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« Expected Utility and Optimality of Policies
« Computing the Optimal Policy by Variable Elimination

o Summary & Perspectives



Recap: Single vs. Sequential Actions

Single Action (aka One-Off Decisions)

— One or more primitive decisions that can be treated as a single macro
decision to be made before acting

Sequence of Actions (Sequential Decisions)
— Repeat:

e Observe

e act

— Agent has to take actions not knowing what the future brings



Recap: Optimal single-stage decisions

Definition (optimal single-stage decision)
An optimal single-stage decision is the decision D=d__,
whose expected value is maximal:

d.. € argmax E|U|D=d]

die dom(D)
Best decision: (wear pads, short way) ~ condiional
: P , y nrobability Utility E[U|D]
accidenty, wo 0.2 35
short wgyﬁyo-—-—:______ > wi 0 o 83
o no accident -
wear pads " on;ﬁih accidenty, w2 0,01 0 e
no accident> W3 0.99 [E
™ accidenty, w4 0.2 3 20 6
: short way - — '
dont #,,f"y" ng accident > W2 08 100
wear - |
pads long :Jggh af_‘{'_d_%’]!:’. w6 0.01 0 20,9
W7 0.99 80 |

no accident



Recap: Single-Stage decision networks

Which Way

Wear Pads

 Compact and explicit representation
— Compact: each random/decision variable only occurs once

— EXxplicit: dependences are made explicit
* e.g., which variables affect the probability of an accident?

« Extension of Bayesian networks with
— Decision variables
— A single utility node



Recap: Types of nodes Iin decision networks

\ A random variable is drawn as an ellipse.
— Parents pa(X): encode dependence
/’O Conditional probability p( X | pa(X) )

Random variable X is conditionally independent

of its non-descendants given its parents
— Domain: the values it can take at random

« A decision variable is drawn as an rectangle.

— Parents pa(D)
information available when decision D is made
» Single-stage: pa(D) only includes decision variables

— Domain: the values the agents can choose (actions)

« A utility node is drawn as a diamond.

— Parents pa(U): variables utility directly depends on
o utility U( pa(U) ) for each instantiation of its parents

— Domain: does not have a domain! 6
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Recap: VE for computing the optimal decision

e Denote

— the random variables as X, ...

Which Way

X,

,,,,,

— the decision variables as D

Wear Pads

E[U|D = d] = ZP(W|D - DUW)

= Z P(X,, ..., Xn|D = d)U(pa(U))

Xl,...,Xn

»

XX I

1" " n

P(X;lpa(X)) U(pa(U))
=1

« To find the optimal decision we can use VE:
Create a factor for each conditional probability and for the utility

1.
2.

Sum out all random variables, one at a time

« This creates a factor on D that gives the expected utility for each d
Choose the d; with the maximum value in the factor



Recap: Sequential Decision Networks

e General Decision networks:

— Just like single-stage decision networks, with one exception:
the parents of decision nodes can include random variables




Recap: Sequential Decision Networks

e General Decision networks:

— Just like single-stage decision networks, with one exception:
the parents of decision nodes can include random variables

Tampering @

Check |—w

Siiohe \

Report | Call
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Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy & is a sequence of d,,....., 8, decision functions
o, : dom(pa(D;)) — dom(D))

l.e., when the agent has observed o € dom(pD;) , it will do ,(0)

Tampering ‘@

Check _--P'

Report | Call

o]

* One example for a policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true 10



Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy & is a sequence of d,,....., 8, decision functions
o, : dom(pa(D;)) — dom(D))

l.e., when the agent has observed o € dom(pD;) , it will do ,(0)

There are 2°=4 possible decision
functions 6 for Check Smoke:

@ @ « Each decision function needs to specify
Q .,, a value for each instantiation of parents

1

@ R=t R=f
0.:1(R) T T

@ Check @
Smoke H\ 6(:52(R) T F
G o 63R) | F | T
0.4(R) F F
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Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy & is a sequence of 9.,
o, : dom(pa(D;)) — dom(D))

, 0, decision functions

l.e., when the agent has observed o € dom(pD;) , it will do ,(0)

There are 28=256 possible decision functions & for Call:

e

R=t, | R=L+R=t, | R=t, | R=f, | R=f, | R=f, | R=T

CS=t, | C9=t, | CS=f, | CS=f, | CS=t, | CS=t, | CS=f, | CS=f, >

SS=t SS= =t iS:f SS=t | SS=f SSit_ﬁ;f// Copy_paste
Ocan1(R) T T T T T T T T typos in
Ocai2(R) T T T T T T T F printout
Oeai3(R) T T T T T T F T
Ocaid(R) T T T T T T F F
Oeai5(R) T T T T T F T T
5,.1256(R) F F F F F F F F
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Recap: How many policies are there?

« If a decision D has k binary parents, how many
assignments of values to the parents are there?
_ 2k

« |f there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

Bl bk b [

13



Recap: How many policies are there?

« If a decision D has k binary parents, how many
assignments of values to the parents are there?
_ 2k

« |f there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

— b?*, because there are 2« possible instantiations for the parents and
for every instantiation of those parents, the decision function could
pick any of b values

* If there are d decision variables, each with k binary parents
and b possible actions, how many policies are there?

dbk] bk de®) [ (%) y



Recap: How many policies are there?

If a decision D has k binary parents, how many
assignments of values to the parents are there?
_ 2k

If there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

— b?*, because there are 2k possible instantiations for the parents and
for every instantiation of those parents, the decision function could
pick any of b values

If there are d decision variables, each with k binary parents
and b possible actions, how many policies are there?

— (bzk)d, because there are b2 possible decision functions for each
decision, and a policy is a combination of d such decision functions
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Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy &, written w k =, If the
value of each decision variable in w is the value selected

by its decision function in policy = (when applied to w)

Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true

— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

Does the following possible world satisfy this policy?

—tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call

wel
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Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy &, written w k =, If the
value of each decision variable in w is the value selected

by its decision function in policy = (when applied to w)

« Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true

— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

* Do the following possible worlds satisfy this policy?
—tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
* Yes! Conditions are satisfied for each of the policy’s decision functions

—tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, —call
Mesll o

18



Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy &, written w k =, If the
value of each decision variable in w is the value selected

by its decision function in policy = (when applied to w)

« Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true

— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

* Do the following possible worlds satisfy this policy?
—tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
* Yes! Conditions are satisfied for each of the policy’s decision functions

—tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, —call
* No! The policy says to call if Report and CheckSmoke and SeeSmoke all true

—tampering,fire,alarm,leaving,—report,—~smoke,—~checkSmoke,—-seeSmoke,—call
- No ¢ Yes! Policy says to neither check smoke nor call when there is no report




Expected utility of a policy

Definition (expected utility of a policy)
The expected utility E[r] of a policy & Is:

E[x] = 2 P(w) U(w)

wETT

This term is zero if D;'s value
does not agree with what the

policy dictates given D;'s parents.

S

E[x] = 2 P(w) U(w) %
wETT

P(Xlpat)) | | (G(pa(D)) =D) UPa))

X DD i=1 j=1
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Optimality of a policy

Definition (expected utility of a policy)
The expected utility E[r] of a policy & Is:

E[x] = 2 P(w) U(w)

wETT

Definition (optimal policy)
An optimal policy &, IS a policy whose expected utility
IS maximal among all possible policies | 1:

€ argmax E|r]
mell

Tcmax

21
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One last operation on factors: maxing out a variable

« Maxing out a variable is similar to marginalization
— But instead of taking the sum of some values, we take the max

(maxxl)(xz,..., Xj)z Max,_gomex,y T (Xy =%, Xy,.00y X))

maxg f5(A,B,C) = f,(A,C)

B | A|C f3(A,B,C)
t t t 0.03
t t f 0.07
f t t 0.54
f t f 0.36
t f t 0.06
t f f 0.14
f f t 0.48
f f f 0.32

Al c | Ao
t | t | o054
t | f | 036
oot ?
o f

032 006 048 |0.14



One last operation on factors: maxing out a variable

« Maxing out a variable is similar to marginalization
— But instead of taking the sum of some values, we take the max

(maxxl)(xz,..., Xj)z Max,_gomex,y T (Xy =%, Xy,.00y X))

maxg f5(A,B,C) = f,(A,C)

B | A|C f3(A,B,C)
t t t 0.03

t t f 0.07

f t t 0.54

f t f 0.36

t f t 0.06

t f f 0.14

f f t 0.48

f f f

0.32

A | C | f,AC)
t | t | 054
t | f | 0.36
f | t | 048
f | f | 032

24



The no-forgetting property

* A decision network has the no-forgetting property if
— Decision variables are totally ordered: D4, ..., D

— If a decision D; comes before D; ,then
* D;is aparent of D,
* any parent of D; is a parent of D;

m

Tampering ‘@

Check _--P
Smoke \

Report »| Call

i
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ldea for finding optimal policies with VE

 ldea for finding optimal policies with variable elimination (VE):
Dynamic programming: precompute optimal future decisions
— Consider the last decision D to be made

« Find optimal decision D=d for each instantiation of D’s parents

— For each instantiation of D’s parents, this is just a single-stage decision problem

* Create a factor of these maximum values: max out D

— l.e., for each instantiation of the parents, what is the best utility | can achieve by
making this last decision optimally?

» Recurse to find optimal policy for reduced network (now one less decision)

Tampering Fire

P

Alarm Smoke

v

Leaving Chock L_» SeeSmoke
l /' — \>
Report > Call
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Finding optimal policies with VE

1. Create a factor for each CPT and a factor for the utility

2. While there are still decision variables
— 2a: Sum out random variables that are not parents of a decision node.
. E.g Tampering, Fire, Alarm, Smoke, Leaving
—  2b: Max out last decision variable D in the total ordering
. Keep track of decision function
3. Sum out any remaining variable:
this is the expected utility of the optimal policy.

Smoke

Call 27

Check _-—-P p@@@
CRepor




Computational complexity of VE for
finding optimal policies

« We saw:
For d decision variables (each with k binary parents and
b possible actions), there are (bzk)OI policies
— All combinations of (bzk) decision functions per decision

e Variable elimination saves the final exponent:
— Dynamic programming: consider each decision functions only once
— Resulting complexity: O(d * b2
— Much faster than enumerating policies (or search in policy space),
but still doubly exponential
— CS422: approximation algorithms for finding optimal policies

28
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Big Picture: Planning under Uncertainty

F______‘

Decision Theory

C ) “{OW Ky\@W a‘iﬁ@

Markov Decision Processes (MDPSs)

/\

Fully Observable Partially
MDPs Observable MDPs
(POMDPSs)

One-Off Decisions/
Sequential Decisions

Decision Support Systems
(medicine, business, ...)

Control
Systems
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Decision Theory: Decision Support Systems

E.g., Computational Sustainability

 New interdisciplinary field, Al is a key component

— Models and methods for decision making concerning the management
and allocation of resources

— to solve most challenging problems related to sustainability

Often constraint optimization problems. E.qg.
— Energy: when are where to produce green energy most economically?
— Which parcels of land to purchase to protect endangered species?

— Urban planning: how to use budget for best development in 30 years?

o o (5'1‘. l;:. . X

Source: http://www.computational-sustainability.org/ 31



Planning Under Uncertainty

e Learning and Using i
POMDP models of
Patient-Caregiver Interactions
During Activities of Daily Living

e

e (Goal: Help older adults living
with cognitive disabilities (such
as Alzheimer's) when they:

— forget the proper sequence of
tasks that need to be completed

— lose track of the steps that they
have already completed

Source: Jesse Hoey UofT
2007
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Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning
(states: all possible positions, orientations, velocities and angular velocities)

Source:
Andrew Ng,
2004




Planning Under Uncertainty

Autonomous driving: DARPA Grand Challenge

Dr. Sebastian Thrun
Stanford Racing Team Leader & Director
Stanford Artificial Intelligence Lab

Source:
Sebastian
Thrun




Learning Goals For Today’s Class

e Sequential decision networks
— Represent sequential decision problems as decision networks
— Explain the non forgetting property
* Policies
— Verify whether a possible world satisfies a policy
— Define the expected utility of a policy
— Compute the number of policies for a decision problem
— Compute the optimal policy by Variable Elimination

35



Announcements

* Final exam is next Monday, April 11. DMP 310, 3:30-6pm

— The list of short questions is online ... please use it!
— Also use the practice exercises (online on course website)

« Office hours this week
— Simona: Tuesday, 1pm-3pm (change from 10-12am)
— Mike: Wednesday 1-2pm, Friday 10-12am
— Vasanth: Thursday, 3-5pm

— Frank:
o X530: Tue 5-6pm, Thu 11-12am
e DMP 110: 1 hour after each lecture

e Optional Rainbow Robot tournament: this Friday
— Hopefully in normal classroom (DMP 110)

— Vasanth will run the tournament,
I'll do office hours in the same room (this is 3 days before the final)36
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