
Branch & Bound,
CSP: Intro
CPSC 322 – CSP 1

Textbook § 3.7.4 & 4.0-4.2

January 28, 2011

Lecture Overview

• Recap

• Branch & Bound

• Wrap up of search module

• Constraint Satisfaction Problems (CSPs)

2

Recap: state space graph vs search tree

3

k c

b z

h

a
kb kc

kbk kbz

d

z

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
graph.

May contain cycles!

Search tree.
Nodes in this tree correspond to
paths in the state space graph

(if multiple start nodes: forest)

Cannot contain cycles!

• If we only want one path to the solution:
- Can prune new path p (e.g. sabcn) to node n we already

reached on a previous path p’ (e.g. san)

• To guarantee optimality, either:
- If cost(p) < cost(p’)

• Remove all paths from frontier with prefix p’, or
• Replace prefixes in those paths (replace p’ with p)

- Or prove that your algorithm always finds optimal path first

Multiple Path Pruning

n
a

cb

• “Whenever search algorithm A expands a path p ending in node n, this is
the lowest-cost path from a start node to n (if all costs ≥ 0)”
– This is true for

• In general, true only for Least Cost First Search (LCFS)

• Counterexample for A* below: A* expands the upper path first
– But can recover LCFS’s guarantee with monotone heuristic:

h is monotone if for all arcs (m,n): |h(m) – h(n)| ≤ cost(m,n)

h=10

h=0

h=12 2

1 1 1 20 goal stateStart state
h=3

None of themLeast Cost Search First Both of themA*

Prove that your algorithm always find the optimal path first

Iterative Deepening DFS (IDS)

• Depth-bounded depth-first search: DFS on a leash
– For depth bound d, ignore any paths with longer length

• Progressively increase the depth bound d
– 1, 2, 3, …, until you find the solution at depth m

• Space complexity: O(bm)
– At every depth bound, it’s just a DFS

• Time complexity: O(bm)
– Overhead of small depth bounds is not large compared to work at

greater depths

• Optimal: yes
• Complete: yes
• Same idea works for f-value-bounded DFS: IDA*

6

Lecture Overview

• Recap

• Branch & Bound

• Wrap up of search module

• Constraint Satisfaction Problems (CSPs)

7

Heuristic DFS
• Other than IDA*, can we use heuristic information in DFS?

– When we expand a node, we put all its neighbours on the frontier
– In which order? Matters because DFS uses a LIFO stack

• Can use heuristic guidance: h or f
• Perfect heuristic: would solve problem

without any backtracking

• Heuristic DFS is very frequently used in practice
– Simply choose promising branches first
– Based on any kind of information available

(no requirement for admissibility)

• Can we combine this with IDA* ?
– DFS with an f-value bound (using admissible heuristic h), putting

neighbours onto frontier in a smart order (using some heuristic h’)
– Can of course also choose h’ := h 8

Yes No

Branch-and-Bound Search
• One more way to combine DFS with heuristic guidance

• Follows exactly the same search path as depth-first search
– But to ensure optimality, it does not stop at the first solution found

• It continues, after recording upper bound on solution cost
• upper bound: UB = cost of the best solution found so far
• Initialized to ∞ or any overestimate of optimal solution cost

• When a path p is selected for expansion:
• Compute lower bound LB(p) = f(p) = cost(p) + h(p)

• If LB(p) ≥UB, remove p from frontier without expanding it (pruning)
• Else expand p, adding all of its neighbors to the frontier

• Requires admissible h

9

Example•Arc cost = 1
•h(n) = 0 for every n

•UB = ∞

Solution!
UB = ?

10

Solution!
UB = 5

49 58

Example•Arc cost = 1
•h(n) = 0 for every n

•UB = 5

Cost = 5
Prune! (Don’t expand.)

11

Example•Arc cost = 1
•h(n) = 0 for every n

•UB = 5

Cost = 5
Prune!

Cost = 5
Prune!

Solution!
UB =?

12

42 53

Example•Arc cost = 1
•h(n) = 0 for every n

•UB = 3

Cost = 3
Prune!

Cost = 3
Prune!

13

Cost = 3
Prune!

Branch-and-Bound Analysis
• Complete?

• Same as DFS: can’t handle cycles/infinite graphs.
• But complete if initialized with some finite UB

• Optimal?

• YES.

• Time complexity: O(bm)

• Space complexity
• It’s a DFS

NO IT DEPENDSYES

14

NO IT DEPENDSYES

O(b+m)O(bm) O(bm)O(mb)

Combining B&B with other schemes
• “Follows the same search path as depth-first search”“

– Let’s make that heuristic depth-first search

• Can freely choose order to put neighbours on the stack
– Could e.g. use a separate heuristic h’ that is NOT admissible

• To compute LB(p)
– Need to compute f value using an admissible heuristic h

• This combination is used a lot in practice
– Sudoku solver in assignment 2 will be along those lines
– But also integrates some logical reasoning at each node

15

Search methods so far
Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

IDA* Y (same cond.
as A*)

Y O(bm) O(mb)

Branch & Bound N (Y if init. with
finite UB)

Y O(bm) O(mb)

Lecture Overview

• Recap

• Branch & Bound

• Wrap up of search module

• Constraint Satisfaction Problems (CSPs)

17

Direction of Search
• The definition of searching is symmetric:

– find path from start nodes to goal node or
– from goal node to start nodes (in reverse graph)

• Restrictions:
– This presumes an explicit goal node, not a goal test
– When the graph is dynamically constructed, it can sometimes be

impossible to construct the backwards graph

• Branching factors:
– Forward branching factor: number of arcs out of a node
– Backward branching factor : number of arcs into a node

• Search complexity is O(bm)
– Should use forward search if forward branching factor is less than

backward branching factor, and vice versa

18

k c

b h

g

z

Bidirectional search
• You can search backward from the goal and forward from

the start simultaneously
– This wins because 2bk /2 is much smaller than bk

– Can result in an exponential saving in time and space

• The main problem is making sure the frontiers meet
– Often used with one breadth-first method that builds a set of

locations that can lead to the goal
– In the other direction another method can be used to find a path to

these interesting locations

19

k c
b

h

g

x

z
y...

Dynamic Programming
• Idea: for statically stored graphs, build a table of dist(n):

– The actual distance of the shortest path from node n to a goal g

– dist(g) = 0
– dist(z) =1
– dist(c) = 3
– dist(b)=4
– dist(k) = ?

– dist(z)= ?

• How could we implement that?
– Run Dijkstra’s algorithm (LCFS with multiple path pruning)

in the backwards graph, starting from the goal

• When it’s time to act: always pick neighbour with lowest dist value
– But you need enough space to store the graph… 20

k c

b h

g

z

2

3

1

2

4

1

7 ∞6
7 ∞6

21

Memory-bounded A*

• Iterative deepening A* and B & B use little memory
• What if we have some more memory

(but not enough for regular A*)?
• Do A* and keep as much of the frontier in memory as possible
• When running out of memory

• delete worst path (highest f value) from frontier
• Back the path up to a common ancestor
• Subtree gets regenerated only when all other paths have

been shown to be worse than the “forgotten” path

• Complete and optimal if solution is at depth manageable for
available memory

Selection Complete Optimal Time Space
DFS LIFO N N O(bm) O(mb)

BFS FIFO Y Y O(bm) O(bm)
IDS LIFO Y Y O(bm) O(mb)

LCFS min cost Y ** Y ** O(bm) O(bm)

Best
First

min h N N O(bm) O(bm)

A* min f Y** Y** O(bm) O(bm)
B&B LIFO + pruning N (Y if UB finite) Y O(bm) O(mb)

IDA* LIFO Y Y O(bm) O(mb)

MBA* min f Y** Y** O(bm) O(bm)

Algorithms Often Used in Practice

** Needs conditions

Learning Goals for search
• Identify real world examples that make use of deterministic,

goal-driven search agents
• Assess the size of the search space of a given search

problem.
• Implement the generic solution to a search problem.
• Apply basic properties of search algorithms:

- completeness, optimality, time and space complexity

• Select the most appropriate search algorithms for specific
problems.

• Define/read/write/trace/debug different search algorithms
• Construct heuristic functions for specific search problems
• Formally prove A* optimality.
• Define optimally efficient

Selection Complete Optimal Time Space
DFS

BFS
IDS

LCFS

Best First

A*
B&B

IDA*

Learning goals: know how to fill this

25

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

Constraint
Satisfaction Search

Arc
Consistency

Search

Search

Logics

STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Search is
everywhere!

Lecture Overview

• Recap

• Branch & Bound

• Wrap up of search module

• Constraint Satisfaction Problems (CSPs)

26

27

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

Constraint
Satisfaction Search

Arc
Consistency

Search

Search

Logics

STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

We’ll now
focus on CSP

Main Representational Dimensions (Lecture 2)

Domains can be classified by the following dimensions:
• 1. Uncertainty

– Deterministic vs. stochastic domains

• 2. How many actions does the agent need to perform?
– Static vs. sequential domains

An important design choice is:
• 3. Representation scheme

– Explicit states vs. features (vs. relations)

28

Explicit State vs. Features (Lecture 2)

How do we model the environment?
• You can enumerate the possible states of the world
• A state can be described in terms of features

– Assignment to (one or more) variables
– Often the more natural description
– 30 binary features can represent 230 =1,073,741,824 states

29

Variables/Features and Possible Worlds

• Variable: a synonym for feature
– We denote variables using capital letters
– Each variable V has a domain dom(V) of possible values

• Variables can be of several main kinds:
– Boolean: |dom(V)| = 2
– Finite: |dom(V)| is finite
– Infinite but discrete: the domain is countably infinite
– Continuous: e.g., real numbers between 0 and 1

• Possible world
– Complete assignment of values to each variable
– In contrast, states also include partial assignments

30

Examples: variables, domains, possible worlds

• Crossword Puzzle:
– variables are words that have to be filled in
– domains are English words of correct length
– possible worlds: all ways of assigning words

• Crossword 2:
– variables are cells (individual squares)
– domains are letters of the alphabet
– possible worlds: all ways of assigning letters to cells

31

How many possible worlds?
• Crossword Puzzle:

– variables are words that have to be filled in
– domains are English words of correct length
– possible worlds: all ways of assigning words

• Number of English words? Let’s say 150,000
– Of the right length? Assume for simplicity: 15,000 for each word

• Number of words to be filled in? 63

• How many possible worlds? (assume any combination is ok)

32

150000*63 6315000015000063

How many possible worlds?
• Crossword 2:

– variables are cells (individual squares)
– domains are letters of the alphabet
– possible worlds: all ways of assigning

letters to cells

• Number of empty cells? 15*15 – 32 = 193

• Number of letters in the alphabet? 26
•
• How many possible worlds? (assume any combination is ok)

• In general: (domain size) #variables (only an upper bound)
33

193*26 2619319326

Examples: variables, domains, possible worlds

• Sudoku
– variables are cells
– domains are numbers between 1 and 9
– possible worlds: all ways of assigning numbers to cells

34

Examples: variables, domains, possible worlds

• Scheduling Problem:
– variables are different tasks that need to be scheduled

(e.g., course in a university; job in a machine shop)
– domains are the different combinations of times and locations for

each task (e.g., time/room for course; time/machine for job)
– possible worlds: time/location assignments for each task

• n-Queens problem
– variable: location of a queen on a chess board

• there are n of them in total, hence the name
– domains: grid coordinates
– possible worlds: locations of all queens

35

Constraints

36

• Constraints are restrictions on the values that one or more
variables can take
– Unary constraint: restriction involving a single variable

• of course, we could also achieve the same thing by using a smaller
domain in the first place

– k-ary constraint: restriction involving k different variables
• We will mostly deals with binary constraints

– Constraints can be specified by
1. listing all combinations of valid domain values for the variables

participating in the constraint
2. giving a function that returns true when given values for each variable

which satisfy the constraint

• A possible world satisfies a set of constraints
– if the values for the variables involved in each constraint are

consistent with that constraint
1. Elements of the list of valid domain values
2. Function returns true for those values

Examples: variables, domains, constraints

• Crossword Puzzle:
– variables are words that have to be filled in
– domains are English words of correct length
– constraints: words have the same letters at

points where they intersect

• Crossword 2:
– variables are cells (individual squares)
– domains are letters of the alphabet
– constraints: sequences of letters form valid English words

37

Examples: variables, domains, constraints

• Sudoku
– variables are cells
– domains are numbers between 1 and 9
– constraints: rows, columns, boxes contain all different numbers

38

Examples: variables, domains, constraints

• Scheduling Problem:
– variables are different tasks that need to be scheduled

(e.g., course in a university; job in a machine shop)
– domains are the different combinations of times and locations for

each task (e.g., time/room for course; time/machine for job)
– constraints: tasks can't be scheduled in the same location at the

same time; certain tasks can't be scheduled in different locations at
the same time; some tasks must come earlier than others; etc.

• n-Queens problem
– variable: location of a queen on a chess board

• there are n of them in total, hence the name
– domains: grid coordinates
– constraints: no queen can attack another

39

Constraint Satisfaction Problems: Definition

40

Definition:
A constraint satisfaction problem (CSP) consists of:

• a set of variables
• a domain for each variable
• a set of constraints

Definition:
A model of a CSP is an assignment of values to all of
its variables that satisfies all of its constraints.

Constraint Satisfaction Problems: Variants

• We may want to solve the following problems with a CSP:
– determine whether or not a model exists
– find a model
– find all of the models
– count the number of models
– find the best model, given some measure of model quality

• this is now an optimization problem
– determine whether some property of the variables holds in all

models

41

Constraint Satisfaction Problems: Game Plan

• Even the simplest problem of determining whether or not a
model exists in a general CSP with finite domains is NP-
hard
– There is no known algorithm with worst case polynomial runtime
– We can't hope to find an algorithm that is efficient for all CSPs

• However, we can try to:
– identify special cases for which algorithms are efficient (polynomial)
– work on approximation algorithms that can find good solutions

quickly, even though they may offer no theoretical guarantees
– find algorithms that are fast on typical cases

42

Learning Goals for CSP so far

• Define possible worlds in term of variables and
their domains

• Compute number of possible worlds on real
examples

• Specify constraints to represent real world
problems differentiating between:
– Unary and k-ary constraints
– List vs. function format

• Verify whether a possible world satisfies a set of constraints
(i.e., whether it is a model, a solution)

• Coming up: CSP as search
– Read Sections 4.3-2

• Get busy with assignment 1
43

	Slide Number 1
	Lecture Overview
	Recap: state space graph vs search tree
	Multiple Path Pruning
	Prove that your algorithm always find the optimal path first
	Iterative Deepening DFS (IDS)
	Lecture Overview
	Heuristic DFS
	Branch-and-Bound Search
	Example
	Example
	Example
	Example
	Branch-and-Bound Analysis
	Combining B&B with other schemes
	Search methods so far
	Lecture Overview
	Direction of Search
	Bidirectional search
	Dynamic Programming
	Memory-bounded A*
	Algorithms Often Used in Practice
	Learning Goals for search
	Learning goals: know how to fill this
	Slide Number 25
	Lecture Overview
	Slide Number 27
	Main Representational Dimensions (Lecture 2)
	Explicit State vs. Features (Lecture 2)
	Variables/Features and Possible Worlds
	Examples: variables, domains, possible worlds
	How many possible worlds?
	How many possible worlds?
	Examples: variables, domains, possible worlds
	Examples: variables, domains, possible worlds
	Constraints
	Examples: variables, domains, constraints
	Examples: variables, domains, constraints
	Examples: variables, domains, constraints
	Constraint Satisfaction Problems: Definition
	Constraint Satisfaction Problems: Variants
	Constraint Satisfaction Problems: Game Plan
	Learning Goals for CSP so far

