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Lecture Overview

• Some clarifications & multiple path pruning

• Recap and more detail: Iterative Deepening
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Clarifications for the A* proof
• Defined two lemmas about prefixes x of a solution 

path s 
– (I called the prefix pr, but a 2-letter name is confusing; 

let’s call it x instead)

• Clarifications:
- “Lemma”: 

proven statement, stepping stone in larger proof

- “Prefix” x of a path s: 
subpath starting from the same node as s
- E.g. s=(a,c,z,e,d), short aczed
- All prefixes x: a, ac, acz, acze, aczed
- E.g. not a prefix: ab, ace, acezd (order is important!)
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Prefixes
• Which of the following are prefixes of the path aiiscool?

• ai and aii
• aiisc is different from aisc !

– The optimal solution won’t have a cycle if all path costs are > 0

4

aiscaicool aiiai



- fmin:= cost of optimal solution path s (e.g. s=aczed)
- Cost is unknown but finite if a solution exists

- Lemmas for prefix x of s (exercise: prove at home)
- Has cost f(x) ≤ fmin (due to admissibility)
- Always one such x on the frontier (by induction)

- Used these Lemmas to prove:
A* only expands paths x with f(x) ≤ fmin

- Then we’re basically done!
- Only finite number of such paths (⇒ completeness)
- Solution with cost > fmin won’t be expanded (⇒ optimality)

Recap: A* admissibility
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Clarification: state space graph vs search tree
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Clarification: state space graph vs search tree
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What do I mean by the numbers in the search tree’s nodes?

Node’s 
name

Order in which a search algo. 
(here: BFS) expands nodes



Clarification: state space graph vs search tree
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Clarification: state space graph vs search tree
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Clarification: state space graph vs search tree
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Clarification: state space graph vs search tree
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Clarification: state space graph vs search tree
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• Using depth-first methods, with the graph explicitly 
stored, this can be done in constant time
- Only one path being explored at a time

• Other methods: cost is linear in path length
- (check each node in the path)

Cycle Checking: if we only want optimal solutions

• You can prune a node n that is on 
the path from the start node to n. 

• This pruning cannot remove an 
optimal solution ⇒ cycle  check



• With cycles, search tree can be exponential in the 
state space
- E.g. state space with 2 actions from each state to next
- With  d + 1 states, search tree has depth d 

Size of search space vs search tree

A

B

C

D

A

B B

C C C C

• 2d possible paths through the search space 
=> exponentially larger search tree!



• If we only want one path to the solution
• Can prune path to a node n that has already been 

reached via a previous path
- Store S := {all nodes n that have been expanded}
- For newly expanded path p = (n1,…,nk,n)

- Check whether n ∈ S
- Subsumes cycle check

• Can implement by storing the path to each expanded 
node

Multiple Path Pruning

n



Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want an optimal solution ?

• Can remove all paths from the frontier that use the longer 
path. (these can’t be optimal)

2 2
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Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want just the optimal solution ?

• Can change the initial segment of the paths on the frontier 
to use the shorter path

2 2

1 1 1



Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter than the 
first path to n, and we want just the optimal solution ?

• Can prove that this can’t happen for an algorithm

2 2

1 1 1



• Which of the following algorithms always find the shortest 
path to nodes on the frontier first?

None of the above

Least Cost Search First

Both of the above

A*



• Which of the following algorithms always find the shortest 
path to nodes on the frontier first?
– Only Least Cost First Search (like Dijkstra’s algorithm)
– For A* this is only guaranteed for nodes on the optimal solution 

path

– Example: A* expands the upper path first
• Special conditions on the heuristic can recover the guarantee of LCFS 

h=10

h=0

h=12 2

1 1 1 20 goal stateStart state



Summary: pruning
• Sometimes we don’t want pruning

– Actually want multiple solutions (including non-optimal ones)

• Search tree can be exponentially larger than search space
– So pruning is often important

• In DFS-type search algorithms
– We can do cheap cycle checks: O(1)

• BFS-type search algorithms are memory-heavy already
– We can store the path to each expanded node and do multiple path 

pruning
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Lecture Overview

• Some clarifications & multiple path pruning

• Recap and more detail: Iterative Deepening
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Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier 

rather than saving them
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Complete Optimal Time Space

DFS N 
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y 

Costs > 0
Y 

Costs >=0
O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y 
Costs > 0

h admissible

Y 
Costs >=0

h admissible

O(bm) O(bm)

Iterative Deepening DFS (short IDS): Motivation



Iterative Deepening DFS (IDS) in a Nutshell

• Depth-bounded depth-first search: DFS on a leash
– For depth bound d, ignore any paths with longer length:

• Not allowed to go too far away ⇒ backtrack (“fail unnaturally”)
• Only finite # paths with length ≤ d ⇒ terminates

– What is the memory requirement at depth bound d? (it is DFS!)
• m=length of optimal solution path
• b=branching factor

• O(bd) ! It’s a DFS, up to depth d. 

• Progressively increase the depth bound d
– Start at 1
– Then 2
– Then 3
– ...
– Until it finds the solution at depth m

24

O(dm)O(bm) O(bd)O(mb)



Iterative Deepening DFS, depth bound = 1
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Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

3

This node is 
expanded,
but its neighbours
are not added to the 
frontier because of 
the depth bound

Same for this node

Numbers in 
nodes: when 
expanded?2

1



Iterative Deepening DFS, depth bound = 2
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Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

2 5

3 4 6 7

Numbers in 
nodes: when 
expanded?

This node is 
expanded,
but its neighbours
are not added to the 
frontier because of 
the depth bound

Same here

Same here Same here

2

1

3 4

5

6 7



Iterative Deepening DFS, depth bound = 3
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Example
Depth d=1

d=2

d=3

d=4

d=5

d=6

2

Numbers in 
nodes: when 
expanded?

3

4 5

6

7 8

1

This node is 
expanded,
but its neighbours
are not added to the 
frontier because of 
the depth bound

Same here

Same here
This node is 
expanded, it’s a 
goal, we’re done



Analysis of Iterative Deepening DFS (IDS)

• Space complexity

– DFS scheme, only explore one branch at a time

• Complete?

– Only finite # of paths up to depth m, doesn’t explore longer paths

• Optimal? 

– Proof by contradiction
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O(b+m)O(bm) O(bm)O(mb)

Yes No

Yes No



The solution is at depth m, branching factor b
Total # of paths generated:

≤ bm + (2 bm-1)+ (3 bm-2) + ...+ mb

(Time) Complexity of IDS

We only expand 
paths at depth m 
once

We only expand 
paths at depth m-1 
twice

We only expand 
paths at depth m-2 
three times

We expand paths at 
depth 1 m times
(for every single 
depth bound)



(Time) Complexity of IDS
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From there on, it’s just math: 
Total # paths generated by IDS
≤ bm + (2 bm-1)+ (3 bm-2) + ...+ mb
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m )



Conclusion for Iterative Deepening
• Even though it redoes what seems like a lot of work

– Actually, compared to how much work there is at greater depths, 
it’s not a lot of work

– Redoes the first levels most often
• But those are the cheapest ones

• Time Complexity O(bm)
– Just like a single DFS
– Just like the last depth-bounded DFS

• That last depth bounded DFS dominates the search complexity

• Space complexity: O(bm)
• Optimal
• Complete
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(Heuristic) Iterative Deepening: IDA*

• Like Iterative Deepening DFS
– But the “depth” bound is measured in terms of the f value
– f-value-bounded DFS: DFS on a f-value leash
– IDA* is a bit of a misnomer

• The only thing it has in common with A* is that it uses the f value
f(p) = cost(p) + h(p)

• It does NOT expand the path with lowest f value. It is doing DFS!
• But f-value-bounded DFS doesn’t sound as good …

• If you don’t find a solution at a given f-value
– Increase the bound:

to the minimum of the f-values that exceeded the previous bound

• Will explore all nodes with f value < fmin (optimal one)
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Analysis of Iterative Deepening A* (IDA*)
• Complete and optimal?  Same conditions as A*

– h is admissible
– all arc costs > 0
– finite branching factor

• Time complexity: O(bm)
– Same argument as for Iterative Deepening DFS

• Space complexity:

– Same argument as for Iterative Deepening DFS
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Search methods so far
Complete Optimal Time Space

DFS N 
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y 
Costs > 0

Y 
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y 
Costs > 0

h admissible

Y 
Costs >=0

h admissible

O(bm) O(bm)

IDA* Y (same cond. 
as A*)

Y O(bm) O(mb)



• Define/read/write/trace/debug different search algorithms
- In more detail today: Iterative Deepening, 

New today:               Iterative Deepening A*

• Apply basic properties of search algorithms: 
– completeness, optimality, time and space complexity

Announcements: 
– New practice exercises are out: see WebCT

• Heuristic search
• Branch & Bound
• Please use these! (Only takes 5 min. if you understood things…)

– Assignment 1 is out: see WebCT
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Learning Goals for today’s class



Learning Goals for search
• Identify real world examples that make use of deterministic, 

goal-driven search agents 
• Assess the size of the search space of a given search 

problem. 
• Implement the generic solution to a search problem. 
• Apply basic properties of search algorithms:

- completeness, optimality, time and space complexity

• Select the most appropriate search algorithms for specific 
problems. 

• Define/read/write/trace/debug different search algorithms  
• Construct heuristic functions for specific search problems
• Formally prove A* optimality.
• Define optimally efficient



Coming up: Constraint Satisfaction Problems

• Read chapter 4

• Get busy with assignment 1
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