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Coloured Cards 
 

• If you lost/forgot your set,  
please come to the front and pick up a new one 
– We’ll use them quite a bit in the uncertainty module 
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Lecture Overview 
 

• Logics wrap-up: big picture 
 

• Reasoning Under Uncertainty 
– Motivation 
– Introduction to Probability 

• Random Variables and Possible World Semantics 
• Probability Distributions and Marginalization 
• Time-permitting: Conditioning 
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• PDCL syntax & semantics 
- Verify whether a logical statement belongs to the language of 

propositional definite clauses 
- Verify whether an interpretation is a model of a PDCL KB.  
- Verify when a conjunction of atoms is a logical consequence of a KB 

 

• Bottom-up proof procedure 
- Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
- Prove that the BU proof procedure is sound and complete  

 

• Top-down proof procedure 
- Define/read/write/trace/debug the Top-down (SLD) proof procedure 

(as a search problem) 
 

• Datalog 
- Represent simple domains in Datalog 
- Apply the Top-down proof procedure in Datalog 

 

Learning Goals For Logic 
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Logics: Big picture 

Propositional 
Logics 

First-Order 
Logics 

Propositional Definite 
Clause  Logics 

Semantics and Proof 
Theory 

Description  
Logics 

Cognitive Architectures 

Video Games 

Hardware Verification 

Product Configuration 
Ontologies 

Semantic Web 

Information 
Extraction 

Summarization 

Production Systems 

Tutoring Systems 

Satisfiability Testing 
(SAT) 

Software Verification 

PDCL 
Soundness &  
Completeness 

Datalog From  
CSP 
module 

BU & SLD 



Logics: Big picture 
 

 
• We only covered rather simple logics 

– There are much more powerful representation and reasoning 
systems based on logics  

 
• Logics have many applications 

– See previous slide 
– Let’s see the 2-slide version of one example: the Semantic Web 
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Example application of logics:  
the Semantic Web  

 

• Beyond HTML pages only made for humans 
• Languages and formalisms based on logics that allow 

websites to include information in a more structured format 
– Goal: software agents that can roam the web and carry out 

sophisticated tasks on our behalf 
– This is very different than searching content for keywords and 

popularity! 
 

• For further references, see, e.g. tutorial given at  
2009 Semantic Technology Conference: 
         http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH 
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Examples of ontologies for the Semantic Web 

• “Ontology”: logic-based representation of the world 
 

• eClassOwl: eBusiness ontology  
– for products and services 
– 75,000 classes (types of individuals) and 5,500 properties 

• National Cancer Institute’s ontology: 58,000 classes 
• Open Biomedical Ontologies Foundry: several ontologies 

– including the Gene Ontology to describe 
• gene and gene product attributes in any organism or protein sequence 
• annotation terminology and data 

• OpenCyc project: a 150,000-concept ontology including 
– Top-level ontology  

• describes general concepts such as numbers, time, space, etc 
– Hierarchical composition: superclasses and subclasses 
– Many specific concepts such as “OLED display”, “iPhone” 
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Course Overview 
Environment 

Problem Type 

Logic 
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     Constraint 
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Search 
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This concludes 
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As CSP (using 
arc consistency) 
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Course Overview 
Environment 

Problem Type 

Logic 

Planning 

Deterministic Stochastic 

     Constraint 
Satisfaction Search 

Arc  
Consistency 

Search 

Search 

 Logics 

 STRIPS 

Variables +  
Constraints 

Variable 
Elimination 

Bayesian 
Networks 

Decision 
Networks 

 Markov Processes 

Static 

Sequential 

Representation 
Reasoning 
Technique 

Uncertainty 

Decision 
Theory   

Course Module 

Variable 
Elimination 

Value 
Iteration 

Planning 

For the rest of 
the course, we 
will consider 
uncertainty 

As CSP (using 
arc consistency) 



Lecture Overview 
 

• Logics wrap-up: big picture 
 

• Reasoning Under Uncertainty 
– Motivation 
– Introduction to Probability 

• Random Variables and Possible World Semantics 
• Probability Distributions and Marginalization 
• Time-permitting: Conditioning 

 

11 



Types of uncertainty (from Lecture 2) 
 

• Sensing Uncertainty:  
– The agent cannot fully observe a state of interest 
– E.g.: Right now, how many people are in this room? In this building? 
– E.g.: What disease does this patient have? 

 

• Effect Uncertainty: 
– The agent cannot be certain about the effects of its actions 
– E.g.: If I work hard, will I get an A? 
– E.g.: Will this drug work for this patient? 



Motivation for uncertainty 
 

•  To act in the real world, we almost always have to handle 
 uncertainty (both effect and sensing uncertainty) 
– Deterministic domains are an abstraction  

• Sometimes this abstraction enables more powerful inference 
– Now we don’t make this abstraction anymore 

• Our representation becomes more expressive and general 
 

•  AI’s focus shifted from logic to probability in the 1980s 
– The language of probability is very expressive and general 
– New representations enable efficient reasoning 

• We will see some of these, in particular Bayesian networks 
– Reasoning under uncertainty is the “new” AI 
– See, e.g., Faculty Lecture Series talk tomorrow: 

• “The Cancer Genome and Probabilistic Models” DMP 110, 3:30-4:50 
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Interesting article about AI and uncertainty 
• “The machine age”  

– by Peter Norvig (head of research at Google) 
– New York Post, 12 February 2011 
– http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_ma

chine_age_tM7xPAv4pI4JslK0M1JtxI 
 

– “The things we thought were hard turned out to be easier.” 
• Playing grandmaster level chess,  

or proving theorems in integral calculus 
– “Tasks that we at first thought were easy turned out to be hard.”  

• A toddler (or a dog) can distinguish hundreds of objects (ball, 
bottle, blanket, mother, etc.) just by glancing at them 

• Very difficult for computer vision to perform at this level 
– “Dealing with uncertainty turned out to be more important than 

thinking with logical precision.” 
• AI’s focus shifted from Logic to Probability (in the late 1980s) 
• Reasoning under uncertainty (and lots of data) are key to progress 14 

http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI
http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI


Lecture Overview 
 

• Logics wrap-up: big picture 
 

• Reasoning Under Uncertainty 
– Motivation 
– Introduction to Probability 

• Random Variables and Possible World Semantics 
• Probability Distributions and Marginalization 
• Time-permitting: Conditioning 
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Probability as a formal measure of 
uncertainty/ignorance 

 
• Probability measures an agent's degree of belief on events 

–  It does not measure how true an event is  
–  Events are true or false. We simply might not know exactly which one  
–  Example: 

• I roll a fair die. What is the probability that the result is a “6”? 
  



Probability as a formal measure of 
uncertainty/ignorance 

 
• Probability measures an agent's degree of belief on events 

–  It does not measure how true an event is  
–  Events are true or false. We simply might not know exactly which one  
–  Example: 

• I roll a fair die. What is the probability that the result is a “6”? 
– It is 1/6 ≈ 16.7%.  
– The result is either a “6” or not. But we don’t know which one. 

• I now look at the die. What is the probability now? 
–  Your probability hasn’t changed: 1/6 ≈ 16.7%  
–  My probability is either 1 or 0 (depending on what I observed) 

• What if I tell some of you the result is even? 
– Their probability increases to 1/3 ≈ 33.3%  

(assuming they know I say the truth) 
•  Different agents can have different degrees of belief in an event 



Probability as a formal measure of 
uncertainty/ignorance 

 
• Probability measures an agent's degree of belief on events 

–  It does not measure how true an event is  
–  Events are true or false. We simply might not know exactly which one  

• Different agents can have different degrees of belief in an event 
 

• Belief in a proposition f can be measured in terms of a 
number between 0 and 1 – this is the probability of f 
– P(“roll of fair die came out as a 6”) = 1/6 ≈ 16.7% = 0.167 
– Using probabilities between 0 and 1 is purely a convention. 

 

• P(f) = 0 means that f is believed to be 
 Probably false Probably true Definitely false Definitely true 



Probability as a formal measure of 
uncertainty/ignorance 

 

• Probability measures an agent's degree of belief on events 
–  It does not measure how true an event is  
–  Events are true or false. We simply might not know exactly which one  

• Different agents can have different degrees of belief in an event 
 

• Belief in a proposition f can be measured in terms of a 
number between 0 and 1 – this is the probability of f 
– P(“roll of fair die came out as a 6”) = 1/6 ≈ 16.7% = 0.167 
– Using probabilities between 0 and 1 is purely a convention. 

 

• P(f) = 0 means that f is believed to be 
– Definitely false: the probability of f being true is zero. 

• Likewise, P(f) = 1 means f is believed to be definitely true 



Probability Theory and Random Variables  
• Probability Theory: system of axioms and formal operations 

for sound reasoning under uncertainty 
 

• Basic element: random variable X  
– X is a variable like the ones we have seen in CSP/Planning/Logic, but 

the agent can be uncertain about the value of X 
– As usual, the domain of a random variable X, written dom(X), is the 

set of values X can take 
 

• Types of variables 
– Boolean: e.g., Cancer (does the patient have cancer or not?) 
– Categorical:  e.g., CancerType could be one of <breastCancer, 

                     lungCancer, skinMelanomas> 
– Numeric: e.g., Temperature 

 

– We will focus on Boolean and categorical variables 



Possible Worlds Semantics 

 
• Example: we model only 2 Boolean variables Smoking and 

Cancer, how many distinct possible worlds are there? 

• A possible world w specifies an assignment to each 
random variable 



Possible Worlds Semantics 

 
• Example: we model only 2 Boolean variables Smoking and 

Cancer. Then there are 22=4 distinct possible worlds: 
 

w1: Smoking = T  ∧ Cancer = T  
w2: Smoking = T  ∧ Cancer = F 
w3: Smoking = F  ∧ Cancer = T 
w4: Smoking = T  ∧ Cancer = T 
 

• A possible world w specifies an assignment to each 
random variable 

 
•   w ⊧ X=x means variable X is assigned value x in world w 
•   Define a nonnegative measure µ(w) to possible worlds w 
     such that the measures of the possible worlds sum to 1 

  
 

-The probability of proposition f is defined by: 
 

Smoking  Cancer 

T T 

T F 

F T 

F F 



Possible Worlds Semantics 

 
     w ⊧ X=x means variable X is assigned value x in world w 

-   Probability measure µ(w) sums to 1 over all possible worlds w 
 

-   The probability of proposition f is defined by: 
 

• New example: weather in Vancouver 
– Modeled as one Boolean variable:  

• Weather  with domain {sunny, cloudy} 
– Possible worlds: 

w1: Weather = sunny 
w2: Weather = cloudy 

• Let’s say the probability of sunny weather is 0.4 
– I.e. p(Weather = sunny) = 0.4 
– What is the probability of p(Weather = cloudy)? 

0.4 We don’t have enough information 
to compute that probability 1 0.6 

Weather p 

sunny 0.4 
cloudy 



Possible Worlds Semantics 

 
     w ⊧ X=x means variable X is assigned value x in world w 

-   Probability measure µ(w) sums to 1 over all possible worlds w 
 

-   The probability of proposition f is defined by: 
 

Weather p 

sunny 0.4 
cloudy 0.6 

• New example: weather in Vancouver 
– Modeled as one Boolean variable:  

• Weather  with domain {sunny, cloudy} 
– Possible worlds: 

w1: Weather = sunny 
w2: Weather = cloudy 

• Let’s say the probability of sunny weather is 0.4 
– I.e. p(Weather = sunny) = 0.4 
– What is the probability of p(Weather = cloudy)? 

• p(Weather = sunny) = 0.4 means that µ(w1) is 0.4 
• µ(w1) and µ(w2) have to sum to 1 (those are the only 2 possible worlds) 
• So µ(w2) has to be 0.6, and thus p(Weather = cloudy) = 0.6 



One more example 
• Now we have an additional variable:  

– Temperature, modeled as a categorical variable with 
domain {hot, mild, cold} 
 

– There are now 6  
possible worlds: 
 
 
 
 

– What’s the probability of it 
being cloudy and cold? 

 
 

• Hint: 0.10 + 0.20 + 0.10 + 0.05 + 0.35 = 0.8 
 
 

 
 

0.2 0.1 0.3 1 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold ? 



One more example 
• Now we have an additional variable:  

– Temperature, modeled as a categorical variable with 
domain {hot, mild, cold} 
 

– There are now 6  
possible worlds: 
 
 
 
 

– What’s the probability of it 
being cloudy and cold? 

 
• It is 0.2: the probability has to sum to 1 over all possible worlds 

 
 

 
 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.2 



Lecture Overview 
 

• Logics wrap-up: big picture 
 

• Reasoning Under Uncertainty 
– Motivation 
– Introduction to Probability 

• Random Variables and Possible World Semantics 
• Probability Distributions and Marginalization 
• Time-permitting: Conditioning 
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Probability Distributions 
 

    Consider the case where possible worlds are  
    simply assignments to one random variable. 
 
 
 
 
 
 

– When dom(X) is infinite we need a probability density function 
– We will focus on the finite case 
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Definition (probability distribution) 
A probability distribution P on a random variable X is a 
function dom(X) → [0,1] such that 
 

                                     x → P(X=x) 



Joint Distribution 
• The joint distribution over random variables X1, …, Xn: 

– a probability distribution over the joint random variable <X1, …, Xn> 
with domain dom(X1) × … × dom(Xn)     (the Cartesian product) 
 

• Example from before 
– Joint probability distribution 

over random variables  
Weather and Temperature 

– Each row corresponds to  
an assignment of values 
to these variables, and the 
probability of this joint  
assignment 
 

– In general, each row corresponds to an assignment  
X1= x1, …, Xn= xn and its probability P(X1= x1, … ,Xn= xn) 

– We also write P(X1= x1 ∧ … ∧ Xn= xn) 
– The sum of probabilities across the whole table is 1. 
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Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot ? 
mild ? 
cold ? 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot ?? 
mild 
cold 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

P(Temperature=hot) =  
   P(Weather=sunny, Temperature = hot) 
+ P(Weather=cloudy, Temperature = hot) 
= 0.10 + 0.05 = 0.15 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot 0.15 
mild 
cold 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

P(Temperature=hot) =  
   P(Weather=sunny, Temperature = hot) 
+ P(Weather=cloudy, Temperature = hot) 
= 0.10 + 0.05 = 0.15 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 

Temperature µ(w) 
hot 0.15 
mild ?? 
cold 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

0.35 0.20 0.85 0.55 
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Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 

Temperature µ(w) 
hot 0.15 
mild 0.55 
cold ?? 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

0.30 0.70 0.20 0.10 
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Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• This corresponds to summing out a dimension in the table. 
• The new table still sums to 1. It must, since it’s a probability distribution! 
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Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 0.30 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Alternative way to 
compute last entry: 
probabilities have  
to sum to 1. 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• You can marginalize out any of the variables 
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Weather µ(w) 
sunny 0.40 
cloudy 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

P(Weather=sunny) =  
   P(Weather=sunny, Temperature = hot) 
+ P(Weather=sunny, Temperature = mild) 
+ P(Weather=sunny, Temperature = cold) 
= 0.10 + 0.20 + 0.10 = 0.40 



Marginalization 
• Given the joint distribution, we can compute distributions 

over smaller sets of variables through marginalization: 
 

         P(X=x) = Σz∈dom(Z)  P(X=x, Z = z)  
 

– We also write this as P(X) = Σz∈dom(Z)  P(X, Z = z). 
 

• You can marginalize out any of the variables 
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Weather µ(w) 
sunny 0.40 
cloudy 0.60 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 



Marginalization 
• We can also marginalize out more than one variable at once 

 

          P(X=x) = Σz1∈dom(Z1),…, zn∈dom(Zn)  P(X=x, Z1 = z1, …, Zn = zn)  
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Weather µ(w) 
sunny 0.40 
cloudy 

Wind Weather Temperature µ(w) 

yes sunny hot 0.04 
yes sunny mild 0.09 
yes sunny cold 0.07 
yes cloudy hot 0.01 
yes cloudy mild 0.10 
yes cloudy cold 0.12 
no sunny hot 0.06 
no sunny mild 0.11 
no sunny cold 0.03 
no cloudy hot 0.04 
no cloudy mild 0.25 
no cloudy cold 0.08 

Marginalizing out variables 
Wind and Temperature, i.e. 
those are the ones being  
removed from the distribution 



Marginalization 
• We can also get marginals for more than one variable 

 

P(X=x,Y=y) = Σz1∈dom(Z1),…, zn∈dom(Zn)  P(X=x, Y=y, Z1 = z1, …, Zn = zn)  
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Wind Weather Temperature µ(w) 

yes sunny hot 0.04 
yes sunny mild 0.09 
yes sunny cold 0.07 
yes cloudy hot 0.01 
yes cloudy mild 0.10 
yes cloudy cold 0.12 
no sunny hot 0.06 
no sunny mild 0.11 
no sunny cold 0.03 
no cloudy hot 0.04 
no cloudy mild 0.25 
no cloudy cold 0.08 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 
sunny cold 
cloudy hot 
cloudy mild 
cloudy cold 



• Define and give examples of random variables, their 
domains and probability distributions 

• Calculate the probability of a proposition f given µ(w) for 
the set of possible worlds 

• Define a joint probability distribution (JPD) 
• Given a JPD 

– Marginalize over specific variables 
– Compute distributions over any subset of the variables 

 
• Heads up: study these concepts, especially marginalization 

– If you don’t understand them well you will get lost quickly 
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Learning Goals For Today’s Class 



Lecture Overview 
 

• Logics wrap-up: big picture 
 

• Reasoning Under Uncertainty 
– Motivation 
– Introduction to Probability 

• Random Variables and Possible World Semantics 
• Probability Distributions and Marginalization 
• Time-permitting: Conditioning 
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Conditioning 
 

• Conditioning species how to revise beliefs based on new information. 
• You build a probabilistic model taking all background information into 

account. This gives the prior probability. 
• All other information must be conditioned on. 
• If evidence e is all of the information obtained subsequently, the 

conditional probability P(h|e) of h given e is the posterior probability of h. 
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Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 
 
 
 
 
 
 
 

• Now, you look outside and see that it’s sunny 
– Your knowledge of the weather affects 

your degree of belief in the temperature 
– The conditional probability distribution 

for temperature given that it’s sunny is: 
– We will see how to compute this. 43 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 0.30 

T P(T|W=sunny) 
hot 0.25 
mild 0.50 
cold 0.25 



Definition (conditional probability) 
The conditional probability of formula h given evidence e is 

Semantics of Conditioning 
• Evidence e rules out possible worlds incompatible with e. 
• We can represent this using a new measure, µe, over possible worlds 
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Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the two marginal distributions 
 
 
 
 
 
 
 

• What is P(Temperature| Weather = sunny)? 

• We know 𝑃 ℎ 𝑒  = 𝑃(ℎ∧𝑒)
𝑃(𝑒)

 
– h = “Temperature=t”, e= “Weather = sunny” 
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Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 0.30 

Weather µ(w) 
sunny 0.40 
cloudy 0.60 



Example for conditioning 
• You have a prior for the joint distribution of weather and 

temperature, and the two marginal distributions 
 
 
 
 
 
 
 

• What is P(Temperature| Weather = sunny)? 

• We know 𝑃 ℎ 𝑒  = 𝑃(ℎ∧𝑒)
𝑃(𝑒)

 
– h = “Temperature=t”, e= “Weather = sunny” 
– P(Temperature=t ∧ Weather = sunny) 
– P(Weather = sunny) 46 

Weather Temperature µ(w) 
sunny hot 0.10 
sunny mild 0.20 
sunny cold 0.10 
cloudy hot 0.05 
cloudy mild 0.35 
cloudy cold 0.20 

Temperature µ(w) 
hot 0.15 
mild 0.55 
cold 0.30 

T P(T|W=sunny) 
hot 0.10/0.40=0.25 
mild 0.20/0.40=0.50 
cold 0.10/0.40=0.25 

Weather µ(w) 
sunny 0.40 
cloudy 0.60 
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