
Stochastic Local Search
for Solving the

Most Probable Explanation Problem
in Bayesian Networks

Diplomarbeit in englischer Sprache

Eingereicht am Fachbereich Informatik

der Technischen Universität Darmstadt

vonFrank Hutter

Betreuer: Dr. Thomas Stützle
Externer Betreuer: Dr. Holger H. Hoos (The University of British Columbia, Canada)
Tag der Einreichung: 30. September 2004

Abstract

In this thesis, we develop and study novel Stochastic Local Search (SLS) algo-
rithms for solving the Most Probable Explanation (MPE) problem in graphical
models, that is, to find the most probable instantiation of all variablesV in the
model, given the observed valuesE = e of a subsetE of V. SLS algorithms have
been applied to the MPE problem before [KD99b, Par02], but none of the previous
SLS algorithms pays sufficient attention to such important concerns as algorithmic
complexity per search step, search stagnation, and thorough parameter tuning. We
remove these shortcomings of previous SLS algorithms for MPE, improving their
efficiency by up to six orders of magnitude. In a thorough experimental analysis,
we demonstrate how each of the novel components of our algorithms substantially
contributes to their high performance. A comparison with ananytime version of
the prominent Mini-Buckets algorithm [DR03] and the exact algorithm Branch-
and-Bound with static Mini-Buckets heuristic (BBMB) [KD99a, MKD03] shows
that our best algorithm outperforms these approaches on most MPE instances we
study. We also show that our SLS algorithms scale much betterin terms of a num-
ber of important instance characteristics, namely the number of variables, domain
size, node degree, and induced width of the underlying graphical model.

i

Zusammenfassung

In dieser Diplomarbeit entwickeln und untersuchen wir neuartige Stochastische
Lokale Suchverfahren, um das Problem der wahrscheinlichsten Erkl̈arung (most
probable explanation, MPE) in Graphischen Modellen zu lösen, d. h., die
wahrscheinlichste Instantiierung aller ModellvariablenV zu finden, wenn eine
partielle InstantiierungE = e der VariablenE ⊆ V als Evidenz gegeben ist.
Stochastische Lokale Suche (SLS) wurde schon zuvor zur Lösung dieses Prob-
lems angewendet, aber keiner der bisherigen SLS Algorithmen [KD99b, Par02]
befasst sich detailliert genug mit den zentralen Problematiken der Komplexiẗat pro
Suchschritt, der Stagnation der Suche und dem sorgfältigen Abstimmen der Pa-
rameter. Wir entfernen diese Schwächen fr̈uherer SLS Algorithmen und erreichen
so eine Geschwindigkeitssteigerung von bis zu sechs Größenordnungen. In einer
umfassenden experimentellen Analyse zeigen wir, wie jede neue Komponente un-
serer Algorithmen zu deren hohen Performanz beiträgt. Ein Vergleich mit einer
“Anytime”-Variante des prominenten Mini-Buckets Algorithmusses [DR03], sowie
mit dem exakten Algorithmus Branch and Bound mit Mini-Buckets Heuristik (s-
BBMB) [KD99a, MKD03] zeigt, dass unser bester Algorithmus für die meisten
Probleminstanzen eine höhere Performanz zeigt als diese Algorithmen. Wir zeigen
auch, dass unsere SLS Algorithmen deutlich besser mit einerReihe wichtiger In-
stanzmerkmalen skalieren als die anderen Ansätze. Diese Merkmale umfassen die
Anzahl an Variablen, die Dom̈anengr̈oße, den Knotengrad, sowie die induzierte
Weite des zugrundeliegenden Graphischen Modells.

ii

Ehrenwörtliche Erkl ärung

Hiermit versichere ich, die vorliegende Diplomarbeit ohneHilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die aus den Quellen entmommen wurden, sind als solche kenntlich gemacht wor-
den. Diese Arbeit hat in gleicher oderähnlicher Form noch keiner Prüfungsbeḧorde
vorgelegen.

Darmstadt, September 2004 Frank Hutter

iii

iv

Acknowledgements

I am deeply grateful to my thesis supervisor Thomas Stützle at Darmstadt Univer-
sity of Technology (TUD) and my cosupervisor Holger Hoos at The University of
British Columbia (UBC) for giving me the freedom to explore my areas of interest
and for their precise feedback that led to substantial improvements of this thesis.

My interest in Stochastic Local Search methods has its rootsin a graduate
course by Holger Hoos I attended during my visit to UBC in 2001/02. In this
context, I am indebted to Prof. Wolfgang Bibel and Thomas Stützle for founding
and supervising the Exchange Program between TUD and UBC, to all my profes-
sors and fellow students at UBC for a seamless integration andthe great times we
shared, to Holger Hoos for his continued advice and guidanceduring this time,
as well as to the German Academic Exchange Service for sponsorship. I thank
everybody who contributed to making Vancouver a home away from home.

I would also like to express my gratitude to Richard Dearden for hiring me as
an intern at the NASA Ames Research Center in the summers of 2002and 2003.
These internships have boosted my interest in probabilistic inference and also gave
me the chance to enjoy work and fun with top researchers.

During the course of my research, I have further enjoyed joint research with
and received much valuable input from the members of the Intellectics group at
TUD, the members of the Bioinformatics, and Empirical & Theoretical Algorith-
mics Laboratory at UBC, and many members of the Laboratory for Computational
Intelligence at UBC. I am especially grateful for the stimulating environment in
these groups and the pleasant discussions I had with students and researchers of so
different academic and personal backgrounds.

From a technical point of view, I would like to thank my office mate Christian
Bang at Darmstadt University of Technology for his continuous help in finding my
way in the world of the Ruby programming language, which pavedthe way to an
invaluable automization of my experiments and the development of ParamILS. I
gratefully acknowledge James Park for providing his implementation of GLS and
Radu Marinescu for providing implementations of the deterministic algorithms s-
BBMB and d-BBMB, as well as useful advice.

v

Finally, I would like to thank my loving partner Diana for putting up with my
nights and weekends spend in the office and for bringing sunshine into my life
when all else failed. I am extremely grateful to her and to my family, especially my
parents and my brother, for their unconditional love, care,advice, and emotional
support. I also would like to thank them and all my friends forthe peaceful and
enjoyable environment I can always be certain to find at home.I especially thank
my parents and Diana for supporting my choice to follow the path laid out for me
far away from home.

vi

Contents

1 Introduction 1

2 Problem Statement 5
2.1 Bayesian Networks . 5
2.2 The Most Probable Explanation Problem 10
2.3 Applications of MPE and Similar Tasks 11
2.4 Benchmark Instances . 13

3 Stochastic Local Search 17
3.1 Combinatorial Problems . 17
3.2 Basic Concepts of Stochastic Local Search 18
3.3 Escaping from Local Minima . 20
3.4 Caching: Exploiting Local Computations to Improve Efficiency . 22
3.5 Systematic versus Local Search 23
3.6 MPE-Specific Issues of SLS . 24

4 Existing Algorithms for the MPE Problem 25
4.1 Stochastic Local Search . 25
4.2 Bucket Elimination and Mini Buckets 27
4.3 Exact Algorithms based on Mini-Buckets 32
4.4 Other Algorithms for MPE . 34

5 SLS Algorithms for MPE 37
5.1 Greedy plus Stochastic Simulation (G+StS) 37
5.2 Guided Local Search (GLS and GLS+) 38
5.3 Iterated Local Search (ILS) . 42
5.4 Hybrid Algorithm . 46

vii

6 Efficient Implementation 51
6.1 Caching SchemeNäıve . 51
6.2 Caching SchemeSimple . 52
6.3 Caching SchemeScores. 53
6.4 Caching SchemeImproving . 56
6.5 Experimental Evaluation of Caching Schemes57

7 Tuning SLS Algorithms for MPE 65
7.1 Experimental Methodology . 65
7.2 Tuning G+StS . 68
7.3 Tuning GLS . 71
7.4 Tuning GLS+ . 77
7.5 Tuning ILS . 79

8 Experimenal Evaluation of SLS Algorithms 85
8.1 Reproduction of Previous Results 85
8.2 Experimental Methodology: Correlation Plots 90
8.3 G+StS vs. ILS . 91
8.4 GLS vs. GLS+ . 94
8.5 ILS vs. GLS+ . 102

9 Comparison with Exact Algorithms 107
9.1 Performance of Systematic Algorithms107
9.2 Comparison of Best-Performing Algorithms 114
9.3 Scaling Studies . 118

10 Conclusions and Future Directions 127

A Parameter Tuning by Iterated Local Search 133

B Detailed experimental results 139

viii

List of Figures

2.1 Example for multiplication of probability tables 7
2.2 Example for a Bayesian Network:sprinkler 9

6.1 Effects of caching for G+StS and ILS 62
6.2 Effects of caching & speedups of G+StS and GLS 62

7.1 G+StS with varyingnp: Mean solution qualities 71
7.2 GLS with varyingρ: Mean solution qualities 73
7.3 GLS with varyingρ: Empirical RTDs 74
7.4 GLS withρ = 1.00: Search stagnation on random instance 75
7.5 GLS with varyingNρ: Empirical RTDs 76
7.6 GLS+: init MB ∗(105) vs. rand.: Mean sol. qual. & Emp. RTDs . . 79

8.1 Original G+StS vs. ILS, both with init MB∗(105):Correlation Plots 92
8.2 Original G+StS vs. ILS, both with random init: Correlation Plots . 93
8.3 G+StS with old vs. new caching: Correlation Plots 94
8.4 G+StS vs. ILS, all else being equal: Correlation Plots 95
8.5 ILS with MB∗(105) vs. random init: Correlation Plots 95
8.6 Original GLS vs. new GLS+: Correlation Plots 96
8.7 GLS withρ = 0.8 vs. ρ = 0.999: Correlation Plots 98
8.8 GLS with old vs. new caching: Correlation Plots99
8.9 GLS vs. GLS+, all else being equal: Correlation Plots 100
8.10 GLS+ with MB∗(105) vs. random init: Correlation Plots 100
8.11 GLS vs. GLS+: Mean solution qualities & Empirical RTDs 101
8.12 GLS vs. GLS+: Mean solution qualities onbnrep 102
8.13 GLS vs. GLS+: Mean solution qualities ongen 103
8.14 ILS vs. GLS+, both with random init: Correlation Plots 104
8.15 ILS vs. GLS+, both with init MB∗(105): Correlation Plots 105

9.1 s-BBMB(6) vs. d-BBMB(6): Correlation Plots 110
9.2 s-BBMB(14) vs. d-BBMB(14): Correlation Plots 111

ix

9.3 s-BBMB(6) vs. s-BBMB(10): Correlation Plots 112
9.4 s-BBMB(10) vs. s-BBMB(14): Correlation Plots 113
9.5 s-BBMB(14) vs. s-BBMB(18): Correlation Plots 113
9.6 s-BBMB(10) vs. Anytime MB: Correlation Plots 114
9.7 s-BBMB(14) vs. Anytime MB: Correlation Plots 115
9.8 HYBRID vs. pure ILS: Correlation Plots 117
9.9 HYBRID vs. pure GLS+: Correlation Plots 117
9.10 HYBRID vs. Anytime MB: Correlation Plots 118
9.11 HYBRID vs. s-BBMB(10): Correlation Plots 119
9.12 HYBRID vs. s-BBMB(14): Correlation Plots 119
9.13 Scaling of solution time with number of variables 121
9.14 Scaling of solution time with maximal domain size 122
9.15 Scaling of solution time with maximal node degree 123
9.16 Scaling of solution time with induced width 124

x

List of Tables

2.1 Characteristics of instances in problem setbnrep 15
2.2 Characteristics of instances in problem setgen 16

6.1 Overview of computational complexity per search step 60
6.2 Overview of additional computational complexity for GLS 60
6.3 Steps per second for G+StS, GLS, and ILS onbnrep 63
6.4 Steps per second for G+StS, GLS, and ILS ongen 64

7.1 Statistics for varying G+StS’s cutoff factor onbnrep 69
7.2 Statistics for varying G+StS’s cutoff factor ongen 69
7.3 Statistics for varying G+StS’s noise probability onbnrep 69
7.4 Statistics for varying G+StS’s noise probability ongen 70
7.5 Statistics for varying GLS’s smoothing factor onbnrep 72
7.6 Statistics for varying GLS’s smoothing factor ongen 72
7.7 Statistics for varying GLS’s smoothing interval onbnrep 76
7.8 Statistics for varying GLS’s smoothing interval ongen 77
7.9 Trace of ParamILS for tuning the parameters of ILS 82

8.1 Statistics for G+StS, GLS, and s-BBMB onbnrep 88
8.2 Statistics for G+StS, GLS, and s-BBMB ongen 88
8.3 Statistics for non-penalty based algorithms onbnrep 91
8.4 Statistics for non-penalty based algorithms ongen 92
8.5 Statistics for penalty based algorithms onbnrep 97
8.6 Statistics for penalty based algorithms ongen 97

9.1 Statistics for exact algorithms onbnrep 109
9.2 Statistics for exact algorithms ongen 109
9.3 Statistics for best algorithms onbnrep 115
9.4 Statistics for best algorithms ongen 116

B.1 Full results for varying G+StS’s cutoff factor onbnrep 141

xi

B.2 Full results for varying G+StS’s cutoff factor ongen 142
B.3 Full results for varying G+StS’s noise probability onbnrep . . . 143
B.4 Full results for varying G+StS’s noise probability ongen 144
B.5 Full results for varying GLS’s smoothing factor onbnrep 145
B.6 Full results for varying GLS’s smoothing factor ongen 146
B.7 Full results for varying GLS’s smoothing interval onbnrep . . . 147
B.8 Full results for varying GLS’s smoothing interval ongen 148
B.9 Full results for G+StS, GLS, and s-BBMB onbnrep 149
B.10 Full results for G+StS, GLS, and s-BBMB ongen 150
B.11 Full results for non-penalty based algorithms onbnrep 151
B.12 Full results for non-penalty based algorithms ongen 152
B.13 Full results for penalty based algorithms onbnrep 153
B.14 Full results for penalty based algorithms ongen 154
B.15 Full results for exact algorithms onbnrep 155
B.16 Full results for exact algorithms ongen 156
B.17 Full results for best algorithms onbnrep 157
B.18 Full results for best algorithms ongen 158

List of Algorithms

3.1 Algorithm outline Dynamic Local Search21
3.2 Algorithm outline Iterated Local Search 21
4.1 Bucket Elimination for MPE . 29
4.2 Mini-Bucket Elimination (MB/MB∗) for MPE 31
4.3 Anytime Mini-Bucket Elimination for MPE (Anytime MB) 32
5.1 Greedy plus Stochastic Simulation (G+StS) for MPE 38
5.2 Guided Local Search (GLS) for MPE 41
5.3 Improved Guided Local Search (GLS+) for MPE 43
5.4 Algorithm outline Basic ILS for MPE 45
5.5 Hybrid of MB∗, ILS, and GLS+ for MPE (to be continued) 48
5.5 Hybrid of MB∗, ILS, and GLS+ for MPE (continued) 49
6.1 Caching schemeNäıve . 54
6.2 Caching schemeSimple . 55
6.3 Caching schemeScores . 58
6.4 Caching schemeImproving. 59
7.1 Iterated Local Search (ILS) for MPE (to be continued) 83
7.1 Iterated Local Search (ILS) for MPE (continued) 84
A.1 Iterated Local Search in configuration space (ParamILS). 137

xii

Chapter 1

Introduction

Since the early days of Artificial Intelligence, different representations of know-
ledge in “intelligent” computer systems have been advocated. Any such know-
ledge representation must enable the system to draw conclusions given some data.
In this thesis, we deal with the problem of finding theMost Probable Explana-
tion (MPE) for the data when reasoning under uncertainty. More specifically, in
the light of uncertain knowledge represented as a probabilistic graphical model,
such as a Bayesian network, this problem is cast as finding the most probable in-
stantiation of all the model’s variablesV given the observed values of a subset of
V.

The MPE problem in graphical models is of considerable interest to re-
searchers in such heterogeneous fields as medical diagnosis[JJ99], fault diag-
nosis [RBM02a], computer vision [TF03], and prediction of side-chains in pro-
tein folding [YW03], to name just a few. Consequently, many algorithms have
been suggested to solve this problem, but since it isNP-hard [SD03], the search
for efficient algorithms is far from over. Prominent exact algorithms, such as
Bucket Elimination [Dec96] or Junction Trees [CDLS99] can solve the MPE prob-
lem in many practically relevant sparse Bayesian networks [CDLS99]. However,
these algorithms degrade rapidly as networks become denser, exhibiting exponen-
tial time- and space-complexity in the induced width of the network’s indepen-
dence graph [CDLS99, Dec96]. Another type of exact algorithms for MPE that is
more suitable for networks with high induced width is based on systematic search,
such as Branch-and-Bound (BnB), guided by the approximate Mini-Buckets al-
gorithm [KD99a, DR03]. BnB algorithms have recently been claimed to be the
state-of-the art method in MPE solving [MKD03], but as we show in this thesis,
their performance also degrades quite rapidly with increasing induced width. We
attribute this to the impaired guidance of the underlying Mini-Buckets heuristic.

1

2 CHAPTER 1. INTRODUCTION

One way to cope with this restriction of exact algorithms is to avoid networks
with high induced widths and approximate them by networks oflower induced
width [Kjæ94, BJ02]. In this thesis, we study a different approach to deal with
networks of high induced width, namely to employ incompleteMPE algorithms
which quickly solve most problem instances to optimality, but which are not able
to proof this optimality. We show that these algorithms clearly outperform the
best available BnB algorithm s-BBMB for a wide range of instances. Even more
importantly, we demonstrate empirically that the efficiency of the novel algorithms
we introduce does not depend on the problem’s induced width;and that for each
setting of s-BBMB’s so-calledi-bound, s-BBMB scales poorly with one or more
of the instance characteristics “number of variables”, “maximal domain size”, and
“maximal degree of the independence graph”.

More specifically, the MPE algorithms we study are Stochastic Local
Search (SLS) algorithms [HS04]. SLS algorithms are amongstthe state-of-the-art
in such heterogeneous research areas as propositional satisfiability (SAT) [SLM92,
HTH02], weighted Max-SAT [MT00, SHS03], graph colouring [PS02], the trav-
elling salesperson problem (TSP) [LK73, ACR03], scheduling [dBSD01], RNA
secondary structure design [AFH+04] and protein folding [SAHH02]. They are in-
complete search methods rapidly moving through the space ofpossible solutions,
changing single solution components at a time given only thelocal information
available in a search state.

In this thesis, we concentrate on two particular subclassesof SLS algorithms,
namely Dynamic Local Search (DLS) and Iterated Local Search(ILS) algorithms.
DLS algorithms employ an evaluation function guiding the search that differs from
the actual objective function. When a local optimums of this evaluation function
is reached, the function is modified in order to steer away from s in the future.
DLS algorithms have been applied with especially great success for SAT [HTH02]
and weighted Max-SAT [MT00]. Here, we focus on a particular DLS algorithm,
namely Guided Local Search (GLS) [Vou97]. ILS is a general framework for
achieving high coverage of the search space as well as intensified search in lo-
cal optima regions. ILS iterates a three-phase process, in which a locally optimal
solution is slightly modified followed by a mostly greedy local search yielding a
new locally optimal solution. An acceptance criterion thendecides about contin-
uing the search from the old or the new local optimum. ILS algorithms are espe-
cially often used in the TSP domain and other domains prominent in Operations
Research [dBSD01, LMS02, ACR03], but ILS is also amongst the best-performing
approaches for Max-SAT [SHS03] and graph colouring [PS02].

SLS algorithms have been applied to the MPE problem before [KD99b, Par02],
but none of the previous SLS algorithms pays sufficient attention to such important

3

concerns as algorithmic complexity per search step, searchstagnation, and thor-
ough parameter tuning. Consequentially, these previous SLSalgorithms have been
shown to be outperformed by systematic search algorithms like Branch-and-Bound
with Mini-Buckets heuristic [MKD03]. In this thesis, we remove the shortcomings
of previous SLS algorithms for MPE, improving their speed byup to six orders of
magnitude (i.e. by up to a factor of1, 000, 000); this yields a performance signifi-
cantly higher than the one of the systematic search algorithms s-BBMB (with opti-
mal i-bound) and Anytime MB, an anytime variant of the prominent Mini-Buckets
algorithm [DR03]. Our novel algorithms also find variable instantiations which are
up to280 orders of magnitude more likely than the ones found by the previously
best-performing SLS algorithms. These enormous performance gains are due to
a number of components we develop and study in this thesis. Amongst the main
contributions of this thesis are:

• Two novel caching schemes and the first detailed complexity analysis of sin-
gle search steps of SLS algorithms for MPE. This yields a speedup for all
SLS algorithms that lies between three and116 in our experiments and in-
creases for harder problem instances.

• The first ILS algorithm for MPE. This algorithm outperforms the previously
best-performing non-penalty based algorithm G+StS [KD99b] by up to 4
orders of magnitude and finds variable instantiations of up to20 orders higher
probabilitiy than the ones found by G+StS.

• A simple parameter tuning for GLS [Par02], the previously best-performing
SLS algorithm for MPE. This enables GLS to find variable instantiations that
are up to100 orders of magnitude more probable, and further enables it to
quickly solve many problem instances previously unsolvable.

• An improved version of GLS, called GLS+, that incorporates the logarithmic
objective function into the evalutation function and outperforms our already
much improved version of GLS by orders of magnitude, both in terms of
solution quality found and runtime to find the optimal solution.

• A hybrid algorithm combining ILS, GLS+, and a new variant of Mini-
Buckets we call MB∗. This exploits the fact that the performance of GLS+

and ILS is not highly correlated, and that MB∗ yields very strong results for
networks of low induced width. We demonstrate this hybrid algorithm to
consistently perform very well and show that, on average, itoutperforms all
other algorithms, including systematic search algorithms.

4 CHAPTER 1. INTRODUCTION

• A systematic empirical study of the impact various characteristics of MPE
problem instances have on problem hardness for a number of MPE algo-
rithms. Separate experiments for each characteristic showthat s-BBMB with
low i-bounds scales poorly with the number of variables as well asthe degree
of the independence graph; and that Anytime MB and s-BBMB with high i-
bounds scale poorly with the domain size. Finally, for an increasing induced
width, the empirical runtime of SLS algorithms is not affected at all, while
the performance of s-BBMB and Anytime MB degrades considerably.

We compare our new algorithms GLS+, ILS, and the hybrid algorithm against
the best performing available complete algorithm s-BBMB [KD99a, MKD03]) and
against Anytime MB [DR03]. For this comparison, we employ real-world MPE
problem instances from the Bayesian network repository1 and random instances
created with BNGenerator [IC02, IC03]. On all real-world instances but one with
high induced width, Anytime MB performs very well, only matched in performance
by our hybrid algorithm. However, on the randomly generatedinstances, we show
Anytime MB’s very poor performance on networks of maximal induced width20.
The performance of s-BBMB differs much from instance to instance. For many
instances, especially such with high induced width, s-BBMB isonly feasible with
low i-bounds but usually yields poor results in this case. For theinstances for which
higheri-bounds are feasible, it generally yields better results. Also, for structured
instances, s-BBMB performs much better than for randomly generated ones.

The remainder of this thesis is structured as follows. In Chapter 2, we introduce
our notation and formally define the MPE problem. Chapter 3 covers some general
principles of Stochastic Local Search and Chapter 4 introduces previous SLS algo-
rithms and other important algorithms for MPE. Then, we cover the development of
our novel algorithms: Chapter 5 introduces all algorithms weimplemented, Chap-
ter 6 shows how they can be implemented efficiently, and Chapter 7 focusses on
maximizing their performance by a thorough parameter tuning. This is followed by
the experimtal evaluation of our novel algorithms. Chapter 8demonstrates the enor-
mous improvements our SLS algorithms yield over the previously best-performing
SLS algorithms and studies the contribution of each novel component in our al-
gorithms to this effect. Chapter 9 demonstrates our algorithms to outperform the
previous state-of-the-art in MPE solving, and shows preferable scaling behaviour
with an increasing number of variables, domain size, degree, and induced width of
the independence graph. Chapter 10 concludes the thesis and indicates promising
directions for future work.

1http://www.cs.huji.ac.il/labs/compbio/Repository/

Chapter 2

Problem Statement

In this chapter, we lay the foundation for the remainder of the thesis. We formally
introduce Bayesian networks and the MPE problem, cover applications of MPE
and similar tasks in Bayesian networks, and describe the problem instances we use
in our experimental analysis.

2.1 Bayesian Networks

Since the early days of Artificial Intelligence (AI) research, many different repre-
sentations of knowledge in computer systems have been advocated [Bib93]. One
classical representation are rule-based systems which encode knowledge in a set of
deterministic if-then rules. Although this approach had some success, researchers
became aware of the fact that many domains can not be modeled in a purely deter-
ministic fashion and require the capability of dealing withuncertainty [RN03]. The
use of probability theory was considered by AI researchers,but at the time the dom-
inant interpretation of probability was the frequentist approach [CDLS99, RN03]
which did not allow an application to the kind of uncertain events AI research was
interested in. Moreover, there were no efficient algorithmsto compute the prob-
abilities of interest and so probability theory was not incorporated into early AI
systems. Instead, the AI community was lead to develop alternative approaches
like rule-based systems with certainty factors [SDA+75] or fuzzy logic [Zad83].

The last two decades, however, have seen an increasingly strong support for the
probabilistic point of view in the AI community, boosted by three developments:

• the growing support for the subjectivist approach to probability as opposed
to the frequentist interpretation [CDLS99, RN03];

5

6 CHAPTER 2. PROBLEM STATEMENT

• the development of modular representations of high-dimensional joint prob-
ability distributions, such as Bayesian (belief) networks [Pea88]; and

• the development of efficient algorithms to manipulate probabilistic net-
works and query probabilities of interest from them [Pea88,LS88, Dec96,
CDLS99].

Bayesian (belief) networks [Pea88] have meanwhile become the prime repre-
sentation for uncertainty in AI. They are at the core of this thesis and we will define
them formally later in this section.

In the subjectivist probabilistic point of view, variablesin the real world can
be modeled as random variables even if their value is perfectly deterministic but
we simply do notknowit. Informally, arandom variable Vis an unknown variable
which can take on one of a domainDV of values.1 In this thesis, we will concentrate
on purely discrete variablesV with finite domainDV . Each random variableV has
a prior probability distributionP (V) which defines the probabilityP (V = v) for
each possible valuev ∈ DV . The probabilitiesP (V = v) are required to sum to
1 over all valuesv ∈ DV . Assigning a valuev ∈ DV to V results in thevariable
instantiationV = v. If no confusion is possible, we will simply use the lower case
letters to refer to variable instantiations.

A simple example for a random variable is the variableRain with the domain
{yes, no} and the priorP (Rain = yes) = 0.5.2 The priorP (Rain) defines the
probability of rain in the absence of any other information.If we look up to the sky
and observe that it is cloudy (the random variableCloudy is instantiated toyes),
our belief aboutRain is influenced, which can be represented by theconditional
probabilityP (Rain|Cloudy = yes); this might be significantly different from the
prior, for exampleP (Rain = yes|Cloudy = yes) = 0.8. Since we are only deal-
ing with discrete random variables, we can represent conditional probability distri-
butions as tables. Aconditional probability table (CPT)P (Vn|V1, . . . , Vn−1) holds
for each variable instantiationv1, . . . , vn−1 the conditional probabilitiesP (Vn =
vn|v1, . . . , vn−1) for all valuesvn ∈ DVn

of the dependent variableVn;3 for each
instantiationv1, . . . , vn−1, the probabilitiesP (Vn = vn|v1, . . . , vn−1) are required
to sum to1 over all possible valuesvn of Vn.

1Formally, a random variable is defined as a measurable function from a probability space to
some measurable space, usually the real numbers with the Borel σ-algebra. Since these concepts do
not aid our discussion, we refer the interested reader to themathematical literature [LW99].

2Since the probabilities over all the possible values of a random variable always sum to one, this
impliesP (Rain = no) = 0.5. The rain example is based on the sprinkler network in [RN03].

3Technically, it suffices for the CPT to hold all but one such probabilities since the last one
computes as the difference of the sum over the others to 1.

2.1. BAYESIAN NETWORKS 7

C R P(R|C)

f f
f t
t
t

f
t

0.8
0.2
0.2
0.8

C P(C)

f
t

0.5
0.5

C R P(R, C)

f f
f t
t
t

f
t

0.4
0.1
0.1
0.4

x =

Figure 2.1: Prior probability tableP (Cloudy) (left), conditional probability table
P (Rain|Cloudy) (middle) and joint probability tableP (Rain, Cloudy) (right).

The joint probability distributionP (Vi, Vj) is a function which assigns a prob-
ability to each instantiationvi, vj. Like prior and conditional probability distribu-
tions, it can be represented in table form, in this case all entries summing to one.
Figure 2.1 shows the prior probability tableP (Cloudy), the conditional probabil-
ity tableP (Rain|Cloudy) and the joint probability tableP (Rain, Cloudy) which
computes asP (Cloudy) × P (Rain|Cloudy). The general concept of potentials
subsumes both conditional and joint probability tables in that no restriction applies
to the sum over a potential’s entries:

Definition 2.1.1 (Potential). Given a set of variablesVφ = {V1, . . . , Vm}, a
potential φ over the variablesVφ is a function that assigns some real number
φ[Vφ = vφ] ≥ 0 to each instantiationvφ of its variables. The potential hasscopeVφ

and is said tospanthe variables in its scope. A potential’ssizeSφ is the product of
its variables’ domain sizes:

Sφ =
∏

Vi∈Vφ

|DVi
|.

We use potentials in this thesis in order to prevent having todistinguish the dif-
ferent normalizations of conditional and joint probabilities. Potentials are heavily
used in the literature on junction trees (see e.g. [CDLS99]);they have also been
called factors [RN03] or simply functions [Dec96] in other areas of AI.

Every probabilistic query about a set of random variablesV can be answered
with the help of a joint probability distribution overV. The problem with joint
probability tables – or potentials in general – is that theirnumber of entries (i.e.
their size), grows exponentially in their number of variables.

Since we can neither store, nor efficiently manipulate, nor intuitively grasp the
meaning of huge potentials, a modular representation in form of smaller potentials
becomes necessary. This modularity can, for example, be achieved by organizing
the random variables in a structure called a Bayesian (belief) network [Pea88],
which we will define after the introduction of a few concepts from graph theory
that are at the core of Bayesian networks.

8 CHAPTER 2. PROBLEM STATEMENT

Definition 2.1.2 (Graph Concepts).A graphG = (V , E) is a tuple consisting of a
set of vertices or nodesV and a set of edgesE . Graphs can be directed or undirected.
In this thesis, we concentrate on the directed version, where an edgeE = (Vi, Vj) ∈
E represents a directed connection from nodeVi to nodeVj. Acyclicityof a graph
G = (V , E) means that no pathV1, . . . , Vn exists withVi ∈ V for i = 1, . . . , n,
(Vi, Vi+1) ∈ E for i = 1, . . . , n − 1, n > 1, andV1 = Vn. Theparentspa(Vi) of a
nodeVi ∈ V are the variables with direct edges toVi: pa(Vi) = {Vj ∈ V|(Vj, Vi) ∈
E}. A nodeVi’s family fam(Vi) containsVi itself and its parentspa(Vi); and its
childrench(Vi) are all nodesVi has a direct edge to:ch(Vi) = {Vj ∈ V|(Vi, Vj) ∈
E}. The set ofneighboursof a node is the union of its children and parents. The
descendantsof a variableV are – in analogy to human relationships – recursively
defined as the union of the children ofV and the children’s descendants. Finally,
theMarkov blanketmb(Vi) of a nodeVi is the union of its parents, its children and
its children’s parents inG: mb(Vi) = pa(Vi) ∪ ch(Vi) ∪ pa(ch(Vi)).

Bayesian networks use directed acyclic graphs to describe qualitative interac-
tions between a setV of random variables of interest. Each variableVi ∈ V is
associated with a node in the graphG = (V , E). For sake of a light notation, we
identify graph nodes and variables here and in the rest of thethesis, denoting the
graph directly byG = (V, E). An edgeE = (Vi, Vj) ∈ E then represents a direct
dependency of variableVj on variableVi.

Definition 2.1.3 (Bayesian Network).A Bayesian networkB is a quadruple
〈V,D,G, Φ〉, where

• V is an ordered set of random variables,

• D is an ordered set of finite domainsDVi
for eachVi ∈ V,

• G = (V, E) is a directed acyclic graph (DAG), also called the network’s
independence graph, and

• Φ is an ordered set of CPTsφVi
= P (Vi|pa(Vi)), specifying the conditional

probability distribution of eachVi ∈ V given its parents inG.

The semantic of a discrete Bayesian networkB = 〈V,D,G, Φ〉 is that it com-
pactly represents a joint probability tableφ over its variablesV in a factored way:

φ = P (V) =
∏

Vi∈V

P (Vi|pa(Vi)) =
∏

Vi∈V

φVi
.

Figure 2.2 on the next page shows the sprinkler network, a simple Bayesian
network from [RN03], part of which we used in our previousRain example. Note

2.1. BAYESIAN NETWORKS 9

C R P(R|C)

f f
f t
t
t

f
t

0.8
0.2
0.2
0.8

C P(C)

f
t

0.5
0.5

C S P(S|C)

f f
f t
t
t

f
t

0.5
0.5
0.9
0.1

Cloudy

Sprinkler Rain

Wet Grass S R P(W|S, R)

f f
f f
f
f

t
t

f
t
f
t

W

t
t
t
t

t
t

t

t

f
f

f

f

1.00
0.00
0.10
0.90
0.10
0.90
0.01
0.99

Figure 2.2: Simple Bayesian networksprinkler . Adapted from [RN03].

that the probability for the grass being wet is not directly affected by whether it is
cloudy or not; if we already know the status of variablesRainandSprinkler, learn-
ing the status of variableCloudydoes not change our belief onWet; this is because
Cloudycan only directly affect our beliefs onRainandSprinkler, but we already
know their instantiations with certainty. This characteristic is formally captured
by the concept ofconditional independence: Wet is conditionally independent of
CloudygivenRainandSprinkler.

The independence graphG of a Bayesian networkB = 〈V,D,G, Φ〉 compactly
encodes a set of conditional independence relationships amongB’s variables (see,
e.g., [RN03] for a more detailed explanation of these results):

• A random variable in a Bayesian network is conditionally independent of its
non-descendants given its parents.

• A random variable in a Bayesian network is conditionally independent of all
the other variables given its Markov Blanket.

In a Bayesian networkB = 〈V,D,G, Φ〉 the set of variables which occur to-
gether with a variableVi ∈ V in any CPTφ ∈ Φ is exactly its Markov blanket
mb(Vi). This will become important in our discussion of caching in local search

10 CHAPTER 2. PROBLEM STATEMENT

algorithms (see Chapter 6) since the effects of changing the value of a variableVi

remain local in the sense of directly affecting only the variables inmb(Vi).

2.2 The Most Probable Explanation Problem

Bayesian networks are used to represent joint probability distributions over many
variables in a compact way. Although this representation might already help re-
searchers in their work, this is not their main purpose. Rather, they are constructed
in order to answer various probabilistic queries about their variables efficiently.
They are very flexible in that they can incorporate evidence that is acquired for any
of their variables and answer questions about any subset of their variables condi-
tional on this evidence. One particular problem in Bayesian networks is to deter-
mine the most likely instantiation of all variables that is consistent with some fixed
evidence variables.

Formally, two partial variable assignmentsv1 = vi,1, . . . , vj,1 and v2 =
vk,2, . . . , vl,2 are consistentif and only if v1 andv2 agree on their shared vari-
ables.4 A variable assignmentV = v which assigns a value to all variablesVφ

of a potentialφ (i.e. Vφ ⊆ V) is consistent with exactly one instantiation ofφ’s
variables. We denoteφ’s entry for this consistent instantiation byφ[V = v]. This
is equal toφ[Vφ = vφ] wherevφ is the unique instantiation ofVφ that is consistent
with v.

Now we have the necessary ingredients to define the Most Probable Explanation
Problem formally:

Definition 2.2.1 (Most Probable Explanation Problem).Given a Bayesian net-
work B = 〈V,D,G, Φ〉 and a set of evidence variablesE = e, theMost Probable
Explanation (MPE)problem is to find an instantiationV = v with maximal proba-
bility

∏
φ∈Φ φ[V = v] over all variable instantiationsv consistent with the evidence

e.5

The MPE problem can also be defined for other graphical modelslike Markov
networks and chain graphs [CDLS99]. Basically, all that one needs is a set of vari-
ablesV and a set of potentials spanning subsets ofV. This generalization does not

4Here and in the rest of this thesis, we use bold font for sets ofvariables and variable instanti-
ations; we continue to use capital letters for variables andlower-case letters for variable instantia-
tions.

5The MPE problem has also been defined as finding the best instantiation of all non-evidence
variablesV \E given the evidenceE = e, but sinceP (V \E, e) = P (V \E, e|E = e)×P (E =
e) ∝ P (V \ E|E = e), these formulations are equivalent.

2.3. APPLICATIONS OF MPE AND SIMILAR TASKS 11

conflict with our approaches for solving the problems and allthe methods suggested
in this thesis also apply for MPE in general graphical models.

Regarding computational complexity, MPE is a hard combinatorial optimiza-
tion problem in the sense that finding the best instantiationis NP-hard. The deci-
sion version, to decide whether there exists an instantiation with probability greater
or equal to a given bound, isNP-complete [SD03].

2.3 Applications of MPE and Similar Tasks

Interesting problems in a variety of heterogeneous research areas can be modeled
as Bayesian networks, or, more generally, as graphical models. Often, the problem
at hand can then be formulated as solving the Most Probable Explanation problem
in the graphical model. We shortly cover two interesting examples for this.

At IBM Research, Fault Diagnosis in computer networks has beenrephrased as
inference in Bayesian networks [RBM02b, RBM02a]. In their model,each router,
server, or workstation can be either operational or malfunctioning, and each of these
is represented by an unobserved node in a Bayesian network. A number of routes
through the network are probed and failure or success of these probes represent the
network’s Boolean evidence variables. The probability for aprobe to succeed is
taken to be a noisy-OR of its parents in the Bayesian network, i.e. the computer
network nodes the probe had to pass. Together with prior probability distributions
for the operational status of the network nodes and a two-layer independence graph,
the Bayesian network is fully specified and finding the most likely faults is then
equivalent to solving the MPE problem.

Recently, it has been shown that an important subproblem in Protein Folding
can also be cast as finding the MPE in a graphical model [YW03]. Aprotein con-
sists of a backbone of amino acid units connected by peptide bonds. Each amino
acid unit, also calledresidue, has aside-chainattached to it. In the side-chain pre-
diction problem, the protein backbone structure is given, and for each residue, the
spatial conformation of its side-chain is to be determined.Each conformation con-
sists of a quadruple of continuous angles, which is discretized to a small number
of preferred energy conformations, so-calledrotamers, by means of a standard li-
brary. The protein’s residues then make up the variables of agraphical model with
the rotamers as possible values. The standard van der Waals energy function yields
the free energy achieved by complete assignments of rotamers to the residues and
computes as a sum of pairwise interactions between residueswhich are close in 3D
space. Denoting the interaction between two residuesi andj as a potential with
scope{i, j}, this yields a sparse graphical model with many small loops.Finding

12 CHAPTER 2. PROBLEM STATEMENT

the most probable side-chain for the fixed backbone structure is then equivalent to
solving the MPE task in this model.

Other application areas of MPE includemedical diagnosisto find a patient’s
most likely disease given some clinical findings [JJ99];probabilistic decodingto
find the most probable message transmitted over a noisy channel given the channel
output [DR03]; computer vision to calculate stereo disparities [TF03]; biological
sequence analysis to find the most likely alignment of two sequences[DEKM98].

A straightforward generalization of MPE isM -MPE [CDLS99, YW04], the
task to find theM most probable instantiations consistent with the evidence. The
algorithms we introduce for MPE in this thesis are easily generalizable toM -MPE
and perfectly set to challenge the state-of-the art for solving this problem since the
only additional complexity in generalizing our algorithmswould lie in some book-
keeping of theM best solutions found thus far. We plan to implement this in future
work.

Another generalization of MPE is theMaximum a Posteriori Hypothesis (MAP)
problem, in which the task is to compute the most probable partial instantiation of
a subsetW ⊆ V of variables, summed over all instantiations ofV \ W. Note
that the MAP assignmentW = w is not necessarily consistent with the MPE
assignmentV = v, but may have a probability considerably higher than the partial
assignment toW that is consistent withv. The novel algorithms we introduce in
this thesis can also be applied to search for a MAP assignmentW = w. However,
especially when there are many variables inV \ W, efficient methods need to be
employed to sum over all these variables in order to compute the probability of a
MAP assignment.

A problem in Bayesian networks for which we cannot apply the algorithms in-
troduced in this thesis isbelief updating, the task to compute the joint probability
distribution over arbitrary subsetsW ⊆ V of variables given evidenceE = e.
High performing SLS algorithms are generally not suitable to compute unbiased
probability distributions since for optimization problems like MPE, they usually
strive to predominantly sample very high-quality solutions. Thus, if used in a
sampling-based approximation they will always yield highly biased estimates. Un-
biased approaches like Stochastic Simulation [Pea88] perform well for this kind of
tasks, but show extremely weak performance for optimization problems (cf. Sec-
tion 4.1 on page 25).

2.4. BENCHMARK INSTANCES 13

2.4 Benchmark Instances

In order to evaluate our approaches for solving the MPE problem and to compare
them to previous algorithms, we created various sets of problem instances.

Firstly, we use a set of real-world instances,bnrep , from the Bayesian net-
work repository6. We employbnrep for our experimental analysis since it is
the closest to a standard benchmark set among all sets of MPE problem instances
researchers use to evaluate their algorithms, and since it comprises real-world in-
stances of heterogeneous problem domains. Many other typesof networks have
been used for experimental analysis. Amongst those are networks from medical di-
agnosis [Hec90], protein folding [YW03, YW04], networks fromfault diagnosis in
computer networks [RBM02a], and coding networks (see, eg, [DR03]).7 A priori,
it is not clear that the insights gained for some of these domains carry over to do-
mains with fundamentally different characteristics; we plan to study this in future
work by applying our algorithms to networks in a variety of the aforementioned
areas.

As a first step, in this thesis, we systematically study the impact single net-
work characteristics have on problem hardness for the various algorithms. We
control these characteristics by generating appropriate networks with BNGenera-
tor [IC02, IC03], a tool which creates random Bayesian networkswith a predefined
number of variables and constraints on maximal domain size,degree, and induced
width of the network’s independence graph. In Chapter 9, we perform scaling stud-
ies with sets of random networks in which only one of these parameters changes
at a time. In separate experiments, we study the impact of a network’s number
of variables, its maximal domain size, degree, and induced width of the network’s
independence graph. In order to be able to relate these scaling studies to the re-
sults on problem setbnrep , we perform the same experiments as carried out on
bnrep on a representative set of randomly generated instances which we refer to
as problem setgen .

We denote networks frombnrep by their name in the repository, for example
mildew . For the networks ingen , we put all constraints used for their generation
into their name; e.g., networkz100v3d5iw5 denotes a network with100 vari-

6http://www.cs.huji.ac.il/labs/compbio/Repository/
7Unfortunately, many MPE problem instances are not freely available. Also, often random MPE

instances are newly generated on the fly for each experiment from a probability distribution. While
on the positive side this allows the researcher to focus on distributions of problem instances rather
than on just a few instances, it also much complicates the comparison of results. Another point that
complicates comparison is that there exists an abundance offormats for Bayesian networks. One
can only hope that some standard format like for example the Bayesian interchange format will
displace the other formats someday.

14 CHAPTER 2. PROBLEM STATEMENT

ables, maximal domain size3, maximal degree5 and maximal induced width5.
All networks ingen have maximal degree5, but vary in their number of variables
z, their maximal domain sizev, and their maximal induced widthiw. Problem set
gen contains exactly one instance for each combination ofz ∈ {100, 200, 400},
v ∈ {3, 6}, andiw ∈ {10, 20}. In Table 2.1 on the next page and Table 2.2 on
page 16, we give an overview of several instance characteristics for all instances
in problem setsbnrep and gen , respectively. Note that column “Min-Degree
Width” in these tables gives the induced width as computed byour implementation
of the Anytime Mini-Buckets algorithms described later in Section 4.3 on page 32.
For the generated instances in problem setgen , this width in some cases grows
slightly larger than the constraint on induced width used for its generation. We
attribute this to a different tie-breaking in otherwise equivalent algorithms for com-
puting the induced width.8

For each network inbnrep , we consider the original network as well as a
network with the original independence graph but randomly sampled CPTs. We
denote these modified variants by attaching-rand to the network’s name. For the
networks ingen , we either use random CPTs (attaching-rand to the name) or,
in order to approximate quantitative structure, sample theCPTs from the original
networks inbnrep (in this case attaching-struc to the network name). In order
to sample the CPTφVi

for a variableVi with domain sizex, we independently sam-
ple the 1-dimensional probability distributionsP (Vi|pa(Vi)) for each instantiation
of pa(Vi). We call such a 1-dimensional probability distribution arow of φVi

. Each
such row is sampled uniformly from all rows of the CPTsφV of all variablesV
with domain sizex in all original networks ofbnrep .

Problem instances for MPE are created for each of the aforementioned Bayesian
networks by topologically sampling all the network’s variables given their parents
and then fixing 10 of these sampled variables as evidence. This procedure guaran-
tees the evidence to be strictly positive.

Having introduced the MPE problem and the instances we employ for our ex-
perimental evaluation, in the next Chapter we move on to describe our favourite
approach for solving the MPE problem, namely Stochastic Local Search methods.

8Note that computing the exact induced width of a graph is anNP-hard problem [Dec96].
Because of this, BNGenerator [IC03] uses the min-degree heuristic to generate an ordering, the
induced width along which is used as an upper bound on the actual induced width. The min-degree
heuristic greedily constructs an ordering by iteratively removing the graph’s node with minimal
degree, connecting all neighbours of a node when it is removed. Although our implementation
employs the min-degree heuristic to generate an ordering aswell, it is not guaranteed to yield
identical results. This is because frequently during the construction, there are several nodes with
equal minimal degree, and the algorithms may differ in theirtie-breaking mechanism.

2.4. BENCHMARK INSTANCES 15

N Dom size VV CPT size Pot. entries Degree MB size
Min-degree

Instance Width Size

alarm 27
2.84(0.73)

79
20.32(27.46)

549
2.49(1.35) 4.51(2.08)

4 8.10e+01
[2, 4] [2, 108] [1, 6] [2, 9]

barley 38
8.77(9.05)

343
2712.08(7498.15)

1.03e+05
3.50(1.76) 6.25(2.81)

6 3.01e+05
[2, 67] [2, 40320] [1, 8] [3, 14]

diabetes 403
11.34(5.88)

4543
1116.39(1683.48)

4.5e+05
2.92(1.71) 4.97(2.65)

6 8.58e+07
[3, 21] [5, 7056] [1, 24] [3, 49]

hailfinder 46
3.98(1.72)

185
66.80(164.69)

3073
2.36(2.40) 4.54(2.70)

5 1.33e+03
[2, 11] [3, 1188] [1, 17] [2, 18]

insurance 17
3.30(0.99)

55
52.56(53.31)

894
3.85(2.03) 6.19(2.54)

3 1.25e+02
[2, 5] [3, 200] [1, 9] [2, 11]

link 714
2.53(0.83)

1806
28.32(44.63)

20219
3.11(2.49) 5.80(4.40)

20 2.75e+11
[2, 4] [2, 128] [0, 17] [1, 32]

mildew 25
17.60(27.01)

262
15633.09(57395.13)

3.91e+05
2.63(1.54) 5.57(2.05)

4 1.60e+05
[3, 100] [3, 280000] [1, 5] [2, 10]

munin1 179
5.26(3.59)

960
102.99(122.70)

18437
2.98(2.26) 4.87(2.75)

11 6.05e+07
[1, 21] [2, 600] [1, 15] [2, 19]

munin2 993
5.36(3.67)

5335
83.67(112.24)

83084
2.48(2.00) 4.31(2.29)

8 5.76e+06
[2, 21] [2, 600] [1, 30] [2, 31]

munin3 1034
5.37(3.67)

5554
82.24(106.18)

85033
2.52(3.17) 4.34(3.44)

8 5.76e+06
[1, 21] [2, 600] [1, 69] [2, 74]

munin4 1031
5.43(3.64)

5567
94.32(115.81)

97240
2.68(3.12) 4.54(3.45)

9 4.04e+07
[1, 21] [2, 600] [1, 69] [2, 74]

pigs 431
3.00(0.00)

1293
19.11(11.29)

8236
2.68(2.57) 4.66(4.10)

12 5.31e+05
[3, 3] [3, 27] [1, 41] [3, 69]

water 22
3.62(0.49)

79
421.38(894.70)

9271
4.12(1.90) 8.69(3.62)

9 6.55e+04
[3, 4] [3, 3072] [1, 8] [2, 14]

Table 2.1: Characteristics of instances in problem setbnrep . “Dom size”, “CPT
size”, “Degree”, and “MB size” summarize characteristics of all variables or po-
tentials. Their format is average(standard deviation) in the first row and [minimum,
maximum] in the second row. “N” denotes the number of non-evidence variables
(we always use 10 variables as evidence); “Dom size” the variables’ domain sizes;
“VV” the total number of variable-value pairs

∑
V ∈V

|DV |; “CPT size” the sizes
of the CPTs; “Pot. entries” the total number of potential entries; “Degree” the
variables’ degree in the independence graph; “MB size” the size of the variables’
Markov blanket; and “Min-degree” “Width” and “Size” the induced width and size
along the min-degree ordering.

16 CHAPTER 2. PROBLEM STATEMENT

N Dom size VV CPT size Pot. entries Degree MB size
Min-degree

Instance Width Size

z100v3d5iw10 90
2.57(0.50)

229
42.70(73.91)

3843
4.34(0.81) 8.86(3.21)

10 5.90e+04
[2, 3] [2, 486] [2, 5] [3, 17]

z100v3d5iw20 90
2.57(0.50)

233
44.84(68.27)

4036
4.46(0.67) 9.32(3.14)

18 1.29e+08
[2, 3] [2, 486] [3, 5] [4, 16]

z100v6d5iw10 90
3.86(1.32)

344
488.25(1487.03)

43943
4.38(0.83) 9.22(3.06)

13 1.31e+10
[2, 6] [2, 8640] [2, 5] [3, 17]

z100v6d5iw20 90
4.12(1.42)

372
524.59(948.13)

47214
4.66(0.55) 10.16(3.48)

20 6.09e+14
[2, 6] [2, 4500] [3, 5] [5, 18]

z200v3d5iw10 190
2.54(0.50)

483
44.66(77.11)

8485
4.41(0.83) 9.08(3.24)

12 5.31e+05
[2, 3] [2, 486] [2, 5] [3, 18]

z200v3d5iw20 190
2.53(0.50)

479
40.27(55.96)

7653
4.47(0.74) 9.26(2.97)

20 3.49e+09
[2, 3] [2, 486] [2, 5] [3, 17]

z200v6d5iw10 190
4.08(1.48)

781
533.34(1723.32)

1.01e+05
4.41(0.83) 9.08(3.24)

12 2.18e+09
[2, 6] [2, 18000] [2, 5] [3, 18]

z200v6d5iw20 190
4.08(1.35)

777
344.08(1229.81)

65376
4.25(0.97) 8.45(2.99)

22 3.66e+15
[2, 6] [3, 12960] [1, 5] [3, 17]

z400v3d5iw10 390
2.48(0.50)

965
22.12(33.98)

8627
3.66(1.21) 6.82(2.87)

15 1.59e+06
[2, 3] [2, 324] [1, 5] [2, 16]

z400v3d5iw20 390
2.49(0.50)

969
23.36(33.89)

9112
3.80(1.21) 7.20(3.09)

20 3.49e+09
[2, 3] [2, 324] [1, 5] [2, 17]

z400v6d5iw10 390
4.11(1.39)

1604
155.89(340.11)

60798
3.64(1.21) 6.78(2.90)

14 2.18e+09
[2, 6] [2, 3240] [1, 5] [2, 15]

z400v6d5iw20 390
3.89(1.44)

1509
145.13(506.13)

56602
3.57(1.27) 6.71(3.06)

24 7.90e+17
[2, 6] [2, 7776] [1, 5] [2, 17]

Table 2.2: Characteristics of instances in problem setgen . “Dom size”, “CPT
size”, “Degree”, and “MB size” summarize characteristics of all variables or po-
tentials. Their format is average(standard deviation) in the first row and [minimum,
maximum] in the second row. “N” denotes the number of non-evidence variables
(we always use 10 variables as evidence); “Dom size” the variables’ domain sizes;
“VV” the total number of variable-value pairs

∑
V ∈V

|DV |; “CPT size” the sizes
of the CPTs; “Pot. entries” the total number of potential entries; “Degree” the
variables’ degree in the independence graph; “MB size” the size of the variables’
Markov blanket; and “Min-degree” “Width” and “Size” the induced width and size
along the min-degree ordering.

Chapter 3

Stochastic Local Search

In this chapter, we define the basic concepts of Stochastic Local Search (SLS) in
general and for the Most Probable Explanation Problem in particular. The general
part is based on the recent book [HS04], where much more details, applications
and valuable insights for the development and analysis of SLS algorithms can be
found.

3.1 Combinatorial Problems

Combinatorial problems, such as finding assignments of discrete values to a fi-
nite set of objects, or finding groupings or orderings of objects, arise in a variety
of fields, amongst others artificial intelligence, operations research, and bioinfor-
matics [HS04, LMS02, AFH+04]. In this chapter, next to MPE we use two very
prominent examples of combinatorial problems to illustrate the concepts we in-
troduce. In thepropositional satisfiability (SAT)problem, one is asked to assign
truth values to each variable in a finite set of Boolean variables, such that a given
propositional formula involving these variables evaluates to true; in thetraveling
salesperson problem (TSP), the task is to find a shortest round-trip visiting each
of a finite set of cities exactly once. The TSP is an example fora combinatorial
optimizationproblem as – next to the hard constraint of visiting each cityexactly
once – one strives tominimizethe total length of the round-trip.

Many combinatorial problems including MPE, SAT, and TSP arecomputation-
ally hard, meaning that no algorithms are known to date whichscale subexponen-
tially with problem size in the worst case. Like MPE, SAT and TSP areNP-hard,
i.e., they are at least as hard as any problem in the complexity classNP. This class
consists of all problems which are solvable on anondeterministicTuring machine
in a time polynomial in the problem size. However, a nondeterministic Turing ma-

17

18 CHAPTER 3. STOCHASTIC LOCAL SEARCH

chine is a fictitious construct that can so far only be simulated with exponential
overhead on current computer architectures. ForNP-hard problems, no exact de-
terministic algorithm is known to date which solves all possible problem instances
in time less than exponential in the instance size. It is alsoassumed by many re-
searchers that such an algorithm can not exist in the first place since this would
imply the equivalence of complexity classesNP andP, whereP consists of all
problems that are solvable on adeterministicTuring machine in time polynomial in
the problem size. The deterministic Turing machine is a construct equivalent to cur-
rent programming languages in power, and it is assumed that the nondeterministic
Turing machine is essentially more powerful.

One can distinguish two variants of combinatorial problems: thedecision vari-
ant, in which one is only asked to decide whether a solution exists or not; and the
search variant, which is to actually find a solution. For combinatorial optimization
problems like MPE and TSP, the decision variant is defined as deciding whether a
solution of a givenquality (probability or tour length, respectively) exists. Thede-
cision versionsof SAT, TSP, and MPE areNP-complete, which means that these
problems are members ofNP and they areNP-hard.

TheNP-hardness of problems like SAT, TSP, and MPE does not mean that
these problems are not solvable in practice. On the contrary, many successful algo-
rithms have been developed for these problems [SLM92, ZS00,HTH02, LMS02,
Dec96, KD99a, RN03]. This means that the general worst case result for the
whole class of possible instances of a problem does not necessarily apply for cer-
tain tractable subclasses. For MPE, this tractable subclass for example comprises
Bayesian networks with lowinduced width, a measure introduced later in Defini-
tion 4.2.1 on page 27. If a problem instance is at hand which can not efficiently be
solved by current algorithms, one might settle for an approximate suboptimal solu-
tion. Alternatively, Stochastic Local Search (SLS) algorithms can often be applied
with great success. They have been shown to be very efficient on a great variety of
combinatorial problems in such heterogeneous domains as SAT [SLM92, HTH02],
weighted Max-SAT [MT00, SHS03], TSP [LK73, ACR03, JM02], graph colour-
ing [PS02], scheduling [dBSD01], RNA secondary structure design [AFH+04] and
protein folding [SAHH02].

3.2 Basic Concepts of Stochastic Local Search

During the search for the optimal solution to a combinatorial problem, we may
evaluate a lot of potential solutions, also calledcandidate solutions. These consist
of combinations ofsolution componentslike instantiations of certain variables in

3.2. BASIC CONCEPTS OF STOCHASTIC LOCAL SEARCH 19

SAT and MPE or adjacency relationsships of particular cities in the sequence of
cities describing a TSP round-trip. The definition of candidate solutions depends
on the particular approach to search. In a local search that only evaluates complete
assignments, we would define the candidate solutions to be all completevariable in-
stantiations, whereas in a backtracking search for SAT these are rarely encountered
andpartial variable assignments would be used as candidate solutions instead.

Thesearch spaceconsists of all possible candidate solutions. It usually grows
exponentially with problem size, and the task of SLS algorithms is to move through
this huge search space using only local information for the decisions about their tra-
jectories. More specifically, SLS algorithms work by starting the search from some
initial candidate solution and iteratively moving throughthe search space by going
from a candidate solution to a neighbouring candidate solution. This neighbour-
hood of a candidate solution can be defined arbitrarily, but in most applications,
a k-exchange neighbourhoodis used which simply means that two neighbour-
ing solutions may differ in at mostk solution components. For SAT and MPE,
the 1-exchange neighbourhood is prominently used, whereasin the TSP 2- and 3-
exchange neighbourhoods yield better performance. From the SAT domain stems
the expressionvariable flip for a 1-exchange move and we will adopt the term for
the MPE domain.

SLS algorithms do not tumble through the search space completely blindfolded.
Instead, they employ an evaluation function offering some guidance. In most SLS
algorithms, the evaluation function is simply taken to be the objective function.1

In the TSP, the evaluation function to be minimized is usually just the tour length,
given that the sequence of cities described by the adjacencyrelationships is indeed
a roundtrip visiting each city exactly once.

In SAT, where the propositional formulaF usually is a conjunction of disjunc-
tions (i.e.F =

∧
i

∨ni

j=1 lij), the most prominent evaluation function is the number
of unsatisfied disjunctions, orclauses, which needs to be minimized. Note that this
is equivalent tomaximizingthe number ofsatisfiedclauses. In MPE, the objective
function to be maximized over all assignmentsv consistent with some evidencee
is the probability

∏
φ∈Φ φ[V = v]. As an evaluation function either this function

is applied directly, or, for various reasons detailed in Section 3.6 on page 24, its
logarithm is used.

The most basic local search method, calledbest improvementor greedy descent,
simply determines the evaluation function value for all itsneighbours and always

1However, there is a very promising subclass of SLS algorithms which dynamically changes the
evaluation function, taking into account the search trajectory. We call algorithms in this subclass
Dynamic Local Search algorithms and formulate the general approach in Algorithm scheme 3.1 on
page 21.

20 CHAPTER 3. STOCHASTIC LOCAL SEARCH

moves to the neighbour with the best evaluation function value. This results in a
usually rapid improvement that ends in alocal optimum, a candidate solution which
does not have a neighbour with better evaluation function value. If no special action
is taken to drive the search away from a local optimum, best improvement will be
stuck in it forever, although its objective function value might be much inferior to
that of the global optimum. This is a form ofsearch stagnation, and research in
SLS algorithms has come up with many approaches to prevent it; we will cover a
few of these in the next Section.

3.3 Escaping from Local Minima

While it is usually not a problem in SLS algorithms to reach local optima quickly,
the key question is how to make the search explore the whole search space but
still keep a strong bias towards regions with good objectivefunction value. In most
applications, this can be achieved by a good balance betweenintensificationphases,
in which the search is guided by an evaluation function strongly resembling the
objective function, anddiversificationphases which help explore the search space.

Remarkably good results can already be obtained by restarting the search once
a local optimum is reached, or – even much better – by introducing occasional
random moves, also callednoise, into an otherwise greedy search. Simple yet
effective these techniques have made the first generation ofSLS algorithms for
SAT improve the state-of-the-art in SAT solving at the time of their develop-
ment [SLM92, SKC94].

Another more recent development is based on augmenting the objective func-
tion used for guiding the local search. This type of algorithm has been called
Dynamic Local Search (DLS)[HTH02, HS04], as the function used for evaluat-
ing candidate solutions changes dynamically during the search; the basic outline
of DLS algorithms is given in Algorithm scheme 3.1 on the nextpage. For SAT
solving, the tradition of DLS algorithms dates back to the Breakout method devel-
oped in 1993 [Mor93] and since then DLS algorithms have reached and became
the state-of-the-art [MT00, HTH02].

Iterated Local Search (ILS)[SH01] is a general framework for achieving high
coverage of the search space as well as intensified search in local optima regions.
ILS algorithms are especially often used in the TSP domain and other domains
prominent in Operations Research [dBSD01, LMS02], but one ILSalgorithm is
also amongst the best-performing algorithms for Max-SAT [SHS03]. Algorithm
scheme 3.2 on the facing page describes the general ILS framework, consisting of
four adaptable components. The search is initialized either randomly or by some

3.3. ESCAPING FROM LOCAL MINIMA 21

Algorithm scheme 3.1: Dynamic Local Search

s ← GenerateInitialSolution1

eval ← Initial evaluation function2

while Not TerminationCriterion()do3

if s is local optimum ofeval then4

eval ← Modify(eval)5

else6

s ← Best improvement(s, eval)7

Algorithm scheme 3.2: Iterated Local Search

s0 ← GenerateInitialSolution8

s∗ ← LocalSearch(s0)9

while Not TerminationCriterion()do10

s′ ← Pertubation(s∗, history)11

s∗′ ← LocalSearch(s′)12

s∗ ← AcceptanceCriterion(s∗, s∗′, history)13

heuristic, followed by a basic local search. Following this, a number ofiterations
are performed, where an iteration consists of changing somesolution components
of the current candidate solution (Pertubation), followed by a local search and the
decision to keep or reject the newly obtained candidate solution (AcceptanceCrite-
rion).

For LocalSearch, in principle any local search can be used, such that one can
turn any local search algorithm into an ILS algorithm by plugging it into the frame-
work and defining the other ILS operations.Pertubationis best designed to achieve
a diversification of the search, ending up in a different local optima region after
applying a local search to the perturbed candidate solution. AcceptanceCriterion
decides upon the usefulness of the newly obtained candidatesolution, where candi-
date solutions with better objective function value than the last one are considered
useful; but also worse new candidates can be useful in order to prevent search stag-
nation. An extreme yet possible way to make the algorithm explore completely
different regions of the search space is to perform a random restart in the accep-
tance criterion.

22 CHAPTER 3. STOCHASTIC LOCAL SEARCH

3.4 Caching: Exploiting Local Computations to Im-
prove Efficiency

One of the most important reasons for the success of local search is that it is simply
really fast. In many applications, hundreds of thousands ofsearch steps can be
performed per second, making a good coverage of huge search spaces possible in
the first place. This speed is to a large part due to only using local information to
decide about the next search step. Very often, the evaluation function computes as
a sum or product only few terms of which are altered by changing a small number
of solution components. Thus, often the evaluation of a neighbour of a candidate
solutions can be done much faster if one knows the evaluation function value of
s.2

Take as an example a 1-exchange neighbourhood for SAT. There, one changes
the truth value of a single variablevi at a time. This can only effect the satisfaction
status of the clauses containingvi, such that the evaluation of flippingvi can be
done locally by only inspecting all clauses that containvi. Going one step further,
one can memorize the number of clauses satisfied and unsatisfied by the flip of
variablevi since this information only changes when a variablevj is flipped that
shares a clause withvi.3 This way, the evaluation of a neighbouring candidate
solution can be done in constant time by just subtracting thememorized number of
clauses a variable flip unsatisfies from the number it satisfies. Finally, one can then
cache the variables yielding an improvement in the number ofsatisfied clauses,
bringing the time for evaluation of the whole neighbourhooddown to a constant
in practice since after an initial search phase typically only few variables yield an
improvement when flipped. In Chapter 6, we will develop novel caching schemes
for MPE which closely resemble the ones described here for SAT.

For some domains, no efficient caching of the evaluation function is pos-
sible. One example for this is the problem of RNA Secondary Structure De-
sign [AFH+04], where the objective function to be minimized is the secondary
structure’s free energy, computed by a dynamic programmingalgorithm of com-
plexity Θ(n3). Due to the non-applicability of caching in this domain, other means
of complexity reduction must be found. In [AFH+04], a hierarchical decompo-
sition of the RNA strand of lengthn into smaller strands of lengthm is applied,

2In fact, for many SLS algorithms, one does not even need to keep track of the current evaluation
function value. This is because all decisions about the search step to take from candidate solutions
are based only on the differences in evaluation function value ofs and its neighbours.

3These quantities have also been called the make-count and break-count of a variable. For more
details on the efficient implementation of SAT algorithms, see [Hoo98].

3.5. SYSTEMATIC VERSUS LOCAL SEARCH 23

decreasing the complexity of single search steps fromn3 to m3.4

3.5 Systematic versus Local Search

SLS algorithms areincompletealgorithms, meaning they are not guaranteed to find
the optimal solution to a given problem in finite time, and if they find it, they
typically cannot proove its optimality.5 Completealgorithms, such as Branch-and-
Bound (BnB), are more powerful in principle since they can achieve the desirable
situation of finding a solution which they can proof to be optimal. More speci-
fically, we call an algorithm complete if and only if it is guaranteed to terminate
with the correct solution in finite time when given enough space. For randomized
algorithms, there exists a weaker notion of completeness: we call an algorithmA
probabilistically approximately complete (PAC)[Hoo99] if and only if the proba-
bility thatA finds the optimal solution approaches1 as time goes to infinity.

Research in SLS algorithms is sometimes obstructed by the fact that one does
not know when the optimal solution has been found unless there exist tight up-
per bounds on solution quality. However, the drawback of incompleteness is less
pronounced in practice, where time and space constraints often render systematic
algorithms incomplete as well. Moreover, systematic approaches like BnB exten-
sively cover the parts of the search space they explore, while incomplete SLS algo-
rithms usually explore larger parts of the search space muchearlier. The small parts
of the search space explored by systematic algorithms may not contain very good
solutions, which can lead to very long runtimes to find solutions with a given not
even optimal quality; SLS typically find such solutions muchfaster [HS04]. This
desirable feature of providing good solutions throughout the search clearly speaks
for the usage of SLS algorithms in anytime scenarios, in which algorithms are only
alloted a previously undefined runtime.

Another drawback which is often criticized with SLS algorithms is that the ran-
dom components and sometimes complicated heuristics make atheoretical analysis
hard. However, on the positive side, the heavy randomization allows a straight-
forward parallelization of SLS algorithms; the analysis ofso-called run-time dis-
tributions [HS99] suggests that performingN independent runs of a strong SLS
algorithmA on a hard problem instanceI results in an expected solution time of
the N -th part ofA’s original expected solution time (unless N is very large, and
initial search cost starts to skew the picture).

4Of course, this hierarchical decomposition does not come for free. The catch is that there is no
guarantee for two good substrands to yield a good longer strand when merged together.

5An exception to this are SLS algorithms for decision problems like SAT, where if one finds a
variable instantiation satisfying all clauses, this is proovably optimal.

24 CHAPTER 3. STOCHASTIC LOCAL SEARCH

3.6 MPE-Specific Issues of SLS

SLS algorithms can be applied to the Most Probable Explanation problem in a
very straight-forward way. In this domain, the search spaceof candidate solutions
consists of all complete variable instantiationsV = v that are consistent with the
evidenceE = e, and we want to maximize the probability

∏
φ∈Φ φ[V = v] over

the assignmentsv consistent withe. Since this product may become very small
(10−500 for extreme problems), algorithms usually employ the log-probability of an
assignment as an evaluation function to guide the local search. The log-probability
computes as the sum of single log-probabilities

∑
φ∈Φ log(φ[V = v]), and if at

least one of the probabilitiesφ[V = v] is zero, it is−∞. Using this measure
as an evaluation function would create unsolvable problemsfor SLS algorithms
since in the initial variable assignment typically quite a large number of the single
probabilities are zero; all candidate solutions in the neighbourhood then had equal
evaluation function value−∞, such that the local search effectively became blind-
folded and at best performed a simple random walk. We preventthis undesirable
behaviour by a simple means: instead of using−∞ for a single log-probability of
probability zero, we use−10000, which dominates the summed log-probabilities
for all instances we consider in this thesis. Effectively, this makes the local search
remove any zero probabilities first, still using the other log-probabilities to break
ties.

In terms of notation, we useV = v|Vi = vi to denote the variable instantiation
V = v with the single variableVi flipped tovi. WhenV = v is the current variable
instantiation,

∏
φ∈Φ φ[V = v|Vi = vi] denotes the probability of the neighbouring

instantiation reached by flippingVi to vi.

Chapter 4

Existing Algorithms for the MPE
Problem

This chapter summarizes previous algorithms for solving the MPE problem. We
start with previous SLS algorithms and Mini-Bucket elimination that are both very
important for our work. Then, we introduce the complete algorithms based on
Mini-Buckets we compare against and finally shortly cover other algorithms we do
not compare against.

4.1 Stochastic Local Search

Probably the most prominent Stochastic Local Search algorithm for inference in
Bayesian networks is a method calledStochastic Simulation[Pea88, KD99b]. This
Markov Chain Monte Carlo (MCMC) algorithm starts by randomly initializing the
Bayesian network’s variablesV and then continues to sample variablesVi accord-
ing to the probability distributionP (Vi|V \ {Vi}), i.e. given the current instantia-
tion of all the other variables. After every variable flip, the current assignment is
recorded. This approach has the property of beingunbiased, meaning that the dis-
tribution of recorded assignments converges to the Bayesiannetwork’s joint proba-
bility distribution in the limit of infinitely many variableflips. However, the perfor-
mance of this approach for MPE is much inferior to that of other SLS approaches;
this is because for optimization problems like MPE, one doesnot wish for algo-
rithms to be unbiased, but instead requires a strong bias towards good solutions.

A related approach isSimulated Annealing[KGV83, KD99b], another MCMC
algorithm which accepts the flip of a particular variable if the resulting instantia-
tion is better in the sense of having higher probability in the Bayesian network;
otherwise, the new instantiation is accepted with a probability that depends on how

25

26 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

much worse it is and on a parameter called thetemperature. Inspired by annealing
processes in nature as they occur in the formation of crystals, this temperature starts
off high and decreases over time such that in the beginning ofa local search almost
any variable flip is accepted and later in the process almost no worsening variable
flip is accepted anymore. Thus, the search settles in a local optimum which is
sometimes praised in the Machine Learning community as the aspired property of
convergence. In optimization problems, however, this property is far from wanted.
It is a form ofsearch stagnationand prevents an escape from the local optimum to
seek for new better local optima. Unlike in nature, computational processes have
the ability to save a promising state and move on to find betterstates without the
risk of loosing the current one. Concerning the performance of Simulated Anneal-
ing, it has been found that with alternating temperature levels, quite good local
search algorithms can be constructed. These start off with ahigh temperature, cool
down slowly, settle in a local optima region and then increase the temperature again
to escape the local optima region [HKT95, HS04].

The main difference we see between the MCMC algorithms introduced above
and current Stochastic Local Search algorithms is the problem they focus on. While
MCMC algorithms have traditionally been developed for sampling or estimation of
probabilities, SLS algorithms focus on optimization. In many areas of study, in
which researchers frequently use MCMC algorithms, optimization problems are
also of interest; thus, MCMC algorithms have also been applied for solving them.
SLS algorithms can in turn also be applied to sampling, but for classical optimiza-
tion problems such as SAT and TSP, only very seldomly there isinterest in unbi-
ased samples of the search space. Biased sampling, on the other hand, is applied in
search space analysis for optimization problems in order tocharacterize, e.g., the
average distance between local optima in the search space.1

For optimization problems, more greedy SLS algorithms are generally suited
much better than simple MCMC algorithms. For the MPE problem,this was
shown only in 1999 when Kalev Kask and Rina Dechter [KD99b] introduced
the first explicit SLS algorithm for MPE. NamedGreedy plus Stochastic Simula-
tion (G+StS), their approach is a simple hybrid of best improvement variable flips
in a 1-exchange neighbourhood and Stochastic Simulation steps; in their empirical
evaluation, G+StS clearly outperformed Stochastic Simulation, Simulated Anneal-
ing, and a purely greedy algorithm. They also found that goodinitial solutions, in

1Since both MCMC and SLS algorithms can be applied to samplingand optimization, the ques-
tion of their generality arises. Since SLS algorithms allowfor a more powerful set of techniques
such as various initializations and dynamic changes of the evaluation function, we tend to see them
as a superclass of MCMC algorithms. All the MCMC algorithms for MPE covered here are very
simple SLS algorithms.

4.2. BUCKET ELIMINATION AND MINI BUCKETS 27

this case gathered with the approximate Mini-Buckets algorithm (cf. Section 4.2),
can boost G+StS considerably, an effect found for many SLS algorithms in a variety
of problem domains [HS04].

In 2002, James Park described a reduction from MPE to Max-SAT[Par02].
This opens the possibility to simply encode MPE problems into Max-SAT and
use available optimized Max-SAT solvers to find the best solution. However, in-
stead of using this approach, Park presented MPE versions oftwo well-performing
Dynamic Local Search algorithms for MAX-SAT, namelyDiscrete Lagrangian
Method (DLM)[SW97] andGuided Local Search (GLS)[MT00]. In an empiri-
cal evaluation, these algorithms outperformed G+StS, withGLS yielding mostly
better results than DLM. To our best knowledge, the direct approach of using Max-
SAT engines has thus far not been implemented. In preliminary experiments we
conducted together with Kevin Smyth at the University of British Columbia, an
Iterated Robust Tabu Search [SHS03] did not show very strong performance on
Max-SAT encodings of MPE problems. This may be overcome by a thorrow pa-
rameter tuning, but due to time constraints, we did not pursue these studies furhter.

4.2 Bucket Elimination and Mini Buckets

Bucket Elimination [Dec96] is a general algorithmic framework generalizing dy-
namic programming to accommodate algorithms for SAT, constraint satisfaction
problems, linear equalities and inequalities, combinatorial optimization and last
but not least probabilistic reasoning. Bucket Elimination algorithms are exact, and
their performance on a given problem can be predicted by a measure for graph
complexity called theinduced widthor a new measure we callinduced size2:

Definition 4.2.1 (Additional Graph Concepts). An ordering o of a graphG =
(V, E) is an orderingVo1

, . . . , Von
of G’s nodesV. Thewidth of a nodeV ∈ V

is the number of its neighbours preceding it ino and itssizeis the product of the
domain sizes of these neighbours. Theinduced widthw∗(G, o) and theinduced
sizes∗(G, o) of a graphG along an orderingo are defined in a constructive way:
process the nodesV ∈ V from Von

to Vo1
, connecting all ofV ’s neighbours in

G that precedeV in o; w∗(G, o) is then defined as the maximal width amongG’s
variables, ands∗(G, o) as the maximal size. Theinduced widthw∗(G) of a graph
G is its minimal induced width along any ordering of its nodesV, and theinduced
sizes∗(G) is the minimal induced size.

2We actually do not expect that this measure is new; probably,at least a similar measure already
exists somewhere in the literature. However, we did not find any mention of it.

28 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

Bucket Elimination has time- and space-complexity exponential in the graph’s
induced width and can thus only be applied to relatively sparse graphs with low
induced width. Of more interest to us is an approximative variant of Bucket
Elimination that can be applied to networks with arbitrary induced width;Mini-
Buckets[DR03] can approximate probabilistic inference tasks such as MPE, MAP
and belief updating (cf. Section 2.3 on page 11) in arbitraryBayesian networks.
In the following, we introduce the Bucket Elimination (BE) algorithm for MPE; a
small modification will then yield the Mini Buckets (MB) algorithm.

The MPE problem, as introduced in Section 2.2 on page 10, is tofind an in-
stantiationV = v with maximal probability

∏
φ∈Φ φ[V = v] over all variable in-

stantiationsv consistent with the evidencee. BE (see Algorithm 4.1 on the facing
page) maximizes this product by re-arrangement of the terms. Given an ordering
Vo1

, . . . , Von
, it first partitions the potentialsφ ∈ Φ into so-calledbuckets, putting

each potentialφ into the bucketBV of the variableV ∈ Vφ which appears last in
the ordering. We call this bucketφ’s highest possiblebucket.

Next, BE processes the buckets from last to first in the ordering. If variableV
is an evidence variable,V is removed from all potentials inBV only keeping the
entries withV ’s correct instantiation; then, each potentialφ ∈ BV is put into its
highest possible bucket (see lines 4-6 of Algorithm 4.1 on the next page). IfV is
not an evidence variable, a max-product-operation is performed for the potentials
ΦBV

contained inBV . This max-product-operation yields a potentialφm with scope
Vφm

=
⋃

φ∈ΦBV

\{V } andφm[Vφm
= vφm

] = maxV

∏
φ∈ΦBV

φ[Vφm
= vφm

]; φm is
then put into its highest possible bucket (lines 8-9). Afterthis phase, the optimal
MPE value can be retrieved by computingmax-product(Vo1

, ΦBV1
).

The last step in BE processes the buckets from first to last. If variableV in
bucketBV is an evidence variable, its observed valuev is assigned toV . Otherwise,
the MPE valuev is assigned toV that maximizes the product of all potentials inBV

given the instantiations of variables precedingV in the ordering. It can be shown
that this procedure results in the correct MPE assignmentV = v [Dec96].

The resource-critical phase in BE is its second step, processing the buckets from
last to first, building larger and larger potentials with consecutive max-product op-
erations. Bucket Elimination on graphG along orderingo builds at least one po-
tential withw∗(G, o) variables and sizes∗(G, o). This is responsible for BE’s ex-
ponential time- and space-complexity, since potentials are exponentially large in
their number of variables (cf. Definition 2.1.1 on page 7). Mini Bucket Elim-
ination (MB) [DR03] solves this problem by bounding the maximal number of
variablesib per potential. Higher values for thisi-boundyield better approxima-
tions but higher computational complexity, and ifib exceeds the network’s induced
width, MB is equivalent to BE.

4.2. BUCKET ELIMINATION AND MINI BUCKETS 29

Algorithm 4.1: Bucket Elimination for MPE
A potentialφ’s “highest possible bucket” is the bucketBV of variableV ∈ V with
highest index in orderingo.
Operationmax-product(V, Φ) yields a potential that is the product of the potentials
in Φ, maximized overV ; it is formally defined in the text.

Input : Bayesian networkB = 〈V,D,G,Φ〉, orderingVo1
, . . . , Von

, i-boundi, evidence
E = e

Output : Optimal MPE assignmentV = v

// ===== Initialize buckets.
Partition potentialsΦ into their highest possible buckets amongBV1

, . . . , BVn
.1

// ===== Process backwards.
foreachV ∈ Von

, . . . , Vo2
do2

if (V = v) ∈ (E = e) then3

foreachφ ∈ ΦBV
do4

RemoveV from φ, keeping only entries consistent withV = v.5

Putφ in its highest possible bucket.6

else7

φm ← max-product(V,ΦBV
)8

Putφm in its highest possible bucket.9

// ===== At this point, max-product(Vo1
,ΦBV1

) yields the optimal MPE value.

// ===== Process forwards.
foreachVoi

∈ Vo1
, . . . , Von

do10

if (Voi
= v) ∈ (E = e) then11

Voi
← v12

else13

Voi
← argmaxv

∏
φ∈ΦBV

φ[(Vo1
, . . . , Voi

) = (vo1
, . . . , v)]14

30 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

In Algorithm 4.2 on the next page, we present the MB algorithmthat only
differs from BE in the second step, where it does not perform the max-product-
operation for all potentials in a bucketBV , but approximates it by a number of
smaller max-products. Mini-Buckets with i-boundib, MB(ib), uses a partitioning
P = {ΦMBV,1

, . . . , ΦMBV,k
} of the potentialsφ ∈ ΦBV

into so-calledMini-Buckets
such that two potentialsφ1, φ2 ∈ ΦBV

are guaranteed to be in the same Mini-
Bucket if Vφ1

⊆ Vφ2
and such that the potentials in any Mini-Bucket together

span no more thanib different variables. Using partitioningP, MB approximates
BE’s max-product operationmaxV

∏
φ∈ΦBV

φ for the whole bucket by the prod-

uct
∏

ΦMBV,i
∈P

maxV

∏
φ∈ΦMBV,i

φ of max-products of the Mini-Buckets. Since this

yields an upper bound on the whole max-product, Mini-Bucketsyields an upper
bound on the optimal MPE value next to the variable instantiation generated in the
final forwards pass.

Mini-Buckets has been shown to perform well on a variety of networks, both as
a stand-alone technique [DR03] and in combination with SLS algorithms [KD99b].
Since it yields both an upper bound and a variable assignmentV = v whose prob-
ability bounds the optimal MPE value from below, MB’s performance on an MPE
instance can be evaluated quite easily by comparing upper and lower bound. If they
agree, MB solved the problem instance optimally.

Since the G+StS algorithm was shown to yield better performance when using
a Mini-Buckets initialization in [KD99b], we also implemented MB as an optional
initialization procedure. Thei-bound used for MB in [KD99b] was 10, but we can
not use this bound for our purposes. This is because in our problem sets, there are
Bayesian networks with considerably different domain sizes. There are networks
like link with domain sizes between 2 and 4, for whichi-bound 10 is feasible,
yielding potentials of maximal size410 ≈ 106. However, there are also networks
like mildew having domain sizes of up to 100, with an average of 17.6. With
an i-bound of 10, this would yield potentials of size2.8 × 1012 on average and
considerably larger in the extreme; potentials of these dimensions would consume
terrabytes of memory to store and thus MB(10) is not feasible.

In order to prevent this kind of problems stemming from different domain sizes,
we suggest a new variant of MB which we callMB∗. MB∗ relates to MB much like
induced size to induced width. In this variant, not the maximal number of variables
in a Mini-Bucket is controlled, but the maximal size of any potential encountered
during the execution of Mini-Buckets. When processing a single Mini-Bucket, the
first step is to multiply all its potentials, resulting in a product potential whose size
is the product of the domain sizes of variables which occur inthe Mini-Bucket’s
potentials; this is the only step where large potentials areproduced, and if we can
bound the size of the product potentials of all Mini-Buckets we achieve our objec-

4.2. BUCKET ELIMINATION AND MINI BUCKETS 31

Algorithm 4.2: Mini-Bucket Elimination (MB/MB∗) for MPE
Very similar to Algorithm 4.1 on page 29, but in the second step, the max-product
operation is approximated as the product of a number of smaller max-products; and
an upper bound on the optimal MPE value is computed.
GeneratePartitioning(ΦB) generates a partitioningP = {ΦMBV,1

, . . . ,ΦMBV,k
} of

the potentialsφ ∈ ΦBV
such that two potentialsφ1, φ2 ∈ ΦBV

are guaranteed to be in
the same Mini-Bucket ifVφ1

⊆ Vφ2
and such that the potentials in any Mini-Bucket

together span no more thani-bound different variables. In our modified variant MB∗,
this latter constraint is changed to assert that not the number of such variables is
bound byi-bound, but that the product over their domain sizes is bound bysize-
bound.

Input : Bayesian networkB = 〈V,D,G,Φ〉, orderingVo1
, . . . , Von

, i-boundi, evidence
E = e.

Output : Variable assignmentV = v with approximately optimal probability∏
φ∈Φ

φ[V = v], upper bound on optimal MPE value.

// ===== Initialize buckets.
Partition potentialsΦ into their highest possible buckets amongBV1

, . . . , BVn
.1

// ===== Process backwards.
foreachV ∈ Von

, . . . , Vo2
do2

if (V = v) ∈ (E = e) then3

foreachφ ∈ ΦBV
do4

RemoveV from φ, keeping only entries consistent withV = v.5

Putφ in its highest possible bucket.6

else7

P ← GeneratePartitioning(ΦB)8

foreachΦMB ∈ P do9

φMB ← max-product(V,ΦMB)10

PutφMB in highest possible bucket.11

upper← max-product(V1,ΦBV1
)12

// ===== Process forwards.
foreachVoi

∈ Vo1
, . . . , Von

do13

if (Voi
= v) ∈ (E = e) then14

Voi
← v15

else16

Voi
← argmaxv

∏
φ∈ΦBV

φ[(Vo1
, . . . , Voi

) = (vo1
, . . . , v)]17

32 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

Algorithm 4.3: Anytime Mini-Bucket Elimination for MPE (Anytime MB)
Input : Bayesian networkB = 〈V,D,G,Φ〉, orderingVo1

, . . . , Von
, maximal i-bound

maxib, time boundt, evidenceE = e

Output : Best variable assignmentV = v with approximately optimal probability∏
φ∈Φ

φ[V = v] found with maximal i-boundmaxib and timet; upper bound on
optimal MPE value.

// ===== Initialize upper bound, i-bound, and variable assignment.
upper← ∞1

ib ← 02

Randomly initializev3

// ===== Run with increasing i-bound until optimality proofed or outof resources.
while runtime< t and ib< maxib do4

[ṽ, upper[ib]] ← MB(ib)5

if
∏

φ∈Φ
φ[V = ṽ] >

∏
φ∈Φ

φ[V = v] then v ← ṽ6

if upper[ib] < upperthen upper← upper[ib]7

if upper=
∏

φ∈Φ
φ[V = v] then break // optimality proven.8

ib ← ib + 19

tive of bounding all potential sizes. We ensure that this size is always smaller than a
parametersize-boundby partitioning the potentials in a Bucket such that for each
Mini-Bucket, the product of its variables’ domain sizes remains smaller than the
size-bound. This replaces the constraint of having no more thani-bound variables
in a Mini-Bucket.3 When using MB∗ as an initialization procedure, we usesize-
bound105, meaning that for the largest Mini-Bucket potential we will need to save
at most 100000 double precision entries. With this parameter setting, MB∗ yielded
overall good results and had low complexity in our experiments, always finishing
within a second of CPU time.

4.3 Exact Algorithms based on Mini-Buckets

The Mini-Buckets scheme is quite efficient with low i-bounds,but higher i-bounds
yield better results. This immediately suggests an anytimevariant of MB that starts
off with low i-bound and iteratively increases it until the resources do not suffice
for higher i-bounds. Algorithm 4.3 shows this Anytime MB algorithm, suggested
in [DR03].

3Of course it is possible to choose asize-bound that is lower than the size of some potentialφ
in the original problem. In this case, MB∗ only guarantess not to produce a larger potential than
φ. The same restriction applies to the original MB algorithm,where one can set thei-bound lower
than the number of variables in some initial potentialφ.

4.3. EXACT ALGORITHMS BASED ON MINI-BUCKETS 33

While the Anytime MB is very efficient for problems with low induced width,
for larger induced widths it often does not find good approximations with feasi-
ble maximal i-bounds. However, since MB yields both upper and lower bounds
on the optimal MPE value, it can be easily used as a subcomponent in systematic
search algorithms like Branch and Bound orA∗ [KD99a, RN03]. The most re-
cent Branch and Bound algorithms based on Mini-Buckets areBBMBandBBBT.
BBMB stands for Branch and Bound with Mini-Buckets heuristic and comes in
two variants. The static variant,s-BBMB, introduced by Kask and Dechter in
1999 [KD99a] starts with a pass of Mini-Buckets. The functions computed in
this pre-processing step are then combined to form an upper bound on the prob-
ability achievable by extending any partial variable assignment. Since MPE is a
maximization problem, this approach yields an admissible heuristic that can be ap-
plied inA∗ or Branch-and-Bound. The dynamic variant of BBMB,d-BBMB, has
only just been developed [MD04], but outperforms s-BBMB considerably in the
experiments performed thus far. As opposed to s-BBMB, d-BBMB computes the
Mini-Buckets heuristic at every node in the search tree, conditional on the node’s
partial assignment. This takes more time, but pays off especially when using small
i-bounds [MD04].

The dynamic BBMB variant also outperforms the quite recent BBBT algo-
rithm [DKL01], which combines Branch-and-Bound search with Mini Cluster Tree
Elimination (MCTE), an approximate variant of Cluster Tree Elimination. MCTE
is applied at every node in the search tree to compute lower bounds for every pos-
sible extension of the node’s partial assignment with a single variable instantiation.
The lower bounds for all possible extensions are computed inparallel by MCTE,
which is much faster than multiple calls to the Mini-Buckets algorithm [DKL01].

Some research has been done in comparing the described Branch-and-Bound
algorithms with SLS approaches. As mentioned in Section 4.1on page 25, Kask
and Dechter suggested the SLS algorithm G+StS [KD99b] whichwas able to im-
prove on many of the best solutions found with Mini-Buckets. However, there were
also many instances on which G+StS was vastly inferior to Mini-Buckets. In 2003,
Marinescu, Kask and Dechter published a paper claiming thats-BBMB and BBBT
outperform SLS algorithms [MKD03]. More specifically, theyimplemented the
Dynamic Local Search algorithms DLM [SW97] and GLS [MT00] like Park de-
scribed them for MPE [Par02] as well as the G+StS algorithm [KD99b]. Their
experiments showed superiority of s-BBMB and BBBT with the best-performing
i-bound (between 2 and 10) over their parameterless versions of the SLS algorithms
on most problem instances. However, GLS managed to considerably outperform
s-BBMB/BBBT with any i-bound for some networks, especially for those with low
domain sizes. On all reported instances except themildew network, GLS outper-

34 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

formed the other SLS algorithms, and formildew , G+StS performed considerably
better.

Since the optimal i-bound for the s-BBMB/BBBT algorithms cannot beguessed
a-priori4, a practitioner would need to run experiments for multiple i-bounds in
parallel until the fastest one terminates. Considering thisand the fact that GLS was
implemented with fixed parameters, the superiority of s-BBMB/BBBTover GLS
remains at least questionable.

4.4 Other Algorithms for MPE

Approximate Decomposition (AD)[Lar03] is a scheme very similar to Bucket Elim-
ination, or, more generally, Variable Elimination [ZP94].The variablesV in a
Bayesian networkB = 〈V,D,G, Φ〉 are eliminated iteratively along the min-
degree ordering, connecting the neighboursnb(V) of an eliminated variableV ∈ V

in G by creating a new potentialφ as the max-product over all potentialsφi spanning
V . This standard procedure from Variable Elimination is applied until connecting
nb(V) in G increasesG’s width above a predefined boundib. Once this bound is
exceeded, the new edge with maximal sum of endpoint degrees is deleted until the
width is less than or equal toib again. LetC1, . . . , Cm be the maximal cliques
of the subgraph induced bynb(V) after the deletion of edges;φ is then approxi-
mated by a product

∏m

i=1 φi whereφi has scopeCi. The potentialsφi are computed
with a linear program yielding either an upper or a lower bound of

∏m

i=1 φi on
φ. In [Lar03], AD significantly outperformed Mini-Buckets in bounding solution
quality for the MPE task from above and below, but both algorithms found only
very poor bounds (e.g. upper bound1) for random networks. Although AD seems
to be superior to MB, we do not compare against it since its source code is not
available; also, Mini-Buckets is by far the better-known algorithm, easier to imple-
ment and demonstrated good performance on a variety of Bayesian networks; for
AD, there are only published results for two structured and some random networks.
Nevertheless, for structured networks, AD is a very promising approach and future
SLS algorithms might exploit it for initialization or to compute upper bounds in
order to proof optimality of solutions found with SLS.

Most commercial tools for reasoning in Bayesian networks usea framework
called Junction Trees[LS88, JLO90, CDLS99]. In this secondary structure for
Bayesian networks, a network’s potentials are organized into a tree structure(C,S)
of so-calledclustersC connected by a set ofseparatorsS. Each clusterC ∈ C

4Radu Marinescu advised me in email communication that ”it ishard to predict an optimal
i-bound beforehand” and that thus always a range for the i-bound should be reported.

4.4. OTHER ALGORITHMS FOR MPE 35

holds a cluster potentialφC that is the product of some of the Bayesian network’s
potentialsΦ, such that each potentialφ ∈ Φ is placed into exactly one cluster.
We denote byVCi

the scope of clusterCi’s potentialφCi
. The tree structure must

satisfy the so-calledrunning intersection property, which for arbitraryC1 andCn

requires every clusterCi on the pathC1, . . . , Cn in (C,S) to span at least the vari-
ablesVC1

∩VCn
. In aconsistentjunction tree, each separatorS ∈ S connecting two

clustersCi andCj holds a separator potentialφS that equals the potentialsφCi
and

φCj
, marginalized to their shared variablesVCi

∩ VCj
. The joint probability distri-

butionφ encoded by a consistent junction tree is thenφ = (
∏

C∈C
φC)/(

∏
S∈S φS).

Evidence is incorporated into a junction tree by modifying single potentials, after
which consistency is restored by local message passing between the clusters via
the separators. By means of this simple message passing scheme, all the Bayesian
network problems MPE, M-MPE, MAP, belief updating, and parallel computation
of all single marginals can be solved exactly in time and space linear in thesize
of the junction tree. However, the catch is that this size, which is the sum of the
sizes of the junction tree’s potentials, grows exponentially in the network’s induced
width. Still junction trees have an important advantage over Bucket Elimination
in that the computation ofN marginals of single variables is parallelized making
themN times faster than Bucket Elimination.

The drawback of prohibitively large cluster potentials forlarge networks in the
exact junction tree framework is addressed by several approximation techniques
for junction trees [JA90, Kjæ94, HND04]. The first approach for this is a method
calledcompressionwhich exploits the possibly large number of zero entries in the
potentials by a new representation that does not explicitlystore zeros. Then, for
approximation, one can treat small entries as zero [JA90] subsequently performing
compression, which can lead to considerable savings in complexity for the price of
only approximative inference. Another way to approximate large clusters is to split
them into two or more smaller clusters, connected by a separator [Kjæ94, HND04].
These smaller clusters might be subsumed by neighbouring clusters in the junction
tree and can then be dropped, leading to considerable savings in junction tree size.

Another approach that employs local message passing is Judea Pearl’s classic
belief propagation (BP)algorithm [Pea88]. BP has been developed as an exact
algorithm for singly-connected Bayesian networks, i.e. networks for which the in-
dependence graph is a tree, but it can also be used as an approximation scheme
for multiply connected networks, then calledloopy belief propagation (LBP).
Quite recently, it has been shown that an extraordinarily well performing error
correcting code scheme calledTurbo Codesemploys an algorithm equivalent to
LBP [MMC98], which renewed great interest in the algorithm among many re-
searchers. Subsequently [MWJ99], LBP has been shown to perform very well for

36 CHAPTER 4. EXISTING ALGORITHMS FOR THE MPE PROBLEM

more general types of Bayesian networks if it converges. However, for some net-
works LBP oscillates, yielding very bad results.

Finally, there exists a subclass of Bayesian networks for which exact inference
is cheaper than for the general case. For networks with a two-layer structure, noisy-
OR CPTs and Boolean evidence variables in the second layer of the network, the
Quickscorealgorithm described in [Hec90] has complexity only exponential in the
number of positive evidence nodes. This particular type of networks can be found
in Bayesian networks used in medical diagnosis [JJ99] or computer network diag-
nosis [RBM02a].

Chapter 5

SLS Algorithms for MPE

In this chapter, we detail the SLS algorithms for MPE we implemented. These
include the two best performing SLS algorithms for MPE developed to date,
G+StS[KD99b] and GLS [Par02] (cf. Section 4.1 on page 25); a new improved
version of GLS, which we call GLS+; the first Iterated Local Search (ILS) algo-
rithm for MPE; and a hybrid algorithm employing ILS, GLS+, and our adapted
Mini-Buckets variant MB∗ (cf. Algorithm 4.2 on page 31).

5.1 Greedy plus Stochastic Simulation (G+StS)

In Algorithm 5.1 on the next page, we present our implementation of the G+StS al-
gorithm [KD99b]. G+StS employs a Mini-Buckets initialization, which was shown
to clearly outperform a random initialization in [KD99b] when ani-bound of 10
is used. As detailed in Section 4.2 on page 27, we cannot use this i-bound for
our experiments due to the large variance in domain sizes across our problem sets.
Instead, we use our variant MB∗ with size-bound105; for problems with Boolean
variables, MB∗ with this size-bound is close to MB(17)1, whereas for problems
with constant domain size 10, it is equivalent to using MB(5).

The G+StS algorithm performs multiple tries, where a new tryis started when
the current one did not find an improvement over its best solution V = v for time
cf × topt, wheretopt is the time in which it foundV = v. Within each try, the
MB∗ initialization is followed by a local search phase. In this phase, G+StS iter-
atively flips variables, at each time probabilistically deciding between stochastic
simulation steps (lines 7-8 in Algorithm 5.1 on the next page) and greedy steps in
a one-exchange-neighbourhood (line 10). Note that in the algorithm description

1MB∗(131072) = MB∗(217) is equivalent to MB(17) for Boolean variables.

37

38 CHAPTER 5. SLS ALGORITHMS FOR MPE

Algorithm 5.1: Greedy plus Stochastic Simulation (G+StS) for MPE
The algorithm starts a new “try” when it did not improve the best solutionv found in
the current try for a time longer than a cutoff factorcf multiplied by the time the try
needed to findv. The best solution found across all tries is returned.
g(v | Vi = vi) abbreviates

∑
φ∈Φ log(φ[V = v|Vi = vi]); andg(v) abbreviates∑

φ∈Φ log(φ[V = v]).

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, noise
probabilitynp, cutoff factorcf

Output : Variable assignmentV = v with highest probability
∏

φ∈Φ
φ[V = v] found in

time t
while runtime< t do1

// ===== Initialize variable assignment.
Initialize V = v with MB∗(105).2

opt← −∞3

// ===== Flip single variables until restart or time-out.
repeat4

Drawx from uniform distributionu(0, 1)5

if x < np then6

Randomly pickVi ∈ V.7

Samplevi from P (Vi = vi|[V \ {Vi} = v \ {vi}])8

else9

Randomly pickVi ∈ V \ E andvi ∈ DVi
maximizingg(v|Vi = vi).10

Flip variableVi to valuevi. // this is even done ifVi is alreadyvi11

if g(v) > opt then12

opt← g(v)13

topt ← runtime14

until runtime> cf× topt or runtime≥ t15

of G+StS and the other algorithms in this chapter, we use the high-level notations
“Randomly pickVi ∈ V andvi ∈ DVi

maximizingg(v|Vi = vi)” (line 10) and
“Flip variableVi to valuevi.” (line 11). The actual implementation of these two op-
erations will be covered in great detail in our discussion ofvarious caching schemes
in Chapter 6.

5.2 Guided Local Search (GLS and GLS+)

Guided Local Search [Vou97] is a rather general Dynamic Local Search algo-
rithm that has been applied successfully to many combinatorial problems, including
TSP [VT99], SAT, and weighted Max-SAT [MT00]. In its generalform [Vou97],
GLS associates penalties with domain-dependent so-calledsolution features, prop-

5.2. GUIDED LOCAL SEARCH (GLS AND GLS+) 39

erties true for a subset of candidate solutions. GLS iterates a two-phase process,
in which first a local search w.r.t. a particular evaluation function is performed and
when a local minimum of this function is reached, the evaluation function is modi-
fied to make the next local search move on in the search space. This modification is
implemented by increasing the penalties of solution features present in the current
solution.

For minimization problems, GLS’s evaluation function value g(s) of a candi-
date solutions is the weighted sum of the objective function value of s,f(s), and
the penalties for solution features present ins. The evaluation function is used to
guide the local search and once one of its local minimas′ is reached, the overal
penalty ofs′ is modified as follows. For each solution featurei present ins′, a
utility ui = ci/(1 + λi) is computed, whereλi is the penalty associated with so-
lution featurei andci is its cost. Like the solution features, the costs are domain-
dependent and represent the direct or indirect impact the solution features have on
the objective function value (cf. [Vou97]). In local minimas′ w.r.t. the current
evaluation functiong, for each solution featurei with maximal utilityui present in
s′, the penaltyλi is then increased by the constant1. In order to prevent the penal-
ties from growing indefinitely, all penalties are regularlysmoothed by multiplying
them with a factorρ ≤ 1 everyNρ local minima.

As an example, consider GLS for the weighted Max-SAT domain,described
in [MT00]. There, the solution features present in a variable assignmentV = v are
the clauses unsatisfied by the assignment. The evaluation function in this domain
is the unweighted sum

∑
C∈Cunsat

wC + λC of the weightswC and the penaltiesλC

associated with the currently unsatisfied clausesCunsat. A clause’s weightwC is also
used as the cost for computing its utility.

Park [Par02] introduced a reduction from MPE to weighted Max-SAT, in which
for every entryφ[Vφ = vφ] in a potential one clause is created. Using the intuition
from this reduction, he also adapted GLS to the MPE problem. The solution fea-
tures in MPE are partial instantiations of the variables. More specifically, for each
potentialφ ∈ Φ, every instantiationVφ = vφ of its variables is a solution feature
with cost− log(φ[Vφ = vφ]).2 We will refer to the penalty value associated with
this solution feature asλφ[Vφ = vφ]. Note that the number of solution features
present in any candidate solution for an MPE instance is constant; this is because
every variable instantiationV = v is consistent with exactly one (partial) instanti-
ationVφ = vφ of each potentialφ, and thus the number of solution features present

2The cost of solution featureVφ = vφ is taken to be the negative logarithmic potential entry
− log(φ[Vφ = vφ]) following the intuitions gained from the reduction of MPE toMax-SAT. In
Max-SAT, the weight associated with a clause for a potentialentryφ[Vφ = vφ] is also its negative
log-probability− log(φ[Vφ = vφ]), and the cost of a clause is defined as its weight.

40 CHAPTER 5. SLS ALGORITHMS FOR MPE

in each instantiation is the total number of potentials|Φ|.
For maximization problems, GLS’s evaluation function for acandidate solution

s is its objective function value,f(s), minus the weighted sum of the penalties
associated with the solution features ofs. For the MPE domain, this results in
the evaluation functiong(v) =

∏
φ∈Φ φ[V = v] − w ×

∑
φ∈Φ λφ[V = v], where

w is a weighting factor which is, for example, set to1 in the Max-SAT domain.
However, Park [Par02] does not use exactly this evaluation function; he notes that
the evaluation function to be minimized essentially becomes

∑
φ∈Φ λφ[V = v]

and exploits this simplification in his implementation.3 Indeed, since probabilities
are bound by1 and each penalty is incremented in intervals of1, the penalties
clearly dominate the evaluation function. Nevertheless, one might expect the small
objective function values still to have a potentially greatimpact since they might
beneficially break ties in the local search phases when two neighbouring solutions
have equal penalties. Another consequence of omitting the objective function could
be larger plateaus in the search space, which could affect the effectiveness of the
subsidiary local search process.

For interesting larger problem instances, the actual values of the objective func-
tion we are dealing with are smaller than10−50, sometimes10−500, values which
are indistinguishable from numerical instabilities usingdouble precision represen-
tation. This may be overcome by multiplying the objective function by some con-
stant. However, unless this constant be adapted during search, it will in most cases
imply complete domination by the evaluation function either by the objective func-
tion or the penalties. Since domination of the objective function would make the
search stagnate in the first local optimum encountered, Park’s approach of only
using the penalties as an evaluation function is very reasonable. We implemented
GLS the same way and give pseudocode for it in Algorithm 5.2 onthe facing page.

Although we argued above that when using the original GLS framework there
is no straightforward way to incorporate both objective function value and penal-
ties in the MPE domain, our intuition is that some more greedyness would be
highly beneficial for GLS. This intuition is partly based on the observation that
GLS needs considerable time to get started since initially all penalties are set to
zero and only represent useful information after many localminima have been vis-
ited. Another reason for this intuition is that for example in the weighted Max-SAT
domain (in which GLS performs very well) there is a stronger connection between
objective function and penalties than for the MPE problem. In weighted Max-SAT,
the evaluation function is the sum of penalties for allunsatisfiedclauses, and since
less clauses are unsatisfied in better variable assignments, this constitutes an indi-
rect connection between objective function and applicablepenalties. As discussed

3Many thanks to James Park for providing his implementation.

5.2. GUIDED LOCAL SEARCH (GLS AND GLS+) 41

Algorithm 5.2: Guided Local Search (GLS) for MPE
λφ[Vφ = vφ] denotes the penalty associated with the partial variable instantiation
Vφ = vφ of potentialφ; andλφ[V = v] denotes the unique penaltyλφ[Vφ = vφ] for
whichvφ is consistent withv.
g(v|Vi = vi) abbreviates

∑
φ∈Φ λφ[V = v|Vi = vi]; and g(v) abbreviates∑

φ∈Φ λφ[V = v]. The default parameters from [Par02] are〈ρ, Nρ〉 = 〈0.8, 200〉.

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, smoothing
factorρ, smoothing intervalNρ.

Output : Variable assignmentV = v with highest probability
∏

φ∈Φ
φ[V = v] found in

time t

// ===== Initialize variable assignment, penalties, and local minima counter.
foreachVi ∈ V \ E do Randomly initializeVi to vi ∈ DVi

1

foreachVi ∈ E do Vi ← vi consistent withe2

foreachφ ∈ Φ and all instantiationsVφ = vφ do λφ[Vφ = vφ] ← 03

#(LM) ← 04

// ===== Flip single variables or update evaluation function until termination.
while runtime< t do5

Randomly pickVi ∈ V \ E andvi ∈ DVi
minimizingg(v|Vi = vi).6

if g(v|Vi = vi) > g(v) then7

Flip variableVi to valuevi.8

else9

// ===== Local minimum, update evaluation function.
foreachφ ∈ Φ do10

if λφ[V = v] = maxφ∈Φ [−φ[V = v]/(1 + λφ[V = v])] then11

λφ[V = v] ← λφ[V = v] + 112

// ===== Regularly smooth penalties.
#(LM) ← #(LM) + 113

if #(LM) moduloNρ = 0 then14

for φ ∈ Φ and all instantiationsVφ = vφ do15

λφ[Vφ = vφ] ← λφ[Vφ = vφ] ∗ ρ16

42 CHAPTER 5. SLS ALGORITHMS FOR MPE

above, in the MPE domain, there are|Φ| solution features present in each variable
instantiation, such that this additional connection does not apply. Hence, the sole
interaction of objective function and penalties in this domain is via the utilities: an
entryφ[Vφ = vφ] with high probability is assigned low utility4; thus, its associated
penaltyλφ[Vφ = vφ] will be increased less often, leading to the desirable partial
variable instantiationVφ = vφ to be aspired eventually, but possibly only after a
considerable delay.

Due to the described initial and persistent lack of greediness we expect the per-
formance of GLS for MPE to be boosted significantly when the objective function
can be integrated into the search heuristic in some meaningful way. We achieve this
by a simple change in GLS’s evaluation function. Our improved version of GLS,
which we callGLS+, takes the logarithm of the objective function and adds thisto
the appropriate penalties; since the objective function isa product of probabilities,
this is equivalent to using the summed log-probabilities, making the new evaluation
function to be maximized

∑
φ∈Φ log(φ[V = v]) − w × λφ[V = v], wherew again

is a weighting factor. The second difference between GLS andGLS+ lies in a pos-
sibly different initialization. Since MB∗(105) performed very well for G+StS, we
also consider it for GLS+ next to a random initialization. In Section 7.4 on page 77
on tuning GLS+, we will demonstrate that this indeed considerably improves the
performance of GLS+ for some instances. We detail GLS+ in Algorithm 5.3 on the
facing page.

The initial performance of GLS is weak due to its temporary disorientation until
the penalties represent meaningful information, and we expect GLS+ to clearly
outperform GLS for short runtimes. Our experimenal evaluation in Section 8.4 on
page 94 shows that this is indeed the case and that for many problem instances
the initial advantage of GLS+ persists for longer runtimes, while for some other
instances the algorithms behave virtually identical for longer runs.

5.3 Iterated Local Search (ILS)

In this section, we introduce a novel Iterated Local Search (ILS) algorithm for
MPE. To our best knowledge, this algorithm is the first of its kind as the ILS frame-
work (cf. Algorithm scheme 3.2 on page 21) has not been previously applied to
MPE.. At the heart of ILS algorithms are the four componentsGenerateInitialSo-
lution, LocalSearch, Pertubation, andAcceptanceCriterion. For the MPE problem,
we fixedLocalSearchto be greedy hill-climbing, and leave the other components

4Recall that in MPE, the utility for potential entryφ[Vφ = vφ] is defined as− log(φ[Vφ =
vφ])/(λφ[Vφ = vφ] + 1).

5.3. ITERATED LOCAL SEARCH (ILS) 43

Algorithm 5.3: Improved Guided Local Search (GLS+) for MPE
This algorithm differs from Algorithm 5.2 on page 41 only in the initialization and
in the evaluation function, where it additionally incorporates the log-probability of a
neighbouring variable instantiation.
g(v|Vi = vi) abbreviates

∑
φ∈Φ log(φ[V = v|Vi = vi]) − w × λφ[V = v|Vi =

vi]; andg(v) abbreviates
∑

φ∈Φ log(φ[V = v]) − w × λφ[V = v]. Our default
parameters are〈ρ, Nρ〉 = 〈0.999, 200〉 and initialization MB∗(105).

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, smoothing
factorρ, smoothing intervalNρ.

Output : Variable assignmentV = v with highest probability
∏

φ∈Φ
φ[V = v] found in

time t

// ===== Initialize variable assignment, penalties, and local minima counter.
v ← GenerateInitialSolution(B)1

foreachφ ∈ Φ and all instantiationsVφ = vφ do λφ[Vφ = vφ] ← 02

#(LM) ← 03

// ===== Flip single variables or update evaluation function until termination.
while runtime< t do4

Randomly pickVi ∈ V \ E andvi ∈ DVi
maximizingg(v|Vi = vi).5

if g(v|Vi = vi) > g(v) then6

Flip variableVi to valuevi.7

else8

// ===== Local minimum, update evaluation function.
foreachφ ∈ Φ do9

if λφ[V = v] = maxφ∈Φ [−φ[V = v]/(1 + λφ[V = v])] then10

λφ[V = v] ← λφ[V = v] + 111

// ===== Regularly smooth penalties.
#(LM) ← #(LM) + 112

if #(LM) moduloNρ = 0 then13

for φ ∈ Φ and all instantiationsVφ = vφ do14

λφ[Vφ = vφ] ← λφ[Vφ = vφ] ∗ ρ15

44 CHAPTER 5. SLS ALGORITHMS FOR MPE

to be determined later. Algorithm outline 5.4 on the next page shows the resulting
basic ILS algorithm for MPE. We also include a restart mechanism in this basic
ILS which is very similar to the one employed by G+StS5: whenever ILS does not
improve its best solution for too many iterations of the current try, the search is
continued from a new initial solution obtained usingGenerateInitialSolution.6

Algorithm outline 5.4 on the facing page still leaves a lot ofroom for design
choices since fundamentally different algorithms result from choosing a different
pertubation or acceptance criterion. Equipped with an automated parameter op-
timization scheme described in Appendix A, we allowed for a rather large num-
ber of variants. ForGenerateInitialSolution, we tried a random initialization and
MB∗(105), just as we used it for G+StS in Section 5.1 on page 37. For the accep-
tance criterion, we considered four alternatives in our experiments:

BETTER accepts a new solutionv if and only if it is better than or equal to the
last iterations’s solutionv∗; otherwise,v∗ is returned.

RW (for random walk) always accepts the new solutionv
∗;

BE/RW is a simple hybrid of BETTER and RW that always accepts improving
new solutionsv, but also accepts new solutionsv that are worse thanv∗ with
a certain acceptance probabilityap; if v is not accepted,v∗ is returned.

LSMC is a simulated annealing type acceptance criterion that always accepts im-
proving new solutions. For worse solutionsv, the relative differenced in ob-
jective function value between the new solution and the lastone is computed
and the new solution is then accepted with probabilityexp(−d/T), whereT
is a parameter called the temperature. Ifv is rejected,v∗ is returned.

Acceptance criterion BETTER usually yields good results forshort runs, but un-
fortunately shows search stagnation for some problem domains. However, due to
the restart mechanism we employ, this problem is much less pronounced in our ap-
plication. As opposed to BETTER, acceptance criterion RW never exhibits search
stagnation but quite often simply performs very badly due toits lack of greediness.
For BE/RW, the greediness can be controlled by the acceptanceprobabilityap; for
ap = 0 andap = 1, this is equivalent to BETTER and RW, respectively. LSMC
finally is also configurable in its greediness by the temperatureT ; asT grows, the

5The only difference to the restart mechanism in G+StS is thatin ILS, we use the number of
iterations instead of the runtime to decide when to restart the algorithm. This yields reproducable
results on different architectures and machines.

6This restart mechanism became necessary since we were not able to remove search stagnation
from the algorithm by any other means.

5.3. ITERATED LOCAL SEARCH (ILS) 45

Algorithm outline 5.4: Basic ILS for MPE
The algorithm starts a new try when it did not improve the best solutionv found in
the current try for more iterations than a cutoff factorcf multiplied by the number
of iterations the try needed to findv. The best solution found across all tries is
returned.g(v|Vi = vi) abbreviates

∑
φ∈Φ log(φ[v|Vi = vi]); andg(v) abbreviates∑

φ∈Φ log(φ[V = v]).

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, cutoff factorcf
Output : Variable assignmentV = v with highest probability

∏
φ∈Φ

φ[V = v] found in
time t

while runtime< t do1

// ===== Initialization.
v0 ← GenerateInitialSolution(B)2

v
∗ ← LocalSearch(v0)3

opt← −∞4

iteration← 05

// ===== Iterate until restart or time-out.
repeat6

iteration← iteration+ 17

v ← Pertubation(v∗, history)8

v ← LocalSearch(v)9

v
∗ ← AcceptanceCriterion(v∗,v, history)10

if g(v∗) > opt then11

opt← g(v∗)12

itopt ← iteration13

until iteration > cf× itopt or runtime≥ t14

Function LocalSearch(v)15

begin16

// ===== Flip best variables until in local minimum.
while true do17

Randomly pickVi ∈ V \ E andvi ∈ DVi
maximizingg(v|Vi = vi).18

if g(v|Vi = vi) > g(v) then19

Flip Vi to vi.20

else21

return V = v // No improving step possible.22

end23

46 CHAPTER 5. SLS ALGORITHMS FOR MPE

probability of accepting a new solution goes toexp(0) = 1 like in RW, and as it de-
creases, the probability goes toexp(−∞) = 0 like in BETTER. The actual values
we considered forap andT are given in Section 7.5 on page 79 which deals with
tuning the parameters of ILS.

For the pertubation, we considered two basic variants. The simpler variant
VARS randomly choosesp variables and changes their instantiation to some other
random value from their respective domain. A more localizedpertubation POTS is
achieved by randomly picking a potentialφ ∈ Φ and randomly changing the values
of all variablesV ∈ Vφ to new values. This process is iterated, never changing
variables more than once per pertubation, until the value ofat leastp variables
has been changed. The numberp of perturbed variables is called thepertubation
strengthand is another parameter of the algorithm.

A priori, it is also not clear that the optimal pertubation strength should be a
fixed number; to obtain best performance, it may be better to let it grow, for exam-
ple, linearly with some measure of problem size, such as the number of variables or
the total number of potential entries. Here, we chose the total number of possible
instantiations of single variables,VV =

∑
V ∈V

|DV |. This is similar to using the
number of variables in the instance, but also considers the average domain size. The
main reason for choosingVV was that it is the number of variables in a straight-
forward Max-SAT encoding of the instance. For a possibly varying pertubation
strength, we use the Boolean parameter (prel for relative pertubation) which when
true means that parameterp is multiplied by0.01 × VV and rounded up.

A means of making the pertubation more target-driven is to fixthe perturbed
variables after changing them, and to perform a local searchduring the pertubation
phase in order to adjust the rest of the variables. Only afterthis additional local
search, the perturbed variables are released again. If the Boolean parameterpfix is
true, such a constrained local search is executed at the end of the pertubation, using
an aspiration criterion to also flip fixed variables if this improves the best solution
found so far in the current try.

5.4 Hybrid Algorithm

Although our new SLS algorithms GLS+ and ILS outperform the state-of-the-art
SLS algorithms GLS and G+StS by several orders of magnitude on all problem
instances we tried, there still remains a number of instances too hard for SLS al-
gorithms. In particular, thediabetes network and randomized versions of the
munin4 networks have not been solved by any SLS algorithm to date. However,
these networks have very low induced width and, more importantly, manageable

5.4. HYBRID ALGORITHM 47

induced size. Thus, they can be solved exactly by the MB∗ algorithm.
Another very interesting observation we made is that Anytime MB sometimes

finds the optimal upper bound on solution quality very quickly while it fails to find
a matching assignment. E.g., for thelink network without evidence variables,
Anytime MB finds the optimal upper bound within a few milliseconds. This is
particularly noteworthy since it is not able to find the correct lower bound even
with a memory constraint of 4GB and unlimited time. GLS+ on the other hand
consistently solves this problem instance within 200 milliseconds, such that GLS+

and Anytime MB together can find the optimal solution and proof its optimality in
time well below a second.

As thelink example shows, it is possible to fruitfully combine AnytimeMB
and SLS algorithms to proof optimality of solutions found with SLS. Clearly, any
method that computes upper bounds can be plugged in for Anytime MB and any
method computing lower bounds can be substituted for SLS. Inan algorithm port-
folio, it is also possible to use more than one algorithm to compute upper and
lower bounds. Indeed, in our hybrid algorithm for MPE (see Algorithm 5.5 on the
next page), MB∗, ILS, and GLS+ are used for lower bound computation, while only
MB∗ computes an upper bound. Our hybrid basically loops throughthe algorithms,
allocating more resources each iteration, computing upperand lower bounds on so-
lution quality until the bounds coincide or it runs out of resources. As we demon-
strate in Chapter 9, it shows very stable performance across all types of instances
we considered. Overall, it is the best-performing algorithm.

48 CHAPTER 5. SLS ALGORITHMS FOR MPE

Algorithm 5.5: Hybrid of MB∗, ILS, and GLS+ for MPE (to be continued)
This hybrid algorithm loops through MB∗, ILS, and GLS+, allocating more resources
each iteration and computing an upper bound on solution quality (MB∗), as well as
a lower bound (all algorithms). Once lower and upper bound match, the algorithm
terminates. ILS and GLS+ are called with their default parameters, and are restarted
from scratch everytime they are called.
g(v) abbreviates

∑
φ∈Φ log(φ[V = v]).

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, maximal size
boundsizemax for Mini-Buckets

Output : Variable assignmentV = v with highest probability
∏

φ∈Φ
φ[V = v] found in

time t, upper boundubon solution quality

// ===== Initialize variable assignment, upper bound, and size for MB∗.
Initialize v randomly.1

ub← ∞2

size← 100003

// ===== Run with increasing size until optimality proofed, maximalsize reached or
time-out.

while runtime< t andsize< sizemax do4

[ṽ, ub[size]] ← MB∗(size)5

if ub[size] ≤ ub then ub← ub[size]6

if g(ṽ) > g(v) then7

v ← ṽ8

if g(v) = ub then return [v, ub] // optimality proven.9

tsls ← time taken by MB∗(size)10

ṽ ← ILS(tsls)11

if g(ṽ) > g(v) then12

v ← ṽ13

if g(v) = ub then return [v, ub] // optimality proven.14

ṽ ← GLS+(tsls)15

if g(ṽ) > g(v) then16

v ← ṽ17

if g(v) = ub then return [v, ub] // optimality proven.18

size← 2 × size19

5.4. HYBRID ALGORITHM 49

Algorithm 5.5: Hybrid of MB∗, ILS, and GLS+ for MPE (continued)
g(v) abbreviates

∑
φ∈Φ log(φ[V = v]).

// ===== Run ILS and GLS+ until optimality proofed or time-out.
while runtime< t do20

ṽ ← ILS(tsls)21

if g(ṽ) > g(v) then22

v ← ṽ23

if g(v) = ub then return [v, ub] // optimality proven.24

ṽ ← GLS+(tsls)25

if g(ṽ) > g(v) then26

v ← ṽ27

if g(v) = ub then return [v, ub] // optimality proven.28

tsls ← 2 × tsls29

return [v, ub] // Time-out, no optimality proven.30

50 CHAPTER 5. SLS ALGORITHMS FOR MPE

Chapter 6

Efficient Implementation

In this chapter, we show how the algorithms introduced in Chapter 5 can be imple-
mented efficiently. We introduce two novel caching schemes that apply to general
SLS algorithms for MPE and yield a speed-up of up to two ordersof magnitude
over the caching scheme used so far in state-of-the-art SLS algorithms for MPE.

In all algorithms presented in Chapter 5, we use two high-level operations:pick-
ing a variable and its new value to maximize or minimize the evaluation function;
andflipping the picked variable to its new value. This chapter is entirely devoted
to explaining how these operations can be implemented efficiently. The caching
schemes we introduce closely resemble the ones used in the SAT domain sketched
out in Section 3.4 on page 22.

Since the caching schemes we introduce here are not trivial,we need to provide
descriptions at a technically detailed level. Note that each potentialφ is generally
stored in a 1-dimensional array each entryφ[Vφ = vφ] of which represents the
probability for a particular instantiation of its variables. Each variableVi ∈ Vφ is
assigned a blocksizeBφ,Vi

; φ’s current indexIφ then computes as
∑

Vi∈Vφ
Bφ,Vi

×

v̂i, wherev̂i denotes a unique value in{0, . . . , |DVi
| − 1} Vi’s current valuevi is

mapped to.1 When a variable is flipped from valuẽvi to vi, the index changes by
Bφ,Vi

× (v̂i − ˆ̃vi), which we abbreviate byBφ,ṽi→vi
.

6.1 Caching SchemeNäıve

Straightforward implementations of SLS algorithms usually do not employ much
caching, mostly spending considerable time to determine which variable to flip
while the actual flip is done quickly. Our most basic implementation variant

1Any bijective function fromDVi
to {0, . . . , |DVi

| − 1} can be used for this mapping.

51

52 CHAPTER 6. EFFICIENT IMPLEMENTATION

Näıve (see Caching scheme 6.1 on page 54) picks the best variable-value pair by
simply trying all possible flips and evaluating the resulting instantiations. Since ab-
solutely no caching has to be done in this variant, procedureFlip-näıve(which flips
the variable in the naı̈ve caching scheme) has time complexityΘ(1). However, a lot
of work remains for picking the variable: for each possible new variable-value com-
bination, the log probability of the resulting assignment is computed from scratch,
which requires computing the current index of each potential. Denoting the max-
imal domain size by|DV | and the maximal number of variables in a potential by
|Vφ|, Pick-näıve’s time complexity isO(|V|× |DV |× |Φ|× |Vφ|), because for each
possible new variable-value combination, each potentialφi must be evaluated and
computingφi’s index Iφi

from scratch is linear in the number of variables|Vφi
|

in its scope. As we will see in our experimental comparison ofdifferent caching
variants at the end of this section, this is far too complex toyield an efficient local
search method; we only include this naı̈ve caching scheme here in order to estab-
lish a baseline for the assessment of the more efficient implementations discussed
in the following.

For the penalty-based approaches GLS and GLS+, some additional work is
required when the penalties are updated in local minima. In these algorithms, the
penalties associated with the current entries of potentials with maximal utility are
increased in every local minimum. Denoting the number of such potentials with
equal maximal utility by|Φmaxutil|, the complexity of this update isΘ(|Φmaxutil|) if
the current potential indicesIφi

are cached andO(|Φmaxutil|×|Vφ|) otherwise. When
smoothing the penalties after a certain number of local minima, all penalties need to
be multiplied by the smoothing parameterρ, yielding time complexityO(|Φ|×Sφ),
whereSφ denotes the maximal size of any potential in the network.

6.2 Caching SchemeSimple

Our second caching variantSimple(see Caching scheme 6.2 on page 55) is the
one used in all previous implementations of SLS algorithms for MPE we are aware
of. In particular, this includes the best performing SLS algorithms for MPE to
date [KD99b, Par02, MKD03]. There are two differences between this caching
variant and the first one, namely caching of the potential indicesIφ in the flip pro-
cedure; and the local evaluation of a new variable-value pair (Vi, vi) by inspecting
only the potentialsΦVi

= {φ | Vi ∈ Vφ}, that spanVi and whose current index is
thus affected by changing it.2 In Bayesian networks, these potentials are the CPTs

2The equivalent to this method in SAT algorithms is to only check for changes in the satisfaction
status of clauses that contain the flipped variable.

6.3. CACHING SCHEMESCORES 53

of variableVi and its childrench(Vi).
We denote by|ΦV | the maximal number of potentials that span a particular

variable. When compared to the previous caching scheme, the complexity ofPick-
simplehas decreased toO(|V| × |DV | × |ΦV |), whereas the complexity ofFlip-
simplehas increased toΘ(|ΦVi

|) when variableVi is flipped. Since each of these
two actions is performed once per search step, the total complexity of this approach
is O(|V|× |DV |× |ΦV |) per search step. This is much lower thanO(|V|× |DV |×
|Φ|× |Vφ|), the search step complexity of caching schemeNäıve, but is still subject
to substantial further improvement.

6.3 Caching SchemeScores

Our first novel caching schemeScores(see Caching scheme 6.3 on page 58) im-
proves on the standard variant by caching the change in evaluation function (the
score) each possible variable flip yields.3 This reduces the time complexity for
picking a variable toO(|V| × |DV |). Denoting the maximal number of vari-
ables in any potential by|Vφ|, the complexity of flipping a variableVi increases
to O(|ΦVi

| × |Vφ| × |DV |) since for each potentialφ containingVi, the scores for
all values of all other variables inVφ change whenVi is flipped and need to be
updated correspondingly. Neither the time complexity of picking a new variable-
value combination nor the one of flipping the variable now strictly dominates the
other. However, since graphical models emphasize modularity, the number of po-
tentials a single variable occurs in as well as the number of variables per potential
is usually small as compared to the total number of variables. Thus, the picking
still dominates time complexity in practice such that thereis room for even further
improvement.

If the underlying SLS algorithm is penalty-based, this caching variant requires
some additional work. In this case, we cache the change in theconstituents of
the evaluation function, i.e. the changeL[Vi][vi] in log-probability and the change
P [Vi][vi] in the summed applicable penalties. For GLS, the scoreS[Vi][vi] to be
minimizedby every variable flip is simplyP [Vi][vi], and for GLS+, the score to be
maximizedcomputes asL[Vi][vi] − w × P [Vi][vi].

Whenever the penaltyλφ[V = v] associated with a potential entryφ[Vφ = vφ]
is increased by1 in a local optimum, for all variablesVj ∈ Vφ and all values
v̂j ∈ DVj

\ {vj}, we need to decreaseP [Vj][v̂j] by the same amount, wherevj

3In the SAT domain, this compares to caching the number of clauses the flip of a variable would
satisfy minus the number of clauses it would unsatisfy. These quantities have also been called the
make-count and break-count of a variable. For more details on the efficient implementation of SAT
algorithms, see [Hoo98].

54 CHAPTER 6. EFFICIENT IMPLEMENTATION

Caching scheme 6.1: Näıve
Näıve variant of picking the best variable-value pair by computing the log probability
for each possible new variable-value pair from scratch. The potential indicesIφ are
recomputed in every variable flip.
ǫ = 10−6 is a small constant necessary for a stable comparison of real numbers. It
will be employed by all our caching schemes.

Function Pick-näıve1

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, variable assignmentV = ṽ

Output : Variable-value pair〈Vi, vi〉 maximizing
∑

φ∈Φ
φ[V = ṽ|Vi = vi]

begin2

opt← −∞3

Best← ∅4

foreachVi ∈ V \ E andvi ∈ DVi
\ {ṽi} do5

// ===== Compute score for〈Vi, vi〉.
score← 06

foreachφ ∈ Φ do7

Iφ ← 08

foreachVj ∈ Vφ do Iφ ← Iφ + Bφ,vj
9

score← score+ φ[Iφ]10

// ===== Compare score of〈Vi, vi〉 with other scores.
if score> opt− ǫ then11

if score> opt+ ǫ then12

opt← score13

Best← ∅14

Best← Best∪ {〈Vi, vi〉}15

return randomly sampled element fromBest16

end17

ProcedureFlip-näıve18

Input : Bayesian networkB = 〈V,D,G,Φ〉, previous variable assignmentV = ṽ, new
variable-value pair〈Vi, vi〉.

Effect: Vi is flipped fromṽi to vi.
begin19

Vi ← vi20

end21

6.3. CACHING SCHEMESCORES 55

Caching scheme 6.2: Simple
This is like Caching scheme 6.1 on the facing page, but the potential indicesIφ are
cached and the score of each variable flipṽi → vi is computed by its local effects on
the potentialsΦVi

that contain variableVi. φ[x] denotes thexth entry of potentialφ
in its array representation.

Function Pick-simple1

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, variable assignmentV = ṽ,
potential indexIφ for eachφ ∈ Φ

Output : Variable-value pair〈Vi, vi〉 maximizing
∑

φ∈Φ
φ[V = ṽ|Vi = vi]

begin2

opt← −∞3

Best← ∅4

foreachVi ∈ V \ E andvi ∈ DVi
\ {ṽi} do5

score← 06

foreachφ ∈ ΦVi
do score← score+ (φ[Iφ + Bφ,ṽi→vi

] − φ[Iφ])7

if score> opt− ǫ then8

if score> opt+ ǫ then9

opt← score10

Best← ∅11

Best← Best∪ {〈Vi, vi〉}12

return randomly sampled element fromBest13

end14

ProcedureFlip-simple15

Input : Bayesian networkB = 〈V,D,G,Φ〉, previous variable assignmentV = ṽ, new
variable-value pair〈Vi, vi〉, potential indexIφ for eachφ ∈ Φ.

Effect: Vi is flipped fromṽi to vi, potential indices are updated.
begin16

foreachφ ∈ ΦVi
do Iφ ← Iφ + Bφ,ṽi→vi

17

Vi ← vi18

end19

56 CHAPTER 6. EFFICIENT IMPLEMENTATION

is Vj ’s current value. Thus, the time complexity required for this update is now
O(|Φmaxutil| × |Vφ| × |DV |). Since there are mostly only few or just one potential
with maximal utility, this additional complexity remains manageable in practice.
Also, it only applies in local minima of the evaluation function, albeit empirical
analysis shows that local minima are encountered as often asevery third to fifth
search step. A similar behaviour has been observed for current state-of-the-art
Dynamic Local Search algorithms for SAT, such as SAPS [HTH02].

The smoothing operation in GLS-type algorithms also requires some additional
work for this caching type. When smoothing, all penalties aremultiplied by ρ,
such that the difference in summed applicable penalties in the current instantiation
and neigbouring instantiations is also multiplied byρ. In order to reflect this in the
cached differences of penalties, for all variablesVi ∈ V and all valuesvi ∈ DVi

,
P [Vi][vi] is multiplied byρ. The additional time complexity due to this caching
of the penalties in the smoothing is onlyO(|V| × |DV |), much smaller than the
complexityO(|Φ| × Sφ) caused by the smoothing anyways. The complexity of
single search steps decreases as we introduce more and more sophisticated caching
schemes. In practice, with caching schemeScores, its complexity is already much
smaller than the one of smoothing all the penalties. Therefore, for complexity
reasons it is central not to perform the smoothing in each local minimum but only
everyNρ local minima.4

6.4 Caching SchemeImproving

Our second novel caching schemeImprovingis detailed in Caching scheme 6.4 on
page 59. It further reduces the average time complexity of picking a new variable-
value pair considerably, while only marginally increasingthe time complexity for
performing a flip. This is achieved by caching the variablesVimp which when
flipped to some value actually lead to an improvement. Becauseafter a short
initial search phase|Vimp| remains very low, considerable performance improve-
ments can be achieved since the time complexity for picking anew variable-value
pair decreases toO(|Vimp| × |DV |). Denoting the maximal cardinality of any vari-
able’s Markov Blanket by|mb(V)|, the time complexity for flipping the variables
increases toO(|ΦV |×|Vφ|×|DV | + |mb(V)|×|DV |× log |Vimp|). This is because

4The exact same observation in the SAT domain led to the development of SAPS [HTH02],
which is amongst the state-of-the-art algorithms for SAT. The main difference between this algo-
rithm and its predecessor ESG is that the smoothing is only executed in local minima with a low
probability of around 5%; this simple change leads to SAPS consistently outperforming ESG by a
large margin. Recent subsequent work [TH04] showed that thesame effect persists if the smoothing
is carried out deterministically everyNρ steps.

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 57

after flipping a variableVi like in caching schemeScores, we now additionally need
to check for each variableVj in Vi’s Markov Blanket whether the updated score
S[Vj][vj] for any of its valuesvj yields an improvement. If this is the case,Vj has
to be incorporated into the initially empty set of improvingvariablesVimp unless it
is already contained in it; vice versa, ifVj was contained inVimp but flipping it to
another value cannot lead to an improvement anymore,Vj has to be removed from
Vimp.

For the GLS variants, the same additional work as in the last caching scheme
Scoreshas to be performed again when changing the penalties. For completeness,
we mention that in GLS, the set of improving variablesVimp holds all variables
which when flipped to some valuereducethe overall penalty and for GLS+ the
ones whichincreasethe log-probability minus the weighted overall penalty. Ta-
ble 6.1 on page 60 gives an overview of the complexities for picking the best new
variable-value combination and flipping a variable to a new value for all our caching
schemes. For the caching of penalties in penalty-based algorithms, the additional
complexities in Table 6.2 on page 60 apply.

In our discussion of the complexities arising from each caching scheme, we
focussed on the complexity per search step and completely ignored the complex-
ity of initializing the employed data structures after an initial solution has been
determined. In caching schemeNäıve, no initialization is needed, and in caching
schemeSimple, only the indices of each potential need to be computed, causing
complexityO(|Φ| × |Vφ|). For caching schemeScores, we also need to compute
the score for every possible variable flip, causing an additional one-time cost of
O(|V|×|DV |×|Φ|×|Vφ|). The initialization of caching schemeImprovingcauses
another small one-time cost ofO(|V| × |DV | + |V| × log |Vimp|) since for each
valuevi of each variableVi, we need to check whether the scoreS[Vi][vi] is greater
than zero, and, if this is the case for any of the values, addVi to the set of improving
variablesVimp.

6.5 Experimental Evaluation of Caching Schemes

Having compared the various caching schemes with respect totheir theoretical time
complexity, we now give evidence from practice underliningthe significance of
these results. Table 6.3 on page 63 and Table 6.4 on page 64 show the average
number of steps per second performed by the algorithms G+StS, GLS, and ILS for
problem setsbnrep andgen , respectively. For GLS+, the number of steps for
each of the caching schemes is virtually identical to GLS, and we omit it in the
tables. We observe an enormous effect of efficient caching schemes. On problem

58 CHAPTER 6. EFFICIENT IMPLEMENTATION

Caching scheme 6.3: Scores
This is like Caching scheme 6.2 on page 55, but additionally caches the scoreS[Vi][vi] of each
variable-value combination(Vi, vi), i.e. the increase in log-probability whenVi is flipped to
vi. The scoresS are updated when flipping a variable and the pick operation simply picks
the best one.

Function Pick-scores1

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, variable assignmentV = ṽ,
2-dim. score arrayS

Output : Variable-value pair〈Vi, vi〉 maximizing
∑

φ∈Φ
φ[V = ṽ|Vi = vi]

begin2

opt← −∞3

Best← ∅4

foreachVi ∈ V \ E andvi ∈ DVi
\ {ṽi} do5

if S[Vi][vi] > opt− ǫ then6

if S[Vi][vi] > opt+ ǫ then7

opt← S[Vi][vi]8

Best← ∅9

Best← Best∪ {〈Vi, vi〉}10

return randomly sampled element fromBest11

end12

ProcedureFlip-scores13

Input : Bayesian networkB = 〈V,D,G,Φ〉, previous variable assignmentV = ṽ, new
variable assignmentVi = vi, potential indexIφ for eachφ ∈ Φ, 2-dim. score array
S.

Effect: Vi is flipped fromṽi to vi, indices and scores are updated.
begin14

foreachφ ∈ ΦVi
do15

Ĩφ ← Iφ // Ĩφ holds the index before flippingVi from ṽi to vi.16

Iφ ← Iφ + Bφ,ṽi→vi
17

// ===== The local change in log-probability for this potential and the current flip
ṽi → vi is LC = φ[Iφ] − φ[Ĩφ].

foreachvi ∈ DVi
do S[Vi][vi] ← S[Vi][vi] + φ[Ĩφ] − φ[Iφ] // deal with LC18

// ===== Before the flip̃vi → vi, the local change for other variable flips̃vj → vj

is φ[Ĩφ + Bφ,ṽj→vj
] − φ[Ĩφ]; afterwards, it isφ[Iφ + Bφ,ṽj→vj

] − φ[Iφ].
LC cancels out with two of these terms.

foreachVj ∈ Vφ \ {Vi} andvj ∈ DVj
do19

S[Vj][vj] ← S[Vj][vj] − φ[Ĩφ + Bφ,ṽj→vj
] + φ[Iφ + Bφ,ṽj→vj

]20

end21

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 59

Caching scheme 6.4: Improving
This is like Caching scheme 6.3 on the preceding page, but additionally caches the set of
variablesVimp which yield an improvement in log probability when flipped tosome value.

ProcedurePick-improving1

Input : Bayesian networkB = 〈V,D,G,Φ〉, variable assignmentV = ṽ, 2-dim. score
arrayS, setVimp of vars yielding an improvement when flipped to some value.

Output : Variable-value pair〈Vi, vi〉 maximizing
∑

φ∈Φ
φ[V = ṽ|Vi = vi]

begin2

opt← −∞3

Best← ∅4

foreachVi ∈ Vimp andvi ∈ DVi
\ {ṽi} do5

if S[Vi][vi] > opt− ǫ then6

if S[Vi][vi] > opt+ ǫ then7

opt← S[Vi][vi]8

Best← ∅9

Best← Best∪ {〈Vi, vi〉}10

return randomly sampled element fromBest11

end12

ProcedureFlip-improving13

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, previous variable assignment
V = ṽ, new variable-value pair〈Vi, vi〉, potential indexIφ for eachφ ∈ Φ, 2-dim.
score arrayS, setVimp of vars yielding an improvement when flipped to some value.

Effect: Vi is flipped fromṽi to vi, indices, scores, and improving variables are updated.
begin14

// ===== The first loop is exactly the same as in procedure Flip-scoresin Caching
scheme 6.3 on the facing page

foreachφ ∈ ΦVi
do15

Ĩφ ← Iφ16

Iφ ← Iφ + Bφ,ṽi→vi
17

foreachvi ∈ DVi
do S[Vi][vi] ← S[Vi][vi] + φ[Ĩφ] − φ[Iφ]18

foreachVj ∈ Vφ \ {Vi} andvj ∈ DVj
do19

S[Vj][vj] ← S[Vj][vj] − φ[Ĩφ + Bφ,ṽj→vj
] + φ[Iφ + Bφ,ṽj→vj

]20

foreachVj ∈ mb(Vi) \ E do21

if ∃vj ∈ DVj
such thatS[Vj][vj] > 0 then22

Vimp ← Vimp ∪ {Vj}23

else24

Vimp ← Vimp \ {Vj}25

Vi ← vi.26

end27

60 CHAPTER 6. EFFICIENT IMPLEMENTATION

Caching schemePicking best variable-value combinationFlipping variableVi to new value

Näıve O(|V| × |DV | × |Φ| × |Vφ|) Θ(1)
Simple O(|V| × |DV | × |ΦV |) Θ(|ΦVi

|)
Scores O(|V| × |DV |) O(|ΦVi

| × |Vφ| × |DV |)

Improving O(|Vimp| × |DV |)
O(|ΦV | × |Vφ| × |DV |

+ |mb(V)| × |DV | × log |Vimp|)

Table 6.1: Overview of computational complexity ofpickingthe best neighbouring
variable-value combination andflipping variableVi to a new value. For GLS-type
algorithms, the additional complexities in Table 6.2 apply.

Caching schemePenalty increase in local minimaSmoothing of all penalties

Näıve O(|Φmaxutil| × |Vφ|) O(|Φ| × Sφ)
Simple Θ(|Φmaxutil|) O(|Φ| × Sφ)
Scores O(|Φmaxutil| × |Vφ| × |DV |) O(|Φ| × Sφ + |V| × |DV |)

Improving O(|Φmaxutil| × |Vφ| × |DV |) O(|Φ| × Sφ + |V| × |DV |)

Table 6.2: Overview of computational complexity forincreasingthe penalties as-
sociated with the current entries of potentials with maximal utility and smoothing
all penalties in GLS-type algorithms.

setbnrep , the speedup factor achieved by our caching schemeImprovingover the
previous state-of-the-art caching schemeSimplereaches from 1.9 to 116 for G+StS,
from 2.5 to 39 for GLS, and from 1.16 to 110 for ILS. On problem set gen , this
speedup factor ranges from 6.26 to 46 for G+StS, from 5.9 to 17for GLS, and from
3.3 to 34 for ILS.

There are small differences in the number of search steps G+StS and ILS ex-
ecute per second, with G+StS being slightly faster on average. We attribute these
differences to two factors. Firstly, G+StS performs 40% of Stochastic Simulation
steps, the performance of which is not bound as tightly to thecaching schemes as
picking the best new variable-value combination.5 And secondly, a special situation
occurs in ILS when the acceptance criterion decides to go back to reuse the local
optimumv

∗ of the previous step. In this very frequent case6, ILS performs a series

5Stochastic Simulation steps sample a variableVi and then sample a value for this variable from
the distributionP (Vi = vi | [V \ {Vi} = v \ {vi}]). Since this equals the change in overall
probability whenVi is flipped tovi, the new value forVi can be sampled from the exponentiated
scoresS[Vi][.]. For caching schemeNäıve, these scores are computed from scratch, for caching
schemeSimple, the cached indices are employed for the computation, and for the other two caching
schemes, the scores are readily available.

6The new locally optimal variable instantiationv very often has smaller probability than the

6.5. EXPERIMENTAL EVALUATION OF CACHING SCHEMES 61

of additional variable flips which simply redo the flips performed since leavingv∗.
Effectively, this leads to ILS performing almost twice as many flip-operations as
pick-operations.

When comparing the CPU time per search step of GLS to G+StS and ILS, more
significant differences can be found. For the large networksmunin2 to munin4 ,
GLS performs only approximately15% of the steps G+StS and ILS perform per
second. We attribute these differences to the additional overhead in GLS stemming
from incrementing and smoothing its penalties. Interestingly, smoothing seems
to contribute only a small part to this additional complexity, since in preliminary
experiments (not reported here), we observed a very similarperformance of GLS
without smoothing.7

Note that for the small networksalarm , insurance , andwater , the ef-
fects of improved caching schemes are minimal, but that the speedup factor grows
with the number of variables and the domain sizes, being highest for the large in-
stancesdiabetes , link , and themunin networks. This effect is highlighted
by the results for problem setgen , where we observe that the speedup factor con-
sistently grows with the number of variables and the domain sizes. We visualize
these increasing speedups for larger instances for each of the algorithms separately
in Figures 6.1(a) on the next page, 6.1(b) on the following page, and 6.2(a) on the
next page, where every data point represents one instance.

Having substantially improved the time complexity SLS algorithms for MPE
exhibit per search step, in the next chapter we move on to another important com-
ponent of efficient SLS algorithms for MPE, namely a thoroughparameter tuning.

previous onev∗. In this case,v∗ is used with probability1 − ap, which per default is99.7%.
7Although with an infinite smoothing intervalNρ, GLS’s number of performed search steps per

second was up to 30% faster for some instances, for other instances, it was up to 20% slower. The
most likely reason for it being faster for some instances is clearly that it saves the complexity of
smoothing. We conjecture that the reason for it being slowerfor other instances is that without the
smoothing more potential entries might share the same maximal utility, which leads to a greater
number of penalty updates being performed.

62 CHAPTER 6. EFFICIENT IMPLEMENTATION

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Steps per seconds executed by G+StS

Number of variables times avg. domain size (equals VV)

S
te

ps
 e

xe
cu

te
d

pe
r C

P
U

 s
ec

on
d

Improving
Scores
Simple
Naive

(a) Effect of caching for G+StS

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Steps per seconds executed by ILS

Number of variables times avg. domain size (equals VV)

S
te

ps
 e

xe
cu

te
d

pe
r C

P
U

 s
ec

on
d

Improving
Scores
Simple
Naive

(b) Effect of caching for ILS

Figure 6.1: The effects of improved caching schemes for algorithms G+StS (a) and
ILS (b). Note the increasing effect of strong caching schemes with an increasing
number of variables and domain size (here only the product ofthe two is plotted).

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Steps per seconds executed by GLS

Number of variables times avg. domain size (equals VV)

S
te

ps
 e

xe
cu

te
d

pe
r C

P
U

 s
ec

on
d

Improving
Scores
Simple
Naive

(a) Effect of caching for GLS

10
2

10
3

10
0

10
1

Speedups of G+StS and ILS over GLS

Number of variables times avg. domain size (equals VV)

S
te

ps
/s

ec
. d

iv
id

ed
 b

y
S

te
ps

/s
ec

. o
f G

LS

G+StS
ILS

(b) Speedup of G+StS and ILS over GLS

Figure 6.2: The effects of improved caching schemes for algorithm GLS (a), and
the advantage in steps executed by algorithms G+StS and ILS when compared to
GLS when all algorithms are using our improved caching scheme Improving.

6.5.
E

X
P

E
R

IM
E

N
TA

L
E

VA
LU

AT
IO

N
O

F
C

A
C

H
IN

G
S

C
H

E
M

E
S

63
Stats G+StS GLS ILS

N Dom
c=0 c=1 c=2 c=3

sf
c=0 c=1 c=2 c=3

sf
c=0 c=1 c=2 c=3

sfInstance st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s.

alarm 27 2.78 7142 91904 141429 230507 2.51 5081 60322 108826 177453 2.94 6553 87189 128043 199495 2.29
alarm-rand 27 2.93 6831 84573 136225 220847 2.61 4723 56792 104816 166824 2.94 6530 80038 118695 182842 2.28

barley 38 9.45 616 18741 36912 77774 4.15 574 12904 30499 82396 6.39 861 18774 35621 71245 3.79
barley-rand 38 9.03 606 10210 24364 50678 4.96 658 13750 30805 70759 5.15 941 19212 35144 65532 3.41

diabetes 403 11.33 4.99 704 3897 36327 51.60 3.26 546 2486 17579 32.20 4.39 644 3920 40708 63.21
diabetes-rand 403 11.27 4.72 648 3264 31602 48.77 3.28 539 2432 21234 39.40 4.52 664 3848 42888 64.59

hailfinder 46 3.91 2106 50843 82890 201929 3.97 1304 30422 54829 136065 4.47 1799 45468 69994 161259 3.55
hailfinder-rand 46 4.02 1820 38035 77417 172865 4.54 1141 22645 52938 120753 5.33 1558 30725 58823 108685 3.54

insurance 17 3.24 12914 94800 149009 196759 2.08 9316 67159 121247 171379 2.55 12369 92942 126519 152300 1.64
insurance-rand 17 3.24 13640 100415 159976 217262 2.16 9635 71098 130910 187092 2.63 10969 90674 131232 160499 1.77

link 714 2.53 3.80 1310 6522 89915 68.64 2.81 1253 6788 47495 37.91 4.59 1520 7654 40080 26.37
link-rand 714 2.53 3.48 1494 5908 77652 51.98 2.66 1159 4021 15790 13.62 4.26 1579 8892 50498 31.98

mildew 25 20.72 1044 16073 23396 45343 2.82 800 12801 20356 33148 2.59 1084 17406 25078 50753 2.92
mildew-rand 25 10.48 2257 24854 54213 104124 4.19 1451 22124 43800 103526 4.68 2128 31753 48110 91768 2.89

munin1 179 5.30 44 6404 14910 79571 12.43 33 5275 13158 52968 10.04 59 7221 17078 76351 10.57
munin1-rand 179 5.36 44 5722 12125 67727 11.84 38 5175 12745 57449 11.10 60 6854 16658 82531 12.04

munin2 993 5.37 0.72 539 2998 53790 99.80 0.34 448 1204 6602 14.74 0.44 533 2785 49388 92.66
munin2-rand 993 5.37 0.74 600 2766 53998 90.00 0.34 384 1213 7391 19.25 0.45 533 2205 44028 82.60

munin3 1034 5.36 0.65 546 2492 53458 97.91 0.31 393 1058 5801 14.76 0.42 456 2228 44250 97.04
munin3-rand 1034 5.37 0.60 539 1730 51009 94.64 0.29 364 1029 5842 16.05 0.46 494 2172 54719 110.77

munin4 1031 5.43 0.70 445 2185 51776 116.35 0.31 358 1068 6549 18.29 0.49 494 2126 41879 84.78
munin4-rand 1031 5.40 0.72 539 2541 52134 96.72 0.31 362 1109 7097 19.60 0.48 494 2186 36215 73.31

pigs 431 3.00 13 3061 10761 94288 30.80 8.54 2322 8326 27965 12.04 11 3702 14120 90363 24.41
pigs-rand 431 3.00 11 3791 13002 99247 26.18 8.07 2631 7387 26676 10.14 12 3524 14369 105773 30.02

water 22 3.59 6986 79240 123185 168865 2.13 4907 50213 94355 156294 3.11 7614 74867 106093 134426 1.80
water-rand 22 3.59 4043 75334 112485 143196 1.90 4627 46053 77390 108539 2.36 6880 66769 78393 77440 1.16

Table 6.3:Steps performed per second for the algorithms G+StS, GLS, and ILS on problem setbnrep with caching schemesNäıve (c=0),
Simple(c=1), Scores(c=2), andImproving (c=3). For each algorithm,sf denotes the speedup factor gained by our new superior caching
schemeImprovingover the previously best simple caching schemeSimple. This speedup is higher for larger instances with many free variables
(columnN) and/or high domain sizes (columnDom). GLS+ performs almost exactly as many steps per seconds as GLS, andwe omit it in
the table. G+StS and ILS used initialization MB∗(105), GLS random initialization. The other default parameters used for the algorithms are
〈cf , np〉 = 〈2, 40〉 for G+StS,〈Nρ, ρ〉 = 〈200, 0.999〉 for GLS, and〈acc, an, cf , p, pert, pfix, prel〉 = 〈HYBRID, 0.003, 5, 2, POTS, true, false)
for ILS. GLS with an infitinite smoothing intervalNρ performed very similar to GLS with default parameters.

64
C

H
A

P
T

E
R

6.
E

F
F

IC
IE

N
T

IM
P

LE
M

E
N

TAT
IO

N

Stats G+StS GLS ILS

N Dom
c=0 c=1 c=2 c=3

sf
c=0 c=1 c=2 c=3

sf
c=0 c=1 c=2 c=3

sfInstance st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s. st./s.

z100v3d5iw10-rand 90 2.54 440 20698 53038 141758 6.85 314 13985 39771 89620 6.41 521 22067 50989 117445 5.32
z100v3d5iw10-struc 90 2.56 267 15656 39678 105943 6.77 312 14575 38462 85948 5.90 489 21092 50966 92900 4.40
z100v3d5iw20-rand 90 2.59 249 14461 37311 90523 6.26 293 14156 37423 84823 5.99 454 12915 21885 42728 3.31
z100v3d5iw20-struc 90 2.61 244 18534 45344 126959 6.85 290 13941 38352 87051 6.24 441 17999 37524 74066 4.12

z100v6d5iw10-rand 90 3.82 180 13615 34970 107184 7.87 169 10421 27913 74115 7.11 315 14945 34053 78783 5.27
z100v6d5iw10-struc 90 3.87 179 12301 31200 76811 6.24 171 10007 27577 69550 6.95 315 13013 25707 59174 4.55
z100v6d5iw20-rand 90 4.13 159 12031 32766 87635 7.28 173 9124 23841 74758 8.19 279 11750 32369 70697 6.02
z100v6d5iw20-struc 90 4.13 157 14797 36370 86008 5.81 174 9159 26400 72395 7.90 252 13079 32041 68592 5.24

z200v3d5iw10-rand190 2.54 60 6249 18879 80728 12.92 65 6693 20094 55385 8.28 108 9871 28903 89028 9.02
z200v3d5iw10-struc190 2.54 60 6580 18580 80510 12.24 65 6970 21327 55890 8.02 110 9793 26300 32545 3.32
z200v3d5iw20-rand190 2.52 55 7165 25307 115693 16.15 64 6725 20050 52133 7.75 106 9836 29992 101759 10.35
z200v3d5iw20-struc190 2.52 58 7092 20705 103104 14.54 66 6759 20481 55381 8.19 111 9749 30013 102419 10.51

z200v6d5iw10-rand190 4.11 37 4317 12756 54433 12.61 39 4477 13534 46237 10.33 65 6221 17154 50358 8.09
z200v6d5iw10-struc190 4.07 36 5336 13530 63970 11.99 40 4227 13578 44402 10.50 65 6665 18867 66418 9.97
z200v6d5iw20-rand190 4.09 40 6176 18306 98406 15.93 41 4624 13792 47131 10.19 65 6682 19004 75570 11.31
z200v6d5iw20-struc190 4.08 40 7651 20374 90057 11.77 40 4476 13717 46893 10.48 59 6473 18902 70918 10.96

z400v3d5iw10-rand390 2.47 16 4839 11902 85923 17.76 16 3114 9992 31047 9.97 23 4762 15851 66065 13.87
z400v3d5iw10-struc390 2.48 15 4056 11754 86576 21.35 16 3471 9856 32861 9.47 22 4553 13050 45580 10.01
z400v3d5iw20-rand390 2.48 14 4027 11717 82920 20.59 16 3273 9790 30412 9.29 22 4787 15901 58763 12.28
z400v3d5iw20-struc390 2.49 15 3347 11180 84085 25.12 15 3443 9919 32798 9.53 24 4736 16437 78071 16.48

z400v6d5iw10-rand390 4.11 9.91 2314 8199 61500 26.58 9.16 1772 6330 30602 17.27 13 2534 9987 69514 27.43
z400v6d5iw10-struc390 4.11 9.61 2181 11059 100137 45.91 9.46 1892 6263 29451 15.57 13 2404 9978 81229 33.79
z400v6d5iw20-rand390 3.87 10 2805 8521 65196 23.24 9.81 2066 6893 30029 14.53 14 2746 10406 81992 29.86
z400v6d5iw20-struc390 3.88 10 2601 8167 66112 25.42 10 1981 6039 30947 15.62 14 2780 10159 83747 30.12

Table 6.4:Steps performed per second for the algorithms G+StS, GLS, and ILS on problem setgen with caching schemesNäıve (c=0),
Simple(c=1), Scores(c=2), andImproving (c=3). For each algorithm,sf denotes the speedup factor gained by our new superior caching
schemeImprovingover the previously best simple caching schemeSimple. This speedup is higher for larger instances with many free variables
(columnN) and/or high domain sizes (columnDom). GLS+ performs almost exactly as many steps per seconds as GLS, andwe omit it in
the table. G+StS and ILS used initialization MB∗(105), GLS random initialization. The other default parameters used for the algorithms are
〈cf , np〉 = 〈2, 40〉 for G+StS,〈Nρ, ρ〉 = 〈200, 0.999〉 for GLS, and〈acc, an, cf , p, pert, pfix, prel〉 = 〈HYBRID, 0.003, 5, 2, POTS, true, false)
for ILS. GLS with an infitinite smoothing intervalNρ performed very similar to GLS with default parameters.

Chapter 7

Tuning SLS Algorithms for MPE

In this chapter, we introduce our experimental methodologyand show how we
tuned the parameters of the algorithms introduced in Chapter5 in order to achieve
high performance. We also demonstrate that tuning the parameters of the previ-
ously best-performing SLS algorithm GLS improves its performance by several
orders of magnitude.

7.1 Experimental Methodology

In the remainder of this thesis, we will repeatedly face the problem to evaluate the
performance of an algorithmA on a set of problem instancesS. For this purpose,
we let A run on all problem instances inS for a given time1 and keep track of
the solutions it finds. In order to evaluate how good the solutions it finds are, we
compare them to provably optimal solutions we obtained withthe exact algorithms
s-BBMB and Anytime MB (cf. Chapter 4) for most of the instances westudy.
However, for some instances, especially for randomly generated networks with
high induced width, these algorithms were not able to find optimal solutions and
proof their optimality.2 We thus employquasi-optimalsolutions, which we define
to be the best solutions we ever encountered in any run of any algorithm we tried.
We use the term quasi-optimal solution in its most general meaning, that is, we refer
with this term for each instance to the best solution we foundwith any algorithm.

1Unless explicitly stated otherwise, all algorithms are runfor t = 100 seconds on compute
servers each equipped with dual 2GHz Intel Xeon CPUs with 512KB cache and 4GB RAM running
Linux version 2.4.20, build 28.9.

2For all instances inbnrep , we could find optimal solutions and proof their optimality.For 5
of the networks ingen (all of them with maximal induced width20 and maximal domain size6),
this was not the case. Detailed results for the exact algorithms can be found in Chapter 9.

65

66 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

In particular, this includes provably optimal solutions.
After we ran algorithmA on problem setS, we compute a number of measures,

such asA’s ratio of solved problem instances and its average approximation quality.
Moreover, we employ qualified run-time distributions as well as distributions of
solution quality. These concepts are defined in the following (see also [HS04]).

Since SLS algorithms are randomized, the runtimeRTA,q an algorithmA needs
to find a solution with qualityq for a given problem instance is a random variable.
We perform multiple runs ofA in order to estimateRTA,q for all qualitiesq of
interest, especially forq∗, the quasi-optimal solution quality.

In each ofR runs ofA, we record for each qualityq of interest and runr =
1, . . . , R, the timeTq,r when the run first reached a quality greater or equal toq.
An empiricalqualified run-time distribution (empirical QRTD) for quality q gives
for each timet the percentage of runsr with Tq,r ≤ t; it yields an estimate of
the probability that algorithmA finds a quality greater or equal toq in time less
than or equal tot.3 Application areas of empirical QRTDs include visualization
of search stagnation and general characterization of algorithm behaviour. When
plotting empirical QRTDs, the x-axis gives algorithm runtime and the y-axis the
percentage of runs in which the quality of interest was achieved. In this thesis,
we only employ empirical QRTDs for quasi-optimal solution qualitiesq∗. QRTDs
for optimal solution quality are simply called run-time distributions (RTDs); for
example, Figure 7.3 on page 74 shows empirical RTDs for different parameter
settings of GLS.

Like the runtime an algorithmA needs to reach a given solution quality, the
quality it achieves within a given timet is a random variable, and its probability
density function can be approximated by the sample solutionqualities reached in
runs1, . . . , R of A within time t. Themean solution qualityat timet, a standard
tool in the analysis of anytime algorithms, is then just the mean of this sample. It
is especially useful when comparing algorithms with very different performance
and can also be applied for deterministic algorithms.4 For hard problems, in prac-
tice, one might primarily be interested in which algorithm promises to find the
best solution for a particular instance or class of instances given a certain timet.
Mean solution quality at timet gives the solution quality we expect an algorithm to
reach on average, and plotting it over time also shows whether an algorithm shows

3This estimate naturally improves with the number of runs performed, but doing many runs is
expensive in terms of CPU time. Thus, with a given limit on CPUtime for an experiment, we
always face a trade-off between the number of runs per algorithm, the number of instances we run
the algorithm on, and the time each run is allowed to last.

4For deterministic algorithms, of course only one run is performed and the mean solution quality
at any timet is simply the quality this run achieved in timet.

7.1. EXPERIMENTAL METHODOLOGY 67

strong performance in the beginning but improves more slowly over time than oth-
ers.5 In plots of mean solution quality, the x-axis represents runtime and the y-axis
solution quality; Figure 7.1 on page 71 shows an example for this. Recall that
we use−10000 as the log-probability for probability zero; when plottingaverage
log-probabilities, these values are suppressed to preventcluttered figures, and the
plot for a particular algorithmA only starts at the timet for which all runs ofA
found an assignment with strictly positive probability. Whenever possible without
introducing clutter into the plots, we provide the minimal and maximal solution
qualities achieved in all the runs of an algorithm as well. These are plotted at every
time step, at which the underlying sample distribution changes, i.e., whenever one
of the algorithm’s runs improves its best solution found so far. In order to pre-
vent clutter, we plot minimal and maximal solution qualities only for the best- and
worst-performing algorithms if at all.

While RTDs and plots of mean solution quality facilitate a detailed analysis of
algorithm performance on single problem instances, in order to evaluate algorithms
on sets of problem instances we employ a number of statisticsper instance. These
statistics include the ratio of successful runs, average approximation quality and
average runtime. In order to ease reading, we generally provide summary tables of
our experiments. For each experiment, the full results for each problem instance are
given in Appendix B and are referenced in the respective summary table (see e.g.
Table 7.1 on page 69 for an example). Each summary table contains the following
performance measures for each algorithm.

Avg. quality is short for an algorithm’sapproximation qualityaveraged over all
its runs on all instances. We define the approximation quality of an algo-
rithm run as the ratio of the nonlogarithmic solution quality it reached and
the quasi-optimal one. We always state approximation qualities in percent of
the quasi-optimal quality, i.e., a value of100 is optimal. (One can think of
this measure as the percentage of solved instances, plus some additional score
for instances for which solution qualities at least close tothe quasi-optimal
one are found.)

Avg. runtime gives the total time the algorithm needed to complete all theruns in
an experiment divided by the total number of runs in which thequasi-optimal
solution quality was found. A run terminates when it finds a quasi-optimal
solution or aftert = 100 CPU seconds.6

5Obviously, in practice, additional measures, such as the variance of achieved solution qualities
at timet, might play an important role as well.

6We employ this measure instead of averaged or median runtimequantiles since the performance
of the algorithms we compare varies heavily and for many instances not even the 5% quantiles exist

68 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Successful runsgives the ratio of the number of runs which found a quasi-optimal
solution and the total number of runs performed.

Instances solvedgives the ratio of instances for which at least one of the algo-
rithm’s runs was successful, i.e. the ratio of instances forwhich the algorithm
found a quasi-optimal solution in at least one of its runs.

amongst bestgives for each algorithm the number of instances for which itper-
formed best among the algorithms compared. Performance of algorithms for
a particular instance is compared by first evaluating the ratio of successful
runs for this instance, in case of ties using the approximation quality aver-
aged over the runs for this instance, and again in case of ties, by the average
runtime on this instance. If all these characteristics are equal for several al-
gorithms, they are all among the best performing algorithmsfor this instance.

7.2 Tuning G+StS

The G+StS algorithm as introduced in [KD99b] and detailed inSection 5.1 on
page 37 has two free parameters, the cutoff factorcf , and the noise probability
np. No default values for these parameters were mentioned in [KD99b], so we
tuned them manually. Note that here and in the following, we already employ our
new caching schemeImproving for tuning the parameters of previous algorithms
in order to make the best use out of a restricted CPU time. Afterpreliminary ex-
periments, we discretized the possible parameter values tocf ∈ {1.5, 2, 5, 10, 100}
andnp∈ {5, 10, 20, 30, 40, 50} (we measure the noise probability in percent), and
for each combination of these parameter values we ran G+StS25 times on all in-
stances in the problem setsbnrep andgen . The overall best-performing parame-
ter combination when judging by the percentage of successful runs and the average
approximation quality was〈cf , np〉 = 〈2, 40〉.

With this setting of the noise probability,40% of the steps in G+StS are Stocha-
stic Simulation steps. In this case, G+StS’s sensibility toits cutoff factor is not very
high, which we demonstrate for problem setsbnrep andgen in Tables 7.1 on the
facing page and 7.2 on the next page, respectively. However,G+StS is still quite
sensitive to its noise parameter even with a low cutoff factor of cf = 2. This can

for an algorithm because it cannot solve the instance. However, it is important to note that the
measure as we currently employ it strongly depends on the chosen time boundt = 100 since we
average runtimes over problems with vast differences in difficulty, some of which are solved in
milliseconds and some of which are never solved. However, incombination with the percentage of
successful runs, average runtime can give very valuable information.

7.2. TUNING G+STS 69

G+StS
Statistics cf = 1.5 cf = 2 cf = 5 cf = 10 cf = 100

Avg. quality 77.18 77.04 76.58 76.31 75.43
Avg. runtime 55.46 55.89 58.43 60.27 62.90

Successful runs424/650 423/650 415/650 410/650 400/650
Instances solved 17/26 17/26 17/26 17/26 16/26
amongst best 14 12 10 8 9

Table 7.1: Summary statistics for G+StS with initialization MB∗(105), noise proba-
bility np = 40, and varying cutoff factorcf on problem setbnrep . All algorithms
are run25 times for100 CPU seconds each. Summary of Table B.1 on page 141.

G+StS
Statistics cf = 1.5 cf = 2 cf = 5 cf = 10 cf = 100

Avg. quality 36.49 37.74 37.27 35.92 34.75
Avg. runtime 326.34 303.97 295.09 324.82 358.41

Successful runs144/600 152/600 155/600 144/600 133/600
Instances solved 8/24 9/24 8/24 8/24 8/24
amongst best 13 4 3 2 4

Table 7.2: Summary statistics for G+StS with initialization MB∗(105), noise prob-
ability np = 40, and varying cutoff factorcf on problem setgen . All algorithms
are run25 times for100 CPU seconds each. Summary of Table B.2 on page 142.

G+StS
Statistics np = 5 np = 10 np = 20 np = 30 np = 40 np = 50

Avg. quality 76.33 76.83 77.31 77.11 77.00 76.72
Avg. runtime 60.08 58.57 55.50 55.73 56.08 56.04

Successful runs408/650 413/650 423/650 422/650 423/650 422/650
Instances solved 17/26 17/26 17/26 17/26 17/26 17/26
amongst best 9 8 14 11 9 7

Table 7.3: Summary statistics for G+StS with initialization MB∗(105), cutoff factor
cf = 2, and varying noise probabilitynp on problem setbnrep . All algorithms
are run25 times for100 CPU seconds each. Summary of Table B.3 on page 143.

70 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

G+StS
Statistics np = 5 np = 10 np = 20 np = 30 np = 40 np = 50

Avg. quality 27.75 32.26 34.45 37.20 37.99 35.85
Avg. runtime 449.56 370.42 343.87 313.65 289.55 317.94

Successful runs111/600 131/600 138/600 148/600 159/600 147/600
Instances solved 7/24 7/24 9/24 7/24 9/24 6/24
amongst best 1 2 6 4 8 4

Table 7.4: Summary statistics for G+StS with initialization MB∗(105), cutoff factor
cf = 2, and varying noise probabilitynp on problem setgen . All algorithms are
run25 times for100 CPU seconds each. Summary of Table B.4 on page 144.

only be guessed from the performance on problem setbnrep (see Table 7.3 on
the preceding page), but can be seen clearly for problem setgen (see Table 7.4).7

The picture becomes much clearer when considering plots of mean solution qual-
ity, such as the ones in Figure 7.1 on the facing page. From these plots, the stronger
performance of relatively high noise values is very obviousfor both structured and
randomly generated networks. For the structured instancemunin1-rand , initial-
ization MB∗(105) already finds a very high-quality initial solution. For too low
noise probabilities, G+StS cannot improve much on this initial solution, which
causes a very small variance in solution quality for too low noise values, such as
np = 5. For higher noise probabilities, improvements on the initial solution are
found quickly in this example, and the variance in solution quality grows quickly
as well. For the randomly generated instancez100v6d5iw20-struc , initial-
ization MB∗(105) does not yield an initial solution with positive probability. Thus,
for too low settings of the noise value, up to30 seconds elapse before G+StS even
finds instantiations with positive probability in all its runs. The variance in solu-
tion quality decreases both for low noise probabilities, such asnp = 5, and higher
ones, such asnp = 40. Fornp = 40, after100 CPU seconds, G+StS has found the
optimal solution quality in2 of its 25 runs.

As can be seen in the complete results in Table B.3 on page 143 and Ta-
ble B.4 on page 144, the optimal setting for the noise parameter is not always
40%; however, for only one instance, a value smaller than20% yields clearly better
results than higher noise probabilities. The optimal cutoff factor also varies from
instance to instance. In the case of randomly generated instances, we observe a

7We suppose the unclear picture for problem setbnrep is due to the fact that G+StS’s Mini-
Buckets initialization already yields solutions of high quality for structured instances, and that for
many of these instances the relatively weak local search in G+StS cannot improve much on these
initial solutions even with an optimal parameter setting.

7.3. TUNING GLS 71

-78.7

-78.65

-78.6

-78.55

-78.5

-78.45

-78.4

-78.35

 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance munin1-rand

np=5
np=10
np=20
np=30
np=40
np=50

(a) munin1-rand

-40

-35

-30

-25

-20

-15

-10

-5

 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance z100v6d5iw20-struc

np=5
np=10
np=20
np=30
np=40
np=50

(b) z100v6d5iw20-struc

Figure 7.1: Plots of mean solution quality for25 runs of G+StS with initial-
ization MB∗(105), cutoff factor cf = 2, and varying noise probabilitynp on
the structured instancemunin1-rand (a) and the randomly generated instance
z100v6d5iw20-struc (b). The estimation of mean solution quality is based
on 25 runs of the algorithms per parameter value. In both plots, for the worst-
performing parameter valuenp = 5 and the best-performing parameter value
np = 40, we also provide the minimal and maximal solution qualitiesachieved
in any of their runs.

pattern in the full results in Table B.2 on page 142: for small instances, large cut-
off factors tend to work well, whereas for large instances the smallest considered
cutoff factorcf = 1.5 performs best. For the structured instances in Table B.1 on
page 141, the strong initialization skews the picture and wecannot infer any regu-
larities other than that in the few cases for which there are significant differences
between the parameter settings, the smallest cutoff factorcf = 1.5 always works
best.

7.3 Tuning GLS

The GLS algorithm, as originally introduced for MPE by Park [Par02] and detailed
in Section 5.2 on page 38, has two parameters, the smoothing factor ρ and the
smoothing intervalNρ. Recall from our discussion in Section 5.2 that in this orig-
inal version for MPE, no weighting parameter for the penalties is necessary, since
the evaluation function

∏
φ∈Φ φ[V = v] − w ×

∑
φ∈Φ λφ[V = v] is clearly dom-

inated by the penalties; also recall that, following Park’s[Par02] implementation,
we use only the summed penalties as an evaluation function, implicitly settingw to

72 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

GLS
Statistics ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 1.00

Avg. quality 40.70 44.09 48.63 63.96 75.52 75.45
Avg. runtime 223.71 200.13 137.50 85.46 59.32 52.06

Successful runs201/650 219/650 277/650 353/650 429/650 451/650
Instances solved 9/26 10/26 12/26 15/26 19/26 20/26
amongst best 1 5 1 0 3 19

Table 7.5: Summary statistics for GLS with smoothing interval Nρ = 200 and
varying smoothing factorρ on problem setbnrep . All algorithms are run25 times
for 100 CPU seconds each. Summary of Table B.5 on page 145.

GLS
Statistics ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 1.00

Avg. quality 36.90 42.20 49.81 78.74 87.20 83.53
Avg. runtime 355.65 273.80 197.71 66.93 60.42 69.41

Successful runs134/600 164/600 203/600 383/600 400/600 372/600
Instances solved 7/24 8/24 10/24 17/24 20/24 21/24
amongst best 0 0 1 6 12 5

Table 7.6: Summary statistics for GLS with smoothing interval Nρ = 200 and
varying smoothing factorρ on problem setgen . All algorithms are run25 times
for 100 CPU seconds each. Summary of Table B.6 on page 146.

∞.
Based on experience with other Dynamic Local Search algorithms such as

SAPS [HTH02], we expected the optimal parameter setting of the smoothing pa-
rameterρ and the smoothing intervalNρ to be tightly coupled. Modifying the
smoothing intervalNρ would lead to two separate effects, namely computational
savings due to the less frequent smoothing (cf. Chapter 6) andchanges in the tra-
jectory due to the penalties being smoothed less. On the other hand, modifying the
smoothing parameterρ would only lead to the latter effect of the trajectory being
changed. In order to study only one effect at a time, we decided to focus on the
smoothing parameterρ first, assuming a fixed smoothing interval ofNρ = 200.

In Table 7.5 and Table 7.6, we give the results of tuning GLS’ssmoothing pa-
rameterρ with Nρ = 200 for problem setsbnrep andgen , respectively. For the
structured instances inbnrep , parameter valueρ = 1.00 outperforms all other
settings, which means that performing any smoothing at all is detrimental. Fig-
ure 7.2 on the facing page presents two plots of mean solutionquality that are
representative for the performance of GLS with different values ofρ for the in-

7.3. TUNING GLS 73

-21

-20.5

-20

-19.5

-19

-18.5

 0.01 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance mildew-rand

rho=0.7
rho=0.8
rho=0.9

rho=0.99
rho=0.999

rho=1.00

(a) mildew-rand

-160

-150

-140

-130

-120

-110

-100

-90

 0.01 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance pigs

rho=0.7
rho=0.8
rho=0.9

rho=0.99
rho=0.999
rho=1.00

(b) pigs

Figure 7.2: Plots of mean solution quality for GLS with smoothing intervalNρ =
200 and varying values of the smoothing parameterρ for the structured instances
mildew-rand (a) andpigs (b). For instancemildew-rand , the plots for
parameter valuesρ ∈ {0.9, 0.99, 0.999, 1.00} end early when the optimal solution
quality (−18.795) has already been reached in all25 runs. For instancepigs
and parameter valuesρ = 0.7 andρ = 1.00, we also provide the minimal and
maximal solution qualities achieved in any of their25 runs. Forρ = 0.7, we
see a clear indication of search stagnation since with this parameter setting, after
0.2 CPU seconds, the best overall solution found in the25 runs of GLS does not
improve anymore until the algorithm is terminated after100 CPU seconds. For this
instance, we also observe a rather odd development of mean solution quality over
time with some plateaus that need to be overcome; the plots for ρ = 0.999 and
ρ = 1.00 again end early when all25 runs have already found the optimal solution
quality (−95.125).

stances inbnrep . In these plots, the dominance of values forρ close to1.00 is
very obvious; lower values ofρ, such as the default settingρ = 0.8 from [Par02],
lead to a performance that is orders of magnitude weaker thanwith ρ = 1.00 at best
or to a complete inability to solve the instances at worst.

The empirical RTD for networkhailfinder-rand in Figure 7.3(a) on the
next page is representative for many instances in problem set bnrep and once more
demonstrates the superiority of values ofρ close to1.00 for structured instances.
The empirical RTD for instancez100v6d5iw20-struc in Figure 7.3(b) on the
following page is similarly representative for problem setgen : it shows gener-
ally much superior behaviour of values forρ close to1.00, but also suggests that
completely omitting the smoothing may lead to search stagnation. As opposed to

74 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100 1000P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-2

0
.1

6
2
2

CPU time(sec)

Instance hailfinder-rand

rho=0.7
rho=0.8
rho=0.9

rho=0.99
rho=0.999

rho=1.00

(a) hailfinder-rand

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000 10000P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-7

.5
8
8

CPU time(sec)

Instance z100v6d5iw20-struc

rho=0.7
rho=0.8
rho=0.9

rho=0.99
rho=0.999

rho=1.00

(b) z100v6d5iw20-struc

Figure 7.3: Empirical RTDs for GLS with smoothing intervalNρ = 200 and vary-
ing values of the smoothing parameterρ for instanceshailfinder-rand (a)
andz100v6d5iw20-struc (b); for both instances, the optimality of the found
solutions can be proven. The empirical RTDs for each parameter value are based
on100 runs of1000 CPU seconds.

what we experienced with problem setbnrep , for a few instances fromgen , we
indeed observe search stagnation of the otherwise best-performing parameter value
ρ = 1.00; this can, for example, be seen in Figure 7.4 on the next page.For pa-
rameter valueρ = 0.999, we never found evidence for search stagnation in our
experiments. For this reason, we use this value as a default despite its slightly
inferior performance for the structured instances in problem setbnrep .

As can be seen in the full results in Table B.5 on page 145 and Table B.6 on
page 146, there are remarkably low differences in the best-performing parame-
ter value across the instances within each of the problem sets. For problem set
bnrep , GLS with ρ = 1.00 always finds the quasi-optimal solution if any of the
other parameterizations does, and for all other instances achieves the best average
approximation quality. For problem setgen , almost the same is true for parameter
valueρ = 0.999, which is only outperformed byρ = 0.99 on two instances, and by
ρ = 1.00 on four other instances.

So far, we only tuned the smoothing parameterρ assuming a fixed smooth-
ing interval of Nρ = 200. Having determined valueρ = 0.999 to be optimal
for this smoothing interval, we now tune parameterNρ given the fixed smoothing
parameterρ = 0.999. For problem setbnrep , we have already seen that it is
detrimental to perform any smoothing at all. High smoothingintervals correspond
to little smoothing to be carried out, and Table 7.7 on page 76demonstrates that,
matching our intuition, an infinite smoothing interval performs best on problem set

7.3. TUNING GLS 75

 0

 20

 40

 60

 80

 100

 0.1 1 10 100 1000 10000P
er

ce
nt

 o
f r

un
s

ac
hi

ev
ed

 s
ol

ut
io

n
qu

al
ity

 -
35

.0
49

9

CPU time(sec)

Instance z200v3d5iw20-rand

rho=0.7
rho=0.8
rho=0.9

rho=0.99
rho=0.999
rho=1.00

Figure 7.4: Empirical RTDs for GLS with smoothing intervalNρ = 200 and vary-
ing values of the smoothing parameterρ for instancez200v3d5iw20-rand and
optimal solution quality. Clear search stagnation for parameter valueρ = 1.00 can
be observed. For parameter valuesρ ∈ {0.7, 0.8}, GLS did not find a solution in
any run, and forρ = 0.9, one run succeeded after90 seconds. The empirical RTDs
for each parameter value are based on100 runs of1000 CPU seconds.

bnrep (for all measures except average approximation quality). However, for the
instances in problem setgen , smoothing plays an important role. As we demon-
strate in Table 7.7 on the next page, lower smoothing intervals yield significantly
better performance in this case. Judging by average approximation quality and av-
erage runtime,Nρ = 200 performs best, whereas a greater number of runs are suc-
cessful forNρ = 50, andNρ = 1000 solves more instances and is amongst the best
performing algorithms most often. In Figure 7.5 on the following page, we show an
example of empirical QRTDs of GLS with a varying smoothing interval for a struc-
tured instance and a randomly generated one. Similarly to what we observed when
varying the smoothing parameter, GLS performs poorly for structured instances
when too much smoothing is performed whereas it stagnates without smoothing on
randomly generated instances. Since none ofNρ’s possible values clearly performs
better than its defaultNρ = 200 from [Par02], we employ this value here as well,
making our default parameter configuration〈Nρ, ρ〉 = 〈200, 0.999〉.

We strongly expect that there exist other combinations ofNρ andρ which yield
comparable or even better performance. This is because by our simple tuning of
one parameter at a time, we have merely found a local optimum in the space of
possible parameter configurations.8 Finding an equally strong parameter setting

8In Appendix A, we introduce a parameter tuning scheme which automates the process we have
carried out in tuning GLS and explores other configurations after a local optimum in configuration

76 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-2

8
.6

2
7
9

CPU time(sec)

Instance barley-rand

N_rho=50
N_rho=200

N_rho=1000
N_rho=10000
N_rho=infinity

(a) barley-rand

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-2

7
.2

8
0
8

CPU time(sec)

Instance z400v3d5iw20-struc

N_rho=50
N_rho=200

N_rho=1000
N_rho=10000
N_rho=infinity

(b) z400v3d5iw20-struc

Figure 7.5: Empirical RTDs for GLS with smoothing parameterρ = 0.999 and
varying values of the smoothing intervalNρ for instancesbarley-rand (a) and
z400v3d5iw20-struc (b); for both instances, the optimality of the found so-
lutions can be proven. The empirical RTDs for each parametervalue are based on
100 runs of1000 CPU seconds.

GLS withρ = 0.999
Statistics Nρ = 50 Nρ = 200 Nρ = 1000 Nρ = 10000 Nρ = ∞

Avg. quality 70.31 75.28 76.02 76.47 75.43
Avg. runtime 79.35 59.95 55.59 53.99 50.95

Successful runs373/650 425/650 433/650 444/650 459/650
Instances solved 17/26 18/26 19/26 20/26 20/26
amongst best 1 2 8 8 15
Instances> 0 26/26 26/26 26/26 26/26 26/26

Table 7.7: Summary statistics for GLS with smoothing parameter ρ = 0.999 and
varying smoothing intervalNρ on problem setbnrep . All algorithms are run25
times for100 CPU seconds each. Summary of Table B.7 on page 147.

7.4. TUNING GLS+ 77

GLS withρ = 0.999
Statistics Nρ = 50 Nρ = 200 Nρ = 1000 Nρ = 10000 Nρ = ∞

Avg. quality 82.35 87.44 87.35 85.71 84.11
Avg. runtime 55.97 58.97 63.14 69.13 72.68

Successful runs412/600 406/600 395/600 375/600 366/600
Instances solved 17/24 20/24 22/24 22/24 18/24
amongst best 6 5 8 4 1

Table 7.8: Summary statistics for GLS with smoothing parameter ρ = 0.999 and
varying smoothing intervalNρ on problem setgen . All algorithms are run25 times
for 100 CPU seconds each. Summary of Table B.8 on page 148.

with a higher smoothing interval would be very important if the complexity of
smoothing clearly dominated the total search cost and we could significantly re-
duce the complexity of GLS without impairing its potential.9 However, prelimi-
nary experiments (not reported here) suggest that even withan infinite smoothing
interval the number of search steps executed per time unit does not significantly
grow. Thus, future work may be able to improve on our default parameter setting
〈Nρ, ρ〉 = 〈200, 0.999〉, but we do not expect this to yield major savings due to a
reduced computational complexity.

7.4 Tuning GLS+

Our new variant of Guided Local Search, GLS+ (detailed in Section 5.2 on
page 38), has two additional parameters on top of the smoothing factorρ and
the smoothing intervalNρ, namely the penalty weighting parameterw which was
implicitly set to∞ in GLS, and the initialization. As detailed in Section 5.2 on
page 38, GLS+ employs the evaluation function

∑
φ∈Φ log(φ[V = v]) − w ×

λφ[V = v]. In GLS for weighted Max-SAT with integer weights,w is, for exam-
ple, set to1 by default [MT00], but in our case, the choice is not that simple. Recall
that frequently some potentialsφ have zero-probability entriesφ[V = v] = 0 for a
variable instantiationv, and that our evaluation function (the logarithmic objective
function) uses the value−10000 for each such zero-probability.

space has been reached. Applied to GLS, this parameter tuning scheme found a configuration that
performs better than〈Nρ, ρ〉 = 〈200, 0.999〉 if only one run per instance is used for the evaluation
of each parameter configuration. See Appendix A for details.

9A similar intuition has led to the development of SAPS [HTH02], a state-of-the-art Dynamic
Local Search algorithm for SAT.

78 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Especially in the beginning of a search, many zero-probabilities are encoun-
tered. Due to the large differences between log-probabilities for various assign-
ments resulting from these zero-probabilities, we need to use a rather large value
for the penalty weighting factorw. Otherwise, the log-probabilities would com-
pletely dominate the evaluation function, especially in the beginning of the search.
This would lead to the search spending thousands of search steps in each encoun-
tered local optimum, incrementing the respective penalties only by1 each step.

In the limited scope of this thesis, we simply deal with this problem by us-
ing a very high weighting factorw = 10000 which makes even small penalties
comparable to the log-probabilities for zero-probabilityentries. Effectively, this
enables a mixture of penalties and log-probabilities guiding the search in the be-
ginning when there are still plenty zero-probabilities. Later, when not as many
zero-probabilities are encountered anymore, the penalties dominate the search and
the log-probabilities are merely used for tie-breaking. Aswe will see in the ex-
perimental evaluation in Chapter 8, this simple integrationof the log-probabilities
into the evaluation function already yields considerable performance improvements
over GLS. However, we will also see that in many cases, only the initial perfor-
mance increases, while in later stages of the search GLS and GLS+ behave almost
identically.

We do not expect our fixed setting ofw = 10000 to be optimal. On the contrary,
we assume that especially for later stages of the search a considerably stronger per-
formance can be gained using an adaptive setting ofw that yields a balanced mix-
ture of log-probabilities and penalties in the evaluation function during the whole
course of the search. Due to the limited scope of this thesis,we defer work on such
an adaptive version of GLS+ to future work.

For the initialization, we considered the two possibilities RANDOM and
MB∗(105). Our experiments for these variants suggest that with initialization
MB∗(105), GLS+ gets a significant head start over GLS+ with random initializa-
tion. However, as illustrated in Figure 7.6 on the next page,this initial advan-
tage does not necessarily lead to superior performance for longer runs. Never-
theless, there are a few structured instances, such as themunin2 , munin3 , and
mildew networks, for which the MB∗(105) initialization quickly finds optimal
solution quality whereas GLS+ with a random initialization shows rather poor per-
formance. For this reason, we use initialization MB∗(105) as a default for GLS+. In
our experimental evaluation in Chapter 8, we will revisit theissue of different ini-
tializations and demonstrate that initialization MB∗(105) indeed yields much better
results for most instances.

7.5. TUNING ILS 79

-160

-155

-150

-145

-140

-135

-130

-125

-120

-115

 0.01 0.1 1 10 100

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance pigs-rand

GLS+, init MB*(100000)
GLS+, random init

(a) Mean solution qualities

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-1

1
9
.3

8
5
5

CPU time(sec)

Instance pigs-rand

GLS+, init MB*(100000)
GLS+, random init

(b) Empirical RTDs

Figure 7.6: Performance of GLS+ with smoothing intervalNρ = 200, smoothing
factorρ = 0.999, penalty weighting factorw = 10000, and varying initialization
for instancepigs-rand . The plot of mean solution quality in (a) suggests vastly
superior behaviour of GLS+ with initialization MB∗(105), but the RTD in (b) shows
that this superiority diminishes for longer runtimes and that optimal solutions are
found equally fast when using a random initialization. The estimation is based on
100 runs for each initialization.

7.5 Tuning ILS

In Section 5.3 on page 42, we introduced an ILS algorithm for MPE with a few
degrees of freedom left to fill in. The procedural parameterswere as follows:

• GenerateInitialSolution∈ {RANDOM, MB∗(105)};

• AcceptanceCriterion∈ {RW, BETTER, BE/RW, LSMC};

• Pertubation type:pt ∈ {VARS, POTS};

• Additional local search at the end of the pertubation phase,keeping perturbed
variables fix:pfix∈ {true, false}; and

• Relative pertubation size:prel∈ {true, false}.

The algorithm’s numerical parameters are the cutoff factorcf , the pertubation
strengthp, as well as two conditional parameters that depend on the used accep-
tance criterion. In the case of BE/RW, the acceptance probability ap needs to be
set, and in the case of LSMC, the temperatureT is an additional parameter. In

80 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

order to determine sets of possible discrete values for these numerical parameters,
we carried out initial experiments. The discrete values we chose were:

• Cutoff factorcf ∈ {1.5, 2, 5, 10, 100};

• Pertubation strengthp ∈ {1, 2, 3, 4};

• Acceptance probabilityap∈ {0.003, 0.01, 0.03}; and

• LSMC temperatureT ∈ {0.01, 0.03, 0.1}.

Overall, there are2 different initializations,2 + 2 × 3 = 8 parameterized
acceptance criteria,5 possible values for the cutoff factor, and2 × 2 different
types of pertubations with4 × 2 possible pertubation strengths. Thus, there are
2 × 8 × 5 × 4 × 8 = 2560 possible parameter configurations. Evaluating a sin-
gle parameter configuration on problem setsbnrep andgen for a single run of
t = 100 CPU seconds takes50×100 CPU seconds, and thus evaluating all possible
parameter configurations just for a single run on each instance would take almost5
CPU months.

In order to speed up this process, we developed an automated parameter tuning
procedure that performs an Iterated Local Search in the space of possible parame-
ter configurations. We call this procedure ParamILS and detail it in Appendix A.
ParamILS evaluates each parameter configuration for ILS by performing a single
run of ILS with that parameter configuration on all instancesof bnrep andgen ;10

it uses a combination of the percentage of solved instances and the average approx-
imation quality as an objective function to estimate the quality of a parameter con-
figuration. ParamILS’s major advantage over the brute-force approach to try out
all possible parameter configurations is that the search is quickly driven towards
promising parameter configurations such that only a small fraction of parameter
configurations needs to be evaluated. This fraction hopefully contains the overall
best-performing parameter configuration, but at the very least is biased towards
well-performing parameter configurations.

We chose a very simple initial configuration for ParamILS with acceptance cri-
terion BETTER, initialization RANDOM, pertubation strengthp = 4, pertuba-
tion VARS, andpfix as well asprel set tofalse. What we expected from prelim-
inary experiments and previous results from SLS algorithmsfor MPE [KD99b]
was that very quickly the initialization would be changed toMB∗(105), and that

10ParamILS can also be applied to the problem sets separately,or even on an instance-by-instance
base. The smaller the problem sets are for which we optimize parameters, the closer we get to
peak performance on the individual instances, which is considerably higher than the performance
achieved with the overall best-performing set of parameters.

7.5. TUNING ILS 81

the acceptance criterion would be changed to either HYBRID or LSMC. Based on
intuition from preliminary experiments, we also expected pertubation POTS and
pfix = true to be chosen. What we still could not anticipate from our initial ex-
periments was whether acceptance criterion HYBRID or LSMC would turn out the
best, and which values should be used for the numerical parameters.

Table 7.9 on the next page provides a trace documenting the automated param-
eter tuning process for the first12 iterations. After7 iterations, ParamILS found
a parameter configuration that remained unbeaten for the first 25 iterations after
which we terminated the procedure.11 After iteration12, no locally optimal pa-
rameter configuration was found anymore that had not been encountered before.
This suggests that either the search in configuration space stagnates or that the total
number of local optima in the configuration space is rather small.

ParamILS already finds a very good local optimum in the first iteration, and
after6 more iterations escapes to the best local optimum found. This locally op-
timal parameter configuration matches our expectations, employing initialization
MB∗(105), acceptance criterion HYBRID, pertubation POTS, andpfix = true. The
best-performing combination〈cf , p, prel, ap〉 = 〈5, 2, false, 0.003〉 of the other pa-
rameters did not greatly surprise us, but we had never lookedat this configuration
before, which strengthens our intuition that local search in the configuration space
can greatly ease and improve the parameter tuning process. For completeness, we
present the entire final ILS algorithm with optimized procedural parameters in Al-
gorithm 7.1 on page 83 and page 84.

In order to evaluate ParamILS, we also tested its performance for tuning the
parameters of G+StS and GLS. It performed very well for thesetasks and we report
the results in Appendix A.

11The25 iterations we executed ParamILS for are not much for an ILS algorithm. However, we
could not afford a longer run due to limited computational resources. For the25 runs we performed,
ParamILS needed approximately1 CPU week. In contrast to the5 CPU months the brute force
approach would have taken, this was feasible and we conjecture to actually have found the globally
optimal configuration in parameter space. We hope to considerably improve the performance of
ParamILS in the future by a faster way of ruling out inferior parameter configurations.

82 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Step Iteration
Parameters

Solved
Avg.

T acc an b cf p pert pfix prel Quality

1 1 - BETTER - RANDOM 10 4 VARS FALSE FALSE 32.00 39.88
2 1 - BETTER - MB 10 4 VARS FALSE FALSE 48.00 58.50
3 1 - BETTER - MB 10 4 VARS TRUE FALSE 52.00 68.91
4 1 - BETTER - MB 10 3 VARS TRUE FALSE 54.00 70.69
5 1 - HYBRID 0.01 MB 10 3 VARS TRUE FALSE 56.00 71.52
6 1 - HYBRID 0.01 MB 10 1 VARS TRUE FALSE 66.00 75.26
7 2 - HYBRID 0.01 MB 100 1 VARS TRUE FALSE 60.00 71.73
8 2 - same - HYBRID 0.01 MB 10 1 VARS TRUE FALSE 66.00 75.26
9 3 - HYBRID 0.01 MB 10 4 VARS TRUE FALSE 50.00 68.03
10 3 - same - HYBRID 0.01 MB 10 1 VARS TRUE FALSE 66.00 75.26
11 4 - RW - MB 2 4 VARS TRUE FALSE 38.00 48.39
12 4 0.01 LSMC - MB 2 4 VARS TRUE FALSE 52.00 68.95
13 4 0.1 LSMC - MB 2 4 VARS TRUE FALSE 56.00 71.32
14 4 - rej 0.1 LSMC - MB 2 3 VARS TRUE FALSE 58.00 73.66
15 5 - HYBRID 0.01 MB 5 2 VARS TRUE TRUE 52.00 66.00
16 5 - HYBRID 0.01 MB 5 2 VARS TRUE FALSE 62.00 72.37
17 5 - HYBRID 0.01 MB 5 1 VARS TRUE FALSE 66.00 73.77
18 5 - same - HYBRID 0.01 MB 10 1 VARS TRUE FALSE 66.00 75.26
19 6 - RW - MB 10 4 VARS TRUE FALSE 38.00 50.15
20 6 0.01 LSMC - MB 10 4 VARS TRUE FALSE 52.00 68.94
21 6 - rej 0.1 LSMC - MB 10 4 VARS TRUE FALSE 56.00 74.71
22 7 - HYBRID 0.03 MB 10 2 VARS TRUE TRUE 50.00 62.53
23 7 - HYBRID 0.03 MB 10 2 VARS TRUE FALSE 58.00 69.85
24 7 - HYBRID 0.003 MB 10 2 VARS TRUE FALSE 64.00 75.10
25 7 - HYBRID 0.003 MB 10 2 POTS TRUE FALSE 64.00 77.72
26 7 - acc - HYBRID 0.003 MB 5 2 POTS TRUE FALSE 68.00 78.93
27 8 - BETTER - MB 1.5 2 POTS TRUE TRUE 44.00 60.46
28 8 - BETTER - MB 1.5 1 POTS TRUE TRUE 50.00 64.59
29 8 - BETTER - MB 5 1 POTS TRUE TRUE 50.00 65.62
30 8 - HYBRID 0.003 MB 5 1 POTS TRUE TRUE 66.00 75.20
31 8 - HYBRID 0.003 MB 5 1 POTS TRUE FALSE 68.00 78.20
32 8 - same - HYBRID 0.003 MB 5 2 POTS TRUE FALSE 68.00 78.93
33 9 - same - HYBRID 0.003 MB 5 2 POTS TRUE FALSE 68.00 78.93
34 10 - BETTER - MB 5 1 POTS FALSE FALSE 46.00 58.45
35 10 - HYBRID 0.003 MB 5 1 POTS FALSE FALSE 60.00 74.71
36 10 - HYBRID 0.003 MB 5 1 POTS TRUE FALSE 68.00 78.20
37 10 - same - HYBRID 0.003 MB 5 2 POTS TRUE FALSE 68.00 78.93
38 11 - HYBRID 0.01 MB 1.5 1 POTS TRUE FALSE 50.00 67.15
39 11 - HYBRID 0.01 MB 5 1 POTS TRUE FALSE 60.00 72.17
40 11 - HYBRID 0.003 MB 5 1 POTS TRUE FALSE 68.00 78.20
41 11 - same - HYBRID 0.003 MB 5 2 POTS TRUE FALSE 68.00 78.93
42 12 - RW - MB 5 2 VARS FALSE FALSE 44.00 59.87
43 12 - rej - RW - MB 5 2 VARS FALSE TRUE 48.00 60.92

Table 7.9:Trace of ParamILS for tuning the parameters of ILS. Column “Step” gives the running
number of search steps, i.e. flips of parameter values performed so far; “Iteration” gives the running
number of iterations, and in the case of local optima whetherthe optimum is accepted (acc), rejected
(rej) or is the same as the previous one (same); “Parameters”gives the current instantiation of ILS’s
parameters; “Solved” gives the percentage of instances of problem setsbnrep andgen that are
solved by ILS with the current parameter instantiation in single runs of100 CPU seconds each;
and “Avg. Quality” gives the average approximation qualityachieved on all instances. The rows of
search steps, in which the best performance so far is achieved, are printed in bold face.

7.5. TUNING ILS 83

Algorithm 7.1: Iterated Local Search (ILS) for MPE (to be continued)
Our default parameters are:〈cf , p, ap〉 = 〈5, 2, 0.003〉. g(v|Vi = vi) abbreviates∑

φ∈Φ log(φ[V = v|Vi = vi]); andg(v) abbreviates
∑

φ∈Φ log(φ[V = v).

Input : Bayesian networkB = 〈V,D,G,Φ〉, evidenceE = e, time boundt, cutoff factor
cf , pertubation strengthp, acceptance probabilityap

Output : Variable assignmentv with highest probability
∏

φ∈Φ
φ[V = v] found in timet

while runtime< t do1

opt← −∞2

v0 ← MB∗(105)3

v
∗ ← LocalSearch(v0, ∅)4

iteration← 05

repeat6

iteration← iteration+ 17

v ← Pertubation(v∗)8

v ← LocalSearch(v, ∅)9

v
∗ ← AcceptanceCriterion(v∗,v)10

if g(v∗) > opt then11

opt← g(v∗)12

itopt ← iteration13

until iteration > cf× itopt or runtime≥ t14

Function AcceptanceCriterion(v∗,v)15

begin16

if g(v∗) > g(v) then return v
∗17

Drawx from uniform distributionu(0, 1)18

if x < apthen19

return v
∗20

else21

return v22

end23

84 CHAPTER 7. TUNING SLS ALGORITHMS FOR MPE

Algorithm 7.1: Iterated Local Search (ILS) for MPE (continued)
Our default parameters are:〈cf , p, ap〉 = 〈5, 2, 0.003〉. g(v|Vi = vi) abbreviates∑

φ∈Φ log(φ[V = v|Vi = vi]); andg(v) abbreviates
∑

φ∈Φ log(φ[V = v).

Function Pertubation(v)24

begin25

Vpert ← ∅26

while |Vpert| < p do27

Pick random potentialφ ∈ Φ28

foreachVi ∈ Vφ \ (E ∪ Vpert) do29

Pick random valuẽvi ∈ DVi
\ {vi}30

Flip Vi to ṽi31

Vpert ← Vpert ∪ {Vi}32

v ← LocalSearch(v,Vfix)33

return v34

end35

Function LocalSearch(v, Vfix)36

begin37

while true do38

Randomly pickVi ∈ V andvi ∈ DVi
maximizingg(v|Vi = vi).39

if g(v|Vi = vi) > bestthen40

Flip Vi to vi.41

else42

Randomly pickVi ∈ V \ (E ∪ Vfix) andvi ∈ DVi
maximizingg(v|Vi = vi).43

if g(v|Vi = vi) > g(v) then44

Flip Vi to vi.45

else46

return v // No improving step possible anymore.47

end48

Chapter 8

Experimenal Evaluation of SLS
Algorithms

In this chapter, we evaluate our new algorithms, ILS and GLS+, against the
previous state-of-the-art SLS algorithms for MPE solving,G+StS [KD99b] and
GLS [Par02]. We demonstrate that our new algorithms find solutions that are or-
ders of magnitude better than those obtained from previous algorithms and are up
to six orders of magnitude faster in solving instances to quasi-optimality. We also
provide an analysis of the contributions every new component of our algorithms
has to their strong performance.

8.1 Reproduction of Previous Results

For the experimental evaluation in this chapter, we employ our own implementa-
tions of the SLS algorithms G+StS [KD99b] and GLS [Par02]. Wewould have
much preferred to use the original implementations of thesealgorithms, but these
are tied into the larger reasoning systems SamIam1 and REES2 which obstructs a
direct comparison.3 The original version of GLS is part of the SamIam system,
and the original version of G+StS is integrated into REES. Bothreasoning sytems

1http://reasoning.cs.ucla.edu/samiam/
2http://www.ics.uci.edu/˜radum/rees
3Both SamIam and REES generate MPE instances for an experimental evaluation on the fly,

and can neither be easily used with automatic scripts nor parse external instances in the standard
Bayesian interchange format (BIF). Further, SamIam is written in Java, obstructing a fair compari-
son with our C++ implementation, and REES is bound to the Windows operating system, which is
incompatible with our infrastructure for larger experiments. Moreover, version 3.0.8 of REES as of
April 2004 had a (known but unresolved) bug yielding wrong MPE values on instances which were
not created by the system itself.

85

86 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

also provide independent implementations of the respective other algorithm, and
there is one article by each of the groups that lists computational experiments com-
paring G+StS and GLS [Par02, MKD03]. Both of these papers provide results for
real-world networks from the Bayesian networks repository as well as for a class
of randomly generated instances (and some more in the case of[MKD03]). In
order to demonstrate that the performance of our implementations of G+StS and
GLS closely resembles their original performance, we first reproduce these results
as closely as possible with our own implementations. We alsoreproduce further
results in [MKD03] comparing G+StS and GLS to the systematicsearch algorithm
s-BBMB [KD99a].

Unfortunately, we cannot perform experiments on exactly the same MPE in-
stances as [Par02] and [MKD03]. This is because the networksin the Bayesian
network repository do not include any evidence. In all research in the MPE do-
main we are aware of, evidence variables are sampled from thenetwork on-the-fly,
i.e., for each experiment, the evidence is newly sampled, the experiment is carried
out, and then the evidence is discarded. This has the advantage that research does
not concentrate on solving only an established set of benchmark instances, but al-
ways tries to optimize performance for all MPE instances that can result from a
network. However, it also means that although we can comparethe performance
of our algorithms w.r.t. the previous algorithms’ performance on a network in the
Bayesian network repository, the actual MPE instances to be solved will not be
identical. This limits the conclusions we can draw from our comparison. For ran-
dom instances, the situation is only more extreme. There, not only the evidence
is sampled on-the-fly, but also the networks themselves are generated on-the-fly.
[Par02] and [MKD03] use simple but different generators forrandom networks
that are integrated into the respective reasoning systems.We employ BNGenera-
tor [IC02, IC03], which allows us to control important parameters of the networks,
especially their induced width. Despite the different generation procedures, the rel-
ative performance of the algorithms we study seems to be consistent across the sets
of randomly generated networks used in [Par02], [MKD03], and in this thesis.

For our “original” versions of G+StS and GLS, we use caching schemeSim-
ple, the state-of-the-art caching scheme for SLS algorithms for MPE prior to our
work. For GLS, we use the original parameter setting〈ρ,Nρ〉 = 〈0.8, 200〉, and
for G+StS, since no default parameters are specified in any of[KD99b, Par02,
MKD03], we use our tuned parameter configuration〈cf , np〉 = 〈2, 40〉.

The first article reporting results for both G+StS and GLS is the one that in-
troduces GLS for MPE [Par02]. This article compares the performance of GLS
to the Discrete Lagrangian Method (DLM) and G+StS. Note thatthe implementa-
tions used in this evaluation are all versions by Park which are part of the SamIam

8.1. REPRODUCTION OF PREVIOUS RESULTS 87

system. Our “original” version of GLS seems to outperform his implementation of
GLS. It manages to find solutions with strictly positive probability for each single
instance in problem setbnrep , whereas in [Par02] none of20 runs finds a solution
with probability greater than zero for thediabetes network within30 seconds;
in our experiments, all25 runs of GLS find a solution with positive evidence within
22.1 seconds. Also, for networkmunin4 , we always find solutions with positive
evidence within11.5 seconds whereas only18 out of the20 runs reported in [Par02]
do so within30 seconds. We largely attribute these differences to the different pro-
gramming languages (Java vs. C++) and computational architectures used.4

Our “original” version of G+StS also seems to clearly outperform the one used
in [Par02]; it finds instantiations with strictly positive probability for more instances
and much faster. For themildew network, [Par02] reports G+StS to find instantia-
tions with positive probability in19 of 20 second runs of30 seconds each, whereas
our implementation finds instantiations of positive probability in all runs within
just0.08 seconds. For instancemunin1 , [Par02] reports G+StS to find no solution
with positive probability in any of the runs, while all of our25 runs find solutions of
positive probability, and22 of them do so within30 seconds. Finally, for thepigs
instance, [Par02] reports G+StS to find an instantiation of positive probability in
only 1 of 20 runs, while our imlementation finds instantiations of positive proba-
bility within 0.06 seconds in every run. We attribute the fact that G+StS performs
better in our experimental evaluation than in the one carried out in [Par02] to the
fact that we employ our optimized parameter setting for G+StS which is likely to
be better than the one used in [Par02].5

The fact that our G+StS implementation performs much fasterthan the one
in [Par02] also has consequences for the comparison of GLS and G+StS. For the
structured instances frombnrep , our implementation of G+StS solves more prob-
lems than our implementation of GLS and has a higher average approximation qual-
ity (see Table 8.1 on the next page). Nevertheless, as can be seen in Table 8.2 on the
following page, our “original” version of GLS still outperforms our “original” ver-
sion of G+StS by a large margin for the randomly generated instances in problem
setgen . This is consistent with the results reported in [Par02].

The second article [MKD03] on which our reproduction of previous results is
based compares a class of systematic search algorithms to the local search algo-

4As mentioned in Chapter 7, all our experiments are carried out on dual 2GHz Intel Xeon CPUs
with 512KB cache and 4GB RAM running Linux version 2.4.20, build 28.9. We cannot relate this
to the machines used in [Par02] since this article does not report on the computational architecture.

5We do not expect G+StS’s parameter setting in [Par02] to be optimal since the parameter setting
they employ for the GLS algorithm is very suboptimal although this algorithm is one of the main
contributions of their paper. In their experiments, G+StS’s noise probability was set to20%, and
the cutoff parameter is not reported.

88 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

G+StS GLS s-BBMB
Statistics “original” “original” ib=2 ib=6 ib=10 ib=14 ib=18

Avg. quality 46.32 41.81 39.25 76.96 82.09 88.46 88.46
Avg. runtime 121.29 222.77 166.43 32.57 29.07 37.76 39.28

Successful runs 300/650 202/650 10/26 20/26 21/26 23/26 23/26
Instances solved 12/26 9/26 10/26 20/26 21/26 23/26 23/26
amongst best 3 2 4 11 9 13 7

Table 8.1: Summary statistics for s-BBMB with differenti-bounds and our “orig-
inal” versions of G+StS and GLS on problem setbnrep . The SLS algorithms
were run 25 times for100 CPU seconds, the deterministic s-BBMB algorithm once
for 100 CPU seconds for every i-bound. The SLS algorithms used a random ini-
tialization, simple caching, and parameter values〈np, cf〉 = 〈40, 2〉 (G+StS), and
〈Nρ, ρ〉 = 〈200, 0.8〉 (GLS). Summary of Table B.9 on page 149.

G+StS GLS s-BBMB
Statistics “original” “original” ib=2 ib=6 ib=10 ib=14 ib=18

Avg. quality 18.30 36.35 0.03 12.70 51.82 75.84 67.51
Avg. runtime 760.01 339.95 ∞ 713.77 115.08 52.79 95.05

Successful runs 72/600 140/600 0/24 3/24 12/24 18/24 16/24
Instances solved 4/24 7/24 0/24 3/24 12/24 18/24 16/24
amongst best 1 3 0 0 11 7 3

Table 8.2: Summary statistics for s-BBMB with differenti-bounds and our “orig-
inal” versions of G+StS and GLS on problem setgen . The SLS algorithms were
run 25 times for100 CPU seconds, the deterministic s-BBMB algorithm once for
100 CPU seconds for every i-bound. The SLS algorithms used a random initial-
ization, simple caching, and parameter values〈np, cf〉 = 〈40, 2〉 (G+StS), and
〈Nρ, ρ〉 = 〈200, 0.8〉 (GLS). Summary of Table B.10 on page 150.

8.1. REPRODUCTION OF PREVIOUS RESULTS 89

rithms G+StS, GLS, and DLM. It was published by the same groupwho suggested
G+StS [KD99b], and, as far as we can tell, uses the original G+StS code. All
algorithms are implemented as part of the REES system.

Our results for G+StS also seem to be somewhat better than theones reported
in [MKD03]. However, unfortunately, [MKD03] only reports the percentage of
runs in which an algorithm found the optimal solution for an instance. For instances
for which the optimal solution is not found, information about the suboptimal solu-
tion quality reached would be helpful; a special case of thiswould be whether or not
an instantiation with positive evidence was found. For mostof the instances from
the Bayesian network repository, neither the original nor our implementation found
the optimal solution and only two instances remain for a meaningful comparison,
namelybarley andmildew . While in [MKD03], G+StS never found the opti-
mal solution for networkbarley within 30 seconds, our implementation always
finds it within100 seconds and needs29.22 seconds on average. After30 seconds,
60% of the runs had found the optimal solution.6 For networkmildew , [MKD03]
reports90% completed runs within30 seconds. For this instance, our implementa-
tion needs10.52 seconds on average; after30 seconds,92% of its runs had found
optimal solutions, approximately matching the previous result. For randomly gen-
erated networks, according to [MKD03], GLS outperforms G+StS by a large mar-
gin which is consistent with our results.

In Table 8.1 on the preceding page and Table 8.2 on the facing page, we also
reproduce the result from [MKD03] that systematic search algorithms are superior
to both G+StS and GLS on most but not all MPE instances. For this compari-
son, we employ the original version of the Branch-and-Bound (BnB) algorithm
s-BBMB [KD99a, MKD03]. This algorithm is described in Section4.3 on page 32
and we will revisit it in Chapter 9 which compares our SLS algorithms to exact
algorithms. The superiority of s-BBMB to both SLS algorithms is obvious for
the structured instances inbnrep (see Table 8.1 on the facing page), for which
s-BBMB with i-bounds14 and18 yields the best results. For the randomly gen-
erated instances ingen (see Table 8.2 on the preceding page), GLS outperforms
s-BBMB for low settings of thei-bound of2 and6, but with i-bound14, s-BBMB
consistently performs better than GLS. This dominance of s-BBMB with optimal
settings of thei-bound over GLS (and even more so G+StS) is consistent with the
experimental results from [MKD03].

In summary, our “original” versions of G+StS and GLS closelyresemble the
original implementations introduced in [KD99b] and [Par02] and there is some
evidence that our implementations may be slightly faster. This may be an artifact

6We cannot compare our computational architecture to the oneused in [MKD03] since this
article does report on it. As our algorithms, the algorithmsin [MKD03] are implemented in C++.

90 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

due to the different computational architecture we employ.7 Our implementation of
G+StS seems to be much faster than the (non-original) implementation of G+StS
that [Par02] uses. From here on, we will omit the quotation mark when we talk
about our “original” versions.

8.2 Experimental Methodology: Correlation Plots

In our experimental analysis in this and the following chapter, we visualize pair-
wise comparisons of algorithms by employing correlation plots of (a) the average
approximation quality they achieve for each instance in problem setsbnrep and
gen , and (b) the average runtime they need to find quasi-optimal solutions. Each
correlation plot holds one data point for each instance in problem setsbnrep and
gen . We visualize instances inbnrep by red colour and instances ingen by
blue colour. Instances with random CPTs are represented by circles, instances with
structured CPTs by crosses; see Figure 8.1 on page 92 for an example. For all cor-
relation plots in the remainder of this thesis,25 runs of100 CPU seconds each are
performed.

Two special cases can occur in the correlation plots. Firstly, when plotting
average approximation quality, for some instances one or both algorithms may have
quality zero when they never found a solution with positive probability. Since we
employ a logarithmic scale, in this case, instead of zero, weplot a small positive
valueq0 which is significantly smaller than any positive quality achieved by one of
the two algorithms on any instance; if applicable, we specify q0 in the caption of
the figure.8 Secondly, in correlation plots of average runtime it happens frequently
that one or both algorithms do not find quasi-optimal solutions in any of the25 runs
of 100 CPU seconds each. In this case, we plot the value10, 000 = 104 which is
greater than the maximal value2, 500 that can be obtained if a solution is found in
1 of the25 runs (recall that the average runtime is defined as the runtime summed
over all runs, divided by the number of successful runs).

Recall, that the approximation quality for a run of an algorithm is defined as
the ratio of the nonlogarithmic solution quality it achieves and the quasi-optimal

7However, we do not expect a major difference in the used architectures since the articles we
compare our results with have been published very recently.Unfortunately, neither of the articles
reports the computational architecture used in their experiments.

8In different correlation plots for approximation quality,we employ different values forq0 since
in the extreme it needs to be as low as10−220, whereas for some plots values of10−2 suffice. Using
q0 = 10−220 in these cases would compress the interesting parts of the figure to a hundreth of the
space which would reduce clarity. For some plots, both algorithms find positive probability for all
instances, in which caseq0 does not apply.

8.3. G+STS VS. ILS 91

G+StS ILS
old caching new caching new caching

Statistics random random MB∗(105) random MB∗(105)

Avg. quality 46.32 46.91 77.08 57.96 85.59
Avg. runtime 121.29 117.62 56.63 94.11 37.22

Successful runs 300/650 300/650 421/650 338/650 479/650
Instances solved 12/26 12/26 17/26 17/26 20/26
amongst best 0 1 10 4 18

Table 8.3: Summary statistics for non-penalty based algorithms on problem set
bnrep . All algorithms were run 25 times for100 CPU seconds each with their
default parameters. Summary of Table B.11 on page 151.

one. We present average approximation qualities in percent, i.e., if an algorithm
has approximation quality100 for an instance, it finds quasi-optimal solutions for
the instance in every run. Note that from the correlation plots of average approx-
imation quality, we can infer the ratios of the average probability of the variable
instantiations the algorithms find. If, for example, the twoalgorithms compared in
a correlation plot have average approximation qualities2× 10−15 and19.7, respec-
tively, this means that the latter algorithm on average findsvariable instantiations
with a probability roughly16 orders of magnitude higher than the average proba-
bility of the solutions found by the first algorithm.

8.3 G+StS vs. ILS

In this section, we compare the performance of ILS and our original version of
G+StS. We demonstrate that ILS yields immensely better results and independently
study the effect of each component contributing to its high performance. Table 8.3
and Table 8.4 on the following page summarize the experiments the performance
comparison in this section is based on. For the full results,see Table B.11 on
page 151 and Table B.12 on page 152.

In Figure 8.1 on the next page, we compare the performance of ILS and our
original version of G+StS for the case when both algorithms employ the same
initialization MB∗(105). ILS clearly outperforms G+StS, finding instantiations
of more than7 orders of magnitude higher probability, solving larger instances
to quasi-optimality up to two orders of magnitude faster, and solving many in-
stances which are unsolvable for G+StS. This already shows the clear superiority
of ILS, but for small and easy instances the picture is incomplete since the common
MB∗(105) initialization already yields very high-quality solutions. This initializa-

92 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

G+StS ILS
old caching new caching new caching

Statistics random random MB∗(105) random MB∗(105)

Avg. quality 18.30 25.58 37.43 64.76 68.42
Avg. runtime 760.01 488.73 309.69 118.06 95.57

Successful runs 72/600 104/600 150/600 296/600 332/600
Instances solved 4/24 6/24 7/24 15/24 16/24
amongst best 0 0 1 13 11

Table 8.4: Summary statistics for non-penalty based algorithms on problem set
gen . All algorithms were run 25 times for100 CPU seconds each with their de-
fault parameters. All algos ran fort = 100 seconds. Summary of Table B.12 on
page 152.

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

Avg. approx. qual. of original G+StS and new ILS − init MB*

Original G+StS, old caching, initialization MB*(100000)

IL
S

 w
ith

 n
ew

 c
ac

hi
ng

, i
ni

tia
liz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−15

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of original G+StS and new ILS − init MB*

Original G+StS, old caching, initialization MB*(100000)

IL
S

 w
ith

 n
ew

 c
ac

hi
ng

, i
ni

tia
liz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.1: Performance differences between ILS and our original version of
G+StS, both initialized with MB∗(105). Average approximation quality (a) and
average runtime to find a quasi-optimal solution (b). The algorithms were run 25
times for100 CPU seconds each.

8.3. G+STS VS. ILS 93

10
−20

10
−10

10
0

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approx. qual. of original G+StS and new ILS − random init

Original G+StS, old caching, random initialization

IL
S

 w
ith

 n
ew

 c
ac

hi
ng

, r
an

do
m

 in
it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−25

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of original G+StS and new ILS − random init

Original G+StS, old caching, random initialization

IL
S

 w
ith

 n
ew

 c
ac

hi
ng

, r
an

do
m

 in
it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.2: Performance differences between ILS and our original version of
G+StS, both initialized at random. Average approximation quality (a) and aver-
age runtime to find a quasi-optimal solution (b). The algorithms were run 25 times
for 100 CPU seconds each.

tion partly obstructs the performance comparison of the twoalgorithms since for
some instances it yields high initial solution qualities which the local search part
of G+StS alone would never find. In Figure 8.2, where both algorithms employ a
random initialization, ILS performs much better for small instances as well, outper-
forming G+StS by up to2 orders of magnitude. Also, when initialized at random,
G+StS fails to find instantiations with positive probability for many instances for
which ILS succeeds in this task. For other instances, ILS finds instantiations with
up to22 times higher probability than G+StS. Furthermore, the number of instances
solved to quasi-optimality by ILS but unsolved by G+StS increases considerably.

ILS and our original version of G+StS differ in two components, namely the
caching scheme used and the inner workings of the local search that follows the
initialization in every try of the algorithms. Both algorithms employ a very similar
restart mechanism. We now demonstrate how each of the two differing components
affects algorithm performance.

Figure 8.3 on the next page demonstrates the large performance gains our new
caching schemeImprovingyields for G+StS when compared to the previous state-
of-the-art caching schemeSimple. Up to 20 orders of magnitude more likely in-
stantiations are found with our improved caching scheme. The speedup over simple
caching for finding quasi-optimal solutions is up to a factorof 10 and increases for
harder instances. Also, there are several instances for which simple caching only
yields solutions with probability zero but the our improvedcaching yields positive
probabilities.

94 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

10
−20

10
−10

10
0

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approx. qual. of G+StS with old and new caching

Old caching scheme "Simple", random init

N
ew

 c
ac

hi
ng

 s
ch

em
e

"I
m

pr
ov

in
g"

, r
an

do
m

 in
it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−25

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of G+StS with old and new caching

Old caching scheme "Simple", random init

N
ew

 c
ac

hi
ng

 s
ch

em
e

"Im
pr

ov
in

g"
, r

an
do

m
 in

it gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.3: The performance differences due to our improvedcaching scheme for
G+StS with random initialization. Average approximation quality (a) and average
runtime to find a quasi-optimal solution (b). The algorithmswere run 25 times for
100 CPU seconds each.

Although with our new caching, G+StS performs much better than in its orig-
inal version, this algorithm is still vastly inferior to ILS; we demonstrate this in
Figure 8.4 on the facing page, in which the only differing component between the
algorithms is the local search strategy. ILS finds instantiations of up to20 orders
higher probability than G+StS, is about10 times faster in finding quasi-optimal
solutions for easy instances, and for harder instances where G+StS fails in finding
quasi-optimal solutions, ILS often succeeds in seconds.

Since ILS clearly employs a much stronger local search than G+StS, it might
not require a strong (and possibly time-consuming) initialization of the search any-
more. However, in Figure 8.5 on the next page, we show that this is not the case
and that ILS still gains much from a strong initialization heuristic. As opposed
to ILS with random initialization, ILS with MB∗(105) always finds solutions with
strictly positive probability; it generally finds higher quality solutions, often finds
quasi-optimal solutions several orders of magnitude faster, and sometimes quickly
solves instances to quasi-optimality which remain unsolved employing a random
initialization.

8.4 GLS vs. GLS+

In this section, we compare the performance of our implementation of the original
GLS algorithm and our improved GLS+ algorithm. Figure 8.6 on page 96 demon-

8.4. GLS VS. GLS+ 95

10
−30

10
−20

10
−10

10
0

10
−30

10
−20

10
−10

10
0

Avg. approx. qual. of G+StS and ILS − both with new caching

G+StS with random init

IL
S

 w
ith

 ra
nd

om
 in

it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−30

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of G+StS and ILS − c=3, random init

G+StS with random init

IL
S

 w
ith

 ra
nd

om
 in

it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.4: The performance differences due to the local search strategy used after
the initialization. G+StS and ILS employ the same caching schemeImprovingand
are initialized at random. Average approximation quality (a) and average runtime
to find a quasi-optimal solution (b). The algorithms were run25 times for100 CPU
seconds each.

10
−30

10
−20

10
−10

10
0

10
−30

10
−20

10
−10

10
0

Avg. approx. qual. of ILS with different initializations

Random initialization

In
iti

al
iz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−30

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of ILS with different initializations

Random initialization

In
iti

al
iz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.5: The performance differences due to different initializations of ILS: ran-
dom initialization and MB∗(105). Average approximation quality (a) and average
runtime to find a quasi-optimal solution (b). The algorithmswere run 25 times for
100 CPU seconds each.

96 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

10
−200

10
−100

10
0

10
−200

10
−150

10
−100

10
−50

10
0

Avg. approx. qual. of original GLS and new GLS+

Original GLS, rho = 0.8, old caching, random init

G
LS

+,
 rh

o
=

0.
99

9,
 n

ew
 c

ac
hi

ng
, i

ni
t M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of original GLS and new GLS+

Original GLS, rho = 0.8, old caching, random init

G
LS

+,
 rh

o
=

0.
99

9,
 n

ew
 c

ac
hi

ng
, i

ni
t M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.6: Performance differences between the original GLS algorithm and our
new algorithm GLS+. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were run 25times for100 CPU
seconds each.

strates the enormous performance differences between GLS+ and our original ver-
sion of GLS. GLS+ finds solutions with probability up to268 orders of magnitude
higher than those found by GLS, is up to6 orders of magnitude faster in finding
quasi-optimal solutions and for a great number of instancesfinds quasi-optimal
solutions that GLS cannot find, some of them in milliseconds.

Our implementation of the original GLS algorithm and our improved algorithm
GLS+ differ in a number of components, namely the parameter setting, the caching
scheme, the evaluation function and the initialization. Inthe following, we demon-
strate how each of these components contributes to the improved performance of
GLS+. Table 8.5 on the next page and Table 8.6 on the facing page summarize
the performance resulting from introducing the novel components of GLS+ into
the original version of GLS one at a time. It shows the performance of the orig-
inal version of GLS with the original parameter setting from[Par02] and the al-
gorithm’s steadily increasing excellence when incrementally introducing the tuned
smoothing parameterρ = 0.999, our improved caching schemeImproving, the
evaluation function of GLS+, and initialization MB∗(105). For the full results, see
Table B.13 on page 153 and Table B.14 on page 154.

As in the previous section, we visualize the impact of each component in corre-
lation plots of algorithm versions that only differ in one component. Figure 8.7 on
page 98 shows the great differences in performance achievable by simply tuning
the parameters of GLS better than in its original version [Par02], where the de-
fault parameter setting from the Max-SAT domain [MT00] was employed forNρ

8.4. GLS VS. GLS+ 97

GLS, random intitialization GLS+

Statistics “original” ρ = 0.999 ρ = 0.999,new caching random MB∗(105)

Avg. quality 41.81 63.77 75.52 77.16 89.05
Avg. runtime 222.77 81.05 59.32 43.22 37.61

Successful runs 202/650 375/650 429/650 476/650 491/650
Instances solved 9/26 15/26 19/26 21/26 21/26
amongst best 0 0 1 11 16

Table 8.5: Summary statistics for penalty based algorithmson problem setbnrep .
All algorithms were run 25 times for100 CPU seconds each. Summary of Ta-
ble B.13 on page 153.

GLS, random intitialization GLS+

Statistics “original” ρ = 0.999 ρ = 0.999,new caching random MB∗(105)

Avg. quality 36.35 70.17 87.20 88.18 89.35
Avg. runtime 339.95 107.96 60.42 57.06 49.96

Successful runs 140/600 314/600 400/600 409/600 430/600
Instances solved 7/24 17/24 20/24 22/24 18/24
amongst best 0 0 2 12 10

Table 8.6: Summary statistics for penalty based algorithmson problem setgen .
All algorithms were run 25 times for100 CPU seconds each. Summary of Ta-
ble B.14 on page 154.

98 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

10
−200

10
−100

10
0

10
−200

10
−150

10
−100

10
−50

10
0

Avg. approx. qual. of GLS with original and optimal rho

rho = 0.8

rh
o

=
0.

99
9

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of GLS with original and optimal rho

rho = 0.8

rh
o

=
0.

99
9

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.7: The performance differences only due to tuningρ for GLS with simple
caching andNρ = 200. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were run 25times for100 CPU
seconds each.

andρ. In his formulation of GLS, Park does not even treat these crucial elements
of the algorithm as parameters, and indeed states GLS to “have no parameters to
tune” [Par02]. Figure 8.7 contradicts this statement, showing that by simply choos-
ing a higher smoothing parameterρ = 0.999, vastly stronger performance can be
achieved: for3 instances frombnrep , the improved version finds instantiations
that are up to96 orders of magnitude more likely; for harder instances, it finds
quasi-optimal solutions much faster than with the originalparameter setting for
which GLS frequently fails to find them at all.

In Figure 8.8 on the next page, we demonstrate the comparablyimpressive
impact of our new caching schemeImproving. With this caching scheme, GLS
sometimes finds instantiations with a dramatically higher likelihood than with the
previous caching schemeSimple. For some structured instances, this difference is
up to80 orders of magnitude, and for instancediabetes it is even191 orders of
magnitude. In terms of runtime to reach quasi-optimal solutions, our new caching
scheme yields a speedup reaching from2 for easy instances to approximately10
for harder instances. There are also some instances which can be solved to quasi-
optimality with our improved caching scheme but not with theprevious one.

Figure 8.9 on page 100 shows the considerable performance gains of our new
version GLS+ over GLS with identical parameter setting, caching scheme,and ini-
tialization. For six instances, GLS+ finds instantiations up to7 orders of magnitude
more likely than the ones found by GLS. It finds quasi-optimalsolutions of all in-
stances faster than GLS, sometimes outperforming it by a factor of up to10. It also

8.4. GLS VS. GLS+ 99

10
−150

10
−100

10
−50

10
0

10
−150

10
−100

10
−50

10
0

Avg. approx. qual. of GLS with old and new caching

Old caching scheme "Simple", rho = 0.999

N
ew

 c
ac

hi
ng

 s
ch

em
e

"I
m

pr
ov

in
g"

, r
ho

 =
 0

.9
99

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of GLS with old and new caching

Old caching scheme "Simple", rho = 0.999

N
ew

 c
ac

hi
ng

 s
ch

em
e

"Im
pr

ov
in

g"
, r

ho
 =

 0
.9

99 gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.8: The performance differences only due to our improved caching scheme
for GLS with 〈ρ,Nρ〉 = 〈0.999, 200〉. Average approximation quality (a) and aver-
age runtime to find a quasi-optimal solution (b). The algorithms were run 25 times
for 100 CPU seconds each.

finds quasi-optimal solutions for four instances on which GLS fails.
The final new component in GLS+ is the different initialization MB∗(105). We

demonstrate the impact of this in Figure 8.10 on the next page, which compares the
performance of GLS+ with different initializations. On the one hand, we observe
that for four instances, GLS+ with initialization MB∗(105) finds much more likely
instantiations than GLS+ with a random initialization, and that it is much faster
on average; for some instances, the stronger initialization yields speedups of up
to a factor of80. However, on the other hand, we also observe that for some hard
randomly generated instances, GLS+ finds quasi-optimal solutions when initialized
at random, but not with initialization MB∗(105).9 In total, however, initialization
MB∗(105) performs much better for GLS+.

In summary, all of the four differing components between GLS+ and our orig-
inal version of GLS lead to great improvements. For us, the most interesting com-
ponent is the new evaluation function of GLS+ as we see possibilities for improv-
ing it even further in future work. We now provide some more evidence for the
strong performance of GLS+, but we also demonstrate that although it consistently
shows stronger initial performance than GLS, for longer runs the solution qualities
reached by both algorithms become virtually identical.

9However, for these instances, GLS+ with random initialization is the only algorithm that finds
the quasi-optimal solutions we employ, and only does so in1 or 2 out of 25 runs. We are much in
doubt of the actual optimality of these quasi-optimal solutions.

100 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

10
−20

10
−10

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of GLS and GLS+

GLS, rho=0.999

G
LS

+,
 rh

o=
0.

99
9

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of GLS and GLS+

GLS, rho=0.999

G
LS

+,
 rh

o=
0.

99
9

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.9: GLS(0.999, 200) vs. GLS+(0.999, 200, 10000), both with random ini-
tialization and caching schemeImproving. Average approximation quality (a) and
average runtime to find a quasi-optimal solution (b). The algorithms were run 25
times for100 CPU seconds each.

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

Avg. approx. qual. of GLS+ with different initializations

Random Initialization

In
iti

al
iz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of GLS+ with different initializations

Random Initialization

In
iti

al
iz

at
io

n
M

B
*(

10
00

00
)

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.10: The performance differences only due to different initializations of
GLS+: random initialization and MB∗(105). Average approximation quality (a)
and average runtime to find a quasi-optimal solution (b). Thealgorithms were run
25 times for100 CPU seconds each.

8.4. GLS VS. GLS+ 101

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance munin2

GLS
GLS+

(a) Mean solution quality

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000P
e
rc

e
n
t
o
f
ru

n
s

a
ch

ie
ve

d
 s

o
lu

tio
n
 q

u
a
lit

y
-3

6
.0

5
8
8

CPU time(sec)

Instance munin2-e1

GLS
GLS+

(b) Empirical runtime distribution

Figure 8.11: Plots of mean solution qualities (a) and empirical RTDs (b) of GLS
and GLS+ on instancemunin2 . Both algorithms employ a random initialization,
caching schemeImproving, and default parameter setting〈Nρ, ρ〉 = 〈200, 0.999〉.
The estimation is based on100 runs of1000 CPU seconds each. In (a), the mean
solution quality plot for each algorithm ends when an optimal solution was found in
all of its 100 runs; in (b), the target quality -36.0588 is the optimal solution quality.

Figure 8.11 shows a plot of mean solution qualities and empirical RTDs for
GLS and GLS+ with identical parameter settings for instancemunin2 . For this
instance, the initially stronger performance of GLS+ suffices to find the optimal
solution quality more than ten times faster. The empirical RTD for GLS+ sug-
gests that it may potentially suffer from search stagnation, but we found no further
evidence for this.

Figure 8.12 on the next page shows plots of mean solution quality for two other
real-world instances,diabetes andmunin4-rand . For both networks, GLS+

shows very strong initial performance, finding instantiations of positive probability
virtually instantaneously whereas GLS needs considerabletime for this. It is also
very interesting to observe that once GLS starts to perform very well for network
munin4-rand , GLS+ matches its performance closely. For networkdiabetes
with structured CPTs, the initial performance of GLS+ is stronger than for network
munin4-rand with random CPTs. This different behaviour for structured and
randomly generated CPTs can be observed for many other instances frombnrep .
It is also present for the instances ingen which employ a randomly generated
graph structure. Figure 8.13 on page 103 shows that for such anetwork with struc-
tured CPTs, GLS+ finds very good solutions quickly, whereas in the case of random
CPTs, GLS catches up more quickly and GLS+ again closely matches its perfor-

102 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance diabetes-e1

GLS+
GLS

(a) diabetes

-500

-490

-480

-470

-460

-450

-440

 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance munin4-rand-e1

GLS+
GLS

(b) munin4-rand

Figure 8.12: Plots of mean solution quality of GLS and GLS+ on instances from
problem setbnrep . Both algorithms employ a random initialization, caching
schemeImproving, and default parameter setting〈Nρ, ρ〉 = 〈200, 0.999〉. The esti-
mation is based on25 runs of100 CPU seconds each.

mance after its initial head start.

8.5 ILS vs. GLS+

In the last two sections, we have demonstrated the much higher performance of our
new algorithms ILS and GLS+ when compared to the previous state-of-the-art in
SLS algorithms for MPE.

To conclude our experimental analysis of SLS algorithms forMPE, we now
compare our new algorithms against each other. Like in the comparison of G+StS
and ILS, strong initializations skew the picture and we thuscompare ILS and GLS+

two times, with a random initialization and with initialization MB∗(105). In Fig-
ure 8.15 on page 105, the fundamental differences between ILS and GLS+ (both
employing a random initialization) are quite obvious. On the one hand, GLS+

finds instantiations with positive probability for all instances whereas ILS fails to
do so for2 structured instances with structured CPTs. For instances with structured
CPTs, GLS+ generally performs much better than ILS; the differences inapproxi-
mation quality reach26 orders of magnitude in this case. However, for four struc-
tured instances with random CPTs, ILS finds instantiations that are considerably
more likely than the ones found by GLS+; for these four instances, the differences
are as big as15 orders of magnitude. In terms of runtime to find quasi-optimal
solutions, the picture is quite similar but more in favour for GLS+. Instances with

8.5. ILS VS. GLS+ 103

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0.01 0.1 1

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance z100v6d5iw10_1-struc

GLS+
GLS

(a) z100v6d5iw10-struc

-260

-240

-220

-200

-180

-160

-140

-120

-100

 0.01 0.1 1 10 100 1000

L
o
g
 p

ro
b
a
b
ili

ty
 o

f
a
ss

ig
n
m

e
n
t

CPU time(sec)

Instance z400v6d5iw20_1-rand

GLS+
GLS

(b) z400v6d5iw20-rand

Figure 8.13: Plots of mean solution quality of GLS and GLS+ on instances from
problem setgen . Both algorithms employ a random initialization, caching scheme
Improving, and default parameter setting〈Nρ, ρ〉 = 〈200, 0.999〉. The estimation is
based on25 runs of100 CPU seconds each.

structured CPTs are solved to quasi-optimality up to3 orders of magnitude faster
by GLS+, and GLS+ also quickly solves many instances ILS cannot solve. For
instances with random CPTs, ILS and GLS+ both outperform the respective other
algorithm on some instances; for a few instances, ILS is up toan order of magni-
tude faster than GLS+, whereas for other instances, GLS+ is almost up to2 orders
of magnitude faster.

When ILS and GLS+ are initialized with MB∗(105) (see Figure 8.15 on
page 105), the overall picture becomes less clear but the main conclusions we can
draw from it remain unchanged. MB∗(105) already generates high quality solu-
tions for all the instances for which ILS found much more probable solutions than
GLS+ when both algorithms were initialized at random. Thus, withthe MB∗(105)
initialization, GLS+ now clearly performs much better in terms of approximation
quality than ILS. In terms of time needed to find quasi-optimal solutions, ILS still
sometimes outperforms GLS+ (for real world instances with randomized CPTs like
pigs-rand andmunin1-rand), but GLS+ continues to outperform ILS by up
to two orders of magnitude for other instances, especially for randomly generated
instances with structured CPTs. GLS+ also still solves some instances to quasi-
optimality which ILS cannot solve, namelylink and some large randomly gener-
ated instances.10 Their low correlation of runtimes to find quasi-optimal solutions

10For a per instance comparison of ILS and GLS+, see Tables B.17 and B.18 on pages 157 and
158.

104 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

10
−30

10
−20

10
−10

10
0

10
−30

10
−20

10
−10

10
0

Avg. approximation quality of ILS and GLS+, random init

ILS, random init

G
LS

+,
 ra

nd
om

 in
it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−30

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of ILS and GLS+ w/o MB

ILS, random init

G
LS

+,
 ra

nd
om

 in
it

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.14: Comparison of our new algorithms ILS and GLS+, both with random
initialization. Average approximation quality (a) and average runtime to find a
quasi-optimal solution (b). The algorithms were run 25 times for100 CPU seconds
each.

suggests the suitability of ILS and GLS+ to be combined in an algorithm portfolio.
In Section 5.4 on page 46, we combined them with our Mini-Buckets variant MB∗

to form a hybrid algorithm that alternates phases of these algorithms. In Chapter 9,
we will demonstrate this algorithm to be the new state-of-the art in MPE solving.

8.5. ILS VS. GLS+ 105

10
−10

10
−5

10
0

10
−10

10
−5

10
0

Avg. approximation quality of ILS and GLS+ with MB

ILS

G
LS

+

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of ILS and GLS+ with MB

ILS

G
LS

+
gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 8.15: Comparison of our new algorithms ILS and GLS+, both with initial-
ization MB∗(105). Average approximation quality (a) and average runtime to find a
quasi-optimal solution (b). The algorithms were run 25 times for100 CPU seconds
each.

106 CHAPTER 8. EXPERIMENAL EVALUATION OF SLS ALGORITHMS

Chapter 9

Comparison with Exact Algorithms

In this chapter, we evaluate a number of exact algorithms forMPE and compare our
new algorithms against the previously best-performing ones. We demonstrate that
our hybrid algorithm of ILS, GLS+, and MB∗ shows better overall performance
than any of the other algorithms. We also show that our SLS algorithms scale
much better in terms of a number of important instance characteristics, namely the
number of variables, the domain size, and the degree, and induced width of the in-
dependence graph. When compared to our new algorithms, s-BBMB with a small
i-bound of6 scales poorly with number of variables, degree, and inducedwidth;
and for higheri-bounds, it scales poorly with domain size and induced width. Any-
time MB scales poorly with domain size and especially poorlywith induced width.

9.1 Performance of Systematic Algorithms

In this section, we compare the performance of the systematic MPE algorithms
Anytime MB, s-BBMB, and d-BBMB. All these algorithms are described in Sec-
tion 4.3 on page 32. For Anytime MB, we employ our own C++ implementa-
tion since we are not aware of any available implementation.For s-BBMB and
d-BBMB, we employ a UNIX-based C++ implementation provided by Radu Mari-
nescu.1 In compliance with his advice, we report results for a range of i-bounds,
namelyib ∈ {2, 6, 10, 14, 18}. We do not compare these algorithms to BBBT, the
other systematic search algorithm used in the experimentalstudy of [MKD03], be-
cause BBBT is not included in the implementation provided by RaduMarinescu.
It is available as part of the REES reasoning system, but as we mentioned in Sec-
tion 8.1 on page 85, we experienced problems with this system, the most important

1Many thanks to Radu Marinescu for providing this implementation.

107

108 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

of which was a bug disallowing correct computations on instances that are not gen-
erated by the system itself.

The very recently developed d-BBMB algorithm [MD04] has not been listed in
the experimental study of [MKD03]. It has subsequently beenclaimed to outper-
form s-BBMB2, but in our experiments we show it to perform considerably worse
on the instances we study.

Tables 9.1 and 9.2 on the facing page summarize our experiments with deter-
ministic algorithms for problem setsbnrep andgen , respectively. In these tables,
the row “Successful runs” is omitted since for these deterministic algorithms, it is
identical to “Instances solved”. The new row “Instances proved” states how many
instances could be solved to optimality and their solutionsbeen proven to be opti-
mal within the time bound and the row “Instances> 0” represents for how many
instances solutions with positive probability were found.As in the previous chap-
ters, all our experiments were carried out on dual 2GHz IntelXeon CPUs with
512KB cache and 4GB RAM running Linux version 2.4.20, build 28.9.

For the instances in problem setbnrep , very good performingi-bounds for s-
BBMB are10 and14; i-bound18 yields exactly the same results asi-bound14, but
causes a longer runtime on average. For d-BBMB,i-bound6 yields the best results,
closely followed byi-bounds10 and14. As can be seen in the full results for prob-
lem setbnrep in Table B.15 on page 155, there are significant differences inthe
optimal i-bounds for each instance. For example, instancelink-rand can only
be solved withi-bounds greater or equal to14, whereas instancemunin1 causes
the algorithm to break with suchi-bounds but can be solved in seconds employing
ani-bound as low as2. Algorithm Anytime MB shows very strong performance on
the structured instances in problem setbnrep , leaving only instancelink-rand
unsolved.

The situation is similar for problem setgen . In this case, the optimali-bound
for d-BBMB is 14, as high as the optimal one for s-BBMB. We again observe a
large variability in the optimali-bound across the instances. For large instances,
high i-bounds tend to perform much better, but for networks with high induced
size (networks with both high induced width and large domainsize), highi-bounds
cause both algorithms to break down even for small instanceswith 100 variables.
On the randomly generated networks in problem setgen , Anytime MB does not
perform as well as for problem setbnrep . It only solves9 of the24 instances and
cannot even find solutions with positive probability for three of the others.

Like in Chapter 8, in the following we visualize the relative performance of
two algorithms in correlation plots of their approximationquality and their run-

2This claim was expressed in email communication by Radu Marinescu and also follows from
the experimental results presented in [MD04].

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS 109

d-BBMB s-BBMB Anytime
Statistics ib=2 ib=6 ib=10 ib=14 ib=18 ib=2 ib=6 ib=10 ib=14 ib=18 MB

Avg. quality 46.20 69.37 67.86 65.38 65.38 39.25 76.96 82.09 80.77 80.77 97.69
Avg. runtime 122.9448.07 63.05 63.38 63.39 166.4332.57 29.07 28.36 29.55 5.96

Instances solved12/26 18/26 17/26 17/26 17/26 10/26 20/26 21/26 21/26 21/26 25/26
Instances proved10/26 18/26 17/26 16/26 16/26 8/26 20/26 21/26 21/26 20/26 25/26

Instances> 0 19/26 21/26 18/26 17/26 17/26 19/26 23/26 23/26 21/26 21/26 26/26
amongst best 1 3 3 3 3 4 10 6 9 6 15

Table 9.1: Summary statistics for exact algorithms on problem setbnrep . All
algorithms were run for 100 CPU seconds. Summary of Table B.15 on page 155.

d-BBMB s-BBMB Anytime
Statistics ib=2 ib=6 ib=10 ib=14 ib=18 ib=2 ib=6 ib=10 ib=14 ib=18 MB

Avg. quality 0.47 28.10 35.26 41.49 29.17 0.03 12.70 51.82 75.84 55.01 53.90
Avg. runtime ∞ 529.19252.11196.79264.97 ∞ 713.77115.0852.79 107.42 80.93

Instances solved0/24 4/24 7/24 9/24 7/24 0/24 3/24 12/24 18/24 13/24 9/24
Instances proved0/24 2/24 5/24 7/24 7/24 0/24 3/24 12/24 17/24 13/24 9/24

Instances> 0 16/24 24/24 12/24 11/24 7/24 13/24 16/24 23/24 18/24 13/24 21/24
amongst best 0 1 0 0 0 0 0 14 7 3 1

Table 9.2: Summary statistics for exact algorithms on problem setgen . All algo-
rithms were run for 100 CPU seconds. Summary of Table B.16 on page 156.

110 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

10
−20

10
−10

10
0

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(6) and d−BBMB(6)

d−BBMB, i−bound 6

s−
B

B
M

B
, i

−b
ou

nd
 6

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−25

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(6) and d−BBMB(6)

d−BBMB, i−bound 6

s−
B

B
M

B
, i

−b
ou

nd
 6

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.1: Performance comparison of BnB algorithms s-BBMB and d-BBMB,
both with i-bound6. Average approximation quality (a) and average runtime to
find a quasi-optimal solution (b). The algorithms were run 25times for100 CPU
seconds each.

time to reach quasi-optimal solutions. As can be seen in the complete results in
Tables B.15 on page 155 and B.16 on page 156, these algorithms often can proof
optimality of the solutions they find in virtually the same time they need to find
them. For few instances, such as thelink network, some of the algorithms find
provably optimal solution qualities, but are not able to proof their optimality within
the time bound; and for one randomly generated instance,z400v3iw20-rand ,
s-BBMB(14) finds the quasi-optimal solution quality, but none of the algorithms
can proof its optimality.

We start by comparing the two related algorithms s-BBMB and d-BBMB. In
Figure 9.1, we demonstrate that with lowi-bounds, such as6, d-BBMB outper-
forms s-BBMB in terms of achieved solution quality and also finds solutions with
positive probability for many more instances. Nevertheless, when both algorithms
find quasi-optimal solutions, s-BBMB is faster in almost all cases. When both al-
gorithms employ a higher and better-performingi-bound, such as14, the picture
changes and s-BBMB becomes clearly superior. It solves some instances to quasi-
optimality for which d-BBMB does not even find solutions with positive probabil-
ity, and it is faster on all instances both of the algorithms solve. For9 instances, for
which d-BBMB does not find solutions with positive probability, it finds optimal
solutions and proofs their optimality.

We now move on to determine the optimali-bound for s-BBMB on the in-
stances we study. In Figure 9.3 on page 112, we demonstrate that s-BBMB(10)
clearly outperforms s-BBMB(6); s-BBMB(10) generally finds solutions of much

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS 111

10
0

10
1

10
2

10
0

10
1

10
2

Avg. approximation quality of s−BBMB(14) and d−BBMB(14)

d−BBMB, i−bound 14

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 100

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(14) and d−BBMB(14)

d−BBMB, i−bound 14

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.2: Performance comparison of BnB algorithms s-BBMB and d-BBMB,
both with i-bound14. For most instances, both algorithms either find optimal so-
lutions or fail completely (yielding zero-probability solutions). Average approxi-
mation quality (a) and average runtime to find a quasi-optimal solution (b). The
algorithms were run 25 times for100 CPU seconds each.

higher quality and for a variety of randomly generated instances with structured
CPTs for which s-BBMB(6) finds only solutions of probability zero, it finds solu-
tions with positive probability or even solutions it can proof to be optimal. Fur-
thermore, s-BBMB(10) solves many instances to optimality s-BBMB(6) does not
solve. In terms of runtime for instances which are solved by both algorithms, s-
BBMB(6) and s-BBMB(10) perform comparably.

In Figure 9.4 on page 113, we comparei-bounds10 and14 for the s-BBMB
algorithm. Recall that algorithm s-BBMB withi-bound ib first executes the ap-
proximate Mini-Buckets algorithm withi-boundib, MB(ib), in order to compute a
static heuristic function to guide the subsequent Branch andBound search. Fori-
bounds as high as14, this is often not feasible. For example, for instancemunin1 ,
the initial call of MB(14) does not terminate within100 CPU seconds. For all
randomly generated instances with maximal induced width20 and maximal do-
main size6, our limited memory of4 GB renders MB(14) infeasible. However, for
instances, for which its initial call to MB(14) succeeds, s-BBMB(14) generally per-
forms better than s-BBMB(10), solving many instances s-BBMB(10) cannot solve.
Interestingly, whenever s-BBMB(14) finds a non-zero probability for an instance,
it solves the instance to quasi-optimality in our experiments. In terms of runtime,
the algorithms perform comparably. We conclude from this comparison that there
is no clear winner between s-BBMB(10) and s-BBMB(14): when MB(14) is feasi-

112 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

10
−10

10
−5

10
0

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(6) and s−BBMB(10)

s−BBMB, i−bound 6

s−
B

B
M

B
, i

−b
ou

nd
 1

0

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−10

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(6) and s−BBMB(10)

s−BBMB, i−bound 6

s−
B

B
M

B
, i

−b
ou

nd
 1

0

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.3: Performance comparison ofi-bounds6 and10 for s-BBMB. Average
approximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

ble, s-BBMB(14) performs better; otherwise, s-BBMB(10) obviously is the better
algorithm. The fact that the runtime of Mini-Buckets with a fixed ordering andi-
bound can be estimated fairly accurately before the algorithm is executed suggests
a combination of these approaches.

In Figure 9.5 on the next page, we show that s-BBMB(14) dominates s-
BBMB(18). The only difference between the performance of these algorithms
is that s-BBMB(18) breaks due to memory constraints for even more instances,
namely on all but one randomly generated instance with maximal induced width
20, and that it is slower than s-BBMB(14) on the one remaining generated instance
with induced width20, as well as for networklink-rand which also has a rela-
tively high induced width.

We now compare algorithm Anytime MB against s-BBMB with the twobest-
performingi-bounds10 and14. In Figure 9.6 on page 114, we demonstrate that,
despite the fact that both of the algorithms are based on the Mini-Buckets algo-
rithm, the performance of Anytime MB and s-BBMB(10) is not highly correlated.
The same holds true for the comparison of Anytime MB and s-BBMB(14) in Fig-
ure 9.7 on page 115. Either way, there are some instances which are solved and
proved optimal by one of the algorithms whereas the other onedoes not even find
a solution with positive probability. In terms of solution quality, Anytime MB per-
forms much better on the structured instances frombnrep , whereas s-BBMB with
i-bound10 or 14 is faster for instances fromgen . Since the different ways of em-
ploying the Mini-Buckets heuristic in Anytime MB and s-BBMB (aswell as in

9.1. PERFORMANCE OF SYSTEMATIC ALGORITHMS 113

10
−10

10
−5

10
0

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(10) and s−BBMB(14)

s−BBMB, i−bound 10

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−10

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(10) and s−BBMB(14)

s−BBMB, i−bound 10

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.4: Performance comparison ofi-bounds10 and14 for s-BBMB. Average
approximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

10
0

10
1

10
2

10
0

10
1

10
2

Avg. approximation quality of s−BBMB(14) and s−BBMB(18)

s−BBMB, i−bound 18

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 100

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(14) and s−BBMB(18)

s−BBMB, i−bound 18

s−
B

B
M

B
, i

−b
ou

nd
 1

4

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.5: Performance comparison ofi-bounds14 and18 for s-BBMB. Average
approximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

114 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

10
−20

10
−10

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(10) and Anytime MB

s−BBMB, i−bound 10

A
ny

tim
e

M
B

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−20

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(10) and Anytime MB

s−BBMB, i−bound 10

A
ny

tim
e

M
B

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.6: Performance comparison of algorithms Anytime MB and s-BBMB(10).
Average approximation quality (a) and average runtime to find a quasi-optimal so-
lution (b). The algorithms were run 25 times for100 CPU seconds each.

d-BBMB) yield this very different behaviour, a combination of the two approaches
might be worthwhile. One could, for example, employ a BnB search phase in each
iteration of Anytime MB, or start BBMB with a smalli-bound and increase it dur-
ing the search if some online criterion suggests that the currently used bounds are
too weak to efficiently support the search.

9.2 Comparison of Best-Performing Algorithms

In this section, we compare the best-performing systematicsearch algorithms s-
BBMB(10), s-BBMB(14), and Anytime MB with our novel SLS algorithms ILS
and GLS+, and with our hybrid of ILS, GLS+, and MB∗(105). We simply refer to
this latter hybrid algorithm as HYBRID. Tables 9.3 on the facing page and 9.4 on
page 116 summarize the performance of the various algorithms for problem sets
bnrep andgen , respectively. We observe a consistently very strong performance
of HYBRID which we mainly attribute to its MB∗ component for instances from
problem setbnrep and to its GLS+ component for instances from problem set
gen . HYBRID’s calls of MB∗ with increasingsize-bound closely resemble Any-
time MB, the only difference being that not the number of variables in a Mini-
Bucket is bounded but the size of the largest Mini-Bucket potential.

In the following, we compare HYBRID to each of the other algorithms, show-
ing that it outperforms all of them for most instances. We start by evaluating the
performance of HYBRID against each of its constituents. Figure 9.8 demonstrates

9.2. COMPARISON OF BEST-PERFORMING ALGORITHMS 115

10
−20

10
−10

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(14) and Anytime MB

s−BBMB, i−bound 14

A
ny

tim
e

M
B

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−20

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(14) and Anytime MB

s−BBMB, i−bound 14
A

ny
tim

e
M

B

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.7: Performance comparison of algorithms Anytime MB and s-BBMB(14).
Average approximation quality (a) and average runtime to find a quasi-optimal so-
lution (b). The algorithms were run 25 times for100 CPU seconds each.

GLS+ ILS s-BBMB MB HYBRID
Statistics default default ib=2 ib=6 ib=10 ib=14 ib=18 anytime default

Avg. quality 89.05 82.41 39.25 76.96 82.09 80.77 80.77 97.69 98.38
Avg. runtime 37.61 41.64 166.43 32.57 29.07 28.36 29.55 5.96 13.04

Successful runs491/650 471/650 10/26 20/26 21/26 21/26 21/26 25/26 625/650
Instances solved 21/26 19/26 10/26 20/26 21/26 21/26 21/26 25/26 25/26
Instances> 0 26/26 26/26 19/26 23/26 23/26 21/26 21/26 26/26 26/26
amongst best 3 4 3 8 5 7 5 10 2

Table 9.3: Summary statistics for best-performing algorithms on problem set
bnrep . All algorithms were run 25 times for100 CPU seconds each. Summary of
Table B.17 on page 157.

116 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

GLS+ ILS s-BBMB MB HYBRID
Statistics default default ib=2 ib=6 ib=10 ib=14 ib=18 anytime default

Avg. quality 89.35 63.22 0.03 12.70 51.82 75.84 55.01 53.90 80.75
Avg. runtime 49.96 115.85 ∞ 713.77 115.08 52.79 107.42 80.93 72.52

Successful runs430/600 299/600 0/24 3/24 12/24 18/24 13/24 9/24 384/600
Instances solved 18/24 15/24 0/24 3/24 12/24 18/24 13/24 9/24 18/24
Instances> 0 24/24 24/24 13/24 16/24 23/24 18/24 13/24 21/24 24/24
amongst best 11 1 0 0 3 5 3 0 2

Table 9.4: Summary statistics for best-performing algorithms on problem setgen .
All algorithms were run 25 times for100 CPU seconds each. Summary of Ta-
ble B.18 on page 158.

that HYBRID clearly outperforms ILS. It finds instantiations of higher or equal
probability for every instance, is considerably faster in finding quasi-optimal solu-
tions and solves many instances to quasi-optimality ILS cannot solve.

Figure 9.9 on the facing page shows that in the case of GLS+, the case is not that
simple. For few structured instances HYBRID finds solutions ofhigher quality, and
for many randomly generated ones, GLS+ finds slightly better solutions. In terms
of runtime to find quasi-optimal solutions, GLS+ outperforms HYBRID in most
cases, usually by a factor between two and ten; only for few instances, HYBRID is
faster. The only advantage of HYBRID over GLS+ is that it finds optimal solutions
for a number of large structured networks with low induced width which GLS+

cannot solve. For example, thediabetes network with 403 free variables of
average domain size11.34 poses an impossible challenge to GLS+, whereas due
to its low induced width of6 and the resulting low induced size of8.58 × 107,
HYBRID can quickly solve it to optimality with its MB∗ component.

When compared to Anytime MB (see Figure 9.10 on page 118), HYBRID
clearly performs better on the randomly generated instances fromgen . For most
instances frombnrep , Anytime MB is about three times faster than HYBRID, but
for some other instances, HYBRID is also faster. We primarily atrribute is better
behaviour on these instances to its GLS+ component.

In Figures 9.11 on page 119 and 9.12 on page 119, we demonstrate that HY-
BRID outperforms s-BBMB withi-bounds10 and14, respectively. It especially
solves more instances to quasi-optimality and is faster on average. The improve-
ments in achieved solution quality HYBRID yields over s-BBMB(14) (see Fig-
ure 9.12(a) on page 119) appear to be somewhat smaller than inthe case of s-
BBMB(10) (see Figure 9.11(a) on page 119). This is an artifcact stemming from
the fact that s-BBMB(14) breaks for most of the instances for which s-BBMB(10)

9.2. COMPARISON OF BEST-PERFORMING ALGORITHMS 117

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of ILS and Hybrid

ILS

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of ILS and Hybrid

ILS

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.8: Performance comparison of pure ILS and HYBRID. Average approx-
imation quality (a) and average runtime to find a quasi-optimal solution (b). The
algorithms were run 25 times for100 CPU seconds each.

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Avg. approximation quality of GLS+ and Hybrid

GLS+

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of GLS+ and Hybrid

GLS+

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.9: Performance comparison of pure GLS+ and HYBRID. Average ap-
proximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

118 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

10
−20

10
−10

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Avg. approximation quality of Anytime MB and Hybrid

Anytime Mini−Buckets

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−20

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of Anytime MB and Hybrid

Anytime Mini−Buckets

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.10: Performance comparison of Anytime MB and HYBRID.Average ap-
proximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

finds suboptimal qualities, yielding probability zero in these cases. Thus, the top
left data point in Figure 9.12(a) on the facing page subsumes7 instances for which
s-BBMB(14) breaks and HYBRID finds quasi-optimal solutions.

9.3 Scaling Studies

In this section, we study how s-BBMB, Anytime MB, and our novel SLSalgo-
rithms ILS and GLS+ scale with important instance characteristics, such as the
number of variables, the maximal domain size of the variables, the maximal de-
gree of any node in the independence graph, and the maximal induced width of the
independence graph. For each of these instance characteristics, a separate experi-
ment is carried out in which all other characteristics are kept fix, thereby isolating
the effects of the characteristic of interest. Since algorithm HYBRID alternates
independent phases of ILS, GLS+ and Anytime MB, its scaling behaviour is com-
pletely determined by the scaling of these components. We concentrate on studying
the behaviour of each component and omit the hybrid algorithm from the scaling
studies.

Using BNGenerator [IC02, IC03], we created a new set of problem instances
for each experiment. We defined a number of possible values for the characteristic
and generated10 networks for each such value, leading to problem sets with50
to 100 instances. When generating the problem set for an instance characteristic,
we chose the rest of the characteristics such that we can find an optimal solution

9.3. SCALING STUDIES 119

10
−10

10
−5

10
0

10
−10

10
−5

10
0

Avg. approximation quality of s−BBMB(10) and Hybrid

s−BBMB, i−bound 10

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 10−20

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(10) and Hybrid

s−BBMB, i−bound 10

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.11: Performance comparison of s-BBMB(10) and HYBRID. Average ap-
proximation quality (a) and average runtime to find a quasi-optimal solution (b).
The algorithms were run 25 times for100 CPU seconds each.

10
0

10
1

10
2

10
0

10
1

10
2

Avg. approximation quality of s−BBMB(14) and Hybrid

s−BBMB, i−bound 14

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(a) Approximation quality,q0 = 100

10
−4

10
−2

10
0

10
2

10
4

10
−4

10
−2

10
0

10
2

10
4

Avg. CPU time (sec.) of s−BBMB(14) and Hybrid

s−BBMB, i−bound 14

H
yb

rid
 o

f I
LS

, G
LS

+,
 a

nd
 M

B
*

gen−rand
gen−struc
bnrep−rand
bnrep−orig

(b) Runtime to find quasi-optimal solution

Figure 9.12: Performance comparison of s-BBMB(14) and HYBRID. The top left
data point in (a) subsumes7 instances for which s-BBMB(14) breaks and HYBRID
finds quasi-optimal solutions. Average approximation quality (a) and average run-
time to find a quasi-optimal solution (b). The algorithms were run 25 times for100
CPU seconds each.

120 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

and proof its optimality for all instances. In all experiments except the one varying
the induced width, we kept the maximal induced width at a moderate value of15.3

For each characteristic and each possible value of the characteristic, we ran all
algorithms once for100 CPU seconds on the applicable10 instances and report the
average runtime. If none of the10 instances was solved, we plot the value10000
instead.

In our scaling experiments, we observe that instances with random CPTs are
much harder to solve for GLS than instances with structured CPTs – the difference
in average solution time for otherwise equal characteristics is as large as up to
an order of magnitude. For algorithm s-BBMB, this effect can also be observed
in some of our scaling experiments. We therefore split everyscaling experiment
in one experiment for random CPTs and one for structured CPTs; the results are
always reported side-by-side.

Before we describe the individual scaling experiments, we report a common
characteristic of all of them. In order to be able to compute optimal solutions for
all the instances in the scaling experiments, we had to keep them rather easy. For
the very fast GLS+ algorithm, this means that it seldomly takes longer than a few
hundred milliseconds to solve any of the problems. The MB∗(105) initialization
usually takes some longer only for the initialization, suchthat for the small and
easy instances studied in our scaling experiments, GLS+ is consistently much faster
when simply employing a random initialization.

Figure 9.13 on the next page shows that instances become considerably harder
to solve as the number of variables increases. In this experiment, GLS+ is the
best performing algorithm for instances with structured and random CPTs, but for
structured ones the margin by which it outperforms the second-best algorithm, s-
BBMB(14), is much larger. For s-BBMB,i-bound6 performs clearly inferior to
higheri-bounds and also shows a very poor scaling with an increasingnumber of
variables: for small instances with20 and40 variables, s-BBMB(6) is only between
zero and one orders of magnitude slower than GLS+, but for larger instances with
200 variables it is four orders of magnitude slower than GLS+ for structured CPTs
and cannot solve any instance with random CPTs. For the also poorly scaling s-
BBMB(10), this effect is not as dramatic but still considerable; it leads to GLS+

outperforming s-BBMB(10) by over two orders of magnitude for larger instances.
In previous experiments (not reported here) we carried out to compare our SLS
algorithms against d-BBMB, we found that the factor by which GLS+ outperforms

3We also carried out some preliminary experiments with a maximal induced width of30, but the
performance of the systematic algorithms in these experiments was too poor for meaningful scaling
studies (often, they did not solve any instance even for small values of the instance characteristic
studied in an experiment).

9.3. SCALING STUDIES 121

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Scaling with number of variables − structured CPTs

Number of variables

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(a) Structured CPTs

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

Scaling with number of variables − random CPTs

Number of variables

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(b) Random CPTs

Figure 9.13: Scaling of solution time with varying number ofvariables for instances
with domain size2, degree4, and induced width15. Results for the previous sys-
tematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB(10);and
for our algorithms ILS and GLS+, both with random and MB∗(105) initialization.
Instances with structured CPTs (a) and randomly generated CPTs (b).

all variants of d-BBMB grows considerably with an increasing number of variables.
While for small problems GLS+ was only about1.5 orders of magnitude faster than
d-BBMB(6) and d-BBMB(10), for larger problems the difference was up to three
orders of magnitude. Since s-BBMB(10) scales roughly comparably to our SLS
algorithms, we conclude that d-BBMB also scales worse than s-BBMB(10).

For increasing maximal domain sizes, Figure 9.14 on the following page shows
that our SLS algorithms scale much better than Anytime MB, s-BBMB(10), and s-
BBMB(14), whereas s-BBMB(6) shows a scaling behaviour comparable to our SLS
algorithms and outperforms the other s-BBMB variants. Algorithm s-BBMB(2) is
not reported in the Figure, but it yielded the worst performance in this as well as
in all other experiments. GLS+ continues to be the best-performing algorithm in
this scaling experiment. In the case of structured CPTs, the factor by which it
outperforms s-BBMB(14) increases from two orders of magnitude for domain size
2 to four orders of magnitude for maximal domain size7; for random CPTs, the
factor reaches from one to three orders of magnitude. The margin by which GLS+

outperforms Anytime MB grows by approximately one order of magnitude from
domain size2 to maximal domain size7. In previous experiments, we found d-
BBMB with low i-bounds of2 or 6 to scale comparably to our SLS algorithms,
which suggests that it scales better with increasing domainsizes than s-BBMB
does with highi-bounds. However, with higheri-bounds, d-BBMB did not scale

122 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Scaling with domain size − structured CPTs

Maximal domain size

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(a) Structured CPTs

2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

10
1

10
2

Scaling with domain size − random CPTs

Maximal domain size

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(b) Random CPTs

Figure 9.14: Scaling of solution time with varying maximal domain size for in-
stances with50 variables, degree4, and induced width15. Results for the previous
systematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB(10);
and for our algorithms ILS and GLS+, both with random and MB∗(105) initializa-
tion. Instances with structured CPTs (a) and randomly generated CPTs (b).

well either. We attribute this to the fact that the computation of the Mini-Buckets
heuristic (which both s-BBMB and d-BBMB employ) grows more complex with
an increasing domain size and fixedi-bound.4

For an increasing degree of the independence graph, in Figure 9.15 on the next
page we observe a very poor scaling behaviour of s-BBMB with lowi-bounds.
The performance of s-BBMB(14) scales comparably to the one of our SLS al-
gorithms, whereas s-BBMB(10) and especially s-BBMB(6) exhibit much inferior
scaling behaviour. Compared to s-BBMB(14), s-BBMB(6) is approximately three
times faster in solving problems with maximal degree3, whereas for maximal de-
gree7, it is over an order of magnitude slower for structured CPTs and almost
three orders of magnitude slower for random CPTs. Once more, GLS+ is the best-
performing algorithm in this experiment. It is consistently about one order of mag-
nitude faster than s-BBMB(14), slightly more for structured CPTs and slighty less
for random CPTs. Previous experiments we carried out for d-BBMBshowed it to
degrade rather rapidly with increasing degree for alli-bounds.

Finally, for an increasing induced width of the independence graph, we observe
that algorithm Anytime MB degrades rapidly. We expected exactly this behaviour

4Recall that MB(ib) computes potentials of size up to|D|ib, where by|D| we denote the domain
size of the variables. With highi-bounds, this number quickly becomes very large yielding long
runtimes or even infeasibility for large domain sizes.

9.3. SCALING STUDIES 123

3 3.5 4 4.5 5 5.5 6 6.5 7
10

−3

10
−2

10
−1

10
0

10
1

10
2

Scaling with degree − structured CPTs

Maximal degree

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(a) Structured CPTs

3 3.5 4 4.5 5 5.5 6 6.5 7
10

−2

10
−1

10
0

10
1

10
2

10
3

Scaling with degree − random CPTs

Maximal degree

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(b) Random CPTs

Figure 9.15: Scaling of solution time with varying maximal node degree for in-
stances with100 variables, domain size2, and induced width15. Results for
the previous systematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and
d-BBMB(10); and for our algorithms ILS and GLS+, both with random and
MB∗(105) initialization. Instances with structured CPTs (a) and randomly gen-
erated CPTs (b).

since in the worst case Anytime MB builds potentials that areexponential in the
networks’s induced width. While for small induced widths of5, Anytime MB and
the (again) best-performing algorithm GLS+ have very similar runtimes, for in-
duced widths of40, the differences in runtime are between3.5 and five orders of
magnitude for random and structured CPTs, respectively. While s-BBMB is not
affected by the increasing induced width as badly as AnytimeMB, its runtime still
scales much worse than the one of GLS+ and ILS with random initialization. This
effect is stronger for smalli-bounds. For instances with maximal induced width5,
s-BBMB(6) and GLS+ perform almost identically, whereas for induced width40, s-
BBMB(6) is about three orders of magnitude slower than GLS+. For s-BBMB(10),
this speed difference is two and three orders of magnitude for structured and ran-
dom CPTs, respectively; and for s-BBMB(14), the difference is approximately two
orders of magnitude.

For our SLS algorithms with initialization MB∗(105), the MB∗(105) initializa-
tion quickly finds optimal solutions for the low induced widths5 and10. For larger
induced widths, due to its bounded size, its runtime remainsalmost constant which
can be seen by the fact that for induced widths higher than15, the runtime of ILS
and GLS+ with MB∗(105) initialization only increases by a small margin in the
case of ILS and not at all for GLS+.

124 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Scaling with induced width − structured CPTs

Maximal induced width

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(a) Structured CPTs

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Scaling with induced width − random CPTs

Maximal induced width

M
ed

ia
n

C
P

U
 ti

m
e

GLS+, rand
GLS+, MB*
ILS, rand
ILS, MB*
s−BBMB(6)
s−BBMB(10)
s−BBMB(14)
Anytime MB

(b) Random CPTs

Figure 9.16: Scaling of solution time with varying induced width for instances with
100 variables, domain size2, and maximal degree5. Results for the previous sys-
tematic algorithms Anytime MB, d-BBMB(2), d-BBMB(6), and d-BBMB(10);and
for our algorithms ILS and GLS+, both with random and MB∗(105) initialization.
Instances with structured CPTs (a) and randomly generated CPTs (b).

Previous experiments with d-BBMB showed that, like s-BBMB, this algorithm
also scales poorly with increasing induced width. For structured CPTs, GLS+ out-
performs d-BBMB(6) and d-BBMB(10) by approximately one order of magnitude
for networks with induced width5 and by three orders of magnitude for networks
with induced width40. For random CPTs, these factors are approximately1.5 and
three, respectively.

In summary, our scaling experiments indicate that

• for the type of instances considered here, GLS+ is always the best-
performing algorithm and shows the best scaling behaviour for all instance
characteristics;

• s-BBMB(10) and especially s-BBMB(6) scale poorly with an increasing
number of variables;

• Anytime MB, s-BBMB(10), and especially s-BBMB(14) scale poorly with
an increasing domain size;

• s-BBMB(6) scales poorly with an increasing degree;

• s-BBMB scales poorly with an increasing induced width, especially for small
i-bounds; and

9.3. SCALING STUDIES 125

• Anytime MB scales very poorly with an increasing induced width.

The scaling experiments in this section especially underline the strong perfor-
mance of our SLS algorithms for instances with high induced width. Furthermore,
they show that for everyi-bound, the previous exact algorithms s-BBMB and d-
BBMB exhibit poor scaling behaviour with some instance characteristic. For ex-
ample, while s-BBMB(14) seems to scale well with number of variables for other-
wise unchanged instance characteristics, it scales poorlywith domain size. On the
other extreme, s-BBMB(6) scales poorly with degree of the graph and number of
variables. A compromise is s-BBMB(10), which, however, scalesworse than our
new SLS algorithms with every instance characteristic we studied.

In conclusion of this chapter, we note that for structured instances with many
variables and low induced width, systematic algorithms like Branch and Bound
Algorithms or Anytime Mini-Buckets show very strong performance, but that their
performance degrades rapidly with increasing induced width that causes the Mini-
Buckets heuristic with feasiblei-bounds to become exceedingly inaccurate.

126 CHAPTER 9. COMPARISON WITH EXACT ALGORITHMS

Chapter 10

Conclusions and Future Directions

In this thesis, we have developed and studied novel Stochastic Local Search (SLS)
algorithms for solving the Most Probable Explanation (MPE)problem in graphical
models. We use Bayesian networks as a motivating example and also for our exper-
imental evaluation, but the novel algorithms we introduce are applicable to general
graphical models, including Markov Random Fields and factorgraphs.

SLS algorithms have been applied to the MPE problem before, but the best-
performing SLS algorithms G+StS [KD99b] and GLS [Par02] have been shown to
be outperformed by systematic search algorithms that combine Branch-and-Bound
with the Mini-Buckets heuristic [MKD03]. However, none of these previous SLS
algorithms pays sufficient attention to such important concerns as algorithmic com-
plexity per search step, search stagnation, and thorough parameter tuning. In this
thesis, we removed these shortcomings of previous SLS algorithms for MPE, im-
proving their efficiency by up to4 orders of magnitude for non penalty-based al-
gorithms (cf. Figure 8.2 on page 93) and6 orders of magnitude for penalty-based
algorithms (cf. Figure 8.6 on page 96). As demonstrated in the experimental eval-
uation of Chapter 8, this enormous speedup is due to a number ofseparate im-
provements. These include our novel caching schemes detailed in Chapter 6, a
thorough parameter tuning described in Chapter 7, and the initialization with our
new Mini-Buckets variant MB∗(105) (cf. Section 4.2 on page 27).

For penalty-based algorithms, we demonstrated how the objective function
can be integrated into the evaluation function that is guiding the previously best-
performing SLS algorithm GLS. This improvement led to a new GLS variant we
call GLS+. All other components being equal, GLS+ substantially outperforms
the previously best-performing SLS algorithm for MPE, GLS (cf. Figure 8.9 on
page 100); it is the the new state-of-the-art SLS algorithm for MPE. By introduc-
ing the first Iterated Local Search (ILS) algorithm we also significantly improved

127

128 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

the state-of-the-art in non penalty-based SLS algorithms.Again, all other compo-
nents being equal, ILS outperforms the previously best-performing non penalty-
based algorithm G+StS [KD99b] by several orders of magnitude (cf. Figure 8.4 on
page 95). The performance of the penalty- and non penalty-based algorithms GLS+

and ILS is not tightly coupled and we combined both of these algorithms and our
Mini-Buckets variant MB∗ in a new hybrid algorithm. This hybrid simply loops
through independent executions of MB∗, ILS, and GLS+. MB∗ is called with in-
creasing bounds on maximal cluster size, and in each iteration, ILS and GLS+ are
executed for the time MB∗ required to run to completion.

In Chapter 9, we demonstrated improved overall performance of this hybrid
algorithm when compared to our SLS algorithms ILS and GLS+, the systematic
search algorithm s-BBMB with optimali-bound, and Anytime MB, an anytime
version of Mini-Buckets. For all these algorithms, we also studied the scaling
of solution time with a number of important instance characteristics, namely the
number of variables, domain size, degree, and induced widthof the network’s in-
dependence graph. When compared to our new algorithms, s-BBMB with a small
i-bound of6 scales poorly with an increasing number of variables, degree, and in-
duced width, whereas for higheri-bounds, such as10 and14, it scales poorly with
an increasing domain size and induced width. Anytime MB scales poorly with an
increasing domain size and especially poorly with an increasing induced width.

Based on our experiments, we expect our novel SLS algorithms to outper-
form the current state-of-the-art in MPE solving for a largenumber of problem
domains, especially for problem instances which exhibit large induced widths and
domain sizes. However, we have not yet compared our algorithms to loopy be-
lief propagation [Pea88], an algorithm that has recently gained much popular-
ity [MMC98, MWJ99]. Another interesting algorithm we plan to study is Graph
cuts [BVZ01]. We intend to carry out a comparison with both of these algorithms in
the near future and to broaden our experimental analysis to include MPE instances
from fault diagnosis in computer networks [RBM02a], computervision [TF03],
medical diagnosis [Hec90], and probabilistic decoding [DR03].

Other interesting directions we see for future work in the MPE domain can be
grouped into four categories:

A better characterization of the behaviour of different MPE algorithms
In this thesis, we have studied the scaling behaviour of various MPE algo-
rithms with a number of important instance characteristics, but many more
interesting studies remain to be done. A systematic study ofthe search land-
scape for MPE instances from different domains may aid our understanding
of which features make instances hard for SLS algorithms. Furthermore, a
study of empirical hardness distributions both for SLS and exact algorithms

129

may shed some light on the relation between the two approaches for solving
MPE.

It would also be worthwhile to further study the approach of encoding MPE
instances into weighted Max-SAT problems with real-valuedweights, espe-
cially in order to evaluate how the results GLS for Max-SAT obtains on these
encodings compare to the results we achieve with GLS and GLS+ on the
original MPE instances.

Further improvements of the currently best-performing SLS algorithms
Since GLS+ performs best in most of our experiments, a worthwhile direc-
tion for future research is to improve its performance further. We expect that
by an adaptive version of GLS+ that controls the weighting of the penal-
ties in the evaluation function significant speedups can be gained over the
current version of GLS+. More advanced parameter tuning (for example by
employing ParamILS) for these GLS variants may also lead to substantial
improvements. We further expect that significant improvements of ILS are
possible based on a more detailed study of its search behaviour.

A combination of various approaches for MPE solving
One straight-forward combination of the various approaches we studied in
this thesis is to employ the solution qualities found in local search algo-
rithms as lower bounds in systematic search algorithms based on Branch-
and-Bound.

There is also a variety of possibilities to combine approaches in order to
improve the local search algorithms themselves. Since our novel SLS al-
gorithms ILS and GLS+ move through the search space in a very different
fashion, it may be possible to fruitfully combine them in a single algorithm
that alternates phases of ILS and GLS+ on a single search trajectory. While
such an approach holds great promise, so far we have not implemented it due
to the limited scope of this thesis. One particular possibility of combining
the two approaches is to employ GLS or GLS+ in the pertubation phase of
ILS. This idea is based on the intuition that ILS algorithms usually benefit the
most from pertubations which transform a very high-qualitysolution into a
very good starting point for a local search, and that executing GLS/GLS+ for
a number of steps could yield such a pertubation. GLS/GLS+ in turn shows
a lack of greediness which might be complemented nicely by the additional
local search phases such a hybrid of ILS and GLS/GLS+ would perform. We
would like to implement this is future work, but we expect many subtleties
to need consideration when constructing such a hybrid algorithm.

130 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

Another promising idea we had was to use the strong MB∗ algorithm in the
pertubation phase of ILS. We fixed a subset of the variables asevidence and
let MB∗ determine the value of the rest of the variables. In order to guarantee
not to end up in the same local optimum again, before fixing theevidence,
we flipped a few of these evidence variables. In preliminary experiments,
this approach performed well in terms of the number of iterations needed to
find the optimal solution, but due to the considerable complexity of MB ∗,
executing it in every local minimum lead to very slow runtimes. Fixing cen-
tral variables in the network, or even cutsets of variables,may substantially
improve the performance of this approach.

Similarly, one could perform a local search on a restricted subsetW of the
variables, which could be a cutset or simply a set of central variables in the
network that, when conditioned on, yield low induced width of the remain-
ing network. The extension ofW’s instantiationw to a complete variable
instantiationv could in this case be done by a subsidiary exact or approxi-
mate MPE algorithm, such as variable elimination or loopy belief propaga-
tion. This approach would much resemble Kask’s and Dechter’s GSAT+CC
algorithm for SAT [KD96] which executes a local search on a cutset of SAT
variables and optimizes the rest of the variables with a subsidiary specialized
local search algorithm for trees. We see much promise for such an approach
in the domain we studied. Due to the modularity of graphical models, their
variables are typically much sparser connected than in traditional SAT prob-
lems. It may thus suffice to condition on a small number of variables in order
to render exact inference for all remaining variables feasible.

An extension of our algorithms to more general problems
As mentioned in Section 2.3 on page 11, our SLS algorithms aretrivially
extensible to the more general problem of finding theM most likely instan-
tiations (M -MPE). To our best knowledge, this has not been done so far,
and with adapted versions of our new algorithms we expect to significantly
enhance the state-of-the-art for this important problem.

Another promising generalization of our new algorithms is to solve the MAP
problem (cf. Section 2.3 on page 11) by applying local searchon the MAP
variables only and compute the probabiliy of their instantiations with a sub-
sidiary inference algorithm. Such a generalization could,for example, follow
the approach taken in [PD01], where loopy belief propagation is used to ap-
proximate the inference task.

A final very promising line of future research is not directlyrelated to solv-
ing the MPE problem, but deals with the problem of automated parameter tuning.

131

Since we needed to tune many parameters for our new ILS algorithm, we developed
ParamILS, a novel approach that performs an Iterated Local Search in parame-
ter configuration space, searching for the best-performingparameter configuration.
Future work in this research area may involve the application of statistical tests in
ParamILS in order to prevent an unnecessarily detailed study of the algorithm’s
performance with inferior parameter settings. Once this has been implemented, we
can afford to perform a substantial number of runs per well-performing parameter
configuration and instance. With this improved evaluation function and its current
performance, we expect ParamILS to become a general automated procedure for
parameter tuning, applicable in any research area where theneed to tune or fit many
discrete or discretized parameters arises.

To conclude this thesis, let us take a bird’s eye view on what we have done. Our
motivation for studying SLS algorithms for solving MPE weretwo-fold. Firstly,
due to the close similarity between MPE and Max-SAT [Par02] and the state-of-
the-art status of SLS algorithms for Max-SAT, we expected a much greater potential
for SLS algorithms than reported in [MKD03], and we wanted tostudy the reasons
for this discrepancy; by speeding up the state-of-the-art in SLS algorithms for MPE
by many orders of magnitude, we resolved the disagreement. Our second motiva-
tion was to construct an efficient anytime algorithm for MPE solving in Bayesian
networks with induced widths prohibitive for exact algorithms. As demonstrated
in our experiments, our new SLS algorithms achieve this goal: they are inherently
anytime, yield high-quality solutions very quickly, and scale smoothly with induced
width.

In the course of our research, we found that there are many other interesting and
promising application areas for algorithms with these characteristics, most interest-
ing of which we find early computer vision. In this research area, the development
of efficient algorithms is very important since hard problems have to be solved in
an online fashion within fractions of seconds. A variety of problems in this do-
main can be cast as solving the MPE problem in a grid-structured pairwise Markov
Random Field, a graphical network with high induced width andoften comparably
large domain sizes [FH04]. The next step in our research willbe to apply our algo-
rithms to these problems, and to compare and possibly combine them with current
state-of-the-art algorithms in the field.

132 CHAPTER 10. CONCLUSIONS AND FUTURE DIRECTIONS

Appendix A

Parameter Tuning by Iterated Local
Search in Configuration Space

The problem of tuning some algorithm’s parameters for maximal performance on
a class of problem instances is ubiquitious in the design andempirical analysis
of algorithms. Especially in the development of high-performing SLS algorithms,
sometimes considerable effort is required to find a default parameter configuration
that yields high and stable performance across all or at least most instances of a
problem set. If there are only few parameters, it is often theeasiest way to allow a
certain number of values for each parameter and then try eachcombination, orcon-
figuration, of these parameter values; this approach is calledfull factorial design.
However, if an algorithm has too many parameters, full factorial design is not feasi-
ble since the number of possible configurations grows exponentially in the number
of parameters. One method researchers often use in this caseis to start with the
configuration that intuitively makes most sense to them or that is the “easiest” in
some sense. From this initial configuration on, they often change one parameter at
a time and keep the resulting configuration if performance improves, ending their
optimization if no change of a single parameter yields an improvement anymore.1

Having read Chapter 3 about the basic principles of Stochastic Local Search,
this should sound familiar. Although most researchers practicing the approach we
just described are probably not familiar with the principles of Local Search algo-
rithms, they actually perform a manual Local Search themselves. The search space
for this Local Search is the space of possible configurations, the objective function
is a configuration’s performance (however it be defined), theinitial configuration
is the one the researcher starts with, the neighbourhood is a1-exchange neigh-

1In this thesis, we have applied this approach ourselves in order to tune the parameters of GLS.
We have also applied it in previous work [HTH02, AFH+04].

133

134 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

bourhood (changing one parameter at a time), and the search strategy is simple
first-improvement. In order not to spend our valuable time inthe lab basically ex-
ecuting a manual Local Search in configuration space, we developed an automated
general procedure that does the job.

Given an algorithmA, its parameter set and possible discrete values for each
parameter, a set of problem instancesS, and the runtimet for which optimal per-
formance shall be reached, it searches for the configurationwith optimal overall
performance on the instances ofS when run for timet. We will refer to algorithm
A with parameter configurationC and runtimet asA(C, t).

Probably the hardest part to automate is the automatic evaluation of different pa-
rameter configurations. In the tool we developed, methods tocompute and compare
objective function values are accepted as parameters; these functions are called for
the evaluation of configurations during the optimization process such that the tool
be generally applicable. In our particular parameter optimization for MPE algo-
rithms, we compute the objective function value for a configurationC by executing
a predefined number of runsR of A(C, t) on each problem instanceS ∈ S. For
each run, the approximation quality is recorded and whetherit found an optimal
solution or not. The objective function value is then a tuple(r, qual), representing
the ratio of successful runs, and the average approximationquality, respectively.2

We define a configurationC1 with objective function value(r1, qual1) to be bet-
ter than a configurationC2 with objective function value(r2, qual2) if and only if
(r1/r2 + qual1/qual2)/2 > 1.3

Explicating the aforementioned approach to parameter tuning as a Local Search
in configuration space and automating it does not only help our laziness but
also suggests the use of more powerful SLS schemes, such as Iterated Local
Search (ILS). When employing only one pass of greedy hill-climbing in configura-
tion space, we end up in a local optimum, from where no single parameter change
yields an improvement. However, due to the interaction between various parame-
ters, it may well be that changing two or more parameters at a time results in an
improvement. For our implementation, we chose the general framework of ILS (cf.
Algorithm scheme 3.2 on page 21). The initialization procedure simply uses the
algorithm’s default parameters if available and otherwiseinitializes the parameters
at random. The basic local search is greedy hill-climbing, the acceptance criterion
accepts a new parameter configuration if and only if its objective function value is

2If most of the problem instances in a problem class can be solved efficiently by an algorithm,
the runtime it needs to find the solution is another very useful measure. If most instances are solved,
one can also for example employ 0.95 quantiles to detect and prevent search stagnation.

3Due to statistical variance in the results, we experienced that combiningr andqual yielded a
more stable measure than first comparingr and only in case of ties judging byqual.

135

at least as good as the previous one, and the pertubation changes three parameter
values at random. We call this automated ILS in configurationspaceParamILSand
detail it in Algorithm A.1 on page 137.

We employed ParamILS in order to tune the parameters of our ILS algorithm
and describe its results in Section 7.5 on page 79. In short, ParamILS found a very
well-performing parameter configuration of ILS’s9 parameters already in its first
iteration although5 of the9 parameters needed to be flipped to reach it from the
initial simple parameter configuration. This parameter configuration remained the
best for six iterations after which ParamILS found a better-performing one which
differs in the setting of4 parameter values from the previous one. We terminated
the procedure after an additional18 iterations in which it did not improve its best
parameter configuration anymore. In total, only three localoptima different from
the two very well-performing ones were encountered. Due to the costly evaluation
of search states, the 25 iterations of ParamILS already tookone CPU week.4 In
contrast to the five CPU months a full factorial design would have taken, this was
still feasible.

In order to evaluate ParamILS further, we also tested its performance for tun-
ing the parameters of G+StS and GLS. These algorithms employonly two pa-
rameters each, such that a full factorial approach to determine the global opti-
mum is feasible. In the case of G+StS, starting with a randomly chosen ini-
tial configuration〈cf , np〉 = 〈10, 20〉, ParamILS found the optimal configuration
〈cf , np〉 = 〈2, 40〉 in the first iteration. For GLS, starting with the original con-
figuration〈ρ,Nρ〉 = 〈200, 0.8〉 from [Par02], it found the parameter configuration
〈ρ,Nρ〉 = 〈10000, 0.99〉 within the first iteration which yielded much better re-
sults than the original configuration〈ρ,Nρ〉 = 〈200, 0.8〉. When the evaluation of
a parameter configuration is done by executing exactly one run on every instance
with a fixed seed,〈ρ,Nρ〉 = 〈10000, 0.99〉 actually yields slightly better results
than〈ρ,Nρ〉 = 〈10000, 0.99〉; it is indeed the globally optimal parameter config-
uration in this case. However, these results are subject to high statistical variance
since only one run is executed per instance. When a parameter configuration is
evaluated by running the algorithm for25 runs on each instance, the globally op-
timal parameter configuration〈ρ,Nρ〉 = 〈200, 0.999〉 performs slightly better than
〈ρ,Nρ〉 = 〈10000, 0.99〉.

While these results demonstrate that ParamILS quickly finds globally optimal
parameter configurations w.r.t. its objective function, italso highlights the currently
biggest weakness of ParamILS. In order to quickly find optimal parameter configu-
rations with as little computational overhead as possible,ParamILS needs to imple-

4Although one CPU week is rather long, we could parallelize all runs necessary for evaluating
each of the search states, such that with eight idle CPUs it took less than one day.

136 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

ment a method to focus on high-performing parameter configurations and carry out
a greater number of runs for these to reduce the statistical variance inherent when
dealing with randomized algorithms.

One alternative to employing ParamILS would be to use a racing algorithm to
remove configurations that are significantly worse than others based on statistical
tests [BSPV02]. However, racing algorithms require every single parameter con-
figuration to be run at least on a few instances, and this quickly becomes infeasible
for larger numbers of algorithm parameters as they frequently occur in SLS al-
gorithms. Moreover, during the development of a new algorithm, one often allows
substantially more parameters than in the final version. This is a clear drawback for
racing algorithms for which an additional parameter withd possible values results
in ad-times slower optimization.5

Finally, another advantage of ParamILS is its similarity tothe human approach
of parameter tuning. The results of a few iterations alreadyyield very good intu-
itions about well-performing parameter combinations and when introducing new
algorithm parameters we routinely ran a quick experiment employing shorter runs
of t = 5 CPU seconds. We also discretized the continuous parameters of ILS using
the intuition gained from shorter runs of ParamILS that allowed for a much larger
number of discrete values than our final experiments.

A very promising line of future research is the combination of Local Search
and statistical methods. ParamILS could, for example, stopthe evaluation of a
parameter configuration once it has gained sufficient evidence for the fact that it
performs significantly better or worse than the one it is being compared to. This
may solve the problem that ParamILS currently uses equivalent CPU time for the
evaluation of each parameter configuration’s performance,regardless of how well
the configuration performs. In optimization, however, the exact performance of an
inferior parameter configuration is of much less interest than the exact performance
of a new promising parameter configuration. The quality of the latter estimate
may decide whether we actually identify the best parameter configuration, whereas
the quality of the former estimate has barely any consequences at all. Hence, the
allocation of resources should mirror our interest. Achieving this goal would yield
a great speedup of ParamILS since there exist many clearly suboptimal parameter
configurations for whose exact evaluation ParamILS currently spends most of its
time.

5Although for our final algorithm, an optimization using racing algorithms would have been
of comparable CPU cost as our optimization with ParamILS, wecould not employ this approach
during the development of ILS. We considered using racing algorithms, but our version of ILS at
that time had five additional non-boolean parameters, rendering racing algorithms infeasible but still
allowing for an efficient optimization with ParamILS.

137

ParamILS
This algorithm performs an Iterated Local Search in the space of possible parameter con-
figurations. For initialization, default parameters are used (or, if no default parameters are
available, the parameters are initialized at random), the basic local search is greedy hill-
climbing, the pertubation randomly changes 3 parameters, and the acceptance criterion only
accepts better or equal parameter configurations.
Functioncmp(C1, C2) compares two configurationsC1 andC2 by executingA(C1, t) and
A(C2, t) with a fixed seed for all instances in problem setS and comparing the results as
described in the text. Previous results for the same configuration, time, and instance are
reused in order to prevent multiple executions of identicalexperiments.

Input : Algorithm A, parametersP, parameter domainDP for eachP ∈ P, time per runt,
setS of problem instances, functioncmpcomparing two parameter configurations,
time topt available for parameter optimization.

Output : Parameter configurationC with best overall performance ofA(C, t) found for
problem setS.

if default parameter setting availablethen1

Init C with default parameters2

else3

Init C with random parameters4

Cils ← LocalSearch(C)5

while runtime< topt do6

C ← Pertubation(Cils, 3)7

C ← LocalSearch(C)8

if cmp(C,Cils) ≥ 0 then Cils ← C9

Function LocalSearch(C)10

begin11

Cbest← C12

repeat13

Clast ← Cbest14

for P ∈ P andp ∈ DP do15

Ctmp ← Clast with P changed top.16

if cmp(Ctmp, Cbest) > 0 then Cbest← Ctmp17

until Cbest = Clast18

return Cbest19

end20

Function Pertubation(C, strength)21

begin22

for i = 1..strengthdo23

P ← Draw random parameter fromP.24

p ← Draw random value fromDP \ {p̃}, wherep̃ is P ’s current value.25

C ← C with P changed top.26

return C27

end28

138 APPENDIX A. PARAMETER TUNING BY ITERATED LOCAL SEARCH

Appendix B

Detailed experimental results

In this appendix, we present the complete results for all experiments for which
summary tables were presented in this thesis. For SLS algorithms, we provide
three values per instance:

Solved gives the number of runs which found quasi-optimal solutionquality for
this instance, as well as the total number of runs.

Quality avg gives the average approximation quality at the time the algorithm was
terminated. If no solution with positive probability was found, we print the
symbol “(-)”.

Time gives the average runtime to solve the instance, that is, thetotal runtime
divided by the number of successful runs. If none of the runs was successful,
we print the symbol “∞”.

For deterministic algorithms only one run is carried out. Inorder to be able
to compare results for many algorithms in one table, we compress all information
about this run into one column. Whenever a run finds the quasi-optimal solution,
we provide information in the format “find/proof”, wherefind is the time the algo-
rithm took to find the quasi-optimal solution andproof is the time it needed to proof
optimality.1 If the algorithm does not proof optimality, we print the information as
“find/-”.

For instances, for which a deterministic algorithm does notreach quasi-optimal
solution quality, we provide information in the format “(qual)”, wherequal is the
approximation quality the run reached. If no solution with positive probability is
found, we print “(-)”.

1Note that these times coincide very often. This happens, forexample, if a tight upper bound on
solution quality has already been found before the solutionis found.

139

140 APPENDIX B. DETAILED EXPERIMENTAL RESULTS

In each table, for each instance we highlight the entry of thebest-performing al-
gorithm. Like in the summary tables used throughout the thesis, “best-performing”
is defined in terms of the percentage of successful runs, in the case of ties by the
average approximation quality, and again in the case of tiesby the average runtime.
If all these measures are identical for several algorithms,they are all amongst the
best-performing algorithms for this instance.

For the summary tables provided throughout the thesis, for exact algorithms the
average runtime on a set of instances is computed using the time they needed to find
quasi-optimal solutions per instance, not the time they needed to proof optimality.

141

G+StS
cf = 1.5 cf = 2 cf = 5 cf = 10 cf = 100

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

alarm 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0004 25/25 100.00 0.0008
alarm-rand 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008

barley 25/25 100.00 0.65 25/25 100.00 0.87 25/25 100.00 4.25 25/25 100.00 4.25 25/25 100.00 4.24
barley-rand 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10

diabetes 0/25 6e-30 ∞ 0/25 6e-32 ∞ 0/25 3e-39 ∞ 0/25 5e-45 ∞ 0/25 (-) ∞

diabetes-rand 0/25 76.28 ∞ 0/25 74.49 ∞ 0/25 70.29 ∞ 0/25 69.62 ∞ 0/25 67.88 ∞

hailfinder 25/25 100.00 0.001 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.002 25/25 100.00 0.0008
hailfinder-rand 25/25 100.00 0.003 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002

insurance 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008
insurance-rand 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004

link 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞

link-rand 0/25 34.77 ∞ 0/25 33.34 ∞ 0/25 30.37 ∞ 0/25 28.00 ∞ 0/25 21.43 ∞

mildew 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03
mildew-rand 25/25 100.00 0.004 25/25 100.00 0.003 25/25 100.00 0.004 25/25 100.00 0.004 25/25 100.00 0.004

munin1 25/25 100.00 0.21 25/25 100.00 0.21 25/25 100.00 0.21 25/25 100.00 0.21 25/25 100.00 0.21
munin1-rand 0/25 28.58 ∞ 0/25 29.73 ∞ 0/25 28.17 ∞ 0/25 26.90 ∞ 0/25 28.52 ∞

munin2 25/25 100.00 0.74 25/25 100.00 0.74 25/25 100.00 0.74 25/25 100.00 0.74 25/25 100.00 0.81
munin2-rand 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞

munin3 25/25 100.00 0.82 25/25 100.00 1.03 25/25 100.00 0.82 25/25 100.00 0.82 25/25 100.00 0.81
munin3-rand 0/25 61.26 ∞ 0/25 59.87 ∞ 0/25 58.79 ∞ 0/25 57.56 ∞ 0/25 57.31 ∞

munin4 0/25 0.003 ∞ 0/25 0.005 ∞ 0/25 0.005 ∞ 0/25 0.005 ∞ 0/25 0.004 ∞

munin4-rand 0/25 8.15 ∞ 0/25 8.16 ∞ 0/25 8.02 ∞ 0/25 8.07 ∞ 0/25 7.91 ∞

pigs 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.11 25/25 100.00 0.10
pigs-rand 24/25 99.82 37.37 23/25 99.63 44.03 15/25 97.42 105.07 10/25 96.06 204.25 0/25 80.29 ∞

water 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003
water-rand 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.05

Table B.1: Results of G+StS with initialization MB∗(105), noise probabilitynp = 40, and varying cutoff factorcf on
problem setbnrep . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.1 on page 69.

142
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

G+StS
cf = 1.5 cf = 2 cf = 5 cf = 10 cf = 100

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

z100v3d5iw10-rand 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02
z100v3d5iw10-struc 16/25 82.62 96.88 22/25 93.03 42.47 25/25 100.00 13.91 25/25 100.00 13.62 25/25 100.00 13.49
z100v3d5iw20-rand 25/25 100.00 0.23 25/25 100.00 0.23 25/25 100.00 0.24 25/25 100.00 0.24 25/25 100.00 0.24
z100v3d5iw20-struc 25/25 100.00 7.38 25/25 100.00 4.70 25/25 100.00 5.03 25/25 100.00 5.04 25/25 100.00 5.01

z100v6d5iw10-rand 1/25 62.69 2490.57 2/25 67.69 1203.71 4/25 75.92 552.76 2/25 68.85 1170.21 4/25 78.79 581.28
z100v6d5iw10-struc 0/25 26.74 ∞ 0/25 29.60 ∞ 0/25 21.81 ∞ 0/25 31.18 ∞ 1/25 26.83 2469.79
z100v6d5iw20-rand 0/25 32.27 ∞ 0/25 32.14 ∞ 0/25 31.97 ∞ 0/25 34.21 ∞ 0/25 32.33 ∞

z100v6d5iw20-struc 0/25 9.30 ∞ 1/25 21.64 2478.36 1/25 24.34 2468.81 1/25 14.60 2442.19 0/25 22.70 ∞

z200v3d5iw10-rand 0/25 74.26 ∞ 0/25 71.62 ∞ 0/25 66.04 ∞ 0/25 63.72 ∞ 0/25 60.49 ∞

z200v3d5iw10-struc 25/25 100.00 9.75 25/25 100.00 11.50 25/25 100.00 22.22 16/25 88.11 92.92 3/25 65.89 797.01
z200v3d5iw20-rand 0/25 19.55 ∞ 0/25 24.95 ∞ 0/25 31.44 ∞ 0/25 27.95 ∞ 0/25 28.92 ∞

z200v3d5iw20-struc 0/25 0.77 ∞ 0/25 0.89 ∞ 0/25 0.60 ∞ 0/25 0.55 ∞ 0/25 0.44 ∞

z200v6d5iw10-rand 0/25 1.36 ∞ 0/25 1.12 ∞ 0/25 0.96 ∞ 0/25 0.79 ∞ 0/25 0.45 ∞

z200v6d5iw10-struc 0/25 0.008 ∞ 0/25 0.007 ∞ 0/25 0.004 ∞ 0/25 0.001 ∞ 0/25 2e-06 ∞

z200v6d5iw20-rand 0/25 0.13 ∞ 0/25 0.48 ∞ 0/25 0.47 ∞ 0/25 0.36 ∞ 0/25 0.44 ∞

z200v6d5iw20-struc 0/25 3e-06 ∞ 0/25 2e-06 ∞ 0/25 4e-07 ∞ 0/25 3e-07 ∞ 0/25 8e-07 ∞

z400v3d5iw10-rand 25/25 100.00 0.46 25/25 100.00 0.49 25/25 100.00 0.48 25/25 100.00 0.48 25/25 100.00 0.48
z400v3d5iw10-struc 2/25 44.56 1205.84 2/25 43.82 1205.45 0/25 25.57 ∞ 0/25 18.02 ∞ 0/25 6.82 ∞

z400v3d5iw20-rand 0/25 19.52 ∞ 0/25 17.02 ∞ 0/25 14.30 ∞ 0/25 12.77 ∞ 0/25 9.38 ∞

z400v3d5iw20-struc 0/25 1.40 ∞ 0/25 1.18 ∞ 0/25 0.73 ∞ 0/25 0.69 ∞ 0/25 0.45 ∞

z400v6d5iw10-rand 0/25 0.02 ∞ 0/25 0.01 ∞ 0/25 0.01 ∞ 0/25 0.008 ∞ 0/25 0.001 ∞

z400v6d5iw10-struc 0/25 4e-22 ∞ 0/25 3e-22 ∞ 0/25 2e-22 ∞ 0/25 2e-23 ∞ 0/25 3e-23 ∞

z400v6d5iw20-rand 0/25 0.56 ∞ 0/25 0.47 ∞ 0/25 0.33 ∞ 0/25 0.26 ∞ 0/25 0.05 ∞

z400v6d5iw20-struc 0/25 7e-09 ∞ 0/25 5e-09 ∞ 0/25 8e-10 ∞ 0/25 3e-10 ∞ 0/25 3e-13 ∞

Table B.2: Results of G+StS with initialization MB∗(105), noise probabilitynp = 40, and varying cutoff factorcf on
problem setgen . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.2 on page 69.

143

G+StS
np = 5 np = 10 np = 20 np = 30 np = 40 np = 50

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg avg

alarm 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0004 25/25 100.00 0.0008
alarm-rand 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008

barley 25/25 100.00 2.39 25/25 100.00 1.10 25/25 100.00 0.71 25/25 100.00 0.77 25/25 100.00 1.13 25/25 100.00 1.45
barley-rand 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10

diabetes 0/25 (-) ∞ 0/25 4e-26 ∞ 0/25 1e-25 ∞ 0/25 3e-27 ∞ 0/25 8e-32 ∞ 0/25 4e-44 ∞

diabetes-rand 0/25 75.01 ∞ 0/25 78.34 ∞ 0/25 78.35 ∞ 0/25 75.62 ∞ 0/25 72.99 ∞ 0/25 71.33 ∞

hailfinder 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.001 25/25 100.00 0.002
hailfinder-rand 25/25 100.00 0.003 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.003 25/25 100.00 0.002

insurance 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008
insurance-rand25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004 25/25 100.00 0.0004

link 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞ 0/25 0.50 ∞

link-rand 0/25 28.16 ∞ 0/25 31.41 ∞ 0/25 32.23 ∞ 0/25 32.45 ∞ 0/25 32.49 ∞ 0/25 33.37 ∞

mildew 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.03
mildew-rand 25/25 100.00 0.004 25/25 100.00 0.004 25/25 100.00 0.004 25/25 100.00 0.004 25/25 100.00 0.004 25/25 100.00 0.004

munin1 25/25 100.00 0.20 25/25 100.00 0.20 25/25 100.00 0.21 25/25 100.00 0.20 25/25 100.00 0.21 25/25 100.00 0.20
munin1-rand 0/25 22.54 ∞ 0/25 23.44 ∞ 0/25 30.02 ∞ 0/25 30.79 ∞ 0/25 29.74 ∞ 0/25 27.23 ∞

munin2 25/25 100.00 0.81 25/25 100.00 0.74 25/25 100.00 0.75 25/25 100.00 0.75 25/25 100.00 0.81 25/25 100.00 0.81
munin2-rand 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞ 0/25 97.43 ∞

munin3 25/25 100.00 0.82 25/25 100.00 0.76 25/25 100.00 0.82 25/25 100.00 0.81 25/25 100.00 1.02 25/25 100.00 0.81
munin3-rand 0/25 59.82 ∞ 0/25 61.99 ∞ 0/25 64.01 ∞ 0/25 60.33 ∞ 0/25 61.16 ∞ 0/25 57.31 ∞

munin4 0/25 0.003 ∞ 0/25 0.003 ∞ 0/25 0.005 ∞ 0/25 0.004 ∞ 0/25 0.004 ∞ 0/25 0.003 ∞

munin4-rand 0/25 8.00 ∞ 0/25 8.07 ∞ 0/25 8.15 ∞ 0/25 8.22 ∞ 0/25 8.13 ∞ 0/25 8.01 ∞

pigs 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.10
pigs-rand 8/25 93.16 235.08 13/25 96.47 122.11 23/25 99.39 38.12 22/25 99.50 41.27 23/25 99.66 47.61 22/25 99.55 46.07

water 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.003
water-rand 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.04 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.05

Table B.3: Results of G+StS with initialization MB∗(105), cutoff factorcf = 2, and varying noise probabilitynp on
problem setbnrep . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.3 on page 69.

144
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

G+StS
np = 5 np = 10 np = 20 np = 30 np = 40 np = 50

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg avg

z100v3d5iw10-rand25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02
z100v3d5iw10-struc 2/25 42.03 1200.68 7/25 55.56 310.84 9/25 65.11 214.93 22/25 93.40 38.79 25/25 100.00 29.76 22/25 93.57 47.60
z100v3d5iw20-rand25/25 100.00 0.23 25/25 100.00 0.23 25/25 100.00 0.24 25/25 100.00 0.24 25/25 100.00 0.24 25/25 100.00 0.24
z100v3d5iw20-struc 8/25 81.46 253.81 22/25 97.53 48.49 25/25 100.00 13.99 25/25 100.00 7.41 25/25 100.00 5.86 25/25 100.00 4.63

z100v6d5iw10-rand 0/25 14.90 ∞ 0/25 31.90 ∞ 1/25 49.86 2417.84 0/25 61.07 ∞ 3/25 64.93 787.52 0/25 56.41 ∞

z100v6d5iw10-struc 0/25 5.56 ∞ 0/25 26.90 ∞ 1/25 22.85 2426.35 0/25 32.28 ∞ 0/25 20.40 ∞ 0/25 14.17 ∞

z100v6d5iw20-rand 0/25 8.58 ∞ 0/25 16.83 ∞ 0/25 25.39 ∞ 0/25 29.10 ∞ 0/25 32.08 ∞ 0/25 27.39 ∞

z100v6d5iw20-struc 0/25 0.003 ∞ 0/25 0.32 ∞ 0/25 5.49 ∞ 0/25 16.46 ∞ 2/25 24.59 1208.47 0/25 8.75 ∞

z200v3d5iw10-rand 0/25 63.28 ∞ 0/25 70.23 ∞ 0/25 73.54 ∞ 0/25 68.71 ∞ 0/25 73.29 ∞ 0/25 68.48 ∞

z200v3d5iw10-struc25/25 100.00 19.99 25/25 100.00 13.85 25/25 100.00 16.80 25/25 100.00 14.83 25/25 100.00 17.94 25/25 100.00 19.58
z200v3d5iw20-rand 0/25 7.07 ∞ 0/25 11.39 ∞ 0/25 14.57 ∞ 0/25 20.92 ∞ 0/25 26.63 ∞ 0/25 31.50 ∞

z200v3d5iw20-struc 0/25 0.27 ∞ 0/25 0.38 ∞ 0/25 0.76 ∞ 0/25 0.63 ∞ 0/25 0.85 ∞ 0/25 0.61 ∞

z200v6d5iw10-rand 0/25 1.18 ∞ 0/25 1.45 ∞ 0/25 1.65 ∞ 0/25 1.53 ∞ 0/25 1.22 ∞ 0/25 0.89 ∞

z200v6d5iw10-struc 0/25 0.008 ∞ 0/25 0.01 ∞ 0/25 0.01 ∞ 0/25 0.009 ∞ 0/25 0.008 ∞ 0/25 0.003 ∞

z200v6d5iw20-rand 0/25 0.002 ∞ 0/25 0.008 ∞ 0/25 0.05 ∞ 0/25 0.17 ∞ 0/25 0.31 ∞ 0/25 0.32 ∞

z200v6d5iw20-struc 0/25 6e-13 ∞ 0/25 4e-08 ∞ 0/25 6e-07 ∞ 0/25 9e-07 ∞ 0/25 1e-06 ∞ 0/25 5e-07 ∞

z400v3d5iw10-rand25/25 100.00 0.49 25/25 100.00 0.49 25/25 100.00 0.49 25/25 100.00 0.48 25/25 100.00 0.46 25/25 100.00 0.49
z400v3d5iw10-struc 1/25 25.00 2407.07 2/25 42.00 1177.24 2/25 47.17 1163.41 1/25 47.46 2434.46 4/25 46.76 586.75 0/25 39.31 ∞

z400v3d5iw20-rand 0/25 15.17 ∞ 0/25 17.83 ∞ 0/25 18.14 ∞ 0/25 19.12 ∞ 0/25 18.95 ∞ 0/25 17.44 ∞

z400v3d5iw20-struc 0/25 0.99 ∞ 0/25 1.34 ∞ 0/25 1.59 ∞ 0/25 1.41 ∞ 0/25 1.28 ∞ 0/25 1.30 ∞

z400v6d5iw10-rand 0/25 0.008 ∞ 0/25 0.01 ∞ 0/25 0.01 ∞ 0/25 0.01 ∞ 0/25 0.01 ∞ 0/25 0.009 ∞

z400v6d5iw10-struc 0/25 (-) ∞ 0/25 (-) ∞ 0/25 2e-23 ∞ 0/25 2e-24 ∞ 0/25 2e-23 ∞ 0/25 3e-21 ∞

z400v6d5iw20-rand 0/25 0.47 ∞ 0/25 0.64 ∞ 0/25 0.73 ∞ 0/25 0.51 ∞ 0/25 0.43 ∞ 0/25 0.28 ∞

z400v6d5iw20-struc 0/25 3e-09 ∞ 0/25 3e-09 ∞ 0/25 3e-09 ∞ 0/25 2e-08 ∞ 0/25 5e-09 ∞ 0/25 1e-09 ∞

Table B.4: Results of G+StS with initialization MB∗(105), cutoff factorcf = 2, and varying noise probabilitynp on
problem setgen . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.4 on page 70.

145

GLS
ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 1.00

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg avg

alarm 25/25 100.00 0.001 25/25 100.00 0.001 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.002
alarm-rand 25/25 100.00 0.01 25/25 100.00 0.009 25/25 100.00 0.01 25/25 100.00 0.01 25/25 100.00 0.01 25/25 100.00 0.009

barley 0/25 1.03 ∞ 0/25 12.50 ∞ 0/25 48.00 ∞ 25/25 100.00 1.36 25/25 100.00 1.29 25/25 100.00 1.08
barley-rand 0/25 16.07 ∞ 0/25 27.19 ∞ 0/25 33.43 ∞ 3/25 78.83 751.41 25/25 100.00 10.56 25/25 100.00 7.98

diabetes 0/25 4e-162 ∞ 0/25 2e-143 ∞ 0/25 5e-112 ∞ 0/25 1e-38 ∞ 0/25 6e-07 ∞ 0/25 0.04 ∞

diabetes-rand 0/25 4e-48 ∞ 0/25 4e-45 ∞ 0/25 3e-39 ∞ 0/25 8e-25 ∞ 0/25 1e-20 ∞ 0/25 3e-11 ∞

hailfinder 25/25 100.00 0.03 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02
hailfinder-rand 1/25 94.95 2452.63 15/25 99.09 103.67 25/25 100.00 3.94 25/25 100.00 0.22 25/25 100.00 0.19 25/25 100.00 0.16

insurance 25/25 100.00 0.001 25/25 100.00 0.0008 25/25 100.00 0.001 25/25 100.00 0.001 25/25 100.00 0.0008 25/25 100.00 0.001
insurance-rand25/25 100.00 0.007 25/25 100.00 0.006 25/25 100.00 0.008 25/25 100.00 0.007 25/25 100.00 0.008 25/25 100.00 0.007

link 25/25 100.00 0.32 25/25 100.00 0.31 25/25 100.00 0.26 25/25 100.00 0.32 25/25 100.00 0.32 25/25 100.00 0.34
link-rand 0/25 1e-20 ∞ 0/25 1e-18 ∞ 0/25 9e-13 ∞ 0/25 0.74 ∞ 1/25 84.47 2484.21 3/25 88.08 816.32
mildew 0/25 34.22 ∞ 0/25 47.06 ∞ 2/25 82.32 1173.79 25/25 100.00 9.94 25/25 100.00 7.32 25/25 100.00 7.39

mildew-rand 0/25 84.61 ∞ 4/25 88.83 565.53 25/25 100.00 3.74 25/25 100.00 0.70 25/25 100.00 0.52 25/25 100.00 0.48
munin1 0/25 27.44 ∞ 0/25 71.67 ∞ 25/25 100.00 21.47 25/25 100.00 2.94 25/25 100.00 1.56 25/25 100.00 0.88

munin1-rand 0/25 2e-10 ∞ 0/25 3e-09 ∞ 0/25 2e-06 ∞ 0/25 2.61 ∞ 17/25 99.65 108.58 25/25 100.00 27.09
munin2 0/25 3e-123 ∞ 0/25 2e-94 ∞ 0/25 9e-32 ∞ 0/25 86.13 ∞ 11/25 98.76 216.65 21/25 99.86 87.89

munin2-rand 0/25 9e-101 ∞ 0/25 4e-94 ∞ 0/25 2e-88 ∞ 0/25 1e-43 ∞ 0/25 9e-14 ∞ 0/25 4e-08 ∞

munin3 0/25 1e-117 ∞ 0/25 1e-88 ∞ 0/25 2e-60 ∞ 0/25 3e-05 ∞ 0/25 0.71 ∞ 0/25 0.89 ∞

munin3-rand 0/25 2e-112 ∞ 0/25 2e-107 ∞ 0/25 1e-98 ∞ 0/25 2e-47 ∞ 0/25 3e-17 ∞ 0/25 4e-12 ∞

munin4 0/25 2e-118 ∞ 0/25 5e-102 ∞ 0/25 1e-84 ∞ 0/25 12.64 ∞ 0/25 79.97 ∞ 2/25 72.83 1228.32
munin4-rand 0/25 2e-110 ∞ 0/25 4e-106 ∞ 0/25 2e-95 ∞ 0/25 2e-48 ∞ 0/25 5e-18 ∞ 0/25 1e-10 ∞

pigs 0/25 7e-19 ∞ 0/25 0.001 ∞ 0/25 0.01 ∞ 25/25 100.00 0.88 25/25 100.00 0.77 25/25 100.00 0.62
pigs-rand 0/25 0.009 ∞ 0/25 0.06 ∞ 0/25 0.50 ∞ 0/25 81.97 ∞ 25/25 100.00 26.70 25/25 100.00 23.04

water 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002
water-rand 25/25 100.00 0.10 25/25 100.00 0.10 25/25 100.00 0.16 25/25 100.00 0.16 25/25 100.00 0.14 25/25 100.00 0.09

Table B.5: Results of GLS with smoothing intervalNρ = 200 and varying smoothing factorρ on problem setbnrep .
All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.5 on page 72.

146
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

GLS
ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 1.00

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg avg

z100v3d5iw10-rand25/25 100.00 12.88 25/25 100.00 0.71 25/25 100.00 0.19 25/25 100.00 0.23 25/25 100.00 0.27 25/25 100.00 0.19
z100v3d5iw10-struc25/25 100.00 0.10 25/25 100.00 0.06 25/25 100.00 0.05 25/25 100.00 0.05 25/25 100.00 0.06 25/25 100.00 0.07
z100v3d5iw20-rand25/25 100.00 13.92 25/25 100.00 1.70 25/25 100.00 0.38 25/25 100.00 0.14 25/25 100.00 0.15 25/25 100.00 0.15
z100v3d5iw20-struc25/25 100.00 0.69 25/25 100.00 0.30 25/25 100.00 0.10 25/25 100.00 0.11 25/25 100.00 0.09 25/25 100.00 0.11

z100v6d5iw10-rand 0/25 44.79 ∞ 0/25 52.15 ∞ 0/25 55.28 ∞ 25/25 100.00 7.40 25/25 100.00 6.57 24/25 99.72 12.58
z100v6d5iw10-struc25/25 100.00 1.93 25/25 100.00 0.80 25/25 100.00 0.30 25/25 100.00 0.24 25/25 100.00 0.24 25/25 100.00 0.29
z100v6d5iw20-rand 0/25 4.09 ∞ 0/25 7.30 ∞ 0/25 17.07 ∞ 23/25 98.78 34.82 25/25 100.00 6.89 25/25 100.00 7.69
z100v6d5iw20-struc 8/25 81.99 251.82 25/25 100.00 27.69 25/25 100.00 5.09 25/25 100.00 0.93 25/25 100.00 1.66 24/25 99.73 7.24

z200v3d5iw10-rand 0/25 46.86 ∞ 0/25 74.89 ∞ 2/25 94.79 1216.84 25/25 100.00 19.58 25/25 100.00 17.05 22/25 99.69 40.18
z200v3d5iw10-struc 0/25 72.39 ∞ 12/25 95.33 147.62 25/25 100.00 3.31 25/25 100.00 0.40 25/25 100.00 0.34 25/25 100.00 0.44
z200v3d5iw20-rand 0/25 21.97 ∞ 0/25 32.99 ∞ 0/25 63.44 ∞ 24/25 99.86 37.29 24/25 99.84 33.44 16/25 97.44 74.01
z200v3d5iw20-struc 1/25 69.61 2404.11 2/25 87.07 1175.07 25/25 100.00 2.02 25/25 100.00 0.48 25/25 100.00 0.48 25/25 100.00 0.63

z200v6d5iw10-rand 0/25 0.0003 ∞ 0/25 0.0009 ∞ 0/25 0.008 ∞ 0/25 17.75 ∞ 0/25 70.47 ∞ 1/25 64.59 2439.31
z200v6d5iw10-struc 0/25 41.55 ∞ 0/25 53.98 ∞ 1/25 99.42 2415.36 25/25 100.00 1.97 25/25 100.00 1.62 25/25 100.00 2.06
z200v6d5iw20-rand 0/25 2e-06 ∞ 0/25 1e-05 ∞ 0/25 0.0003 ∞ 0/25 2.43 ∞ 1/25 56.83 2452.50 0/25 44.55 ∞

z200v6d5iw20-struc 0/25 5e-05 ∞ 0/25 0.007 ∞ 0/25 1.26 ∞ 23/25 96.96 40.21 18/25 82.38 70.14 13/25 67.25 109.79

z400v3d5iw10-rand 0/25 0.02 ∞ 0/25 0.09 ∞ 0/25 1.44 ∞ 4/25 94.04 568.37 18/25 98.48 83.38 14/25 97.23 109.80
z400v3d5iw10-struc 0/25 1.80 ∞ 0/25 8.16 ∞ 0/25 55.81 ∞ 25/25 100.00 14.11 25/25 100.00 19.41 21/25 99.20 41.87
z400v3d5iw20-rand 0/25 0.15 ∞ 0/25 0.15 ∞ 0/25 1.04 ∞ 0/25 68.31 ∞ 0/25 83.11 ∞ 1/25 79.74 2445.11
z400v3d5iw20-struc 0/25 0.29 ∞ 0/25 0.57 ∞ 0/25 5.81 ∞ 9/25 94.01 233.12 12/25 94.07 150.35 8/25 83.32 247.34

z400v6d5iw10-rand 0/25 8e-14 ∞ 0/25 5e-13 ∞ 0/25 7e-12 ∞ 0/25 0.002 ∞ 0/25 14.01 ∞ 0/25 14.44 ∞

z400v6d5iw10-struc 0/25 4e-09 ∞ 0/25 1e-06 ∞ 0/25 0.0002 ∞ 0/25 53.80 ∞ 1/25 82.87 2496.85 1/25 62.76 2456.27
z400v6d5iw20-rand 0/25 3e-15 ∞ 0/25 2e-13 ∞ 0/25 2e-11 ∞ 0/25 0.01 ∞ 1/25 40.89 2477.87 2/25 38.45 1161.35
z400v6d5iw20-struc 0/25 5e-07 ∞ 0/25 3e-05 ∞ 0/25 0.003 ∞ 0/25 63.73 ∞ 0/25 69.75 ∞ 0/25 56.55 ∞

Table B.6: Results for GLS with smoothing intervalNρ = 200 and varying smoothing factorρ on problem setgen . All
algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.6 on page 72.

147

GLS withρ = 0.999
Nρ = 50 Nρ = 200 Nρ = 1000 Nρ = 10000 Nρ = ∞

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

alarm 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.0004 25/25 100.00 0.001 25/25 100.00 0.002
alarm-rand 25/25 100.00 0.01 25/25 100.00 0.01 25/25 100.00 0.009 25/25 100.00 0.009 25/25 100.00 0.009

barley 25/25 100.00 1.12 25/25 100.00 1.38 25/25 100.00 1.32 25/25 100.00 1.07 25/25 100.00 1.00
barley-rand 11/25 96.77 176.20 25/25 100.00 10.46 25/25 100.00 9.98 25/25 100.00 11.66 25/25 100.00 6.81

diabetes 0/25 3e-23 ∞ 0/25 2e-07 ∞ 0/25 0.22 ∞ 0/25 1.18 ∞ 0/25 0.22 ∞

diabetes-rand 0/25 1e-22 ∞ 0/25 5e-21 ∞ 0/25 2e-17 ∞ 0/25 9e-16 ∞ 0/25 1e-09 ∞

hailfinder 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.02
hailfinder-rand 25/25 100.00 0.22 25/25 100.00 0.18 25/25 100.00 0.20 25/25 100.00 0.16 25/25 100.00 0.15

insurance 25/25 100.00 0.0008 25/25 100.00 0.001 25/25 100.00 0.0008 25/25 100.00 0.001 25/25 100.00 0.0008
insurance-rand 25/25 100.00 0.008 25/25 100.00 0.007 25/25 100.00 0.006 25/25 100.00 0.006 25/25 100.00 0.006

link 25/25 100.00 0.30 25/25 100.00 0.28 25/25 100.00 0.28 25/25 100.00 0.30 25/25 100.00 0.32
link-rand 0/25 37.89 ∞ 0/25 71.63 ∞ 5/25 88.14 482.81 11/25 94.40 199.93 8/25 88.13 284.37
mildew 25/25 100.00 8.32 25/25 100.00 7.44 25/25 100.00 6.59 25/25 100.00 11.60 25/25 100.00 7.84

mildew-rand 25/25 100.00 0.76 25/25 100.00 0.50 25/25 100.00 0.51 25/25 100.00 0.43 25/25 100.00 0.51
munin1 25/25 100.00 2.02 25/25 100.00 1.52 25/25 100.00 1.17 25/25 100.00 0.85 25/25 100.00 0.85

munin1-rand 0/25 46.86 ∞ 13/25 99.51 142.15 25/25 100.00 24.95 25/25 100.00 24.65 25/25 100.00 26.01
munin2 1/25 91.55 2499.65 12/25 98.48 202.85 3/25 98.52 815.11 7/25 98.88 342.14 19/25 99.63 106.56

munin2-rand 0/25 2e-24 ∞ 0/25 3e-13 ∞ 0/25 7e-13 ∞ 0/25 6e-10 ∞ 0/25 6e-08 ∞

munin3 0/25 0.52 ∞ 0/25 1.06 ∞ 0/25 1.14 ∞ 0/25 1.15 ∞ 0/25 2.04 ∞

munin3-rand 0/25 2e-27 ∞ 0/25 1e-17 ∞ 0/25 2e-14 ∞ 0/25 8e-17 ∞ 0/25 3e-11 ∞

munin4 0/25 55.33 ∞ 0/25 86.61 ∞ 0/25 88.61 ∞ 1/25 92.69 2486.76 7/25 71.08 343.85
munin4-rand 0/25 7e-30 ∞ 0/25 1e-17 ∞ 0/25 1e-13 ∞ 0/25 2e-17 ∞ 0/25 4e-11 ∞

pigs 25/25 100.00 0.96 25/25 100.00 0.75 25/25 100.00 0.61 25/25 100.00 0.62 25/25 100.00 0.59
pigs-rand 11/25 99.19 210.00 25/25 100.00 25.19 25/25 100.00 22.72 25/25 100.00 24.11 25/25 100.00 22.97

water 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.002
water-rand 25/25 100.00 0.18 25/25 100.00 0.13 25/25 100.00 0.12 25/25 100.00 0.08 25/25 100.00 0.08

Table B.7: Full results for GLS with smoothing parameterρ = 0.999 and varying smoothing intervalNρ on problem set
bnrep . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.7 on page 76.

148
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

GLS withρ = 0.999)
Nρ = 50 Nρ = 200 Nρ = 1000 Nρ = 10000 Nρ = ∞

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

z100v3d5iw10-rand 25/25 100.00 0.20 25/25 100.00 0.25 25/25 100.00 0.22 25/25 100.00 0.24 25/25 100.00 0.19
z100v3d5iw10-struc 25/25 100.00 0.06 25/25 100.00 0.05 25/25 100.00 0.06 25/25 100.00 0.07 25/25 100.00 0.07
z100v3d5iw20-rand 25/25 100.00 0.16 25/25 100.00 0.15 25/25 100.00 0.14 25/25 100.00 0.16 25/25 100.00 0.15
z100v3d5iw20-struc 25/25 100.00 0.09 25/25 100.00 0.08 25/25 100.00 0.09 25/25 100.00 0.11 25/25 100.00 0.10

z100v6d5iw10-rand 25/25 100.00 7.29 25/25 100.00 6.11 25/25 100.00 7.39 25/25 100.00 6.97 25/25 100.00 11.69
z100v6d5iw10-struc 25/25 100.00 0.22 25/25 100.00 0.24 25/25 100.00 0.18 25/25 100.00 0.24 25/25 100.00 0.26
z100v6d5iw20-rand 25/25 100.00 8.28 25/25 100.00 6.62 25/25 100.00 11.08 25/25 100.00 5.86 25/25 100.00 6.96
z100v6d5iw20-struc 25/25 100.00 1.86 25/25 100.00 1.62 25/25 100.00 1.98 25/25 100.00 2.81 24/25 99.73 7.54

z200v3d5iw10-rand 25/25 100.00 13.63 25/25 100.00 16.49 23/25 99.67 28.11 22/25 99.77 37.69 24/25 99.75 32.44
z200v3d5iw10-struc 25/25 100.00 0.33 25/25 100.00 0.32 25/25 100.00 0.32 25/25 100.00 0.42 25/25 100.00 0.42
z200v3d5iw20-rand 25/25 100.00 22.17 24/25 99.84 33.57 16/25 98.04 79.60 13/25 97.17 114.54 17/25 97.33 70.29
z200v3d5iw20-struc 25/25 100.00 0.51 25/25 100.00 0.46 25/25 100.00 0.51 25/25 100.00 0.60 25/25 100.00 0.61

z200v6d5iw10-rand 0/25 34.52 ∞ 0/25 67.63 ∞ 1/25 76.92 2488.73 0/25 72.58 ∞ 0/25 72.10 ∞

z200v6d5iw10-struc 25/25 100.00 2.45 25/25 100.00 1.55 25/25 100.00 1.50 25/25 100.00 1.59 25/25 100.00 1.65
z200v6d5iw20-rand 0/25 14.59 ∞ 1/25 56.74 2436.20 1/25 58.69 2426.06 5/25 61.84 473.53 0/25 48.33 ∞

z200v6d5iw20-struc 21/25 89.57 42.00 20/25 87.51 71.85 11/25 64.30 167.61 10/25 60.04 162.22 9/25 58.07 210.39

z400v3d5iw10-rand 21/25 99.46 73.66 21/25 99.11 56.52 20/25 98.50 57.75 14/25 98.27 108.14 14/25 96.45 114.73
z400v3d5iw10-struc 25/25 100.00 12.65 25/25 100.00 18.84 25/25 100.00 27.44 23/25 99.67 41.38 22/25 99.51 38.40
z400v3d5iw20-rand 0/25 78.82 ∞ 0/25 83.50 ∞ 2/25 80.77 1192.93 1/25 75.60 2447.04 0/25 77.49 ∞

z400v3d5iw20-struc 20/25 98.33 69.12 12/25 93.88 155.81 15/25 90.72 110.10 7/25 85.38 280.16 5/25 76.33 428.36

z400v6d5iw10-rand 0/25 0.74 ∞ 0/25 15.42 ∞ 0/25 22.38 ∞ 0/25 20.60 ∞ 0/25 18.09 ∞

z400v6d5iw10-struc 0/25 81.53 ∞ 1/25 82.45 2441.40 1/25 79.60 2461.42 2/25 74.93 1187.44 1/25 69.03 2406.19
z400v6d5iw20-rand 0/25 1.94 ∞ 2/25 41.65 1223.30 5/25 59.03 467.16 1/25 45.30 2448.01 0/25 45.80 ∞

z400v6d5iw20-struc 0/25 77.01 ∞ 0/25 70.91 ∞ 0/25 67.71 ∞ 2/25 65.90 1221.78 0/25 60.62 ∞

Table B.8: Full results for GLS with smoothing parameterρ = 0.999 and varying smoothing intervalNρ on problem set
gen . All algorithms are run25 times for100 CPU seconds each. Summarized in Table 7.8 on page 77.

149
G+StS GLS BBMB

“original” “original”
ib=2 ib=6 ib=10 ib=14 ib=18

Solved
Quality

Time Solved
Quality

Time
Instance avg avg

alarm 25/25 100.00 0.01 25/25 100.00 0.003 0.00/0.00 0.00/0.00 0.01/0.01 0.00/0.00 0.00/0.00
alarm-rand 25/25 100.00 0.10 25/25 100.00 0.03 0.02/0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

barley 25/25 100.00 29.22 0/25 8.39 ∞ (0.07) 1.21/2.91 1.21/2.89 1.21/2.94 1.28/5.38
barley-rand 25/25 100.00 9.93 0/25 21.10 ∞ 28.69/- 1.23/1.23 1.22/1.22 1.22/1.22 1.23/1.23

diabetes 0/25 (-) ∞ 0/25 3e-268 ∞ (-) 4.23/4.23 4.22/4.22 4.24/4.24 4.23/4.23
diabetes-rand 0/25 3e-06 ∞ 0/25 3e-51 ∞ (5e-17) 3.80/3.80 3.82/3.82 3.80/3.80 3.81/3.81

hailfinder 25/25 100.00 0.51 25/25 100.00 0.10 4.33/4.33 0.00/0.00 0.01/0.01 0.01/0.01 0.01/0.01
hailfinder-rand 25/25 100.00 4.74 2/25 97.22 1177.87 (18.92) 0.01/0.01 0.01/0.01 0.00/0.00 0.00/0.00

insurance 25/25 100.00 0.001 25/25 100.00 0.002 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
insurance-rand 25/25 100.00 0.01 25/25 100.00 0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

link 0/25 (-) ∞ 25/25 100.00 5.30 (9e-37) (6e-06) (0.003) 17.10/- 17.29/-
link-rand 0/25 2e-09 ∞ 0/25 6e-19 ∞ (3e-19) (0.69) (34.26) 36.14/36.14 58.57/58.57
mildew 25/25 100.00 10.52 0/25 34.03 ∞ (1.39) 0.72/0.72 1.08/1.08 0.72/0.72 0.71/0.71

mildew-rand 25/25 100.00 0.42 0/25 85.61 ∞ 28.67/31.74 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01
munin1 0/25 3e-18 ∞ 0/25 40.68 ∞ 1.03/- 1.17/2.20 24.93/24.93 368.52/- 377.83/-

munin1-rand 0/25 4.40 ∞ 0/25 1e-09 ∞ (0.03) 1.23/13.96 42.08/42.08 104.39/- 104.96/-
munin2 0/25 (-) ∞ 0/25 1e-158 ∞ (-) 7.51/8.25 3.55/3.55 3.47/3.47 3.54/4.93

munin2-rand 0/25 1e-18 ∞ 0/25 8e-100 ∞ (-) (-) (-) (-) (-)
munin3 0/25 (-) ∞ 0/25 2e-161 ∞ (-) 28.07/28.72 4.51/5.88 4.51/4.51 4.54/5.77

munin3-rand 0/25 3e-18 ∞ 0/25 4e-114 ∞ (-) (-) (-) (-) (-)
munin4 0/25 (-) ∞ 0/25 1e-181 ∞ (-) (0.15) 22.76/22.76 21.54/21.71 23.78/23.79

munin4-rand 0/25 2e-22 ∞ 0/25 3e-112 ∞ (-) (-) (-) (-) (-)
pigs 0/25 5e-14 ∞ 0/25 0.0003 ∞ (2e-05) 0.11/0.11 0.38/0.38 0.53/0.53 0.53/0.53

pigs-rand 0/25 0.01 ∞ 0/25 0.02 ∞ (1e-08) 2.08/2.08 0.41/0.41 0.83/0.83 0.83/0.83
water 25/25 100.00 0.005 25/25 100.00 0.003 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01

water-rand 25/25 100.00 0.02 25/25 100.00 0.27 1.54/1.54 0.01/0.01 0.17/0.17 0.17/0.17 0.17/0.17

Table B.9: Comparison of s-BBMB with differenti-bounds and our “original” versions of G+StS and GLS on problem
setbnrep . The SLS algorithms were run 25 times for100 CPU seconds, the deterministic s-BBMB algorithm once for
100 CPU seconds for every i-bound. The SLS algorithms used a random initialization, simple caching, and parameter
values〈np, cf〉 = 〈40, 2〉 (G+StS), and〈Nρ, ρ〉 = 〈200, 0.8〉 (GLS). Summarized in Table 8.1 on page 88.

150
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

G+StS GLS BBMB
“original” “original”

ib=2 ib=6 ib=10 ib=14 ib=18
Solved

Quality
Time Solved

Quality
Time

Instance avg avg

z100v3d5iw10-rand 11/25 91.24 164.58 25/25 100.00 5.11 (0.05) 4.17/73.11 0.07/0.07 0.08/0.08 0.08/0.08
z100v3d5iw10-struc 11/25 68.77 167.15 25/25 100.00 0.35 (-) 12.46/37.46 0.16/0.16 0.25/0.25 0.26/0.26
z100v3d5iw20-rand 25/25 100.00 6.19 25/25 100.00 14.06 (0.57) (2.51) 0.51/0.51 5.38/5.38 35.46/35.46
z100v3d5iw20-struc 25/25 100.00 36.65 25/25 100.00 2.18 (-) (0.67) 4.38/5.38 5.66/5.66 (-)

z100v6d5iw10-rand 0/25 38.93 ∞ 0/25 32.76 ∞ (0.002) (1.22) 8.71/8.71 8.81/8.81 8.77/8.78
z100v6d5iw10-struc 0/25 1.93 ∞ 25/25 100.00 6.40 (-) 24.67/25.03 14.15/14.15 14.45/14.45 14.22/14.22
z100v6d5iw20-rand 0/25 17.55 ∞ 0/25 3.30 ∞ (0.0001) (0.04) (1.08) (-) (-)
z100v6d5iw20-struc 0/25 1.34 ∞ 12/25 89.70 168.95 (1e-14) (-) 33.82/42.56 (-) (-)

z200v3d5iw10-rand 0/25 11.93 ∞ 0/25 62.04 ∞ (2e-06) (0.33) 1.02/1.02 0.49/0.49 0.48/0.48
z200v3d5iw10-struc 0/25 0.05 ∞ 3/25 78.25 787.80 (-) (-) 0.37/0.37 0.45/0.45 0.45/0.45
z200v3d5iw20-rand 0/25 7.29 ∞ 0/25 18.86 ∞ (6e-07) (0.07) (5.15) 7.01/7.01 113.93/-
z200v3d5iw20-struc 0/25 0.02 ∞ 0/25 61.36 ∞ (-) (-) (-) 8.13/8.13 157.06/-

z200v6d5iw10-rand 0/25 0.03 ∞ 0/25 0.0002 ∞ (9e-12) (5e-07) 35.48/36.08 44.53/44.53 45.48/45.48
z200v6d5iw10-struc 0/25 9e-16 ∞ 0/25 23.75 ∞ (-) (-) 40.22/40.23 64.87/64.87 64.78/64.78
z200v6d5iw20-rand 0/25 0.02 ∞ 0/25 1e-06 ∞ (1e-16) (6e-09) (0.19) (-) (-)
z200v6d5iw20-struc 0/25 3e-13 ∞ 0/25 0.0003 ∞ (-) (-) (1e-07) (-) (-)

z400v3d5iw10-rand 0/25 0.002 ∞ 0/25 0.02 ∞ (8e-15) (0.004) 42.01/70.83 0.81/0.81 0.90/0.90
z400v3d5iw10-struc 0/25 6e-10 ∞ 0/25 2.03 ∞ (-) (-) (5.24) 1.12/1.12 1.12/1.12
z400v3d5iw20-rand 0/25 0.007 ∞ 0/25 0.03 ∞ (5e-18) (0.0003) (0.26) 49.06/- (-)
z400v3d5iw20-struc 0/25 (-) ∞ 0/25 0.18 ∞ (-) (-) (7.21) 14.73/15.58 153.33/-

z400v6d5iw10-rand 0/25 1e-09 ∞ 0/25 6e-15 ∞ (1e-24) (4e-08) (24.33) 68.88/68.88 68.81/68.82
z400v6d5iw10-struc 0/25 (-) ∞ 0/25 1e-08 ∞ (-) (6e-19) (0.25) 55.48/55.48 55.68/55.68
z400v6d5iw20-rand 0/25 2e-07 ∞ 0/25 5e-15 ∞ (3e-25) (1e-07) (0.02) (-) (-)
z400v6d5iw20-struc 0/25 (-) ∞ 0/25 2e-07 ∞ (-) (-) (0.02) (-) (-)

Table B.10: Comparison of s-BBMB with differenti-bounds and our “original” versions of G+StS and GLS on problem
setgen . The SLS algorithms were run 25 times for100 CPU seconds, the deterministic s-BBMB algorithm once for
100 CPU seconds for every i-bound. The SLS algorithms used a random initialization, simple caching, and parameter
values〈np, cf〉 = 〈40, 2〉 (G+StS), and〈Nρ, ρ〉 = 〈200, 0.8〉 (GLS). Summarized in Table 8.2 on page 88.

151

G+StS ILS
random init, old cachingrandom init, new cachingMB∗(105) init, new caching random initialization MB∗(105) initialization

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

alarm 25/25 100.00 0.01 25/25 100.00 0.004 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0004
alarm-rand 25/25 100.00 0.10 25/25 100.00 0.03 25/25 100.00 0.0008 25/25 100.00 0.002 25/25 100.00 0.0004

barley 25/25 100.00 29.22 25/25 100.00 4.13 25/25 100.00 1.26 25/25 100.00 2.67 25/25 100.00 1.50
barley-rand 25/25 100.00 9.93 25/25 100.00 2.25 25/25 100.00 0.10 25/25 100.00 0.70 25/25 100.00 0.10

diabetes 0/25 (-) ∞ 0/25 (-) ∞ 0/25 8e-32 ∞ 0/25 9e-28 ∞ 0/25 3e-14 ∞

diabetes-rand 0/25 3e-06 ∞ 0/25 0.02 ∞ 0/25 76.32 ∞ 1/25 73.32 2440.48 4/25 89.10 585.05
hailfinder 25/25 100.00 0.51 25/25 100.00 0.16 25/25 100.00 0.002 25/25 100.00 0.005 25/25 100.00 0.002

hailfinder-rand 25/25 100.00 4.74 25/25 100.00 1.62 25/25 100.00 0.003 25/25 100.00 0.04 25/25 100.00 0.002
insurance 25/25 100.00 0.001 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008

insurance-rand 25/25 100.00 0.01 25/25 100.00 0.006 25/25 100.00 0.0004 25/25 100.00 0.001 25/25 100.00 0.0004
link 0/25 (-) ∞ 0/25 8e-07 ∞ 0/25 0.50 ∞ 0/25 0.004 ∞ 0/25 0.50 ∞

link-rand 0/25 2e-09 ∞ 0/25 0.0002 ∞ 0/25 32.85 ∞ 0/25 38.55 ∞ 0/25 60.59 ∞

mildew 25/25 100.00 10.52 25/25 100.00 3.11 25/25 100.00 0.03 25/25 100.00 1.34 25/25 100.00 0.03
mildew-rand 25/25 100.00 0.42 25/25 100.00 0.12 25/25 100.00 0.004 25/25 100.00 0.38 25/25 100.00 0.004

munin1 0/25 3e-18 ∞ 0/25 7e-08 ∞ 25/25 100.00 0.21 10/25 0.06 171.48 25/25 100.00 0.21
munin1-rand 0/25 4.40 ∞ 0/25 18.48 ∞ 0/25 30.05 ∞ 25/25 100.00 6.54 25/25 100.00 8.33

munin2 0/25 (-) ∞ 0/25 (-) ∞ 25/25 100.00 0.75 0/25 (-) ∞ 25/25 100.00 0.78
munin2-rand 0/25 1e-18 ∞ 0/25 2e-09 ∞ 0/25 97.43 ∞ 0/25 3.63 ∞ 0/25 97.43 ∞

munin3 0/25 (-) ∞ 0/25 (-) ∞ 25/25 100.00 0.80 0/25 (-) ∞ 25/25 100.00 0.81
munin3-rand 0/25 3e-18 ∞ 0/25 3e-10 ∞ 0/25 59.91 ∞ 0/25 2.20 ∞ 0/25 68.01 ∞

munin4 0/25 (-) ∞ 0/25 (-) ∞ 0/25 0.003 ∞ 0/25 (-) ∞ 25/25 100.00 4.72
munin4-rand 0/25 2e-22 ∞ 0/25 4e-12 ∞ 0/25 8.10 ∞ 0/25 0.53 ∞ 0/25 9.77 ∞

pigs 0/25 5e-14 ∞ 0/25 1e-08 ∞ 25/25 100.00 0.10 1/25 23.65 2411.99 25/25 100.00 0.10
pigs-rand 0/25 0.01 ∞ 0/25 1.09 ∞ 21/25 98.89 57.91 1/25 65.13 2448.12 25/25 100.00 1.93

water 25/25 100.00 0.005 25/25 100.00 0.002 25/25 100.00 0.003 25/25 100.00 0.0008 25/25 100.00 0.003
water-rand 25/25 100.00 0.02 25/25 100.00 0.009 25/25 100.00 0.05 25/25 100.00 0.002 25/25 100.00 0.05

Table B.11: Results for non-penalty based algorithms on problem setbnrep . All algorithms were run 25 times for100
CPU seconds each with their default parameters.

152
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

G+StS ILS
random init, old caching random init, new cachingMB∗(105) init, new caching random initialization MB∗(105) initialization

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

z100v3d5iw10-rand 11/25 91.24 164.58 25/25 100.00 12.29 25/25 100.00 0.02 25/25 100.00 0.82 25/25 100.00 0.02
z100v3d5iw10-struc 11/25 68.77 167.15 25/25 100.00 17.59 23/25 95.61 40.33 25/25 100.00 0.95 25/25 100.00 2.16
z100v3d5iw20-rand 25/25 100.00 6.19 25/25 100.00 0.77 25/25 100.00 0.23 25/25 100.00 0.30 25/25 100.00 0.23
z100v3d5iw20-struc 25/25 100.00 36.65 25/25 100.00 6.00 25/25 100.00 6.11 25/25 100.00 0.30 25/25 100.00 0.59

z100v6d5iw10-rand 0/25 38.93 ∞ 3/25 70.38 806.79 0/25 68.93 ∞ 23/25 99.43 34.96 23/25 99.43 39.94
z100v6d5iw10-struc 0/25 1.93 ∞ 0/25 22.34 ∞ 0/25 28.05 ∞ 25/25 100.00 5.90 25/25 100.00 8.12
z100v6d5iw20-rand 0/25 17.55 ∞ 0/25 33.22 ∞ 0/25 29.89 ∞ 8/25 78.92 256.97 7/25 76.96 298.94
z100v6d5iw20-struc 0/25 1.34 ∞ 1/25 17.92 2490.86 0/25 14.64 ∞ 25/25 100.00 18.63 25/25 100.00 19.37

z200v3d5iw10-rand 0/25 11.93 ∞ 0/25 40.14 ∞ 0/25 74.73 ∞ 11/25 93.21 159.56 15/25 95.94 111.39
z200v3d5iw10-struc 0/25 0.05 ∞ 0/25 1.24 ∞ 25/25 100.00 14.66 25/25 100.00 9.50 25/25 100.00 7.94
z200v3d5iw20-rand 0/25 7.29 ∞ 0/25 26.81 ∞ 0/25 24.19 ∞ 25/25 100.00 6.25 25/25 100.00 12.46
z200v3d5iw20-struc 0/25 0.02 ∞ 0/25 0.38 ∞ 0/25 0.82 ∞ 18/25 84.04 67.78 17/25 83.02 92.04

z200v6d5iw10-rand 0/25 0.03 ∞ 0/25 0.19 ∞ 0/25 1.32 ∞ 0/25 58.13 ∞ 0/25 54.23 ∞

z200v6d5iw10-struc 0/25 9e-16 ∞ 0/25 8e-10 ∞ 0/25 0.007 ∞ 0/25 1.16 ∞ 0/25 2.46 ∞

z200v6d5iw20-rand 0/25 0.02 ∞ 0/25 0.37 ∞ 0/25 0.36 ∞ 21/25 96.50 61.58 19/25 86.07 82.03
z200v6d5iw20-struc 0/25 3e-13 ∞ 0/25 1e-07 ∞ 0/25 1e-06 ∞ 0/25 0.69 ∞ 0/25 0.58 ∞

z400v3d5iw10-rand 0/25 0.002 ∞ 0/25 0.25 ∞ 25/25 100.00 0.49 14/25 95.85 128.87 25/25 100.00 0.47
z400v3d5iw10-struc 0/25 6e-10 ∞ 0/25 9e-05 ∞ 2/25 39.76 1217.07 0/25 22.31 ∞ 25/25 100.00 5.64
z400v3d5iw20-rand 0/25 0.007 ∞ 0/25 0.78 ∞ 0/25 18.20 ∞ 1/25 72.41 2448.06 0/25 74.32 ∞

z400v3d5iw20-struc 0/25 (-) ∞ 0/25 2e-06 ∞ 0/25 1.22 ∞ 0/25 29.86 ∞ 1/25 46.49 2483.89

z400v6d5iw10-rand 0/25 1e-09 ∞ 0/25 1e-05 ∞ 0/25 0.02 ∞ 0/25 4.80 ∞ 0/25 3.66 ∞

z400v6d5iw10-struc 0/25 (-) ∞ 0/25 1e-23 ∞ 0/25 6e-23 ∞ 0/25 0.0003 ∞ 0/25 0.0005 ∞

z400v6d5iw20-rand 0/25 2e-07 ∞ 0/25 0.0001 ∞ 0/25 0.55 ∞ 0/25 16.78 ∞ 0/25 18.58 ∞

z400v6d5iw20-struc 0/25 (-) ∞ 0/25 5e-18 ∞ 0/25 6e-09 ∞ 0/25 0.04 ∞ 0/25 0.20 ∞

Table B.12: Results for non-penalty based algorithms on problem setgen . All algorithms were run 25 times for100
CPU seconds each with their default parameters.

153

GLS, random initialization GLS+

“original” “original”,ρ = 0.999 ρ = 0.999, new caching random initialization initialization MB∗(105)

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

alarm 25/25 100.00 0.003 25/25 100.00 0.002 25/25 100.00 0.001 25/25 100.00 0.0004 25/25 100.00 0.0008
alarm-rand 25/25 100.00 0.03 25/25 100.00 0.03 25/25 100.00 0.01 25/25 100.00 0.006 25/25 100.00 0.0008

barley 0/25 8.39 ∞ 25/25 100.00 8.02 25/25 100.00 1.29 25/25 100.00 0.90 25/25 100.00 0.53
barley-rand 0/25 21.10 ∞ 25/25 100.00 53.79 25/25 100.00 10.56 25/25 100.00 6.93 25/25 100.00 0.10

diabetes 0/25 3e-268 ∞ 0/25 4e-198 ∞ 0/25 6e-07 ∞ 0/25 0.03 ∞ 0/25 0.02 ∞

diabetes-rand 0/25 3e-51 ∞ 0/25 9e-52 ∞ 0/25 1e-20 ∞ 0/25 3e-13 ∞ 0/25 67.78 ∞

hailfinder 25/25 100.00 0.10 25/25 100.00 0.09 25/25 100.00 0.02 25/25 100.00 0.008 25/25 100.00 0.002
hailfinder-rand 2/25 97.22 1177.87 25/25 100.00 1.24 25/25 100.00 0.19 25/25 100.00 0.22 25/25 100.00 0.003

insurance 25/25 100.00 0.002 25/25 100.00 0.002 25/25 100.00 0.0008 25/25 100.00 0.0008 25/25 100.00 0.0008
insurance-rand 25/25 100.00 0.02 25/25 100.00 0.02 25/25 100.00 0.008 25/25 100.00 0.004 25/25 100.00 0.0004

link 25/25 100.00 5.30 25/25 100.00 6.26 25/25 100.00 0.32 25/25 100.00 0.18 25/25 100.00 1.06
link-rand 0/25 6e-19 ∞ 0/25 0.01 ∞ 1/25 84.47 2484.21 2/25 84.61 1245.07 1/25 85.48 2497.44
mildew 0/25 34.03 ∞ 25/25 100.00 18.70 25/25 100.00 7.32 25/25 100.00 3.92 25/25 100.00 0.03

mildew-rand 0/25 85.61 ∞ 25/25 100.00 2.30 25/25 100.00 0.52 25/25 100.00 0.40 25/25 100.00 0.004
munin1 0/25 40.68 ∞ 25/25 100.00 15.72 25/25 100.00 1.56 25/25 100.00 0.12 25/25 100.00 0.21

munin1-rand 0/25 1e-09 ∞ 0/25 68.23 ∞ 17/25 99.65 108.58 20/25 99.79 78.91 15/25 99.84 117.22
munin2 0/25 1e-158 ∞ 0/25 1e-62 ∞ 11/25 98.76 216.65 25/25 100.00 9.21 25/25 100.00 0.79

munin2-rand 0/25 8e-100 ∞ 0/25 3e-96 ∞ 0/25 9e-14 ∞ 0/25 2e-11 ∞ 0/25 97.43 ∞

munin3 0/25 2e-161 ∞ 0/25 3e-73 ∞ 0/25 0.71 ∞ 4/25 21.64 598.17 25/25 100.00 0.84
munin3-rand 0/25 4e-114 ∞ 0/25 2e-105 ∞ 0/25 3e-17 ∞ 0/25 7e-14 ∞ 0/25 57.31 ∞

munin4 0/25 1e-181 ∞ 0/25 5e-85 ∞ 0/25 79.97 ∞ 25/25 100.00 17.30 25/25 100.00 34.30
munin4-rand 0/25 3e-112 ∞ 0/25 2e-100 ∞ 0/25 5e-18 ∞ 0/25 1e-15 ∞ 0/25 7.54 ∞

pigs 0/25 0.0003 ∞ 25/25 100.00 9.14 25/25 100.00 0.77 25/25 100.00 0.56 25/25 100.00 0.11
pigs-rand 0/25 0.02 ∞ 0/25 89.84 ∞ 25/25 100.00 26.70 25/25 100.00 24.69 25/25 100.00 30.46

water 25/25 100.00 0.003 25/25 100.00 0.003 25/25 100.00 0.002 25/25 100.00 0.0004 25/25 100.00 0.003
water-rand 25/25 100.00 0.27 25/25 100.00 0.41 25/25 100.00 0.14 25/25 100.00 0.01 25/25 100.00 0.06

Table B.13: Results for penalty based algorithms on problem set bnrep . All algorithms were run 25 times for100 CPU
seconds each. Summarized in Table 8.5 on page 97.

154
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

GLS, random initialization GLS+

“original” “original”,ρ = 0.999 ρ = 0.999, new caching random initialization initialization MB∗(105)

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg avg avg

z100v3d5iw10-rand 25/25 100.00 5.11 25/25 100.00 1.36 25/25 100.00 0.27 25/25 100.00 0.11 25/25 100.00 0.02
z100v3d5iw10-struc 25/25 100.00 0.35 25/25 100.00 0.22 25/25 100.00 0.06 25/25 100.00 0.03 25/25 100.00 0.22
z100v3d5iw20-rand 25/25 100.00 14.06 25/25 100.00 0.88 25/25 100.00 0.15 25/25 100.00 0.10 25/25 100.00 0.24
z100v3d5iw20-struc 25/25 100.00 2.18 25/25 100.00 0.48 25/25 100.00 0.09 25/25 100.00 0.08 25/25 100.00 0.44

z100v6d5iw10-rand 0/25 32.76 ∞ 24/25 99.72 33.14 25/25 100.00 6.57 25/25 100.00 4.87 25/25 100.00 3.60
z100v6d5iw10-struc 25/25 100.00 6.40 25/25 100.00 1.57 25/25 100.00 0.24 25/25 100.00 0.14 25/25 100.00 0.47
z100v6d5iw20-rand 0/25 3.30 ∞ 24/25 98.30 55.04 25/25 100.00 6.89 25/25 100.00 7.20 25/25 100.00 2.94
z100v6d5iw20-struc 12/25 89.70 168.95 24/25 99.43 22.69 25/25 100.00 1.66 25/25 100.00 1.33 25/25 100.00 1.43

z200v3d5iw10-rand 0/25 62.04 ∞ 12/25 96.27 157.10 25/25 100.00 17.05 25/25 100.00 12.89 25/25 100.00 2.12
z200v3d5iw10-struc 3/25 78.25 787.80 25/25 100.00 3.19 25/25 100.00 0.34 25/25 100.00 0.25 25/25 100.00 0.58
z200v3d5iw20-rand 0/25 18.86 ∞ 7/25 94.22 300.68 24/25 99.84 33.44 24/25 99.95 42.14 25/25 100.00 52.55
z200v3d5iw20-struc 0/25 61.36 ∞ 25/25 100.00 5.00 25/25 100.00 0.48 25/25 100.00 0.45 25/25 100.00 1.31

z200v6d5iw10-rand 0/25 0.0002 ∞ 0/25 13.44 ∞ 0/25 70.47 ∞ 0/25 74.23 ∞ 0/25 74.60 ∞

z200v6d5iw10-struc 0/25 23.75 ∞ 25/25 100.00 15.88 25/25 100.00 1.62 25/25 100.00 1.72 25/25 100.00 3.06
z200v6d5iw20-rand 0/25 1e-06 ∞ 0/25 5.62 ∞ 1/25 56.83 2452.50 2/25 65.24 1243.03 25/25 100.00 54.85
z200v6d5iw20-struc 0/25 0.0003 ∞ 5/25 38.17 453.85 18/25 82.38 70.14 18/25 83.32 64.13 21/25 88.74 54.32

z400v3d5iw10-rand 0/25 0.02 ∞ 4/25 77.51 590.08 18/25 98.48 83.38 21/25 99.32 60.35 25/25 100.00 0.47
z400v3d5iw10-struc 0/25 2.03 ∞ 13/25 94.07 147.72 25/25 100.00 19.41 25/25 100.00 18.14 23/25 99.68 20.07
z400v3d5iw20-rand 0/25 0.03 ∞ 0/25 59.88 ∞ 0/25 83.11 ∞ 2/25 83.56 1194.24 0/25 87.97 ∞

z400v3d5iw20-struc 0/25 0.18 ∞ 1/25 62.43 2484.46 12/25 94.07 150.35 13/25 94.41 125.80 11/25 92.84 161.18

z400v6d5iw10-rand 0/25 6e-15 ∞ 0/25 0.002 ∞ 0/25 14.01 ∞ 0/25 15.32 ∞ 0/25 17.30 ∞

z400v6d5iw10-struc 0/25 1e-08 ∞ 0/25 18.16 ∞ 1/25 82.87 2496.85 1/25 82.53 2417.76 0/25 83.98 ∞

z400v6d5iw20-rand 0/25 5e-15 ∞ 0/25 0.09 ∞ 1/25 40.89 2477.87 1/25 44.29 2451.07 0/25 29.79 ∞

z400v6d5iw20-struc 0/25 2e-07 ∞ 0/25 26.66 ∞ 0/25 69.75 ∞ 2/25 74.20 1172.01 0/25 69.53 ∞

Table B.14: Results for penalty based algorithms on problem set gen . All algorithms were run 25 times for100 CPU
seconds each. Summarized in Table 8.6 on page 97.

155

d-BBMB s-BBMB Anytime
Instance ib=2 ib=6 ib=10 ib=14 ib=18 ib=2 ib=6 ib=10 ib=14 ib=18 MB

alarm 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00
alarm-rand 0.03/0.03 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 0.02/0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00

barley (0.07) 3.20/14.64 3.20/13.63 2.05/7.19 2.05/7.24 (0.07) 1.21/2.91 1.21/2.89 1.21/2.94 1.28/5.38 0.22/0.22
barley-rand 7.17/- 3.47/6.83 3.46/6.79 3.54/3.54 3.45/3.45 28.69/- 1.23/1.23 1.22/1.22 1.22/1.22 1.23/1.23 0.20/0.20

diabetes (-) (-) (-) (-) (-) (-) 4.23/4.23 4.22/4.22 4.24/4.24 4.23/4.23 4.70/4.70
diabetes-rand (9e-09) (-) (-) (-) (-) (5e-17) 3.80/3.80 3.82/3.82 3.80/3.80 3.81/3.81 3.95/7.82

hailfinder 0.40/0.40 0.02/0.02 0.03/0.03 0.02/0.02 0.02/0.02 4.33/4.33 0.00/0.00 0.01/0.01 0.01/0.01 0.01/0.01 0.00/0.00
hailfinder-rand 51.20/97.28 0.03/0.03 0.02/0.02 0.03/0.03 0.03/0.03 (18.92) 0.01/0.01 0.01/0.01 0.00/0.00 0.00/0.00 0.01/0.01

insurance 0.01/0.01 0.01/0.01 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01
insurance-rand 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01

link (3e-31) (0.003) (0.50) 96.13/- 96.11/- (9e-37) (6e-06) (0.003) 17.10/- 17.29/- 50.05/50.05
link-rand (4e-11) (3.71) (63.80) (-) (-) (3e-19) (0.69) (34.26) 36.14/36.14 58.57/58.57 (39.81)
mildew 3.07/30.00 4.29/4.50 3.65/3.65 3.69/3.69 3.70/3.70 (1.39) 0.72/0.72 1.08/1.08 0.72/0.72 0.71/0.71 0.06/0.06

mildew-rand 7.16/8.24 0.07/0.07 0.07/0.07 0.06/0.06 0.07/0.07 28.67/31.74 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.00/0.01
munin1 1.02/- 2.17/8.56 (0.15) (-) (-) 1.03/- 1.17/2.20 24.93/24.93 (-) (-) 0.08/7.39

munin1-rand (1.04) 2.12/49.95 88.91/94.50 (-) (-) (0.03) 1.23/13.96 42.08/42.08 (-) (-) 38.84/38.84
munin2 (-) 27.51/30.06 40.77/40.77 40.11/40.11 40.34/40.34 (-) 7.51/8.25 3.55/3.55 3.47/3.47 3.54/4.93 0.80/3.17

munin2-rand (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) 3.27/3.27
munin3 (-) 20.02/23.14 27.31/27.31 26.55/26.55 26.60/26.60 (-) 28.07/28.72 4.51/5.88 4.51/4.51 4.54/5.77 0.85/3.63

munin3-rand (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) 4.05/4.05
munin4 (-) (0.0001) (-) (-) (-) (-) (0.15) 22.76/22.76 21.54/21.71 23.78/23.79 18.70/18.70

munin4-rand (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) 21.36/21.36
pigs (0.02) 1.03/1.05 1.66/1.66 1.80/1.80 1.79/1.79 (2e-05) 0.11/0.11 0.38/0.38 0.53/0.53 0.53/0.53 0.26/0.32

pigs-rand (0.008) 1.02/3.68 2.00/2.00 2.73/2.73 2.72/2.72 (1e-08) 2.08/2.08 0.41/0.41 0.83/0.83 0.83/0.83 1.40/1.40
water 0.07/0.07 0.03/0.03 0.04/0.04 0.03/0.03 0.04/0.04 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01

water-rand 5.12/5.62 0.21/0.21 0.77/0.77 0.78/0.78 0.76/0.76 1.54/1.54 0.01/0.01 0.17/0.17 0.17/0.17 0.17/0.17 0.19/0.19

Table B.15: Full results for exact algorithms on problem setbnrep . All algorithms were run for 100 CPU seconds.
Summarized in Table 9.1 on page 109.

156
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

d-BBMB s-BBMB Anytime
Instance ib=2 ib=6 ib=10 ib=14 ib=18 ib=2 ib=6 ib=10 ib=14 ib=18 MB

z100v3d5iw10-rand (5.27) 1.02/48.53 1.05/1.26 0.97/0.97 0.98/0.98 (0.05) 4.17/73.11 0.07/0.07 0.08/0.08 0.08/0.08 0.07/0.07
z100v3d5iw10-struc (5.38) 6.14/30.05 2.12/2.75 2.41/2.41 2.41/2.41 (-) 12.46/37.46 0.16/0.16 0.25/0.25 0.26/0.26 0.52/0.52
z100v3d5iw20-rand (0.22) 56.35/- 4.25/13.11 21.75/21.75 64.01/64.01 (0.57) (2.51) 0.51/0.51 5.38/5.38 35.46/35.46 55.16/55.16
z100v3d5iw20-struc (0.29) 53.25/- 19.67/- 66.79/- (-) (-) (0.67) 4.38/5.38 5.66/5.66 (-) (5.49)

z100v6d5iw10-rand (0.06) (92.97) (-) (-) (-) (0.002) (1.22) 8.71/8.71 8.81/8.81 8.77/8.78 52.58/92.28
z100v6d5iw10-struc (0.01) (72.53) (-) (-) (-) (-) 24.67/25.03 14.15/14.15 14.45/14.45 14.22/14.22 (-)
z100v6d5iw20-rand (0.06) (0.54) (-) (-) (-) (0.0001) (0.04) (1.08) (-) (-) (0.37)
z100v6d5iw20-struc (2e-08) (2e-09) (-) (-) (-) (1e-14) (-) 33.82/42.56 (-) (-) (-)

z200v3d5iw10-rand (0.008) (20.03) 7.58/43.88 8.56/8.56 8.59/8.59 (2e-06) (0.33) 1.02/1.02 0.49/0.49 0.48/0.48 1.04/1.04
z200v3d5iw10-struc (-) (2.32) 4.83/4.83 5.36/5.36 5.35/5.35 (-) (-) 0.37/0.37 0.45/0.45 0.45/0.45 1.02/1.02
z200v3d5iw20-rand(0.0001) (0.10) (41.54) 91.14/- (-) (6e-07) (0.07) (5.15) 7.01/7.01 (-) (37.15)
z200v3d5iw20-struc (8e-07) (0.0001) (0.002) (-) (-) (-) (-) (-) 8.13/8.13 (-) (0.80)

z200v6d5iw10-rand (9e-07) (0.67) (-) (-) (-) (9e-12) (5e-07) 35.48/36.08 44.53/44.53 45.48/45.48 (95.99)
z200v6d5iw10-struc (4e-19) (1e-10) (-) (-) (-) (-) (-) 40.22/40.23 64.87/64.87 64.78/64.78 92.90/92.90
z200v6d5iw20-rand (1e-10) (0.07) (-) (-) (-) (1e-16) (6e-09) (0.19) (-) (-) (0.02)
z200v6d5iw20-struc (-) (9e-15) (-) (-) (-) (-) (-) (1e-07) (-) (-) (1e-15)

z400v3d5iw10-rand (4e-08) (3.64) (69.51) 33.44/33.44 33.15/33.15 (8e-15) (0.004) 42.01/70.83 0.81/0.81 0.90/0.90 0.97/3.14
z400v3d5iw10-struc (-) (69.37) 25.28/- 40.70/40.70 40.28/40.28 (-) (-) (5.24) 1.12/1.12 1.12/1.12 1.84/7.05
z400v3d5iw20-rand (1e-08) (10.79) (11.50) (71.52) (-) (5e-18) (0.0003) (0.26) 49.06/- (-) (76.25)
z400v3d5iw20-struc (-) (0.27) (23.80) (24.23) (-) (-) (-) (7.21) 14.73/15.58 (-) (89.09)

z400v6d5iw10-rand (1e-14) (0.27) (-) (-) (-) (1e-24) (4e-08) (24.33) 68.88/68.88 68.81/68.82 (72.04)
z400v6d5iw10-struc (-) (2e-11) (-) (-) (-) (-) (6e-19) (0.25) 55.48/55.48 55.68/55.68 (16.29)
z400v6d5iw20-rand (3e-12) (0.80) (-) (-) (-) (3e-25) (1e-07) (0.02) (-) (-) (0.08)
z400v6d5iw20-struc (-) (3e-06) (-) (-) (-) (-) (-) (0.02) (-) (-) (-)

Table B.16: Full results for exact algorithms on problem setgen . All algorithms were run for 100 CPU seconds.
Summarized in Table 9.2 on page 109.

157

GLS+ ILS s-BBMB MB HYBRID
default default

ib=2 ib=6 ib=10 ib=14 ib=18 MB
default

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg

alarm 25/25 100.00 0.0008 25/25 100.00 0.0008 0.00/0.00 0.00/0.00 0.01/0.01 0.00/0.00 0.00/0.00 0.00/0.00 25/25 100.00 0.0004
alarm-rand 25/25 100.00 0.0008 25/25 100.00 0.0008 0.02/0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 25/25 100.00 0.0004

barley 25/25 100.00 0.53 25/25 100.00 0.51 (0.07) 1.21/2.91 1.21/2.89 1.21/2.94 1.28/5.38 0.22/0.22 25/25 100.00 0.66
barley-rand 25/25 100.00 0.10 25/25 100.00 0.10 28.69/- 1.23/1.23 1.22/1.22 1.22/1.22 1.23/1.23 0.20/0.20 25/25 100.00 0.10

diabetes 0/25 0.02 ∞ 0/25 4e-17 ∞ (-) 4.23/4.23 4.22/4.22 4.24/4.24 4.23/4.23 4.70/4.70 25/25 100.00 25.87
diabetes-rand 0/25 67.78 ∞ 0/25 85.54 ∞ (5e-17) 3.80/3.80 3.82/3.82 3.80/3.80 3.81/3.81 3.95/7.82 25/25 100.00 23.66

hailfinder 25/25 100.00 0.002 25/25 100.00 0.002 4.33/4.33 0.00/0.00 0.01/0.01 0.01/0.01 0.01/0.01 0.00/0.00 25/25 100.00 0.001
hailfinder-rand 25/25 100.00 0.003 25/25 100.00 0.003 (18.92) 0.01/0.01 0.01/0.01 0.00/0.00 0.00/0.00 0.01/0.01 25/25 100.00 0.003

insurance 25/25 100.00 0.0008 25/25 100.00 0.0008 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 25/25 100.00 0.0008
insurance-rand25/25 100.00 0.0004 25/25 100.00 0.0004 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.01 25/25 100.00 0.0004

link 25/25 100.00 1.06 0/25 0.50 ∞ (9e-37) (6e-06) (0.003) 17.10/- 17.29/- 50.05/50.0525/25 100.00 13.23
link-rand 1/25 85.48 2497.44 0/25 42.88 ∞ (3e-19) (0.69) (34.26) 36.14/36.1458.57/58.57 (39.81) 0/25 57.75 ∞

mildew 25/25 100.00 0.03 25/25 100.00 0.03 (1.39) 0.72/0.72 1.08/1.08 0.72/0.72 0.71/0.71 0.06/0.06 25/25 100.00 0.03
mildew-rand 25/25 100.00 0.004 25/25 100.00 0.004 28.67/31.74 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.00/0.01 25/25 100.00 0.004

munin1 25/25 100.00 0.21 25/25 100.00 0.21 1.03/- 1.17/2.20 24.93/24.93 (-) (-) 0.08/7.39 25/25 100.00 0.22
munin1-rand 15/25 99.84 117.22 24/25 100.00 30.32 (0.03) 1.23/13.96 42.08/42.08 (-) (-) 38.84/38.8425/25 100.00 27.22

munin2 25/25 100.00 0.79 25/25 100.00 0.78 (-) 7.51/8.25 3.55/3.55 3.47/3.47 3.54/4.93 0.80/3.17 25/25 100.00 0.82
munin2-rand 0/25 97.43 ∞ 0/25 97.43 ∞ (-) (-) (-) (-) (-) 3.27/3.27 25/25 100.00 12.59

munin3 25/25 100.00 0.84 25/25 100.00 0.82 (-) 28.07/28.72 4.51/5.88 4.51/4.51 4.54/5.77 0.85/3.63 25/25 100.00 0.76
munin3-rand 0/25 57.31 ∞ 0/25 68.20 ∞ (-) (-) (-) (-) (-) 4.05/4.05 25/25 100.00 10.87

munin4 25/25 100.00 34.30 22/25 39.40 50.93 (-) (0.15) 22.76/22.7621.54/21.7123.78/23.7918.70/18.7025/25 100.00 24.96
munin4-rand 0/25 7.54 ∞ 0/25 8.76 ∞ (-) (-) (-) (-) (-) 21.36/21.3625/25 100.00 77.69

pigs 25/25 100.00 0.11 25/25 100.00 0.10 (2e-05) 0.11/0.11 0.38/0.38 0.53/0.53 0.53/0.53 0.26/0.32 25/25 100.00 0.11
pigs-rand 25/25 100.00 30.46 25/25 100.00 7.13 (1e-08) 2.08/2.08 0.41/0.41 0.83/0.83 0.83/0.83 1.40/1.40 25/25 100.00 2.80

water 25/25 100.00 0.003 25/25 100.00 0.003 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 25/25 100.00 0.003
water-rand 25/25 100.00 0.06 25/25 100.00 0.05 1.54/1.54 0.01/0.01 0.17/0.17 0.17/0.17 0.17/0.17 0.19/0.19 25/25 100.00 0.56

Table B.17: Full results for best-performing algorithms on problem setbnrep . All algorithms were run 25 times for
100 CPU seconds each. Summarized in Table 9.3 on page 115.

158
A

P
P

E
N

D
IX

B
.

D
E

TA
ILE

D
E

X
P

E
R

IM
E

N
TA

L
R

E
S

U
LT

S

GLS+ ILS s-BBMB Anytime HYBRID
default default

ib=2 ib=6 ib=10 ib=14 ib=18 MB
default

Solved
Quality

Time Solved
Quality

Time Solved
Quality

Time
Instance avg avg avg

z100v3d5iw10-rand25/25 100.00 0.02 25/25 100.00 0.02 (0.05) 4.17/73.11 0.07/0.07 0.08/0.08 0.08/0.08 0.07/0.07 25/25 100.00 0.02
z100v3d5iw10-struc25/25 100.00 0.22 25/25 100.00 1.72 (-) 12.46/37.46 0.16/0.16 0.25/0.25 0.26/0.26 0.52/0.52 25/25 100.00 1.55
z100v3d5iw20-rand25/25 100.00 0.24 25/25 100.00 0.24 (0.57) (2.51) 0.51/0.51 5.38/5.38 35.46/35.4655.16/55.1625/25 100.00 0.23
z100v3d5iw20-struc25/25 100.00 0.44 25/25 100.00 0.70 (-) (0.67) 4.38/5.38 5.66/5.66 (-) (5.49) 25/25 100.00 5.29

z100v6d5iw10-rand25/25 100.00 3.60 23/25 99.43 48.17 (0.002) (1.22) 8.71/8.71 8.81/8.81 8.77/8.78 52.58/92.2825/25 100.00 26.63
z100v6d5iw10-struc25/25 100.00 0.47 25/25 100.00 13.46 (-) 24.67/25.0314.15/14.1514.45/14.4514.22/14.22 (-) 25/25 100.00 6.40
z100v6d5iw20-rand25/25 100.00 2.94 2/25 63.71 1169.41(0.0001) (0.04) (1.08) (-) (-) (0.37) 25/25 100.00 35.91
z100v6d5iw20-struc25/25 100.00 1.43 24/25 98.56 35.45 (1e-14) (-) 33.82/42.56 (-) (-) (-) 25/25 100.00 14.67

z200v3d5iw10-rand25/25 100.00 2.12 8/25 93.00 255.30 (2e-06) (0.33) 1.02/1.02 0.49/0.49 0.48/0.48 1.04/1.04 25/25 100.00 3.99
z200v3d5iw10-struc25/25 100.00 0.58 25/25 100.00 21.51 (-) (-) 0.37/0.37 0.45/0.45 0.45/0.45 1.02/1.02 25/25 100.00 3.90
z200v3d5iw20-rand25/25 100.00 52.55 24/25 99.84 29.00 (6e-07) (0.07) (5.15) 7.01/7.01 (-) (37.15) 21/25 99.06 62.87
z200v3d5iw20-struc25/25 100.00 1.31 17/25 85.42 88.18 (-) (-) (-) 8.13/8.13 (-) (0.80) 25/25 100.00 16.77

z200v6d5iw10-rand 0/25 74.60 ∞ 0/25 30.01 ∞ (9e-12) (5e-07) 35.48/36.0844.53/44.5345.48/45.48 (95.99) 0/25 51.05 ∞

z200v6d5iw10-struc25/25 100.00 3.06 0/25 0.44 ∞ (-) (-) 40.22/40.2364.87/64.8764.78/64.7892.90/92.9025/25 100.00 26.63
z200v6d5iw20-rand25/25 100.00 54.85 1/25 42.45 2458.55 (1e-16) (6e-09) (0.19) (-) (-) (0.02) 4/25 50.96 605.54
z200v6d5iw20-struc21/25 88.74 54.32 0/25 0.21 ∞ (-) (-) (1e-07) (-) (-) (1e-15) 7/25 52.29 368.62

z400v3d5iw10-rand25/25 100.00 0.47 25/25 100.00 0.49 (8e-15) (0.004) 42.01/70.83 0.81/0.81 0.90/0.90 0.97/3.14 25/25 100.00 0.46
z400v3d5iw10-struc23/25 99.68 20.07 25/25 100.00 7.28 (-) (-) (5.24) 1.12/1.12 1.12/1.12 1.84/7.05 25/25 100.00 9.96
z400v3d5iw20-rand 0/25 87.97 ∞ 0/25 69.17 ∞ (5e-18) (0.0003) (0.26) 49.06/- (-) (76.25) 0/25 71.46 ∞

z400v3d5iw20-struc11/25 92.84 161.18 0/25 25.42 ∞ (-) (-) (7.21) 14.73/15.58 (-) (89.09) 2/25 83.71 1210.31

z400v6d5iw10-rand 0/25 17.30 ∞ 0/25 1.15 ∞ (1e-24) (4e-08) (24.33) 68.88/68.8868.81/68.82 (72.04) 0/25 5.52 ∞

z400v6d5iw10-struc 0/25 83.98 ∞ 0/25 1e-05 ∞ (-) (6e-19) (0.25) 55.48/55.4855.68/55.68 (16.29) 0/25 57.12 ∞

z400v6d5iw20-rand 0/25 29.79 ∞ 0/25 8.49 ∞ (3e-25) (1e-07) (0.02) (-) (-) (0.08) 0/25 13.80 ∞

z400v6d5iw20-struc 0/25 69.53 ∞ 0/25 0.03 ∞ (-) (-) (0.02) (-) (-) (-) 0/25 53.13 ∞

Table B.18: Full results for best-performing algorithms on problem setgen . All algorithms were run 25 times for100
CPU seconds each. Summarized in Table 9.4 on page 116.

Bibliography

[ACR03] David Applegate, William J. Cook, and Andre Rohe. ChainedLin-
Kernighan for large traveling salesman problems.INFORMS Journal
on Computing, 15(1):82–92, 2003.

[AFH+04] Mirela Andronescu, Anthony P. Fejes, Frank Hutter, Holger H. Hoos,
and Anne Condon. A new algorithm for RNA secondary structure de-
sign. Journal of Molecular Biology, 336(3):607–624, February 2004.

[Bib93] Wolfgang Bibel.Wissensrepr̈asentation und Inferenz. Vieweg, Wies-
baden, Germany, 1993. In German.

[BJ02] Francis R. Bach and Michael I. Jordan. Thin junction trees. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors,Advances in Neural
Information Processing Systems 13 (NIPS-01), pages 569–576. MIT
Press, Cambridge, MA, USA, 2002.

[BSPV02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Var-
rentrapp. A racing algorithm for configuring metaheuristics. In
W. B. Langdon et al., editor,Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-2002), pages 11–18. Mor-
gan Kaufmann Publishers, San Francisco, CA, USA, 2002.

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate en-
ergy minimization via graph cuts.Pattern Analysis and Machine In-
telligence, 23(11), 2001.

[CDLS99] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J.
Spiegelhalter.Probabilistic Networks and Expert Systems. Statistics
for Engineering and Information Science. Springer, 1999.

[dBSD01] Matthijs den Besten, Thomas Stützle, and Marco Dorigo. Config-
uration of iterated local search: An example application tothe sin-
gle machine total weighted tardiness problem. In W. Egbert Boers,

159

160 BIBLIOGRAPHY

J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni, E. Hart, G.R. Raidl,
and H. Tijink, editors,Applications of Evolutionary Computing, pages
441–451. Springer Verlag, 2001.

[Dec96] Rina Dechter. Bucket elimination: A unifying framework for proba-
bilistic inference. InProceedings of the Twelfth Conference on Un-
certainty in Artificial Intelligence (UAI’96), pages 211–219. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1996.

[DEKM98] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison.
Biological Sequence Analysis : Probabilistic Models of Proteins and
Nucleic Acids. Cambride University Press, Cambride, UK, 1998.

[DKL01] Rina Dechter, Kalev Kask, and Javier Larrosa. A general scheme for
multiple lower bound computation in constraint optimization. InPrin-
ciples and Practice of Constraint Programming (CP’01), pages 346–
360, 2001.

[DR03] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for
bounded inference.Journal of the ACM, 50(2):107–153, 2003.

[FH04] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief
propagation for early vision. InConference on Computer Vision and
Pattern Recognition (CVPR-04), pages 261–268. IEEE Computer So-
ciety, Washington, DC, USA, 2004.

[Hec90] David Heckerman. A tractable inference algorithm for diagnosing
multiple diseases. InProceedings of the Sixth Conference on Uncer-
tainty in Artificial Intelligence (UAI’90). Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1990.

[HKT95] Te C. Hu, Andrew B. Kahng, and Chung-Wen A. Tsao Tsao. Old
bachelor acceptance: A new class of non-monotone thresholdaccept-
ing methods.ORSA Journal on Computing, 7(4):417–425, 1995.

[HND04] Frank Hutter, Brenda Ng, and Richard Dearden. Incremental thin junc-
tion trees for dynamic Bayesian networks. Technical report,Intellec-
tics Group, Darmstadt University of Technology, Germany, 2004.

[Hoo98] Holger H. Hoos.Stochastic Local Search — Methods, Models, Appli-
cations. PhD thesis, TU Darmstadt, FB Informatik, Darmstadt, Ger-
many, 1998.

BIBLIOGRAPHY 161

[Hoo99] Holger H. Hoos. On the run-time behaviour of stochastic local search
algorithms for SAT. InProceedings of the Sixteenth National Confer-
ence on Artificial Intelligence (AAAI’99), pages 661–666. AAAI Press
/ The MIT Press, Menlo Park, CA, USA, 1999.

[HS99] Holger H. Hoos and Thomas Stützle. Towards a characterisation of
the behaviour of stochastic local search algorithms for SAT. Artificial
Intelligence, 112:213–232, 1999.

[HS04] Holger H. Hoos and Thomas Stützle. Stochastic Local Search - Foun-
dations & Applications. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 2004.

[HTH02] Frank Hutter, Dave A.D. Tompkins, and Holger H. Hoos. Scaling
and probabilistic smoothing: Efficient dynamic local search for SAT.
In P. Van Hentenryck, editor,Principles and Practice of Constraint
Programming (CP’02), volume 2470 ofLecture Notes in Computer
Science, pages 233–248. Springer Verlag, Berlin, Germany, 2002.

[IC02] Jaime S. Ide and Fabio G. Cozman. Random generation of Bayesian
networks. InProceedings on 16th Brazilian Symposium on Artificial
Intelligence (SBIA-02), Advances in Artificial Intelligence, pages 366–
375. Springer Verlag, Berlin, 2002.

[IC03] Jaime S. Ide and Fabio G. Cozman. Generation of random Bayesian
networks with constraints on induced width, with applications to the
average analysis od d-connectivity, quasi-random sampling, and loopy
propagation. Technical report, University of So Paulo, Brazil, 2003.

[JA90] Frank Jensen and Stig Andersen. Approximations in Bayesian belief
universes for knowledge based systems. InProceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence (UAI’90), pages
162–169. Morgan Kaufmann Publishers, San Francisco, CA, USA,
1990.

[JJ99] Tommi S. Jaakkola and Michael I. Jordan. Variationalprobabilistic
inference and the QMR-DT network.Journal of Artificial Intelligence
Research, 10:291–322, 1999.

[JLO90] Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Olesen. Bayesian
updating in causal probabilistic networks by local computations.Com-
putational Statistics Quaterly, 4:269–282, 1990.

162 BIBLIOGRAPHY

[JM02] David S. Johnson and Lyle A. McGeoch. Experimental analysis of
heuristics for the STSP. In G. Gutin and A. Punnen, editors,The Trav-
eling Salesman Problem and its Variations, pages 369–443. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2002.

[KD96] Kalev Kask and Rina Dechter. A graph-based method for improving
gsat. InProceedings of the Thirteenth National Conference on Arti-
ficial Intelligence (AAAI’96), pages 350–355. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1996.

[KD99a] Kalev Kask and Rina Dechter. Branch and bound with mini-bucket
heuristics. InProceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI’99), pages 426–435. Morgan
Kaufmann Publishers, San Francisco, CA, USA, 1999.

[KD99b] Kalev Kask and Rina Dechter. Stochastic local searchfor Bayesian
networks. InProceedings of the 7th International Workshop on Artifi-
cial Intelligence and Statistics (AISTATS-99), January 1999.

[KGV83] Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing.Science, Number 4598, 13 May 1983, 220,
4598:671–680, 1983.

[Kjæ94] Uffe Kjærulff. Reduction of computational complexityin Bayesian
networks through removal of weak dependences. InProceedings of the
Tenth Conference on Uncertainty in Artificial Intelligence (UAI’94),
pages 374–382. Morgan Kaufmann Publishers, San Francisco,CA,
USA, 1994.

[Lar03] David Larkin. Approximate decomposition: A methodfor bounding
and estimating probabilistic and deterministic queries. In Proceed-
ings of the Nineteenth Conference on Uncertainty in ArtificialIntelli-
gence (UAI’03), pages 346–353. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2003.

[LK73] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the
travelling salesman problem.Operations Research, 21(2):498–516,
1973.

[LMS02] Helena Ramalhino Lourenco, Olivier Martin, and Thomas Sẗutzle. It-
erated local search. In F. Glover and G. Kochenberger, editors,Hand-
book of Metaheuristics, pages 321–353. Kluwer Academic Publishers,
2002.

BIBLIOGRAPHY 163

[LS88] Steffen L. Lauritzen and David J. Spiegelhalter. Local computa-
tions with probabilities on graphical structures and theirapplication
to expert systems.Journal of the Royal Statistical Society, Series B,
50(2):157–224, 1988.

[LW99] Jürgen Lehn and Helmut Wegmann.Einführung in die Statistik.
B.G.Teubner Stuttgart - Leipzig, 3rd edition, 1999. In German.

[MD04] Radu Marinescu and Rina Dechter. AND/OR tree search foroptimiza-
tion in graphical models. Submitted to CP-04, 2004.

[MKD03] Radu Marinescu, Kalev Kask, and Rina Dechter. Systematic vs.
non-systematic algorithms for solving the MPE task. InProceed-
ings of the Nineteenth Conference on Uncertainty in ArtificialIntel-
ligence (UAI’03), pages 394–402. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2003.

[MMC98] Robert J. McEliece, David J. C. MacKay, and Jung-Fu Cheng. Turbo
decoding as an instance of Pearl’s “belief propagation” algorithm.
Journal on Selected Areas in Communications, 16(2):140–151, Febru-
ary 1998.

[Mor93] Paul Morris. The breakout method for escaping from local minima. In
Proceedings of the Eleventh National Conference on ArtificialIntelli-
gence (AAAI’93), pages 40–45. AAAI Press / The MIT Press, Menlo
Park, CA, USA, 1993.

[MT00] Patrick Mills and Edward P. K. Tsang. Guided local search for solving
SAT and weighted Max-SAT problems. In I. P. Gent, H. van Maaren,
and T. Walsh, editors,SAT2000 — Highlights of Satisfiability Research
in the Year 2000, pages 89–106. IOS Press, Amsterdam, The Nether-
lands, 2000.

[MWJ99] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy-belief
propagation for approximate inference: An empirical study. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI’99), pages 467–475. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1999.

[Par02] James D. Park. Using weighted Max-SAT engines to solve MPE. In
Proceedings of the Eighteenth National Conference on Artificial In-
telligence (AAAI’02), pages 682–687. AAAI Press / The MIT Press,
Menlo Park, CA, USA, 2002.

164 BIBLIOGRAPHY

[PD01] James D. Park and Adnan Darwiche. Approximating map using local
search. InProceedings of the 17th Conference in Uncertainty in Arti-
ficial Intelligence, pages 403–410. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2001.

[Pea88] Judea Pearl.Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan-Kaufmann Series In Representation
And Reasoning. Morgan Kaufmann Publishers, San Francisco, CA,
USA, 1988.

[PS02] Luis Paquete and Thomas Stützle. An experimental investigation of
iterated local search for coloring graphs. In S. Cagnoni, J. Gottlieb,
E. Hart, M. Middendorf, and G. Raidl, editors,Applications of Evolu-
tionary Computing, volume 2279 ofLecture Notes in Computer Sci-
ence, pages 122–131. Springer Verlag, Berlin, Germany, 2002.

[RBM02a] Irina Rish, Mark Brodie, and Sheng Ma. Accuracy vs. efficiency
trade-offs in probabilistic diagnosis. InProceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI’02), pages 560–
566. AAAI Press / The MIT Press, Menlo Park, CA, USA, 2002.

[RBM02b] Irina Rish, Mark Brodie, and Sheng Ma. Efficient fault diagnosis using
probing. InProceedings of 2002 AAAI Spring Symposium on “Infor-
mation Refinement and Revision for Decision Making: Modeling for
Diagnostics, Prognostics, and Prediction”, pages 16–23, 2002.

[RN03] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition,
2003.

[SAHH02] Alena Shmygelska, Rosalia Aguirre-Hernandez, andHolger H. Hoos.
An ant colony optimisation algorithm for the 2d HP protein folding
problem. InProceedings of the 3rd International Workshop on Ant
Algorithms (ANTS-02), pages 40–52. Springer Verlag, 2002.

[SD03] Solomon E. Shimony and Carmel Domshlak. Complexity of proba-
bilistic reasoning in directed-path singly connected Bayesnetworks.
Artificial Intelligence, 151:213 – 225, December 2003.

[SDA+75] Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Brice G.
Buchanan, C. Cordell Green, and Stanley N. Cohen. Computer-based

BIBLIOGRAPHY 165

consultations in clinical therapeutics: Explanation and rule acquisi-
tion capabilities of the MYCIN system.Computers and Biomedical
Research, 8:303–320, 1975.

[SH01] Thomas Sẗutzle and Holger H. Hoos. Analysing the run-time be-
haviour of iterated local search for the travelling salesman problem.
In P. Hansen and C. C. Ribeiro, editors,Essays and Surveys on Meta-
heuristics, pages 589–611. Kluwer Academic Publishers, Boston,
MA, USA, 2001.

[SHS03] Kevin Smyth, Holger H. Hoos, and Thomas Stützle. Iterated robust
tabu search for Max-SAT. In Y. Xiang and B. Chaib-draa, editors, Ad-
vances in Artificial Intelligence, 16th Conference of the Canadian So-
ciety for Computational Studies of Intelligence (AI’03), volume 2671
of Lecture Notes in Computer Science, pages 129–144. Springer Ver-
lag, Berlin, Germany, 2003.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for
improving local search. InProceedings of the Twelfth National Con-
ference on Artificial Intelligence (AAAI’94), pages 337–343. AAAI
Press / The MIT Press, Menlo Park, CA, USA, 1994.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitchell. A new
method for solving hard satisfiability problems. In Paul Rosenbloom
and Peter Szolovits, editors,Proceedings of the Tenth National Con-
ference on Artificial Intelligence (AAAI’92), pages 440–446. AAAI
Press / The MIT Press, Menlo Park, CA, USA, 1992.

[SW97] Yi Shang and Benjamin W. Wah. Discrete Lagrangian-based search
for solving Max-SAT problems. In M. E. Pollack, editor,Proceed-
ings of the Fifteenth International Joint Conference on Artificial In-
telligence (IJCAI’97), volume 1, pages 378–383. Morgan Kaufmann
Publishers, San Francisco, CA, USA, 1997.

[TF03] Marshall F. Tappen and William T. Freeman. Comparisonof graph
cuts with belief propagation for stereo, using identical mrf parame-
ters. InProceedings of the Ninth IEEE International Conference on
Computer Vision (ICCV’03), volume 2, pages 900 – 906. IEEE Com-
puter Society Press, 2003.

[TH04] Dave A. D. Tompkins and Holger H. Hoos. Warped landscapes and
random acts of sat solving. InProceedings of the Eighth Interna-

166 BIBLIOGRAPHY

tional Symposium on Artificial Intelligence and Mathematics (AIMA-
04), 2004. To appear.

[Vou97] Cristos Voudouris.Guided Local Search for Combinatorial Optimiza-
tion Problems. PhD thesis, University of Essex, Department of Com-
puter Science, Colchester, UK, 1997.

[VT99] Cristos Voudouris and Edward P. K. Tsang. Guided LocalSearch and
its application to the travelling salesman problem.European Journal
of Operational Research, 113(2):469–499, 1999.

[YW03] Chen Yanover and Yair Weiss. Approximate inference andprotein-
folding. In S. Thrun S. Becker and K. Obermayer, editors,Advances
in Neural Information Processing Systems 14 (NIPS-02), pages 1457–
1464. MIT Press, Cambridge, MA, USA, 2003.

[YW04] Chen Yanover and Yair Weiss. Finding the m most probableconfig-
urations in arbitrary graphical models. In Sebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, editors,Advances in Neural Informa-
tion Processing Systems 15 (NIPS-03). MIT Press, Cambridge, MA,
USA, 2004.

[Zad83] Lotfi A. Zadeh. The role of fuzzy logic in the management of uncer-
tainty in expert systems.Fuzzy Sets and Systems, 11:199–228, 1983.

[ZP94] Nevin L. Zhang and David Poole. A simple approach to Bayesian net-
work computations. InAdvances in Artificial Intelligence, 10th Con-
ference of the Canadian Society for Computational Studies of Intelli-
gence (AI-94), Lecture Notes in Computer Science, pages 171–178.
Springer Verlag, Berlin, Germany, 1994.

[ZS00] Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putnam
method.Journal of Automated Reasoning, 24(1/2):277–296, 2000.

