Solving Constraint Satisfaction Problems (CSPs) using Search

CPSC 322 - CSP 2

Textbook § 4.3-4.4

January 31, 2011

Lecture Overview

Constraint Satisfaction Problems (CSPs): Definition and Recap

- Constraint Satisfaction Problems (CSPs): Motivation
- Solving Constraint Satisfaction Problems (CSPs)
 - Generate & Test
 - Graph search
 - Arc consistency (start)

Course Overview

Course Module

Representation

Environment

Reasoning Technique

Deterministic Stochastic

Problem Type Constraint Static Logic Sequential Pla We'll now focus on CSP

Constraint Satisfaction Variables + Search Constraints

Search

Logics

STRIPS

Search

Decision <u>Networks</u>

Bayesian

Variable Elimination

Networks

Elimination

Variable

Markov Processes

Value Iteration

Uncertainty

Decision Theory

Standard Search vs. CSP

- First studied general state space search in isolation
 - Standard search problem: search in a state space
- State is a "black box": any arbitrary data structure that supports three problem-specific routines
 - goal test: goal(state)
 - finding successor nodes: neighbors(state)
 - if applicable, heuristic evaluation function: h(state)
- We'll see more specialized versions of search for various problems

Search in Specific R&R Systems

- Constraint Satisfaction Problems:
 - State
 - Successor function
 - Goal test
 - Solution
 - Heuristic function
- Planning :
 - State
 - Successor function
 - Goal test
 - Solution
 - Heuristic function
- Inference
 - State
 - Successor function
 - Goal test
 - Solution
 - Heuristic function

Constraint Satisfaction Problems (CSPs): Definition

Definition:

A constraint satisfaction problem (CSP) consists of:

- a set of variables $\mathcal V$
- a domain dom(V) for each variable V $\in \mathcal{V}$
- a set of constraints C

Simple example:

- $\mathcal{V} = \{V_1\}$ - $dom(V_1) = \{1,2,3,4\}$
- $C = \{C_1, C_2\}$ - $C_1: V_1 \neq 2$
 - $C_2: V_1 > 1$

Another example:

- $\bullet \quad \mathcal{V} = \{V_1, V_2\}$
 - dom(V₁) = {1,2,3}
 - $dom(V_2) = \{1,2\}$
- $C = \{C_1, C_2, C_3\}$
 - $C_1: V_2 \neq 2$
 - $C_2: V_1 + V_2 < 5$
 - $C_3: V_1 > V_2$

Constraint Satisfaction Problems (CSPs): Definition

Definition:

A constraint satisfaction problem (CSP) consists of:

- a set of variables γ
- a domain dom(V) for each variable $V \in \mathcal{V}$
- a set of constraints C

Definition:

A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.

Simple example:

- $\mathcal{V} = \{V_1\}$ - $dom(V_1) = \{1,2,3,4\}$
- $C = \{C_1, C_2\}$
 - $C_1: V_1 \neq 2$
 - $C_2: V_1 > 1$

All models for this CSP:

$$\{V_1 = 3\}$$

$$\{V_1 = 4\}$$

Constraint Satisfaction Problems (CSPs): Definition

Definition:

A constraint satisfaction problem (CSP) consists of:

- a set of variables $\mathcal V$
- a domain dom(V) for each variable $V \in \mathcal{V}$
- a set of constraints C

Definition:

A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.

Another example:

- $V = \{V_1, V_2\}$
 - dom(V_1) = {1,2,3}
 - dom(V_2) = {1,2}
- $C = \{C_1, C_2, C_3\}$
 - $C_1: V_2 \neq 2$
 - $C_2: V_1 + V_2 < 5$
 - $C_3: V_1 > V_2$

Which are models for this CSP?

$$\{V_1=1, V_2=1\}$$

$$\{V_1=2, V_2=1\}$$

$$\{V_1=3, V_2=1\}$$

$$\{V_1=3, V_2=2\}$$

Possible Worlds

Definition:

A possible world of a CSP is an assignment of values to all of its variables.

Definition:

A model of a CSP is an assignment of values to all of its variables that satisfies all of its constraints.

I.e., a model is a possible world that satisfies all constraints

Another example:

- $\bullet \quad \mathcal{V} = \{V_1, V_2\}$
 - dom(V₁) = {1,2,3}
 - dom(V_2) = {1,2}
- $C = \{C_1, C_2, C_3\}$
 - $C_1: V_2 \neq 2$
 - $C_2: V_1 + V_2 < 5$
 - C_3 : $V_1 > V_2$

Possible worlds for this CSP:

$$\{V_1=1, V_2=1\}$$

 $\{V_1=1, V_2=2\}$
 $\{V_1=2, V_2=1\}$ (the only model)
 $\{V_1=2, V_2=2\}$
 $\{V_1=3, V_2=1\}$
 $\{V_1=3, V_2=2\}$

Constraints

- Constraints are restrictions on the values that one or more variables can take
 - Unary constraint: restriction involving a single variable
 - E.g.: $V_2 \neq 2$
 - k-ary constraint: restriction involving k different variables
 - E.g. binary: $V_1 + V_2 < 5$
 - E.g. 3-ary: $V_1 + V_2 + V_4 < 5$
 - We will mostly deal with binary constraints
 - Constraints can be specified by
 - 1. listing all combinations of valid domain values for the variables participating in the constraint V_1 V_2

1

2

3

- E.g. for constraint $V_1 > V_2$ and dom $(V_1) = \{1,2,3\}$ and dom $(V_2) = \{1,2\}$:
- 2. giving a function that returns true when given values for each variable which satisfy the constraint: $V_1 > V_2$

Constraints

- Constraints can be specified by
 - 1. listing all combinations of valid domain values for the variables

participating in the constraint

- E.g. for constraint $V_1 > V_2$ and dom $(V_1) = \{1,2,3\}$ and dom $(V_2) = \{1,2\}$:

V_1	V_2
2	1
3	1
3	2

- 2. giving a function that returns true when given values for each variable which satisfy the constraint: $V_1 > V_2$
- A possible world satisfies a set of constraints
 - if the values for the variables involved in each constraint are consistent with that constraint
 - 1. They are elements of the list of valid domain values
 - 2. Function returns true for those values
 - Examples
 - {V₁=1, V₂=1} (does not satisfy above constraint)
 - {V₁=3, V₂=1} (satisfies above constraint)

Scope of a constraint

Definition:

The scope of a constraint is the set of variables that are involved in the constraint

- Examples:
 - $V_2 \neq 2$ has scope $\{V_2\}$
 - $-V_1 > V_2$ has scope $\{V_1, V_2\}$
 - $V_1 + V_2 + V_4 < 5$ has scope $\{V_1, V_2, V_4\}$
- How many variables are in the scope of a k-ary constraint?
 k variables

Finite Constraint Satisfaction Problem: Definition

Definition:

A finite constraint satisfaction problem (CSP) is a CSP with a finite set of variables and a finite domain for each variable

We will only study finite CSPs.

The scope of each constraint is automatically finite since it is a subset of the finite set of variables.

Examples: variables, domains, constraints

Crossword Puzzle:

- variables are words that have to be filled in
- domains are English words of correct length
- constraints: words have the same letters at points where they intersect

Crossword 2:

- variables are cells (individual squares)
- domains are letters of the alphabet
- constraints: sequences of letters form valid English words

Examples: variables, domains, constraints

Sudoku rules are extremely easy: Fill all empty squares so that the numbers 1 to 9 appear once in each row, column and 3x3 box.

Sudoku Puzzle

9	3	6	2	8	1	4
9 6 3						5
3			1			9
5		8		2		7
4			7			6
8						3
1	7	5	9	3	4	2

Sudoku Solution

2	7	1	9	5	4	6	8	3
5	9	3	6	2	8	1	4	7
4	6	8	1	3	7	2	5	9
7	3	6	4	1	5	8	9	2
1	5	9	8	6	2	3	7	4
8	4	2	3	7	9	5	6	1
9	8	5	2	4	1	7	3	6
6	1	7	5	9	3	4	2	8
3	2	4	7	8	6	9	1	5

Sudoku

- variables are cells
- domain of each variable is {1,2,3,4,5,6,7,8,9}
- constraints: rows, columns, boxes contain all different numbers
- How many possible worlds are there? (say, 53 empty cells)

539

953

How many models are there in a typical Sudoku?

About 2⁵³

1

953

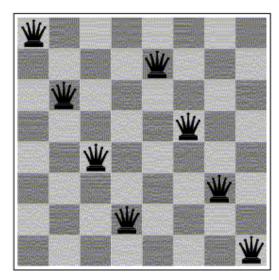
Examples: variables, domains, constraints

Scheduling Problem:

- variables are different tasks that need to be scheduled (e.g., course in a university; job in a machine shop)
- domains are the different combinations of times and locations for each task (e.g., time/room for course; time/machine for job)
- constraints: tasks can't be scheduled in the same location at the same time; certain tasks can't be scheduled in different locations at the same time; some tasks must come earlier than others; etc.

n-Queens problem

- variable: location of a queen on a chess board
 - there are n of them in total, hence the name
- domains: grid coordinates
- constraints: no queen can attack another



Constraint Satisfaction Problems: Variants

- We may want to solve the following problems with a CSP:
 - determine whether or not a model exists
 - find a model
 - find all of the models
 - count the number of models
 - find the best model, given some measure of model quality
 - this is now an optimization problem
 - determine whether some property of the variables holds in all models

Solving Constraint Satisfaction Problems

- Even the simplest problem of determining whether or not a model exists in a general CSP with finite domains is NPhard
 - There is no known algorithm with worst case polynomial runtime
 - We can't hope to find an algorithm that is polynomial for all CSPs
- However, we can try to:
 - identify special cases for which algorithms are efficient (polynomial)
 - identify algorithms that are fast on typical cases

Lecture Overview

 Constraint Satisfaction Problems (CSPs): Definition and Recap

Constraint Satisfaction Problems (CSPs): Motivation

- Solving Constraint Satisfaction Problems (CSPs)
 - Generate & Test
 - Graph search
 - Arc consistency (start)

CSP/logic: formal verification

Hardware verification (e.g., IBM)

Software verification (small to medium programs)

Most progress in the last 10 years based on: Encodings into propositional satisfiability (SAT)

The Propositional Satisfiability Problem (SAT)

- Formula in propositional logic
 - I.e., it only contains propositional (Boolean) variables
 - Shorthand notation: x for X=true, and $\neg x$ for X=false
 - Literal: x, ¬x
- In so-called conjunctive normal form (CNF)
 - Conjunction of disjunctions of literals
 - E.g., $F = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$
 - Let's write this as a CSP:
 - 3 variables: X₁, X₂, X₃
 - Domains: for all variables {true, false}
 - Constraints:

$$(x_1 \lor x_2 \lor x_3)$$
$$(\neg x_1 \lor \neg x_2 \lor \neg x_3)$$
$$(\neg x_1 \lor \neg x_2 \lor x_3)$$

• One of the models: $X_1 = \text{true}$, $X_2 = \text{false}$, $X_3 = \text{true}$

Importance of SAT

- Similar problems as in CSPs
 - Decide whether F has a model
 - Find a model of F
- First problem shown to be NP-hard problem
 - One of the most important problems in theoretical computer science
 - Is there an efficient (i.e. worst-case polynomial) algorithm for SAT?
 I.e., is NP = P?
 - SAT is a deceivingly simple problem!
- Important in practice: encodings of formal verification problems
 - Software verification (finding bugs in Windows etc)
 - Hardware verification: verify computer chips (IBM big player)

SAT is one of the problems I work on

- Building algorithms that perform well in practice
 - On the type of instances we face
 - Software and hardware verification instances
 - 100000s of variables, millions of constraints
 - Runtime: seconds!
 - But: there are types of instances where current algorithms fail
- International SAT competition (http://www.satcompetition.org/)
 - About 40 solvers from around the world compete, bi-yearly
 - Best solver in 2007 and 2009:

SATzilla: a SAT solver monster

(combines many other SAT solvers)

Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (all from UBC)

Lecture Overview

- Constraint Satisfaction Problems (CSPs): Definition and Recap
- Constraint Satisfaction Problems (CSPs): Motivation

Solving Constraint Satisfaction Problems (CSPs)

- Generate & Test
- Graph search
- Arc consistency (start)

Generate and Test (GT) Algorithms

- Systematically check all possible worlds
 - Possible worlds: cross product of domains dom(V₁) × dom(V₂) × ··· × dom(V_n)
- Generate and Test:
 - Generate possible worlds one at a time
 - Test constraints for each one.

Example: 3 variables A,B,C

```
For a in dom(A)
    For b in dom(B)
    For c in dom(C)
        if {A=a, B=b, C=c} satisfies all constraints
        return {A=a, B=b, C=c}
fail
```

Generate and Test (GT) Algorithms

 If there are k variables, each with domain size d, and there are c constraints, the complexity of Generate & Test is

- There are d^k possible worlds
- For each one need to check c constraints

Lecture Overview

- Constraint Satisfaction Problems (CSPs): Definition and Recap
- Constraint Satisfaction Problems (CSPs): Motivation
- Solving Constraint Satisfaction Problems (CSPs)

- Generate & Test
- Graph search
- Arc consistency (start)

CSP as a Search Problem: one formulation

- States: partial assignment of values to variables
- Start state: empty assignment
- Successor function: states with the next variable assigned
 - E.g., follow a total order of the variables V₁, ..., V_n
 - A state assigns values to the first k variables:
 - $\{V_1 = V_1, ..., V_k = V_1\}$
 - Neighbors of node $\{V_1 = v_1, ..., V_k = v_1\}$: nodes $\{V_1 = v_1, ..., V_k = v_1, V_{k+1} = x\}$ for each $x \in dom(V_{k+1})$
- Goal state: complete assignments of values to variables that satisfy all constraints
 - That is, models
- Solution: assignment (the path doesn't matter)

Which search algorithm would be most appropriate for this formulation of CSP?

Depth First Search

Least Cost First Search

A *

None of the above

Relationship To Search

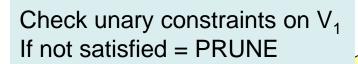
- The path to a goal isn't important, only the solution is
- Heuristic function: "none"
 - All goals are at the same depth
- CSP problems can be huge
 - Thousands of variables
 - Exponentially more search states
 - Exhaustive search is typically infeasible
- Many algorithms exploit the structure provided by the goal ⇒ set of constraints, *not* black box

Backtracking algorithms

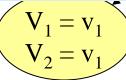
- Explore search space via DFS but evaluate each constraint as soon as all its variables are bound.
- Any partial assignment that doesn't satisfy the constraint can be pruned.
- Example:
 - 3 variables A, B,C, each with domain {1,2,3,4}
 - {A = 1, B = 1} is inconsistent with constraint A ≠ B regardless of the value of the other variables
 - \Rightarrow Prune!

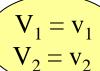
CSP as Graph Searching

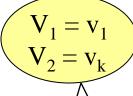
 $V_1 = V_1$

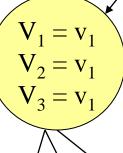


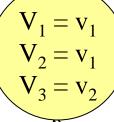
Check constraints on V_1 and V_2 If not satisfied = PRUNE





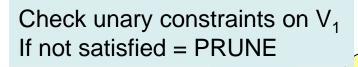




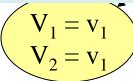


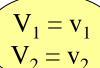
CSP as Graph Searching

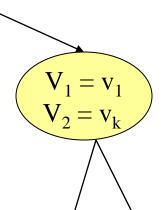
 $V_1 = V_1$



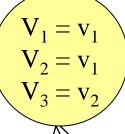
Check constraints on V_1 and V_2 If not satisfied = PRUNE







$V_1 = V_1$ $V_2 = V_1$ $V_3 = V_1$



Problem?

Performance heavily depends on the order in which variables are considered.

E.g. only 2 constraints:

$$V_n = V_{n-1}$$
 and $V_n \neq V_{n-1}$

CSP as a Search Problem: another formulation

- States: partial assignment of values to variables
- Start state: empty assignment
- Successor function: states with the next variable assigned
 - Assign any previously unassigned variable
 - A state assigns values to some subset of variables:
 - E.g. $\{V_7 = V_1, V_2 = V_1, V_{15} = V_1\}$
 - Neighbors of node $\{V_7 = v_1, V_2 = v_1, V_{15} = v_1\}$: nodes $\{V_7 = v_1, V_2 = v_1, V_{15} = v_1, V_x = y\}$ for any variable $V_x \in \mathcal{V} \setminus \{V_7, V_2, V_{15}\}$ and any value y∈dom(V_x)
- Goal state: complete assignments of values to variables that satisfy all constraints
 - That is, models
- Solution: assignment (the path doesn't matter)

Selecting variables in a smart way

- Backtracking relies on one or more heuristics to select which variables to consider next
 - E.g, variable involved in the highest number of constraints
 - Can also be smart about which values to consider first
- This is a different use of the word "heuristic"!
 - Still true in this context
 - Can be computed cheaply during the search
 - Provides guidance to the search algorithm
 - But not true anymore in this context
 - "Estimate of the distance to the goal"
- Both meanings are used frequently in the AI literature

Standard Search vs. Specific R&R systems

- Constraint Satisfaction (Problems):
 - State: assignments of values to a subset of the variables
 - Successor function: assign values to a "free" variable
 - Goal test: all variables assigned a value and all constraints satisfied?
 - Solution: possible world that satisfies the constraints
 - Heuristic function: none (all solutions at the same distance from start)

Planning:

- State
- Successor function
- Goal test
- Solution
- Heuristic function

Inference

- State
- Successor function
- Goal test
- Solution
- Heuristic function

Learning Goals for today's class

- Define possible worlds in term of variables and their domains
 - Compute number of possible worlds on real examples
- Specify constraints to represent real world problems differentiating between:
 - Unary and k-ary constraints
 - List vs. function format
- Verify whether a possible world satisfies a set of constraints (i.e., whether it is a model, a solution)
- Implement the Generate-and-Test Algorithm. Explain its disadvantages.
- Solve a CSP by search (specify neighbors, states, start state, goal state). Compare strategies for CSP search. Implement pruning for DFS search in a CSP.
- Coming up: Arc consistency and domain splitting
 - Read Sections 4.5-4.6
- Assignment 1 is due next Monday