
Logic: Datalog wrap-up

CPSC 322 – Logic 5

Textbook §12.3

March 14, 2011

Lecture Overview

• Invited Presentation:
– Chris Fawcett on scheduling UBC's exams using SLS

• Recap: Top-down Proof Procedure

• Datalog

• Logics: big picture

2

Lecture Overview

• Invited Presentation:
– Chris Fawcett on scheduling UBC's exams using SLS

• Recap: Top-down Proof Procedure

• Datalog

• Logics: big picture

3

4

Bottom-up vs. Top-down
• Key Idea of top-down: search backward from a query g

to determine if it can be derived from KB.

KB C

g is proved if g ∈ C

BU never looks at the query g
• It derives the same C
 regardless of the query

KB answer

Query g
Bottom-up Top-down

TD performs a backward search
starting at g

γ1: yes ← e ∧ f

γ3: yes ←

Example for (successful) SLD derivation

γ0: yes ← a

γ2: yes ← e

1

2

3

5

a← b ∧ c. a ← e ∧ f. b← f ∧ k.
c ← e. d ← k e.
f ← j ∧ e. f . j ← c.

Query: ?a

Done. “Can we derive a?”
- Answer:“Yes, we can”

Correspondence between BU and TD proofs
If the following is a top-down (TD) derivation in a given KB,

what would be the bottom-up (BU) derivation of the same
query?

 TD derivation
 yes ← a.
 yes ← b ∧ f.
 yes ← b ∧ g ∧ h.
 yes ← c ∧ d ∧ g ∧ h.
 yes ← d ∧ g ∧ h.
 yes ← g ∧ h.
 yes ← h.
 yes ← .
 6

BU derivation
{}
{h}
{g,h}
{d,g,h}
{c,d,g,h}
{b,c,d,g,h}
{b,c,d,f,g,h}
{a,b,c,d,f,g,h}

Part of KB:
a ← b ∧ f
f ← g ∧ h
b ← c ∧ d
c.
d.
h.
g.

• Inference (Top-down/SLD resolution)
– State: answer clause of the form yes ← q1 ∧ ... ∧ qk
– Successor function: all states resulting from substituting first

atom a with b1 ∧ … ∧ bm if there is a clause a ← b1 ∧ … ∧ bm
– Goal test: is the answer clause empty (i.e. yes ←) ?
– Solution: the proof, i.e. the sequence of SLD resolutions
– Heuristic function: number of atoms in the query clause

Inference as Standard Search

7

a ← b ∧ c. a ← g.
a ← h. b ← j.
b ← k. d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f. k ← m.
h ←m. p.

Lecture Overview

• Invited Presentation:
– Chris Fawcett on scheduling UBC's exams using SLS

• Recap: Top-down Proof Procedure

• Datalog

• Logics: big picture

8

Datalog

• An extension of propositional definite clause (PDC) logic
– We now have variables
– We now have relationships between variables

– We can write more powerful clauses, such as

– We can ask generic queries,
• E.g. “which wires are connected to w1?“

9

live(W) ← wire(W) ∧ connected_to(W,W1)
 ∧ wire(W1) ∧ live(W1).

? connected_to(W, w1)

Datalog syntax

A variable is a symbol starting with an upper case letter

A constant is a symbol starting with lower-case letter or a
sequence of digits.

A predicate symbol is a symbol starting with a lower-case
letter.

A term is either a variable or a constant.

Datalog expands the syntax of PDCL….

Examples: X, W1

Examples: alan, w1

Examples: live, connected, part-of, in

Examples: X, Y, alan, w1

Datalog Syntax (continued)
An atom is a symbol of the form p or p(t1 …. tn) where p is a

predicate symbol and ti are terms

A definite clause is either an atom (a fact) or of the form:
 h ← b1 ∧… ∧ bm
where h and the bi are atoms (Read this as ``h if b.'')

A knowledge base is a set of definite clauses

Examples: sunny, in(alan,X)

Example: in(X,Z) ← in(X,Y) ∧ part-of(Y,Z)

Datalog Semantics
• Semantics still connect symbols and sentences in the

language with the target domain. Main difference:
• need to create correspondence both between terms and

individuals, as well as between predicate symbols and relations

We won’t cover the formal
definition of Datalog
semantics, but if you are
interested see 12.3.1 and
12.3.2 in the textbook

Example proof of a Datalog query
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

Query: yes ← in(alan, cs_building).

yes ← part_of(Z,cs_building), in(alan, Z).

yes ← in(alan, r123).

yes ← part_of(Z, r123), in(alan, Z).

yes ←.

Using clause: in(X,Y) ←
 part_of(Z,Y) & in(X,Z),
 with Y = cs_building

Using clause:
 part_of(r123,cs_building)
 with Z = r123

Using clause:
 in(alan, r123). Using clause: in(X,Y) ←

 part_of(Z,Y) & in(X,Z).

fail

No clause with
matching head:
part_of(Z,r123).

Datalog: Top Down Proof Procedure

• Extension of Top-Down procedure for PDCL.
How do we deal with variables?
• Idea:

- Find clauses with heads that match the query
- Substitute variable in the clause with the matching constant

• Example:

• We will not cover the formal details of this process (called unification)

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

Query: yes ← in(alan, cs_building).

yes ← part_of(Z,cs_building), in(alan, Z).

in(X,Y) with Y = cs_building

Example proof of a Datalog query
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

Query: yes ← in(alan, cs_building).

yes ← part_of(Z,cs_building), in(alan, Z).

yes ← in(alan, r123).

yes ← part_of(Z, r123), in(alan, Z).

yes ←.

Using clause: in(X,Y) ←
 part_of(Z,Y) & in(X,Z),
 with Y = cs_building

Using clause:
 part_of(r123,cs_building)
 with Z = r123

Using clause:
 in(alan, r123).

Using clause: in(X,Y) ←
 part_of(Z,Y) & in(X,Z).
 With Z = alan

fail

No clause with
matching head:
part_of(Z,r123).

One important Datalog detail

• In its SLD resolution proof, Datalog always chooses the
first clause with a matching head it finds in KB

• What does that mean for recursive function definitions?

16

You cannot have recursive definitions

You need tail recursion

The clause(s) defining your base case(s) have to appear first in KB

One important Datalog detail

• In its SLD resolution proof, Datalog always chooses the
first clause with a matching head it finds in KB

• What does that mean for recursive function definitions?
- The clause(s) defining your base case(s) have to appear first in KB
- Otherwise, you can get infinite recursions
- This is similar to recursion in imperative programming languages

17

Tracing Datalog proofs in AIspace

• You can trace the example from the last slide in the
AIspace Deduction Applet, using file
http://cs.ubc.ca/~hutter/teaching/cpsc322/in-part-of.pl

• Question 4 of assignment 3 asks you to use this applet

18

19

Datalog: queries with variables

What would the answer(s) be?

Query: in(alan, X1).

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

 Yes(X1) ← in(alan, X1).

20

Datalog: queries with variables

What would the answer(s) be?
Yes(r123).
Yes(cs_building).

Query: in(alan, X1).

You can trace the SLD derivation for this query
in the AIspace Deduction Applet, using file
http://cs.ubc.ca/~hutter/teaching/cpsc322/in-part-of.pl

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

 Yes(X1) ← in(alan, X1).

• PDCL syntax & semantics
- Verify whether a logical statement belongs to the language of

propositional definite clauses
- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a KB

• Bottom-up proof procedure
- Define/read/write/trace/debug the Bottom Up (BU) proof procedure
- Prove that the BU proof procedure is sound and complete

• Top-down proof procedure
- Define/read/write/trace/debug the Top-down (SLD) proof procedure

(as a search problem)

• Datalog
- Represent simple domains in Datalog
- Apply the Top-down proof procedure in Datalog

Learning Goals For Logic

21

Lecture Overview

• Invited Presentation:
– Chris Fawcett on scheduling UBC's exams using SLS

• Recap: Top-down Proof Procedure

• Datalog

• Logics: big picture

22

23

Logics: Big picture

Propositional
Logics

First-Order
Logics

Propositional Definite
Clause Logics

Semantics and Proof
Theory

Description
Logics

Cognitive Architectures

Video Games

Hardware Verification

Product Configuration
Ontologies

Semantic Web

Information
Extraction

Summarization

Production Systems

Tutoring Systems

Satisfiability Testing
(SAT)

Software Verification

PDCL
Soundness &
Completeness

Datalog From
CSP
module

Logics: Big picture

• We only covered rather simple logics

– There are much more powerful representation and reasoning
systems based on logics

• There are many important applications of logic

– For example, software agents roaming the web on our behalf
– Based on a more structured representation: the semantic web

24

Example problem: automated travel agent

• Examples for typical queries
– How much is a typical flight to Mexico for a given date?
– What’s the cheapest vacation package to some place in the

Caribbean in a given week?
• Plus, the hotel should have a white sandy beach and scuba diving

• If webpages are based on basic HTML
– Humans need to scout for the information and integrate it
– Computers are not reliable enough (yet?)

• Natural language processing can be powerful (see Watson!)
• But some information may be in pictures (beach), or implicit in the text,

so simple approaches like Watson still don’t get

25

More structured representation:
the Semantic Web

• Beyond HTML pages only made for humans
• Languages and formalisms based on logics that allow

websites to include information in a more structured format
– Goal: software agents that can roam the web and carry out

sophisticated tasks on our behalf.
– This is different than searching content for keywords and popularity!

• For further references, see, e.g. tutorial given at
2009 Semantic Technology Conference:
 http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH

26

http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH/

Examples of ontologies for the Semantic Web

• “Ontology”: logic-based representation of the world

• eClassOwl: eBusiness ontology
– for products and services
– 75,000 classes (types of individuals) and 5,500 properties

• National Cancer Institute’s ontology: 58,000 classes
• Open Biomedical Ontologies Foundry: several ontologies

– including the Gene Ontology to describe
• gene and gene product attributes in any organism or protein sequence
• annotation terminology and data

• OpenCyc project: a 150,000-concept ontology including
– Top-level ontology

• describes general concepts such as numbers, time, space, etc
– Hierarchical composition: superclasses and subclasses
– Many specific concepts such as “OLED display”, “iPhone”

27

28

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

 Constraint
Satisfaction Search

Arc
Consistency

Search

Search

 Logics

 STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

 Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

This concludes
the logic module

As CSP (using
arc consistency)

29

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

 Constraint
Satisfaction Search

Arc
Consistency

Search

Search

 Logics

 STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

 Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

For the rest of
the course, we
will consider
uncertainty

As CSP (using
arc consistency)

Types of uncertainty (from Lecture 2)
• Sensing Uncertainty:

– The agent cannot fully observe a state of interest
– E.g.: Right now, how many people are in this room? In this building?

• Effect Uncertainty:
– The agent cannot be certain about the effects of its actions
– E.g.: If I work hard, will I get an A?

• Motivation for uncertainty: in the real world, we almost always
have to handle uncertainty (both types)
– Deterministic domains are an abstraction

• Sometimes this abstraction enables much more powerful inference
– Now we don’t make this abstraction anymore

• Our representations and reasoning techniques will now handle uncertainty

30

More motivation for uncertainty
• Interesting article: “The machine age”

– by Peter Norvig (head of research at Google)
– New York Post, 12 February 2011
– http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_ma

chine_age_tM7xPAv4pI4JslK0M1JtxI

– “The things we thought were hard turned out to be easier.”
• Playing grandmaster level chess,

or proving theorems in integral calculus
– “Tasks that we at first thought were easy turned out to be hard.”

• A toddler (or a dog) can distinguish hundreds of objects (ball,
bottle, blanket, mother, etc.) just by glancing at them

• Very difficult for computer vision to perform at this level
– “Dealing with uncertainty turned out to be more important than

thinking with logical precision.”
• AI’s focus shifted from Logic to Probability in the late 1980s

31

http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI
http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI

Learning Goals For Logic
• PDCL syntax & semantics

- Verify whether a logical statement belongs to the language of propositional
definite clauses

- Verify whether an interpretation is a model of a PDCL KB.
- Verify when a conjunction of atoms is a logical consequence of a KB

• Bottom-up proof procedure
- Define/read/write/trace/debug the Bottom Up (BU) proof procedure
- Prove that the BU proof procedure is sound and complete

• Top-down proof procedure
- Define/read/write/trace/debug the Top-down (SLD) proof procedure

(as a search problem)

• Datalog
- Represent simple domains in Datalog
- Apply the Top-down proof procedure in Datalog

• Assignment 3 is due on Wednesday
• Posted short answer questions up to logic on WebCT (to be updated)

	Slide Number 1
	Lecture Overview
	Lecture Overview
	Bottom-up vs. Top-down
	Example for (successful) SLD derivation
	Correspondence between BU and TD proofs
	Inference as Standard Search
	Lecture Overview
	Datalog
	Datalog syntax
	Datalog Syntax (continued)
	Datalog Semantics
	Example proof of a Datalog query
	Datalog: Top Down Proof Procedure
	Example proof of a Datalog query
	One important Datalog detail
	One important Datalog detail
	Tracing Datalog proofs in AIspace
	Datalog: queries with variables
	Datalog: queries with variables
	Learning Goals For Logic
	Lecture Overview
	Logics: Big picture
	Logics: Big picture
	Example problem: automated travel agent
	More structured representation: �the Semantic Web
	Examples of ontologies for the Semantic Web
	Slide Number 28
	Slide Number 29
	Types of uncertainty (from Lecture 2)
	More motivation for uncertainty
	Learning Goals For Logic

