
Iterative Deepening

CPSC 322 – Search 6

Textbook § 3.7.3

January 24, 2011

Lecture Overview

• Recap from last week

• Iterative Deepening

Slide 2

Search with Costs
• Sometimes there are costs associated with arcs.

• In this setting we often don't just want to find any solution
– we usually want to find the solution that minimizes cost

()),cost(,,cost
1

10 ∑
=

−=
k

i
iik nnnn 

Def.: The cost of a path is the sum of the costs of its arcs

Def.: A search algorithm is optimal if
when it finds a solution, it is the best one:
it has the lowest path cost

3

• Expands the path with the lowest cost on the frontier.

• The frontier is implemented as a priority queue ordered
by path cost.

• How does this differ from Dijkstra's algorithm?
- The two algorithms are very similar
- But Dijkstra’s algorithm

- works with nodes not with paths
- stores one bit per node (infeasible for infinite/very large graphs)
- checks for cycles

Lowest-Cost-First Search (LCFS)

4

Heuristic search
Def.:
A search heuristic h(n) is an estimate of the cost of the optimal
(cheapest) path from node n to a goal node.

Estimate: h(n1)

5

Estimate: h(n2)

Estimate: h(n3)
n3

n2

n1

• Expands the path with the lowest h value on the frontier.

• The frontier is implemented as a priority queue ordered
by h.

• Greedy: expands path that appears to lead to the goal
quickest
- Can get trapped
- Can yield arbitrarily poor solutions
- But with a perfect heuristic, it moves straight to the goal

Best-First Search (LCFS)

6

• Expands the path with the lowest cost + h value on the
frontier

• The frontier is implemented as a priority queue ordered
by f(p) = cost(p) + h(p)

A*

7

Admissibility of a heuristic

• E.g. Euclidian distance in routing networks
• General construction of heuristics: relax the problem,

i.e. ignore some constraints
- Can only make it easier
- Saw lots of examples on Wednesday:

Routing network, grid world, 8 puzzle, Infinite Mario

8

Def.:
Let c(n) denote the cost of the optimal path from node n to any

goal node. A search heuristic h(n) is called
admissible if h(n) ≤ c(n) for all nodes n, i.e. if for all nodes it
is an underestimate of the cost to any goal.

• A* is complete (finds a solution, if one exists) and
optimal (finds the optimal path to a goal) if:

• the branching factor is finite
• arc costs are > 0
• h is admissible.

• This property of A* is called admissibility of A*

Admissibility of A*

9

If there is a solution, A* finds it:
- fmin:= cost of optimal solution path s (unknown but finite)

- Lemmas for prefix pr of s (exercise: prove at home)
- Has cost f(pr) ≤ fmin (due to admissibility)
- Always one such pr on the frontier (prove by induction)

- A* only expands paths with f(p) ≤ fmin

- Expands paths p with minimal f(p)
- Always a pr on the frontier, with f(pr) ≤ fmin

- Terminates when expanding s

- Number of paths p with cost f(p) ≤ fmin is finite
- Let cmin > 0 be the minimal cost of any arc
- k := fmin / cmin. All paths with length > k have cost > fmin

- Only bk paths of length k. Finite b ⇒ finite

Why is A* admissible: complete

Why is A* admissible: optimal
Proof by contradiction

– Assume (for contradiction):
First solution s’ that A* expands is suboptimal: i.e. cost(s’) > fmin

– Since s’ is a goal, h(s’) = 0, and f(s’) = cost(s’) > fmin

– A* selected s’ ⇒ all other paths p on the frontier
had f(p) ≥ f(s’) > fmin

– But we know that a prefix pr of optimal solution path s is on the
frontier, with f(pr) ≤ fmin
⇒ Contradiction !

Summary: any prefix of optimal solution is expanded before suboptimal
solution would be expanded

11

• Select the most appropriate algorithms for specific
problems
– Depth-First Search vs. Breadth-First Search

vs. Least-Cost-First Search vs. Best-First Search vs. A*
• Define/read/write/trace/debug different search algorithms

- With/without cost
- Informed/Uninformed

• Construct heuristic functions for specific search problems
• Formally prove A* optimality

- Define optimal efficiency

12

Learning Goals for last week

• Apply basic properties of search algorithms:
– completeness, optimality, time and space complexity

13

Learning Goals for last week, continued

Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y

Costs > 0
Y

Costs ≥ 0
O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs ≥ 0

h admissible

O(bm) O(bm)

Lecture Overview

• Recap from last week

• Iterative Deepening

14

Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier

rather than saving them

15

Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
LCFS

(when arc costs available)
Y

Costs > 0
Y

Costs >=0
O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

Iterative Deepening DFS (short IDS): Motivation

depth = 1

depth = 2

depth = 3

. . .

Iterative Deepening DFS (IDS) in a Nutshell

• Use DSF to look for solutions at depth 1, then 2, then 3, etc
– For depth D, ignore any paths with longer length
– Depth-bounded depth-first search

(Time) Complexity of IDS

Depth Total # of paths
at that level

#times created by
BFS (or DFS)

#times created
by IDS

Total #paths
for IDS

1 b 1
2 b2 1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
m-1 bm-1 1
m bm 1

17

m
m-1

2
1

mb
(m-1) b2

2 bm-1

bm

• That sounds wasteful!
• Let’s analyze the time complexity
• For a solution at depth m with branching factor b

Solution at depth m, branching factor b
Total # of paths generated:

bm + 2 bm-1 + 3 bm-2 + ...+ mb
= bm (1 b0 + 2 b-1 + 3 b-2 + ...+ m b1-m)

))(()(
1

11

1

1 ∑∑
=

−−

=

− ==
m

i

im
m

i

im bibibb

(Time) Complexity of IDS

r
r

i

i

−
=∑

∞

= 1
1

0
Geometric progression: for |r|<1:

)(mbO∈

2
0

1

0)1(
1
r

irr
dr
d

i

i

i

i

−
==∑∑

∞

=

−
∞

=

))((
0

11∑
∞

=

−−≤
i

im bib
2

11
1








−

= −b
bm

2

1








−
=

b
bbm

Further Analysis of Iterative Deepening DFS (IDS)

• Space complexity

– DFS scheme, only explore one branch at a time

• Complete?

– Only finite # of paths up to depth m, doesn’t explore longer paths

• Optimal?

– Proof by contradiction

19

O(b+m)O(bm) O(bm)O(mb)

Yes No

Yes No

Search methods so far

20

Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

(Heuristic) Iterative Deepening: IDA*

• Like Iterative Deepening DFS
– But the depth bound is measured in terms of the f value

• If you don’t find a solution at a given depth
– Increase the depth bound:

to the minimum of the f-values that exceeded the previous bound

21

Analysis of Iterative Deepening A* (IDA*)
• Complete and optimal? Same conditions as A*

– h is admissible
– all arc costs > 0
– finite branching factor

• Time complexity: O(bm)

• Space complexity:

– Same argument as for Iterative Deepening DFS

22

O(b+m)O(bm) O(bm)O(mb)

Examples and Clarifications
• On the white board …

23

Search methods so far
Complete Optimal Time Space

DFS N
(Y if no cycles)

N O(bm) O(mb)

BFS Y Y O(bm) O(bm)
IDS Y Y O(bm) O(mb)

LCFS
(when arc costs available)

Y
Costs > 0

Y
Costs >=0

O(bm) O(bm)

Best First
(when h available)

N N O(bm) O(bm)

A*
(when arc costs and h

available)

Y
Costs > 0

h admissible

Y
Costs >=0

h admissible

O(bm) O(bm)

IDA* Y (same cond.
as A*)

Y O(bm) O(mb)

Branch & Bound Y (same cond.
as A*)

Y O(bm) O(mb)

• Define/read/write/trace/debug different search algorithms
- New: Iterative Deepening,

Iterative Deepening A*, Branch & Bound

• Apply basic properties of search algorithms:
– completeness, optimality, time and space complexity

Announcements:
– New practice exercises are out: see WebCT

• Heuristic search
• Branch & Bound
• Please use these! (Only takes 5 min. if you understood things…)

– Assignment 1 is out: see WebCT

25

Learning Goals for today’s class

	Slide Number 1
	Lecture Overview
	Search with Costs
	Lowest-Cost-First Search (LCFS)
	Heuristic search
	Best-First Search (LCFS)
	A*
	Admissibility of a heuristic
	Admissibility of A*
	Why is A* admissible: complete
	Why is A* admissible: optimal
	Slide Number 12
	Slide Number 13
	Lecture Overview
	Iterative Deepening DFS (short IDS): Motivation
	Slide Number 16
	(Time) Complexity of IDS
	(Time) Complexity of IDS
	Further Analysis of Iterative Deepening DFS (IDS)
	Search methods so far
	(Heuristic) Iterative Deepening: IDA*
	Analysis of Iterative Deepening A* (IDA*)
	Examples and Clarifications
	Search methods so far
	Slide Number 25

