed (@-&e(ﬁ,’?)a&fﬁv&)

= 70)= O(ntea(n) [oe omid ha O(h) v () Aecasee it doso
wof donisste ¢ og (])]

20

