
1

CPSC 322, Practice Exercise
Solutions to SLS for CSP

1 Directed Questions

• In local search, how do we determine neighbours? Answer: A neighbour is usually just a
small incremental change to variable assignment. For example, a neighbour might be an
assignment in which one variable’s value has changed.

• What is the difference between random walk and random restart? Answer: In a random
walk, you move to a random neighbour. In a random restart, you randomly assign values
to all variables.

• What is the key weakness of stochastic local search? Answer: With SLS we cannot show
that no solution exists.

2 Traffic Flow

Consider the following scenario. You are on a city planning committee and must decide how to
control the flow of traffic in a particular residential neighbourhood. At each intersection, you
have to decide whether to install a 4-way stop, a roundabout, or an uncontrolled intersection
(in an uncontrolled intersection, the streets intersect without signs, roundabouts or other traffic
conrols). There are several restrictions in how the intersections can be controlled. Figure 1 gives
an overview of the neighbourhood.
The red stars indicate the 8 intersections under consideration. The intersection nearest the
school in the NW corner of the neighbourhood must contain a 4-way stop for safety reasons.
Along the east side of the neighbourhood runs a truck route, and no roundabouts can be placed
on this street because they pose a problem for large trucks. Also, it is not allowed to have 4-way
stops at consecutive intersections or to have two consecutive uncontrolled intersections. Finally,
due to the cost of installing roundabouts compared with the other options, each block can have
at most one of its four corners with a roundabout.

2.1 CSP Representation

How would you represent the above problem as a CSP? Identify the variables, their domains,
and the constraints involved.
Once you are done a sketch on paper, navigate to the AISpace Local Search applet at
http://www.aispace.org/hill/, start the applet, and load the file roundabouts.xml (available
from the course website) by clicking File → Load from file. This shows one possible representa-
tion, but there might be more than one correct representation.

2.2 Comparing Local Search Algorithms

Using the AISpace Local Search applet, we will experiment with several local search algorithms
for solving this problem.



2

Figure 1: Neighbourhood Traffic Control

• Greedy Descent

From the menu, choose Hill Options→ Algorithm Options and then select Greedy Descent
from the dropdown menu. Click Ok. Click Initialize. This will assign a value to each
variable. Note: you can choose Hill Options → AutoSolve Speed → Very Fast to speed
up the solver. Click AutoSolve. What happens? Does it find a solution within 100 steps?
Hypothesize why or why not. Now click Batch Run, which will calculate the runtime
distribution and plot the percentage of successes against the number of steps. What
does the runtime distribution tell you about this solver? Answer: Greedy Descent is
an incomplete algorithm, that is, it is not guaranteed to find a solution even given infinite
time. That is why the runtime distribution flattens out.

• Greedy Descent with Random Restarts

Go back to Algorithm Options and now select Greedy Descent with Random Restarts.
Click Batch Run again and compare the runtime distributions. Do the random restarts
improve Greedy Descent? Why or why not? Answer: Random restarts improve Greedy
Descent by removing its incompleteness. For infinite runtimes, it is not guaranteed to find
a solution if one exists.

• Random Walk

Go back to Algorithm Options and now select Random Walk. Click Batch Run again. How
does this compare with plain Greedy Descent? How would the two algorithms compare if
you gave them 10000 steps? (a logarithmic scale might help the visualization) Answer:
Random Walk performs very poorly compared to Greedy Descent. However, since Greedy



3

Descent is incomplete, for long runtimes (such as 10000 steps), Random Walk performs
better.

3 Local Search Learning Goals

• Implement local search for a CSP

• Implement different ways to generate neighbours

• Implement scoring functions to solve a CSP by local search through either greedy descent
or hill-climbing

• Implement SLS with random steps and random restarts

• Compare SLS algorithms with runtime distributions


