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Remarks on Assignment 4 
• Question 2 (Bayesian networks) 

– “correctly represent the situation described above” means 
“do not make any independence assumptions that aren’t true” 

• Step 1: identify the causal network 
• Step 2: for each network, check if it entails (conditional or marginal) 

independencies the causal network does not entail. If so, it’s incorrect 
– Failing to entail some (or all) independencies  does not make a 

network incorrect (only computationally suboptimal) 
 

• Question 5 (Rainbow Robot) 
– If you got rainbowrobot.zip before Sunday, get the updated version: 

rainbowrobot_updated.zip (on WebCT) 
 

• Question 4 (Decision Networks) 
– This is mostly Bayes rule and common sense 
– One could compute the answer algorithmically, but you don’t need to 
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Lecture Overview 
 

• Variable elimination: recap and some more details 
• Variable elimination: pruning irrelevant variables 
• Summary of Reasoning under Uncertainty 
• Decision Theory  

– Intro 
– Time-permitting: Single-Stage Decision Problems 
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Recap: Factors and Operations on them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., assign X=t 

X Y Z f1(X,Y,Z) 
t t t 0.1 
t t f 0.9 
t f t 0.2 
t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

Y Z f2(Y,Z) 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Factor of Y,Z 

Factor of Y,X,Z 

f1(X,Y,Z)X=t = f2(Y,Z) 

4 



Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
 

B A C f3(A,B,C) 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 
t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C f4(A,C) 

t t 0.57 

t f 0.43 

f t 0.54 

f f 0.46 

∑B f3(A,B,C) = f4(A,C)  
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Recap: Operation 3: multiplying factors 

A B C f7(A,B,C) 
t t t 0.03 

t t f 0.1x0.7 

t f t 0.9x0.6 

t f f … 
f t t 
f t f 
f f t 
f f f 

A B f5(A,B) 

t t 0.1 

t f 0.9 

f t 0.2 

f f 0.8 

A C f6(A,C) 

t t 0.3 

t f 0.7 

f t 0.6 

f f 0.4 
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f5(A,B) × f6(B,C) = f7(A,B,C), i.e 
 

f5(A=a,B=b) × f6(B=b,C=c) = f7(A=a,B=b,C=c) 



Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we assign variable A=a in factor f7(A,B), what is the 

correct form for the resulting factor? 
 

 
f(B) f(A) f(A,B) A number 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we assign variable A=a in factor f7(A,B), what is the correct 

form for the resulting factor? 
– f(B).  

When we assign variable A we remove it from the factor’s domain 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we marginalize variable A out from factor f7(A,B), what is 

the correct form for the resulting factor? 
 

 
f(B) f(A) f(A,B) A number 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to  

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we assign variable A=a in factor f7(A,B), what is the correct 

form for the resulting factor? 
– f(B).  

When we marginalize out variable A we remove it from the factor’s 
domain 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we multiply factors f4(X,Y) and f6(Z,Y), what is the correct 

form for the resulting factor? 
 

 
f(X) f(X,Z) f(X,Y) f(X,Y,Z) 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• If we multiply factors f4(X,Y) and f6(Z,Y), what is the correct 

form for the resulting factor? 
– f(X,Y,Z) 
– When multiplying factors, the resulting factor’s domain is the union 

of the multiplicands’ domains 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• What is the correct form for ∑B f5(A,B) × f6(B,C) 

– As usual, product before sum:  ∑B (  f5(A,B) × f6(B,C)   ) 
 

 
f(B) f(A,B,C) f(A,C) f(B,C) 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

 
• What is the correct form for ∑B f5(A,B) × f6(B,C) 

– As usual, product before sum:  ∑B (  f5(A,B) × f6(B,C)   ) 
– Result of multiplication: f(A,B,C). Then marginalize out B: f’(A,C) 
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Recap: Factors and Operations on Them 
• A factor is a function from a tuple of random variables to  

the real numbers R 
• Operation 1: assigning a variable in a factor 

– E.g., f2(Y,Z) = f1(X,Y,Z)X=t 

• Operation 2: marginalize out a variable from a factor 
– E.g., f4(A,C) = ∑B f3(A,B,C) 

• Operation 3: multiply two factors 
– E.g. f7(A,B,C) = f5(A,B) × f6(B,C) 

• That means, f7(A=a,B=b,C=c) = f5(A=a,B=b) × f6(B=b,C=c) 

• Operation 4: normalize the factor 
– Divide each entry by the sum of the entries. The result will sum to 1. 

A f5(A,B) 

t 0.4 

f 0.1 

A f6(A,B) 

t 0.4/(0.4+0.1) = 0.8 

f 0.1/(0.4+0.1) = 0.2 15 



Recap: the Key Idea of Variable Elimination 
• An efficient way to sum out a variable Zk  

from a product  f1 × …× fk of factors: 
– Partition the factors into 

• those that don't contain Zk, say f1 × …× fi 
• those that contain Zk, say fi+1 × …× fk 

 

• Since multiplication distributes over addition: 
 
 
 

 
 

• Store f’ explicitly, and discard fi+1 … fk 
• Now we've summed out Zk 16 
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New factor! Let’s call it f ’ 



Recap: Variable Elimination (VE) in BNs 
• The joint probability distribution of a Bayesian network is 

P(X1, …, Xn) =  ∏  𝑛
𝑖=1 P(Xi|pa(Xi) ) 

– We make a factor fi for each conditional probability table P(Xi|pa(Xi) ) 
– So we have P(X1, …, Xn) = ∏  𝑛

𝑖=1 fi 
 

• The variable elimination algorithm  
computes P(Y| E1=e1, …, Ej=ej) as follows: 
– Assign E1=e1, …, Ej=ej 
– Sum out all non-query variables Z1, …, Zk, one at a time 

• To sum out Zi:  
– Multiply factors containing it Zi 
– Then marginalize out Zi from the product 

• The order in which we sum out variables is called our elimination ordering 
– Normalize the final factor f(Y).  

• The resulting factor is exactly P(Y| E1=e1, …, Ej=ej) 
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Recap: VE example: compute P(G|H=h1) 
Step 1: construct a factor for each cond. probability 

18 

 
P(G,H) = 

 ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 



Recap: VE example: compute P(G|H=h1) 
Step 2: assign observed variables their observed value 

 
 
P(G,H=h1)=∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C)  

                             

                                                f5(F, D) f6(G,F,E) f9(G) f8(I,G)  
 
 

Assigning the variable H=h1: 
f9(G) =  f7(H,G) H=h1  
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P(G,H) = 

 ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 

Elimination ordering: A, C, E, I, B, D, F 20 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 

Elimination ordering: A, C, E, I, B, D, F 21 

Summing out variable A: 
∑A f0(A) f1(B,A) = f10(B)  

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B)    f11(B,D,E) 

22 Elimination ordering: A, C, E, I, B, D, F 

Summing out variable C: 
∑C f2(C) f3(D,B,C) f4(E,C) = f11(B,D,E)  

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

23 Elimination ordering: A, C, E, I, B, D, F 

Summing out variable E: 
∑E f6(G,F,E) f11(B,D,E) = f12(G,F,B,D)

 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
 

24 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

25 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
 

26 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G) 
 

27 Elimination ordering: A, C, E, I, B, D, F 



Recap: VE example: compute P(G|H=h1) 
Step 5: multiply the remaining factors 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G)  
    

                       =  f17(G) 
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Recap: VE example: compute P(G|H=h1) 
Step 6: normalize 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

                  = ∑B,C,D,E,F,I f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) 
 

                  = ∑B,D,E,F,I f5(F, D) f6(G,F,E) f9(G) f8(I,G) f10(B) f11(B,D,E) 
 

                  = ∑B,D,F,I f5(F, D) f9(G) f8(I,G) f10(B) f12(G,F,B,D)  
 

                  = ∑B,D,F f5(F, D) f9(G) f10(B) f12(G,F,B,D) f13(G) 
  

                  = ∑D,F f5(F, D) f9(G) f11(G,F) f12(G) f14(G,F,D) 
 

                       = ∑F f9(G) f11(G,F) f12(G) f15(G,F) 
  

                       =  f9(G) f12(G) f16(G)  
    

                       =  f17(G) 

29 
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Lecture Overview 
 

• Variable elimination: recap and some more details 
• Variable elimination: pruning irrelevant variables 
• Summary of Reasoning under Uncertainty 
• Decision Theory  

– Intro 
– Time-permitting: Single-Stage Decision Problems 

30 



Recap: conditional independence in BNs 
• Two variables X and Y are conditionally independent given 

a set of observed variables E, if and only if 
– There is no path along which information can flow from X to Y 
– Information can flow along a path if it can flow through all the nodes 

in the path. 
• Note: observation status of 

A and C does not matter 
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Conditional independence in BNs 
• Memoization trick: 

– Assume that whether kids are nice  
depends only on whether their parents are nice 

– Assume that people get married independent of their niceness 
– Then “child” in a Bayesian network translates to child in the real world 

A 

B 

C 

A 

B 

C 

A 

B 

C A 

B 

C 

A 

B 

C A 

B 

C 
Your grandparent is nice, so 
your parent is likely to be nice, 
so you are likely to be nice. 
But if we know how nice your 
parent is, the grandparent’s 
niceness doesn’t provide extra 
information. 

Nice people are likely to have nice sibblings since 
they have the same parent. But if you know the 
parent’s niceness, then that explains everything. 

The dad is nice, that tells us nothing about the mom. 
But if we know the kid is mean, the mom is likely mean. 



Conditional independence in BNs example 
• Is E marginally independent of C? 

– No. Information flows between them (through all nodes on the path). 
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• Is E marginally independent of C? 
– No. Information flows between them (through all nodes on the path). 

• What if we observe A? 
– I.e., is E conditionally independent of C given A? 
– Yes. The observed node in a chain blocks information. 
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• Is E marginally independent of C? 
– No. Information flows between them (through all nodes on the path). 

• What if we observe A? 
– I.e., is E conditionally independent of C given A? 
– Yes. The observed node in a chain blocks information. 

• What if we add nodes F and G (observed)? 
– Now the information can flow again 
– So E and C are not conditionally 

independent given G and A 
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VE and conditional independence 
• So far, we haven’t use conditional independence in VE! 

– Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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• Example: which variables can we prune for 
the query P(G=g| C=c1, F=f1, H=h1) ? 
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VE and conditional independence 
• So far, we haven’t use conditional independence! 

– Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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• Example: which variables can we prune for  
the query P(G=g| C=c1, F=f1, H=h1) ? 
 
– A, B, and D. Both paths are blocked  

• F is an observed node in a chain structure 
• C is an observed common parent 

 
 
– Thus, we only need to consider this subnetwork 



Variable Elimination: One last trick 
 

• We can also prune unobserved leaf nodes 
– And we can do so recursively 

 

•            E.g., which nodes can we prune if the query is P(A)? 
 
 
 
 

•              Recursively prune unobserved leaf nodes: 
•              we can prune all nodes other than A ! 
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Complexity of Variable Elimination (VE) 
• A factor over n binary variables has to store 2n numbers 

– The initial factors are typically quite small  
(variables typically only have few parents in Bayesian networks) 

– But variable elimination constructs larger factors  
by multiplying factors together 

 

• The complexity of VE is exponential in the maximum 
number of variables in any factor during its execution  
– This number is called the treewidth of a graph (along an ordering) 
– Elimination ordering influences treewidth 

 

• Finding the best ordering is NP complete 
– I.e., the ordering that generates the minimum treewidth 
– Heuristics work well in practice (e.g. least connected variables first) 
– Even with best ordering, inference is sometimes infeasible 

• In those cases, we need approximate inference. See CS422 & CS540 
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Lecture Overview 
 

• Variable elimination: recap and some more details 
• Variable elimination: pruning irrelevant variables 
• Summary of Reasoning under Uncertainty 
• Decision Theory  

– Intro 
– Time-permitting: Single-Stage Decision Problems 
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Bioinformatics 

Big picture: Reasoning Under Uncertainty 

Dynamic Bayesian 
Networks 

Hidden Markov Models & 
Filtering 

Probability Theory 

Bayesian Networks & 
Variable Elimination 

Natural Language 
Processing 

Email spam filters 

Motion Tracking, 
Missile Tracking, etc 

Monitoring 
(e.g. credit card 
fraud detection) 

Diagnostic systems 
(e.g. medicine) 
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One Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 

~60 nodes, max 4 parents per node 42 
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Course Overview 
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But uncertainty is 
also at the core of 
decision theory: 
now we’re acting 
under uncertainty 

As CSP (using 
arc consistency) 



Lecture Overview 
 

• Variable elimination: recap and some more details 
• Variable elimination: pruning irrelevant variables 
• Summary of Reasoning under Uncertainty 
• Decision Theory  

– Intro 
– Time-permitting: Single-Stage Decision Problems 
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Decisions Under Uncertainty: Intro 
• Earlier in the course, we focused on decision making in 

deterministic domains  
– Search/CSPs: single-stage decisions 
– Planning: sequential decisions 

 
• Now we face stochastic domains 

– so far we've considered how to represent and update beliefs 
– What if an agent has to make decisions under uncertainty? 

 

• Making decisions under uncertainty is important 
– We mainly represent the world probabilistically so we can use our 

beliefs as the basis for making decisions 
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Decisions Under Uncertainty: Intro 
• An agent's decision will depend on 

– What actions are available 
– What beliefs the agent has 
– Which goals the agent has 

 
• Differences between deterministic and stochastic setting 

– Obvious difference in representation: need to represent our 
uncertain beliefs 

– Now we'll speak about representing actions and goals 
• Actions will be pretty straightforward: decision variables 
• Goals will be interesting: we'll move from all-or-nothing goals to a richer 

notion: rating how happy the agent is in different situations. 
• Putting these together, we'll extend Bayesian networks to make a new 

representation called decision networks 
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Lecture Overview 
 

• Variable elimination: recap and some more details 
• Variable elimination: pruning irrelevant variables 
• Summary of Reasoning under Uncertainty 
• Decision Theory  

– Intro 
– Time-permitting: Single-Stage Decision Problems 
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Delivery Robot Example 
• Decision variable 1: the robot can choose to wear pads  

– Yes: protection against accidents, but extra weight 
– No: fast, but no protection 

• Decision variable 2: the robot can choose the way 
– Short way: quick, but higher chance of accident 
– Long way: safe, but slow 

• Random variable: is there an accident? 
Agent decides 

Chance decides 
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Possible worlds and decision variables 
• A possible world specifies a value 

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
• A possible world specifies a value  

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
• A possible world specifies a value  

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
• A possible world specifies a value  

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Possible worlds and decision variables 
• A possible world specifies a value  

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Utility 
• Utility: a measure of desirability of possible worlds to an agent 

– Let U be a real-valued function such that U(w) represents an agent's 
degree of preference for world w 

– Expressed by a number in [0,100] 
 

• Simple goals can still be specified 
– Worlds that satisfy the goal have utility 100 
– Other worlds have utility 0 

 

• Utilities can be more complicated 
– For example, in the robot delivery domains, they could involve 

• Amount of damage 
• Reached the target room? 
• Energy left 
• Time taken 
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Combining probabilities and utilities 
• We can combine probability with utility 

– The expected utility of a probability distribution over possible worlds  
average utility, weighted by probabilities of possible worlds 

– What is the expected utility of Wearpads=yes, Way=short ? 
• It is 0.2 * 35 + 0.8 * 95 = 83 
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Expected utility 
• Suppose U(w) is the utility of possible world w and  

P(w) is the probability of possible world w 
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Definition (expected utility) 
The expected utility is  

𝐸 𝑈 =  �𝑃 𝑤 𝑈(𝑤)
𝑤

 

Definition (expected utility) 
The conditional expected utility given e is  

𝐸 𝑈|𝑒 =  �𝑃 𝑤|𝑒 𝑈(𝑤)
𝑤

 



Expected utility of a decision 
• We write the expected utility of a decision as: 

𝐸 𝑈|𝐷 = 𝑑 =  �𝑃 𝑤|𝐷 = 𝑑 𝑈(𝑤)
𝑤
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Optimal single-stage decision 
 

• Given a single decision variable D 
– the agent can choose D=di for any value di ∈ dom(D) 
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Definition (optimal single-stage decision) 
An optimal single-stage decision is the decision D=dmax 
whose expected value is maximal: 
 

dmax ∈ argmax
𝑑i 
∈ 𝑑𝑑𝑑(𝐷)

𝐸 𝑈|D=di  



• Identify implied (in)dependencies in the network 
• Variable elimination 

– Carry out variable elimination by using factor representation and 
using the factor operations 

– Use techniques to simplify variable elimination 

• Define a Utility Function on possible worlds 
• Define and compute optimal one-off decisions 

 

• Assignment 4 is due on Monday 
– You should now be able to solve Questions 1, 2, 3, and 5 
– And basically Question 4 

 

• Final exam: Monday, April 11 
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