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Lecture Overview

• Constraint Satisfaction Problems (CSPs): 
Definition and Recap

• Constraint Satisfaction Problems (CSPs): Motivation

• Solving Constraint Satisfaction Problems (CSPs)
- Generate & Test
- Graph search
- Arc consistency (start)
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Standard Search vs. CSP
• First studied general state space search in isolation

– Standard search problem: search in a state space 

• State is a “black box” : any arbitrary data structure that  
supports three problem-specific routines 
– goal test: goal(state)
– finding successor nodes: neighbors(state)
– if applicable, heuristic evaluation function: h(state)

• We’ll see more specialized versions of search for various
problems
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• Constraint Satisfaction Problems:
– State
– Successor function
– Goal test
– Solution
– Heuristic function

• Planning : 
– State
– Successor function
– Goal test
– Solution
– Heuristic function

• Inference
– State
– Successor function
– Goal test
– Solution
– Heuristic function

Search in Specific R&R Systems



Constraint Satisfaction Problems (CSPs): Definition
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Definition: 
A constraint satisfaction problem (CSP) consists of:

• a set of variables V
• a domain dom(V) for each variable V ∈V
• a set of constraints C

Another example:
• V = {V1,V2}

– dom(V1) = {1,2,3}
– dom(V2) = {1,2}

• C = {C1,C2,C3}
– C1: V2 ≠ 2
– C2: V1 + V2 < 5
– C3: V1 > V2

Simple example:
• V = {V1}

– dom(V1) = {1,2,3,4}
• C = {C1,C2}

– C1: V1 ≠ 2
– C2: V1 > 1



Constraint Satisfaction Problems (CSPs): Definition
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Definition: 
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints. 

Simple example:
• V = {V1}

– dom(V1) = {1,2,3,4}
• C = {C1,C2}

– C1: V1 ≠ 2
– C2: V1 > 1

All models for this CSP:
{V1 = 3}

{V1 = 4}

Definition: 
A constraint satisfaction problem (CSP) consists of:

• a set of variables V
• a domain dom(V) for each variable V ∈V
• a set of constraints C



Constraint Satisfaction Problems (CSPs): Definition
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Definition: 
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints. 

Which are models for this CSP?Another example:
• V = {V1,V2}

– dom(V1) = {1,2,3}
– dom(V2) = {1,2}

• C = {C1,C2,C3}
– C1: V2 ≠ 2
– C2: V1 + V2 < 5
– C3: V1 > V2

{V1=3, V2=2}

{V1=1, V2=1}

{V1=3, V2=1}

{V1=2, V2=1}

Definition: 
A constraint satisfaction problem (CSP) consists of:

• a set of variables V
• a domain dom(V) for each variable V ∈V
• a set of constraints C



Possible Worlds

I.e.,  a model is a possible world that satisfies all constraints
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Definition: 
A possible world of a CSP is an assignment of 
values to all of its variables. 

Definition: 
A model of a CSP is an assignment of values to all of 
its variables that satisfies all of its constraints. 

Another example:
• V = {V1,V2}

– dom(V1) = {1,2,3}
– dom(V2) = {1,2}

• C = {C1,C2,C3}
– C1: V2 ≠ 2
– C2: V1 + V2 < 5
– C3: V1 > V2

Possible worlds for this CSP:
{V1=1, V2=1}
{V1=1, V2=2}
{V1=2, V2=1} (the only model)
{V1=2, V2=2}
{V1=3, V2=1}
{V1=3, V2=2} 



Constraints
• Constraints are restrictions on the values that one or more 

variables can take
– Unary constraint: restriction involving a single variable

• E.g.: V2 ≠ 2
– k-ary constraint: restriction involving k different variables

• E.g. binary: V1 + V2 < 5
• E.g. 3-ary: V1 + V2 + V4 < 5
• We will mostly deal with binary constraints

– Constraints can be specified by 
1. listing all combinations of valid domain values for the variables 

participating in the constraint
– E.g. for constraint V1 > V2

and dom(V1) = {1,2,3} and 
dom(V2) = {1,2}:

2. giving a function that returns true when given values 
for each variable which satisfy the constraint: V1 > V2
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V1 V2

2 1

3 1

3 2



Constraints
– Constraints can be specified by 

1. listing all combinations of valid domain values for the variables 
participating in the constraint
– E.g. for constraint V1 > V2

and dom(V1) = {1,2,3} and 
dom(V2) = {1,2}:

2. giving a function that returns true when given values 
for each variable which satisfy the constraint: V1 > V2

• A possible world satisfies a set of constraints 
– if the values for the variables involved in each constraint are 

consistent with that constraint
1. They are elements of the list of valid domain values
2. Function returns true for those values

– Examples
• {V1=1, V2=1} (does not satisfy above constraint)
• {V1=3, V2=1} (satisfies above constraint) 11

V1 V2

2 1

3 1

3 2



Scope of a constraint

12

• Examples:
– V2 ≠ 2 has scope {V2}
– V1 > V2 has scope {V1,V2}
– V1 + V2 + V4 < 5 has scope {V1,V2,V4}

• How many variables are in the scope of a k-ary constraint ?
k variables

Definition: 
The scope of a constraint is the set of variables that 
are involved in the constraint



Finite Constraint Satisfaction 
Problem: Definition
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Definition: 
A finite constraint satisfaction problem (CSP) is a CSP 
with a finite set of variables and a finite domain for 
each variable

We will only study finite CSPs.

The scope of each constraint is automatically finite 
since it is a subset of the finite set of variables.



Examples: variables, domains, constraints

• Crossword Puzzle:
– variables are words that have to be filled in
– domains are English words of correct length
– constraints: words have the same letters at 

points where they intersect

• Crossword 2:
– variables are cells (individual squares)
– domains are letters of the alphabet
– constraints: sequences of letters form valid English words
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Examples: variables, domains, constraints

• Sudoku
– variables are cells
– domain of each variable is {1,2,3,4,5,6,7,8,9}
– constraints: rows, columns, boxes contain all different numbers

• How many possible worlds are there? (say, 53 empty cells)

• How many models are there in a typical Sudoku?

15

53*9 953539

About 253 9531



Examples: variables, domains, constraints

• Scheduling Problem:
– variables are different tasks that need to be scheduled 

(e.g., course in a university; job in a machine shop)
– domains are the different combinations of times and locations for 

each task (e.g., time/room for course; time/machine for job)
– constraints: tasks can't be scheduled in the same location at the 

same time; certain tasks can't be scheduled in different locations at 
the same time; some tasks must come earlier than others; etc.

• n-Queens problem
– variable: location of a queen on a chess board

• there are n of them in total, hence the name
– domains: grid coordinates
– constraints: no queen can attack another
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Constraint Satisfaction Problems: Variants

• We may want to solve the following problems with a CSP:
– determine whether or not a model exists
– find a model
– find all of the models
– count the number of models
– find the best model, given some measure of model quality

• this is now an optimization problem
– determine whether some property of the variables holds in all 

models
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Solving Constraint Satisfaction Problems

• Even the simplest problem of determining whether or not a 
model exists in a general CSP with finite domains is NP-
hard
– There is no known algorithm with worst case polynomial runtime
– We can't hope to find an algorithm that is polynomial for all CSPs

• However, we can try to:
– identify special cases for which algorithms are efficient (polynomial)
– identify algorithms that are fast on typical cases
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Lecture Overview

• Constraint Satisfaction Problems (CSPs): 
Definition and Recap

• Constraint Satisfaction Problems (CSPs): Motivation

• Solving Constraint Satisfaction Problems (CSPs)
- Generate & Test
- Graph search
- Arc consistency (start)
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CSP/logic: formal verification

Hardware verification          Software verification
(e.g., IBM)            (small to medium programs)

Most progress in the last 10 years based on:
Encodings into propositional satisfiability (SAT)
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The Propositional Satisfiability Problem (SAT)

• Formula in propositional logic
– I.e., it only contains propositional (Boolean) variables
– Shorthand notation: x for X=true, and ¬x for X=false
– Literal: x, ¬x 

• In so-called conjunctive normal form (CNF)
– Conjunction of disjunctions of literals
– E.g., F = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) 

– Let’s write this as a CSP:
• 3 variables: X1, X2, X3

• Domains: for all variables {true, false}
• Constraints:

(x1 ∨ x2 ∨ x3)
(¬x1 ∨ ¬x2 ∨ ¬x3) 
(¬x1 ∨ ¬x2 ∨ x3)

• One of the models: X1 = true, X2 = false, X3 = true 21



Importance of SAT
• Similar problems as in CSPs

– Decide whether F has a model
– Find a model of F

• First problem shown to be NP-hard problem
– One of the most important problems in theoretical computer 

science
• Is there an efficient (i.e. worst-case polynomial) algorithm for SAT?

– I.e., is NP = P?
• SAT is a deceivingly simple problem!

• Important in practice: encodings of formal verification 
problems
– Software verification (finding bugs in Windows etc)
– Hardware verification: verify computer chips (IBM big player)
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SAT is one of the problems I work on
• Building algorithms that perform well in practice

– On the type of instances we face
• Software and hardware verification instances
• 100000s of variables, millions of constraints
• Runtime: seconds !

– But: there are types of instances where current algorithms fail

• International SAT competition (http://www.satcompetition.org/)
– About 40 solvers from around the world compete, bi-yearly
– Best solver in 2007 and 2009:

23

SATzilla: a SAT solver monster
(combines many other SAT solvers)

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown
(all from UBC)



Lecture Overview

• Constraint Satisfaction Problems (CSPs): 
Definition and Recap

• Constraint Satisfaction Problems (CSPs): Motivation

• Solving Constraint Satisfaction Problems (CSPs)
- Generate & Test
- Graph search
- Arc consistency (start)
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• Systematically check all possible worlds
- Possible worlds: cross product of domains

dom(V1) × dom(V2) × ... × dom(Vn) 

• Generate and Test:
- Generate possible worlds one at a time
- Test constraints for each one.

Example: 3 variables A,B,C

Generate and Test (GT) Algorithms

For a in dom(A)
For b in dom(B)

For c in dom(C)
if {A=a, B=b, C=c} satisfies all constraints     

return {A=a, B=b, C=c} 
fail



• If there are k variables, each with domain size d, and 
there are c constraints, the complexity of Generate & 
Test is

- There are dk  possible worlds
- For each one need to check c constraints

Generate and Test (GT) Algorithms

O(dck)O(ckd) O(cdk)O(ckd)
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• Constraint Satisfaction Problems (CSPs): 
Definition and Recap

• Constraint Satisfaction Problems (CSPs): Motivation
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- Generate & Test
- Graph search
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CSP as a Search Problem: one formulation 

• States: partial assignment of values to variables
• Start state: empty assignment
• Successor function: states with the next variable assigned

– E.g., follow a total order of the variables V1, …, Vn

– A state assigns values to the first k variables:
• {V1 = v1,…,Vk = v1 }
• Neighbors of node {V1 = v1,…,Vk = v1 }: 

nodes   {V1 = v1,…,Vk = v1, Vk+1 = x} for each x ∈ dom(Vk+1)

• Goal state: complete assignments of values to variables 
that satisfy all constraints
– That is, models

• Solution: assignment (the path doesn’t matter)

28



Which search algorithm would be most 
appropriate for this formulation of CSP?

None of the above

Least Cost First Search

Depth First Search

A *



Relationship To Search
• The path to a goal isn’t important, only the solution is

• Heuristic function: “none”
- All goals are at the same depth

• CSP problems can be huge
- Thousands of variables

• Exponentially more search states
- Exhaustive search is typically infeasible

• Many algorithms exploit the structure provided by the 
goal ⇒ set of constraints, *not* black box



• Explore search space via DFS but evaluate each 
constraint as soon as all its variables are bound. 

• Any partial assignment that doesn’t satisfy the 
constraint can be pruned.

• Example: 
- 3 variables A, B,C, each with domain {1,2,3,4}
- {A = 1, B = 1} is inconsistent with constraint A ≠ B 

regardless of the value of the other variables
⇒ Prune!

Backtracking algorithms



V1 = v1
V2 = v1

V1 = v1
V2 = v2 

V1 = v1
V2 = vk 

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied = PRUNE

Check constraints on V1
and V2 If not satisfied = 
PRUNE



V1 = v1
V2 = v1

V1 = v1
V2 = v2 

V1 = v1
V2 = vk 

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied = PRUNE

Check constraints on V1
and V2 If not satisfied = 
PRUNE

Problem?
Performance heavily depends 
on the order in which 
variables are considered.
E.g. only 2 constraints:
Vn=Vn-1 and Vn≠ Vn-1



CSP as a Search Problem: another formulation 

• States: partial assignment of values to variables
• Start state: empty assignment
• Successor function: states with the next variable assigned

– Assign any previously unassigned variable
– A state assigns values to some subset of variables:

• E.g. {V7 = v1, V2 = v1, V15 = v1}
• Neighbors of node {V7 = v1, V2 = v1, V15 = v1}: 

nodes   {V7 = v1, V2 = v1, V15 = v1, Vx = y} 
for any variable Vx∈V \ {V7, V2, V15} and any value y∈dom(Vx)

• Goal state: complete assignments of values to variables 
that satisfy all constraints
– That is, models

• Solution: assignment (the path doesn’t matter)
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• Backtracking relies on one or more heuristics to select 
which variables to consider next
- E.g, variable involved in the highest number of constraints
- Can also be smart about which values to consider first

• This is a different use of the word “heuristic” !
- Still true in this context

• Can be computed cheaply during the search
• Provides guidance to the search algorithm

- But not true anymore in this context
• “Estimate of the distance to the goal”

• Both meanings are used frequently in the AI literature

Selecting variables in a smart way
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Standard Search vs. Specific R&R systems
• Constraint Satisfaction (Problems):

– State: assignments of values to a subset of the variables
– Successor function: assign values to a “free” variable
– Goal test: all variables assigned a value and all constraints satisfied?
– Solution: possible world that satisfies the constraints
– Heuristic function: none (all solutions at the same distance from start)

• Planning : 
– State
– Successor function
– Goal test
– Solution
– Heuristic function

• Inference
– State
– Successor function
– Goal test
– Solution
– Heuristic function



Learning Goals for today’s class
• Define possible worlds in term of variables and their domains

– Compute number of possible worlds on real examples 

• Specify constraints to represent real world problems 
differentiating between:
– Unary and k-ary constraints 
– List vs. function format

• Verify whether a possible world satisfies a set of constraints 
(i.e., whether it is a model, a solution)

• Implement  the Generate-and-Test Algorithm. Explain its 
disadvantages.

• Solve a CSP by search  (specify neighbors, states, start state, goal 
state). Compare strategies for CSP search. Implement pruning for 
DFS search in a CSP.  

• Coming up: Arc consistency and domain splitting
– Read Sections 4.5-4.6

• Assignment 1 is due next Monday 38
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