
SPEAR Theorem Prover

Domagoj Babíc ∗

(Theorem prover architect)
University of British Columbia

Frank Hutter
(Search parameter optimization)

University of British Columbia

Abstract
SPEAR is a modular arithmetic theorem prover designed for prov-
ing software verification conditions. The core of the theorem prover
is a fast and simple SAT solver, which is described in this paper.

Keywords Theorem proving, boolean satisfiability, parameter op-
timization, modular arithmetic

1. Introduction
SPEAR is a theorem prover for modular arithmetic, designed for
software verification, but is also fast on other industrial problems,
like bounded hardware modelchecking. When given modular arith-
metic constraints, SPEAR performs elaborate encoding and opti-
mization of constraints. Together with structural information, the
encoded formula is passed to the core SAT solver. Given CNF in-
put, SPEAR acts like an ordinary SAT solver, and does not attempt
to reconstruct structural information, which is typically lost when
the industrial instances are encoded into CNF.

Three versions of the solver were submitted to the SAT 2007
competition:

• SPEAR V0.8 — Search parameters were manually optimized
according to a “this should work” heuristic. Expensive simpli-
fications, like variable and clause elimination, are disabled.

• SPEAR V0.8 FH — Search parameters were found by Frank
Hutter using ParamILS [4], an automatic tool for parameter
optimization based on iterated local search in configuration
space. Expensive simplifications are disabled as well.

• SPEAR V0.8 FHS — Manual modification of the FH set of
parameters so as to include expensive simplifications.

The following sections describe the main features of SPEAR
architecture, and parameter optimization.

2. Architecture
The core of SPEAR is a simple lightweight DPLL SAT solver with
highly optimized boolean constraint propagation (BCP), very sim-
ilar to the BCP routine in HYPERSAT [1]. Several other features
were borrowed from HYPERSAT: phase selection heuristic and al-
gorithm for finding the next watched literal. Clause representation
is similar as well. Several other features were modelled after Min-
isat [3]: frequent restarts and learned clause minimization. The im-
plementation of the clause minimization was improved in several
ways. For instance, Minisat uses stack-based work queue for clause
minimization, while SPEAR uses FIFO, which has a much more
predictable memory access pattern, and is easier to optimize.

Although the phase selection heuristic has been considered ir-
relevant, we found that phase selection can have significant effect

∗ His research is supported by a Microsoft Graduate Fellowship.

on overall performance. A simple heuristic that always picksfalse

phase first for each decision literal tends to perform well on in-
stances generated from circuits. However, we found that the HY-
PERSAT phase selection heuristic performs much better in general.
Depending on the average length of implication chains, HYPER-
SAT picks either the phase with more or less enqueued clauses on
watched lists. If implication chains are long, implying the phase
that results in more unsatisfied clauses increases the likelihood of
running into a conflict, effectively decreasing the average length
of implication chains. If the chains are short (more frequent case
for industrial benchmarks), picking the phase that satisfies more
watched clauses tends to reduce the total amount of computation.
Since the second case is more frequent, that is the default phase
selection heuristic in SPEAR.

SPEAR is very configurable. Almost all search parameters
(roughly 25 parameters) are modifiable from the command line.
Besides setting individual parameters, SPEAR also supports prede-
fined parameter sets for specific problems. This is an important fea-
ture, because various combinations of parameters can have drastic
effects on the runtimes. For instance, even with very lightweight
parameter optimization over a diverse set of instances, we ob-
served> 56 X performance improvement on software verification
instances. With default parameters, 287 software verification in-
stances were solved in 160,441 sec, with 38 timeouts, while with
the optimized parameters (FH version), the same set of instances
is solved in 2,857 sec, without timeouts. This large improvement
was achieved without optimizing the parameters specifically for
software verification problems, so we expect even more significant
speedup once we optimize the parameters specifically for software
verification problems. The next section presents parameter opti-
mization in more detail.

3. Parameter Optimization
Determining appropriate values for an algorithm’s free parameters
is a challenging and cumbersome task in the design of effective
algorithms for hard problems. It is, however, well worth the effort
since good parameter settings often make the difference between
solving a problem in seconds and solving it in hours (or not at all).

We argue that for complex parameter tuning tasks automatic
(or semi-automatic) approaches can outperform manual approaches
while at the same time considerably reducing the time algorithm
designers need to spend for tuning their algorithms. During de-
velopment, algorithm designers typically only track performance
on a few instances, limiting expensive batch experiments to infre-
quent intervals. This bears the risk of “over-tuning” performance
to the used instances with poor generalization to other instances,
even ones with very similar characteristics [2, 4]. Further, humans
tend to focus on single algorithm components instead of grasping
the complex interplay of all components taken together.

1 2007/2/17

Automatic tools for parameter optimization also pave the way
to an automatic algorithm design, viewed as the combination of al-
ternative building blocks. For example, two tree search algorithms
that only differ in their preprocessing and variable heuristics can be
seen as a single algorithm with two nominal parameters. Thus, con-
structing the best algorithm for a domain can be seen as a parameter
optimization problem.

SPEAR is an excellent testbed for automatic parameter opti-
mization for the following reasons:

• It has a large number of parameters of various types. Its 25 pa-
rameters include categorical choices between heuristics, nomi-
nal parameters, as well as integer and continuous parameters.

• It shows state-of-the-art performance for a practically relevant
class of problem instances, and tuning it will thus be of high
practical relevance. In particular, in our experimental analysis
SPEARconsistently showed the best results for solving software
verification instances.

The second author is currently performing research in auto-
matic methods for parameter optimization (for both local search
and tree search algorithms) and we used SPEAR for a case study in
parameter optimization. The algorithm designer (first author) pro-
vided a binary of SPEAR and information about its parameters and
loose sensible values for each of them; the default parameter set-
ting, however, was not revealed. The goal of this study was to see
whether the performance achieved with automatic methods could
rival the performance achieved by the manually engineered default
parameters.

The particular method used for parameter optimization is called
ParamILS and views parameter tuning as an optimisation prob-
lem [4]. In a nutshell, it performs an iterated local search in pa-
rameter configuration space, computing the objective function to
be maximized as the geometric mean speedup over the default pa-
rameters. Since the optimization objective was good performance
for industrial instances in the SAT competition 2007, we used the
following instances for training and evaluation: the 176 industrial
instances from the SAT competition 2005, the 200 instances from
the SAT Race 2006, as well as 30 software verification instances
generated by the first author. 300 of these 404 instances were used
for training, the remaining 104 test instances only being used to
get an unbiased performance estimate of our final tuned parameter
setting.

During training, we took the risk of setting a low timeout of
10 seconds in order to save time. This bore the possibility of
over-tuning the solver for good performance on short runs but
poor performance on longer runs, and the domain expert (the first
author) was indeed worried that the parameter setting would be
too aggressive, leading to poor performance on harder instances.
However, our experimental results do not support this fear.

Figure 1 compares the performance of our automatically found
parameter setting against the manually engineered default, using
1,000 seconds as a timeout for each of the 404 instances. The de-
fault timed out on 96 instances, the tuned one on 85 (74 instances
remained unsolved by either approach). For the remaining points,
the tuned parameter setting achieved a geometric mean speedup of
21%, with a trend to perform better for larger instances (reducing
our worries about over-tuning to easy instances). In the figure, we
distinguish training and test instances in order to test whether per-
formance on the training instances would be much better. Clearly,
empirical results show no evidence of overfitting.

Overall, this result demonstrates that an automatic tuning ap-
proach can indeed outperform manually engineered parameter set-
tings. Performance speedups were especially large for software ver-
ification instances: with an independent test set of 287 instances,

<0.01 0.01 0.1 1 10 100 1000 timeout

0.01

1000

10

0.1

< 0.01

0

100

timeout

CPU time(s), default parameters

C
P

U
 t

im
e

(s
),

 a
u

to
tu

n
e

d
 p

a
ra

m
e

te
rs

train
test

Figure 1. Performance of tuned SPEAR parameters vs. its defaults on
training and test data.

the first author found a more than 56-fold speedup of the tuned pa-
rameter settings over the default.

Finally, parameter setting SPEAR V0.8 FHS is a variation of
our tuned parameter setting SPEAR V0.8 FH that also includes ex-
pensive simplifications (which had not been implemented at tun-
ing time). The simplification parameters in SPEAR V0.8 FHS were
manually tuned on a few instances, and we cannot say anything
about their generalization performance. In the future, we anticipate
to speed up our optimization techniques, such that an interleaved
parameter tuning may become possible after each modification of
the code base.

4. Future Work
In the near future, SPEAR will support Satisfiability Modulo The-
ories (SMT) modular arithmetic format with additional optimiza-
tions. The SAT solver will also get more structural information
about the instance being solved, which, we hope, will result in even
better performance.

On the parameter optimization side, we plan to optimize the
solver for several important industrial classes of problems (like
model checking and software verification) and offer more prede-
fined sets of options for those specific classes of problems.

References
[1] Domagoj Babic, Jesse Bingham, and Alan J. Hu. B-cubing:

New possibilities for efficient sat-solving.IEEE Trans. Comput.,
55(11):1315–1324, 2006.

[2] M. Birattari. The Problem of Tuning Metaheuristics as seen from
a Machine Learning perspective. PhD thesis, Universite Libre de
Bruxelles, Facult’e des Sciences Appliqu’ees, IRIDIA, Institut de
Recherches Interdisciplinaires et de D’eveloppements en Intelligence
Artificielle, 2005.

[3] Niklas Eén and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. InSAT, volume 3569 ofLecture Notes
in Computer Science, pages 61–75. Springer, 2005.

[4] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configura-
tion based on local search. Under review.

2 2007/2/17

