lterative Deepening
and Branch & Bound

CPSC 322 - Search 6

Textbook § 3.7.3 and 3.7.4

January 24, 2011

| ecture Overview

Recap from last week
 lIterative Deepening

e Branch & Bound

Slide 2

Search with Costs

e Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

cost((n,,....n,))= ZCOSt(<)

* In this setting we often don't just want to find any solution
— we usually want to find the solution that minimizes cost

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one:
It has the lowest path cost

Lowest-Cost-First Search (LCFS)

« Expands the path with the lowest cost on the frontier.

« The frontier is implemented as a priority queue ordered
by path cost.

e How does this differ from Dijkstra's algorithm?
The two algorithms are very similar
But Dijkstra’s algorithm
works with nodes not with paths

stores one bit per node (infeasible for infinite/very large graphs)
checks for cycles

Heuristic search

Def.:
A search heuristic h(n) Is an estimate of the cost of the optimal
(cheapest) path from node n to a goal node.

Estimate: h(nl)

Estimate: h(n3)

Best-First Search (LCFS)

Expands the path with the lowest h value on the frontier.

The frontier is implemented as a priority gueue ordered
by h.

Greedy: expands path that appears to lead to the goal
quickest

Can get trapped

Can yield arbitrarily poor solutions

But with a perfect heuristic, it moves straight to the goal

A*
« Expands the path with the lowest cost + h value on the

frontier

« The frontier is implemented as a priority queue ordered
by 1(p) = cost(p) + h(p)

Admissiblility of a heuristic

Def.:

Let c(n) denote the cost of the optimal path from node n to any
goal node. A search heuristic h(n) is called
admissible if h(n) < c(n) for all nodes n, i.e. if for all nodes it
IS an underestimate of the cost to any goal.

 E.g. Euclidian distance in routing networks

e (General construction of heuristics: relax the problem,
l.e. ignore some constraints
- Can only make it easier

- Saw lots of examples on Wednesday:
Routing network, grid world, 8 puzzle, Infinite Mario

Admissibility of A*

 A*Is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

« the branching factor is finite
e arccostsare>0
* his admissible.

e This property of A* is called admissiblility of A*

Why Is A* admissible: complete

If there is a solution, A* finds it:
fin:= cost of optimal solution path s (unknown but finite)

- Lemmas for prefix pr of s (exercise: prove at home)
- Has cost f(pr) < f.,,, (due to admissibility)
- Always one such pr on the frontier (prove by induction)

- A* only expands paths with f(p) < f;,
- Expands paths p with minimal f(p)

- Always a pr on the frontier, with f(pr) < f;,
- Terminates when expanding s

- Number of paths p with cost f(p) < f,,, is finite
- Let ¢, > 0 be the minimal cost of any arc

- k:=f,,/cn,- All paths with length > k have cost > f_,
- Only bk paths of length k. Finite b = finite

Why Is A* admissible: optimal

Proof by contradiction

— Assume (for contradiction):
First solution s’ that A* expands is suboptimal: i.e. cost(s’) > .,

— Since s’ is a goal, h(s’) =0, and f(s’) = cost(s’) > f ...

— A* selected s’ = all other paths p on the frontier
had f(p) 2 (s’) > friq

— But we know that a prefix pr of optimal solution path s is on the
frontier, with f(pr) < f.,
= Contradiction !

Summary: any prefix of optimal solution is expanded before suboptimal
solution would be expanded

11

Learning Goals for last week

Select the most appropriate algorithms for specific
problems

- Depth-First Search vs. Breadth-First Search
vs. Least-Cost-First Search vs. Best-First Search vs. A*

Define/read/write/trace/debug different search algorithms
- With/without cost
- Informed/Uninformed

Construct heuristic functions for specific search problems

Formally prove A* optimality
- Define optimal efficiency

12

Learning Goals for last week, continued

* Apply basic properties of search algorithms:
— completeness, optimality, time and space complexity

Complete Optimal Time Space
DFS N N obm) O(mb)
(Y if no cycles)

BFS Y Y obm) obm)
LCFS Y Y obm) obm)

(when arc costs available) Costs > 0 Costs >0
Best First N N om) om)

(when A available)

A* Y Y om) om)

(when arc costs and /A Costs >0 Costs > 0

available) hadmissible | A admissible

13

| ecture Overview

* Recap from last week
Iterative Deepening

e Branch & Bound

14

lterative Deepening DFS (short IDS): Motivation

Want low space complexity but completeness and optimality

Key Idea: re-compute elements of the frontier
rather than saving them

Complete Optimal Time Space
DFS N N ob") O(mb)
(Y if no cycles)

BFS Y Y ob") ob")
LCFS Y Y ob") ob")

(when arc costs available) Costs >0 Costs >=0
Best First N N ob") ow")

(when A available)

A* Y Y ob") ow")

(when arc costs and A Costs > 0 Costs >=0

available) hadmissible | A admissible

15

Iterative Deepening DFS (IDS) in a Nutshell

« Use DSF to look for solutions at depth 1, then 2, then 3, etc
— For depth D, ignore any paths with longer length
- Depth-bounded depth-first search

depth=1 O

SEYY

I

(Time) Complexity of IDS

That sounds wasteful!
« Let’s analyze the time complexity
« For a solution at depth m with branching factor b

Depth Total # of paths #times created by #times created Total #paths

at that level
b
b2

bm-1
bm

1

.

BFS (or DFS)

by IDS
m

m-1

N

for IDS
mb
(m-1) b?

2 b
bm

17

(Time) Complexity of IDS

Solution at depth m, branching factor b
Total # of paths generated:

b™+ 2 bm™t+3bM™2+ ...+ mb
=bm(1b°+2bt+3b?+ .. .+mblm)

_ bm (i ibl—i) _ bm (ii(b_l)i_l)

m_oo- —1\i-1 _I_m 1 2_m b 2 m
<b"(i60)™ =07 | b5) <00

Geometric progression: for |r|<1: Z I

1 1=0
— r — Ir >
dr i=0 i=0 (1_r)

Further Analysis of Iterative Deepening DFS (IDS)

e Space complexity
O(bm O(m°) O(bm) [O(b+m)

— DFS scheme, only explore one branch at a time

« Complete? Yes No

— Only finite # of paths up to depth m, doesn’t explore longer paths

« Optimal? Yes No

— Proof by contradiction

19

Search methods so far

Complete Optimal Time Space
DFS N N o) O(mb)
(Y if no cycles)

BFS Y Y Ob™) Ob™)
IDS Y Y o) O(mb)
LCFS Y Y o) Ob™)

(when arc costs available) Costs > 0 Costs >=0
Best First N N o) o)

(when A available)

A* Y Y o) obm)

(when arc costs and A Costs >0 Costs >=0

available) hadmissible | A admissible

20

(Heuristic) Iterative Deepening: IDA*

« Like Iterative Deepening DFS
— But the depth bound is measured in terms of the f value

* If you don'’t find a solution at a given depth

— Increase the depth bound:
to the minimum of the f-values that exceeded the previous bound

21

Analysis of Iterative Deepening A* (IDA%)

« Complete and optimal? Same conditions as A*
— his admissible
— allarc costs >0
— finite branching factor

o Time complexity: O(b™)

e Space complexity:

O(b™ ©O(m°?) O(bm) [O(b+m)

— Same argument as for Iterative Deepening DFS

22

| ecture Overview

* Recap from last week
* |terative Deepening

Branch & Bound

23

Heuristic DFS

e Other than IDA*, can we use heuristic information in DFS?
— When we expand a node, put all its neighbours on the stack

— In which order?
« Can use heuristic guidance: h or f
« Perfect heuristic: would solve problem without any backtracking

e Heuristic DFS is very frequently used in practice
— Often don’'t need optimal solution, just some solution

— No requirement for admissibility of heuristic
« As long as we don’t end up in infinite paths

24

Branch-and-Bound Search

Another way to combine DFS with heuristic guidance

Follows exactly the same search path as depth-first search
- But to ensure optimality, it does not stop at the first solution found

It continues, after recording upper bound on solution cost
* upper bound: UB =cost of the best solution found so far
* Initialized to « or any overestimate of solution cost

When a path pis selected for expansion:

* Compute LB(p) = f(p) = cost(p) + h(p)
* If LB(p) >UB, remove p from frontier without expanding it (pruning)
* Else expand p, adding all of its neighbors to the frontier

* Requires admissible h

25

O

eArccost=1
*h(n) =0 for every n
UB=w ’Q

R

e
AN
-

3

PN

3

X

-
-~

O
TN
T

s

6)@ OO
0

oY
O oﬁﬁ%“i“;”! D

*h(n) =0 for every n

*h(n) =0 for every n

eArccost=1
h(n) =0 f ‘/®\‘ Cost = 3
rrrrr

/@R@;{@Q@\O
T RPAREACR
g@ 08 O O QOL
O O OO

O

Cost=3
Prune!

Branch-and-Bound Analysis

Complete?

e Can’'t handle infinite graphs (but can handle cycles)

YES NO I'T DEPENDS

Optimal? YES | NO IT DEPENDS

 If it halts, the goal will be optimal
« But it could find a goal and then follow an infinite path ...

Time complexity: O(b™)

Space complexity O(bM) O(mP) O(bm)
e |t'saDFS

O(b+m)

30

Combining B&B with heuristic guidance

e We said

- “Follows exactly the same search path as depth-first search™
- Let’'s make that heuristic depth-first search

« (Can freely choose order to put neighbours on the stack
- Could e.g. use a separate heuristic h’ that is NOT admissible

 To compute LB(p)

- Need to compute f value using an admissible heuristic h

 This combination is used a lot in practice
— Sudoku solver in assignment 2 will be along those lines
— But also integrates some logical reasoning at each node

31

Search methods so far

Complete Optimal Time Space
DFS N N owm) O(mb)
(Y if no cycles)

BFS Y Y owm) om)
IDS Y Y owm) O(mb)
LCFS Y Y owm) owm)

(when arc costs available) Costs >0 Costs >=0
Best First N N om) om)

(when A available)

A* Y Y om) om)

(when arc costs and A Costs >0 Costs >=0

available) hadmissible | A admissible
IDA* Y (same cond. Y ob") O(mb)
as A%)

Branch & Bound Y (same cond. Y ow") O(mb)

as A%)

Memory-bounded A

Iterative deepening A* and B & B use little memory
What if we've got more memory, but not O(b™)?

Do A* and keep as much of the frontier in memory as
possible

When running out of memory
» delete worst path (highest f value) from frontier
« Back its f value up to a common ancestor

Subtree gets regenerated only when all other paths have
been shown to be worse than the “forgotten” path

Details are beyond the scope of the course, but

 Complete and optimal if solution is at depth manageable for
available memory

33

Learning Goals for today’s class

« Define/read/write/trace/debug different search algorithms

- New: Iterative Deepening,
lterative Deepening A*, Branch & Bound

 Apply basic properties of search algorithms:
— completeness, optimality, time and space complexity

Announcements:
— New practice exercises are out: see WebCT
e Heuristic search
 Branch & Bound
* Please use these! (Only takes 5 min. if you understood things...)
— Assignment 1 is out: see WebCT

34

	Slide Number 1
	Lecture Overview
	Search with Costs
	Lowest-Cost-First Search (LCFS)
	Heuristic search
	Best-First Search (LCFS)
	A*
	Admissibility of a heuristic
	Admissibility of A*
	Why is A* admissible: complete
	Why is A* admissible: optimal
	Slide Number 12
	Slide Number 13
	Lecture Overview
	Iterative Deepening DFS (short IDS): Motivation
	Slide Number 16
	(Time) Complexity of IDS
	(Time) Complexity of IDS
	Further Analysis of Iterative Deepening DFS (IDS)
	Search methods so far
	(Heuristic) Iterative Deepening: IDA*
	Analysis of Iterative Deepening A* (IDA*)
	Lecture Overview
	Heuristic DFS
	Branch-and-Bound Search
	Example
	Example
	Example
	Example
	Branch-and-Bound Analysis
	Combining B&B with heuristic guidance
	Search methods so far
	Memory-bounded A*
	Slide Number 34

