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Abstract— An increased level of autonomy is critical for
meeting many of the goals of advanced planetary rover mis-
sions such as NASA’s 2009 Mars Science Lab. One impor-
tant component of this is state estimation, and in particular
fault detection on-board the rover. In this paper we describe
the results of a project funded by the Mars Technology Pro-
gram at NASA, aimed at developing algorithms to meet this
requirement. We describe a number of particle filtering-based
algorithms for state estimation which we have demonstrated
successfully on diagnosis problems including the K-9 rover
at NASA Ames Research Center and the Hyperion rover at
CMU. Because of the close interaction between a rover and
its environment, traditional discrete approaches to diagnosis
are impractical for this domain. Therefore we model rover
subsystems as hybrid discrete/continuous systems. There are
three major challenges to make particle filters work in this
domain. The first is that fault states typically have a very
low probability of occurring, so there is a risk that no sam-
ples will enter fault states. The second issue is coping with
the high-dimensional continuous state spaces of the hybrid
system models, and the third is the severely constrained com-
putational power available on the rover. This means that very
few samples can be used if we wish to track the system state
in real time. We describe a number of approaches to rover
diagnosis specifically designed to address these challenges.
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1. INTRODUCTION

This paper reports the results from a study done as part of
NASA’s Mars Technology Program entitled “Real-time Fault
Detection and Situational Awareness for Rovers”. The main
goal of this project was to develop and demonstrate a fault-
detection technology capable of operating on-board a Mars
rover in real-time.

Fault diagnosis is a critical task for autonomous operation of
systems such as spacecraft and planetary rovers. The diag-
nosis problem is to determine the state of a system over time
given a stream of observations of that system. A common
approach to this problem is model-based diagnosis [3], [4],
in which the overall system state is represented as an assign-
ment of a mode (a discrete state) to each component of the
system. Such an assignment is a possible description of the
current state of the system if the set of models associated with
the modes is consistent with the observed sensor values. An
example model-based diagnosis system is Livingstone [24],
which flew on the Deep Space One spacecraft as part of the
Remote Agent Experiment [15] in May 1999. In Living-
stone, diagnosis is done by maintaining a candidate hypothe-
ses (in other systems more than one hypothesis is kept) about
the current state of each system component, and comparing
the candidate’s predicted behaviour with the system sensors.
Traditional approaches operate on discrete models and use
monitors to translate continuous sensor readings into discrete
values. The monitors are typically only used once the sensor
readings have settled on a consistent value, and hence these
systems cannot generally diagnose transient events.

For many applications, e.g. planetary rovers, the complex dy-
namics of the system make reasoning with a discrete model
inadequate. This is because too fine a discretization is re-
quired to accurately model the system; because the monitors
would need global sensor information to discretize a single
sensor correctly; and because transient events must be diag-
nosed. To overcome this we need to reason directly with the
continuous values we receive from sensors: Our model needs
to be a hybrid system.



A hybrid system consists of a set of discrete modes, which
represent fault states or operational modes of the system, and
a set of continuous variables which model the continuous
quantities that affect system behaviour. We will use the term
state to refer to the combination of these, that is, a state is
a mode plus a value for each continuous variable, while the
mode of a system refers only to the discrete part of the state.
For example, consider a motor. It can be idle or powered, and
has a number of fault modes such as having a faulty encoder.
These correspond to the discrete part of the model. It also has
continuous state, such as its running speed, the current pow-
ering it, and so on. In each discrete mode, there is a set of dif-
ferential equations that describe the relationship between the
various continuous values, and the way those values evolve
over time. There is also a transition function that describes
how the system moves from one mode to another. In many
cases, not all of the hybrid system will be observable. There-
fore, we also have an observation function that defines the
likelihood of an observation given the mode and the values
of the continuous variables. All these processes are inher-
ently noisy, and the representation reflects this by explicitly
including noise in the continuous values, and stochastic tran-
sitions between system modes. We describe our hybrid model
in more detail below.

The complex dynamics of the rover, along with its interac-
tion with an extremely complex, poorly modeled, and noisy
environment—the surface of Mars—makes it very difficult to
determine the true state of the rover at any point in time with
certainty. To combat this, we advocate diagnosis algorithms
that explicitly represent uncertainty at every point, thus allow-
ing control of the rover to reason about the uncertainty when
selecting actions to perform. This is extremely important for
the rover as actions that appear good for the most likely state
may be catastrophic if the rover turns out to be in another of
its possible states. Explicitly representing uncertainty about
state also makes diagnosis easier as we automatically have a
set of alternate states when a new observation is inconsistent
with the most likely state or states.

To represent uncertainty about the state of the rover, the
diagnosis algorithms we will present maintain a belief
distribution—a probability distribution over the states the
rover could be in. To maintain this distribution, the al-
gorithms will perform Bayesian belief updating. In this
approach, we begin with a prior probability distribution
P(S0) = Φ that represents our initial beliefs about the state
of the system, and as a sequence of observations y1:t are
made of the system, we update the distribution to produce
P(St|Φ, y1:t), the probability at time t of each state given the
prior and the observations. Unfortunately, as we will see be-
low, doing this computation exactly is computationally infea-
sible on-board the rover, so we must approximate it.

We will approximate Bayesian belief updating using a par-
ticle filter [10], [6]. A particle filter approximates the belief
distribution using a set of point samples. In contrast, the pop-

ular Kalman Filter (see for example [7]) approximates the dis-
tribution by a single Gaussian distribution. The particle filter
has a number of important advantages:

• It can be applied more easily to hybrid models. The par-
ticle filter simply maintains a discrete and continuous state
for every sample, so the whole is a distribution over the com-
plete model. Banks of Kalman filters—one for each discrete
state—can also be used, but there is no simple way to deter-
mine the contribution of each filter to the overall distribution.
• It can represent non-Gaussian distributions. This al-
lows models with non-linear continuous dynamics and non-
Gaussian noise. As we shall see, these are important consid-
erations for the rover domain.
• It can easily be adjusted to available computation, simply
by increasing or decreasing the number of samples. This can
be done on the fly as the algorithm is running.

The essence of the particle filter approach is to simulate the
behaviour of the system. Each sample predicts a future be-
haviour of the system in a Monte-Carlo fashion, and the sam-
ples that match the observed system behaviour are kept, while
ones that fail to predict the observations tend to die out. We
describe the basic particle filter algorithm in Section 2.

The new algorithms we have developed for this project are
motivated by a number of problems with applying the stan-
dard particle filter to diagnosis problems:

1. Very low prior fault probabilities: Diagnosis problems
are particularly difficult for approximation algorithms based
on sampling because the low probabilities of transitions to
fault states can lead to incorrect diagnoses because there are
no samples in a state even though it has a non-zero probability
of occurring.
2. Restricted computational resources: For space applica-
tions, computation time is often at a premium, particularly for
on-board real-time diagnosis. For this reason, diagnosis must
be as efficient as possible.
3. High dimensional state spaces: As the dimensionality of
a problem grows, the number of samples required to accu-
rately approximate the posterior distribution grows exponen-
tially.
4. Non-linear stochastic transitions and observations:
Many algorithms are restricted to linear models with Gaus-
sian noise. Our domains frequently behave non-linearly, so
we would prefer an algorithm without this restriction.
5. Multimodal system behaviour: Even in a single discrete
mode, the observations are often consistent with several val-
ues for the continuous variables, and so multi-modal distri-
butions appear. For example, when a rover is commanded
to accelerate, we are often uncertain about exactly when the
command is executed. Different start times lead to different
estimates of current speed, and hence a multi-modal distribu-
tion.

While these last two points are not a problem for the standard
particle filter, many of the more efficient particle filter vari-



ants rely on assumptions inconsistent with them. Since non-
linear dynamics and multimodal behaviour often occur in our
domains, we would like to take advantage of the efficiency of
these approaches without their representational restrictions.

In this report we present three algorithms each designed to
address some of these problems. The three algorithms are
all somewhat complementary, in the sense that ideas from
all three can be combined into a single system. In Section
3 we present the risk-sensitive particle filter, an algorithm
motivated by Problem 1. Section 4 looks at Problems 2 and
3, applying an approach based on abstraction in which sys-
tem states are aggregated together in a hierarchy, and the full
complexity of the individual state models is only looked at
in detail if there is sufficient evidence that the rover is actu-
ally in that state. The third algorithm we present is motivated
by Problems 1 and 2, and is based on the recently developed
Rao-Blackwellized particle filter. However, that algorithm is
restricted to linear-Gaussian models. We present the Gaus-
sian particle filter, which removes this restriction, thus tack-
ling Problems 4 and 5 as well. We conclude in Section 6 and
describe planned future work on putting all these techniques
together, and ways to make more progress on Problem 3, the
least-well addressed by our current algorithms.

Hybrid Systems Modeling

Following [8] and [13], we model the system to be diagnosed
as a discrete-time probabilistic hybrid automaton (PHA):

• Z = z1, . . . , zn is the set of discrete modes the system can
be in.
• X = x1, . . . , xm is the set of continuous state variables
which capture the dynamic evolution of the automaton. We
write P(Z0, X0) for the prior distribution over Z and X .
• Y is the set of observable variables. We write P(Yt|zt, xt)
for the distribution of observations in state (zt, xt).
• There is a transition function that specifies:

P(Zt|zt−1, xt−1)

the conditional probability distribution over modes at time t

given that the system is in state (z, x) at t − 1. In some sys-
tems, this is independent of the continuous variables:

P(Zt|zt−1, xt−1) = P(Zt|zt−1)

• We write P(Xt|zt−1, xt−1) for the distribution over X at
time t given that the system is in state (z, x) at t− 1.

We denote a hybrid state of the system by s = (z, x), which
consists of a discrete mode z, and an assignment to the state
variables x.

Diagnosis of a hybrid system of this kind is determining, at
each time-step, the belief state P(St|y1:t), a distribution that,
for each state s, gives the probability that s is the true state of
the system, given the observations so far. In principle, belief
state tracking is an easy task, which can be performed using

the forward pass equation:

P(st|y1:t) = αP(yt|st)

∫
P(st|st−1)P(st−1|y1:t−1)dst−1

= αP(yt|zt, xt)∫
P(xt|zt, xt−1)P(zt|zt−1, xt−1)P(st−1|y1:t−1)dst−1

where α is a normalizing constant. Unfortunately, comput-
ing the integral exactly is intractable in all but the smallest
of problems, or in certain special cases. The most impor-
tant special case is a unimodal linear model with Gaussian
noise. This is solved optimally and efficiently by the Kalman
filter (KF). We describe the KF below; then, we weaken the
model restrictions and describe algorithms for more general
models, such as Particle Filters and Rao-Blackwellized Parti-
cle Filters. We end with the most general problem for which
we propose the Gaussian Particle Filter.

2. HYBRID DIAGNOSIS USING PARTICLE
FILTERS

When the system we want to diagnose has only one discrete
mode, linear transition and observation functions for the con-
tinuous parameters and Gaussian noise there exists a closed
form solution to the tracking problem. In this case, the be-
lief state is a multivariate Gaussian and can be computed in-
crementally using a Kalman filter (KF). At each time-step
t the Kalman filtering algorithm updates sufficient statistics
(µt−1,Σt−1), prior mean and covariance of the continuous
distribution, with the new observation yt. We omit details
and the Kalman equations here, and refer interested readers
to [7].

The Kalman filter is an extremely efficient algorithm. How-
ever, in the case of non-linear transformations it does not
apply; good approximations are achieved by the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF)
with the UKF generally dominating the EKF [22]. Rather
than using the standard Kalman filter update to compute
the posterior distribution, the UKF performs the following:
Given an m-dimensional continuous space, 2m + 1 sigma
points are chosen based on the a-priori covariance (see [22]
for details). The non-linear system equation is then applied
to each of the sigma points, and the a-posteriori distribution
is approximated by a Gaussian whose mean and covariance
are computed from the sigma points. This unscented Kalman
filter update yields an approximation of the posterior whose
error depends on how different the true posterior is from a
Gaussian. For linear and quadratic transformations, the error
is zero.

Particle Filters

While the success of the above approaches depend on how
strongly the belief state resembles a multivariate Gaussian,
the particle filter (PF) [10] is applicable regardless of the un-
derlying model. A particle filter is a Markov chain Monte
Carlo algorithm that approximates the belief state using a set



1. For N particles p(i), i = 1, . . . , N , sample discrete modes z
(i)
0 , from the prior P(Z0).

2. For each particle p(i), sample x
(i)
0 from the prior P(X0|z

(i)
0 ).

3. for each time-step t do
(a) For each particle p(i) = (z

(i)
t−1, x(i)t−1) do

i. Sample a new mode:
ẑ
(i)
t ∼ P(Zt|z

(i)
t−1)

ii. Sample new continuous parameters:

x̂
(i)
t ∼ P(Xt|ẑ

(i)
t , x

(i)
t−1)

iii. Compute the weight of particle p̂(i):

w
(i)
t ← P(yt|ẑ

(i)
t , x̂

(i)
t )

(b) Resample N new samples p(i) = (z
(i)
t , x

(i)
t ) where: P(p(i) = p̂(k)) ∝ w

(k)
t =

w
(i)
t∑

N
k=1 w

(k)
t

Figure 1. The particle filtering algorithm.

of samples (particles), and keeps the distribution updated as
new observations are made over time. The basic PF algorithm
is shown in Figure 1. To update the belief distribution given
a new observation, the algorithm operates in three steps as
follows:

The Monte Carlo step: This step considers the evolution
of the system over time. It uses the stochastic model of the
system to generate a possible future state for each sample. In
our hybrid model (and Figure 1), this is performed by sam-
pling a discrete mode, and then the continuous state given the
new mode.
The reweighting step: This corresponds to conditioning on

the observations. Each sample is weighted by the likelihood
of seeing the observations in the (updated) state represented
by the sample. This step leads samples that predict the ob-
servations well to have high weight, and samples that are un-
likely to generate the observations to have low weight.
The resampling step: To produce a uniformly weighted

posterior, we then resample a set of uniformly weighted sam-
ples from the distribution represented by the weighted sam-
ples. In this resampling the probability that a new sample is a
copy of a particular sample s is proportional to the weight of
s, so high-weight samples may be replaced by several sam-
ples, and low-weight samples may disappear.

At any time t, the PF algorithm approximates the true poste-
rior belief state given observations y1:t by a set of samples (or
particles):

P(Zt, Xt|y1:t) ≈ P̂(Zt, Xt|y1:t)

=
1

N

N∑

i=1

w
(i)
t δ(Zt,Xt)((z

(i)
t , x

(i)
t ))

where w
(i)
t , z

(i)
t and x

(i)
t are weight, discrete mode and con-

tinuous parameters of particle p(i) at time t, N is the number
of samples, and δx(y) denotes the Dirac delta function.

Particle filters have a number of properties that make them a
desirable approximation algorithm for diagnosis. As we said
above, unlike the Kalman filter, they can be applied to non-
linear models with arbitrary prior belief distributions. They
are also contract anytime algorithms, meaning that if you
specify in advance how much computation time is available,
a PF algorithm can estimate a belief distribution in the avail-
able time—by changing the number of samples, you trade off
computation time for the quality of the approximation. In
fact, the computational requirements of a particle filter de-
pend only on the number of samples, not on the complexity
of the model.

Unfortunately, as we said in the introduction, diagnosis prob-
lems have some characteristics that make standard particle
filtering approaches less than ideal. In particular, on-board
diagnosis for applications such as spacecraft and planetary
rovers must be performed using very limited computational
resources, and transitions to fault modes typically have very
low probability of occurring. This second problem leads to a
form of sample impoverishment, in which modes with a non-
zero probability of being the actual state of the system contain
no samples, and are therefore treated by the particle filter as
having zero probability. This is particularly a problem for di-
agnosis, because these are exactly the states for which we are
most interested in estimating the likelihood. There have been
a few approaches to tackling this issue, most notably [5] and
[17].

Another traditional problem of particle filters is that the num-
ber of samples needed to cope with high dimensional contin-
uous state spaces is enormous. Especially in the case of high
noise levels and widespread distributions, approximations via
sampling do not yield good results. If it is possible to repre-
sent the continuous variables in a compact way, e.g. in the
form of sufficient statistics, this generally helps by greatly re-
ducing the number of particles needed. In the next section,



we introduce one instance of this, the highly efficient Rao-
Blackwellized Particle Filter which only samples the discrete
modes and propagates sufficient statistics for the continuous
variables.

3. RISK-SENSITIVE PARTICLE FILTERS

One way to think about Problem 1 in our list, the presence
of very low-probability fault transitions, is in terms of risk.
The reason these transitions are a serious concern in fault de-
tection, but much less so in other applications of particle fil-
ters, is the fact that the low-probability transitions correspond
to faults, the very thing we are most interested in detecting.
The occurrence of faults has the potential for great risk to
the rover, because a perfectly reasonable action in a nominal
mode of rover behaviour may be catastrophic if an undetected
fault has occurred.

RSPFs [20], [17] incorporate a model of cost when generat-
ing particles. This approach is motivated by the observation
that the cost of not tracking hypotheses is related to risk. Not
tracking a rare but risky state may have a high cost, whereas
not tracking a rare but benign state may be irrelevant. In-
corporating a cost model into particle filtering improves the
tracking of states that are most critical to the performance of
the robot.

Faults are low-probability, high-cost events. The classical
particle filter generates particles proportional only to the pos-
terior probability of an event. Monitoring a system to detect
and identify faults based on a standard PF therefore requires a
very large number of particles and is computationally expen-
sive. RSPF generates particles by factoring in the cost. Since
faults have a high cost, even though they have a low probabil-
ity, a smaller number of particles than the PF may be used to
monitor these events because the RSPF ensures particles will
be generated to represent them.

The cost function assigns a real-valued cost to states and con-
trol. The control selected, given the exact state, results in
the minimum cost. The approximate nature of the particle
representation may result in sub-optimal control and hence
increased cost. The goal of risk-sensitive sampling is to gen-
erate particles that minimize the cumulative increase in cost
due to the approximate particle representation. This is done
by modifying the classical particle filter to generate particles
in a risk sensitive manner, where risk is defined as a function
of the cost and is positive and finite. Given a suitable risk
function r(d), a risk-sensitive particle filter generates parti-
cles that are distributed according to the invariant distribution,

γt r(zt) P(zt, xt|y1:t) (1)

where, γt is a normalization constant that ensures that equa-
tion (1) is a probability distribution. Instead of using just the
posterior distribution to generate the particles, a product of
the risk times the posterior is used. To achieve this, two mod-
ifications are made to the PF algorithm from Figure 1. First,

Figure 2. The Hyperion rover.

the initial set of particles (step 1) is generated from:

γ0 r(z0) P(Z0)

and the equation in step 3(a)iii is replaced with:

w
(i)
t =

r(x̂
(i)
t )

r(x
(i)
t−1)

P(yt|ẑ
(i)
t , x̂

(i)
t )

These simple modifications result in a particle filter with
particles distributed according to γtr(zt)P(zt, xt|y1:t). The
choice of risk function is important. For the experiments re-
ported below, the risk function was computed heuristically.
Thrun et. al. in [17] present a method for obtaining this risk
function via a Markov decision process (MDP) that calculates
the approximate future risk of decisions made in a particular
state. Although we don’t present it here, a similar approach
to biasing the proposal distribution appears in [5].

Results: Risk-Sensitive Particle Filter

The Hyperion robot [23], figure 2, was the platform for the
experiment with the RSPF. In a simulation of Hyperion, we
explicitly introduced faults and recorded a sequence of con-
trols and measurements that were then tracked by a RSPF and
a standard PF. In the experiment the robot was driven with
a variety of different control inputs in the normal operation
mode. For this experiment, the measurements were the rover
pose (x, y, θ) and steering angle. At the 17th timestep, wheel
#3 becomes stuck and locked against a rock. The wheel is
then driven in the backward direction, fixing the problem.
The robot returns to the normal operation mode and continues
to operate normally until the gear on wheel #4 breaks at the
30th time step. Figure 3 shows the results of tracking the state
with a classical particle filter and with the RSPF; only the dis-
crete state estimates are shown. Each column represents tests
with different sample sizes (100, 1000, 10,000 and 100,000
samples respectively from left to right). We don’t show re-
sults with the RSPF for 100,000 samples since the results are
already accurate for smaller sample sizes. In each of these
figures, along the x-axis is time. The top row shows the most
likely discrete state estimate along the y-axis. The faults rep-
resented by the numbers are listed in the figure caption. Even
with 100,000 particles in the classical filter, Figure 3(a), there
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Figure 3. (a) Results with a simple particle filter. Here (1) normal, (2) wheel1 or wheel2 motor or gear broken, (3) wheel3
broken, (4) wheel4 broken, (5) wheel1 stuck, (6) wheel2 stuck, (7) wheel3 stuck, (8) wheel4 stuck, (9) wheel3 gear broken,
(10) wheel4 gear broken (b) Results with a RSPF

is a slight lag in fault detection. With smaller sample sizes
the most likely state estimate never transitions from the nor-
mal state. Occasionally particle do jump to fault states, (see
column 2), but the sample immediately dies since it did not
jump to the correct fault state. With the RSPF, Figure 3(b),
the most likely states capture the true fault states for as few as
a 100 samples. Row two in the figures shows the variance in
the discrete state estimate. It contains the same information
as in row one, but makes clear that with the classical filter the
samples are in the nominal state almost all the time. Row 3
shows the mean squared error using 1-0 loss; it demonstrates
that the RSPF has a low error with 100 samples and zero error
with larger numbers of samples. The classical filter has max-
imum error whenever there is a fault. In addition, we also
show the variance in the error in Figure 3(b) to demonstrate
that the RSPF consistently provides estimates with low error.

4. VARIABLE RESOLUTION PARTICLE FILTER

As we said in the introduction, a well known problem with
particle filters is that a large number of particles are often
needed to obtain a reasonable approximation of the posterior
distribution. For real-time state estimation maintaining such a
large number of particles is typically not practical (Problems
2 and 3 on our list). In this section, we present the variable
resolution particle filter [21], which addresses this problem
by trading off bias and variance. The idea is based on the ob-
servation that the variance of the particle based estimate can
be high with a limited number of samples, particularly when
the process is not very stochastic and parts of the state space
transition to other parts with very low, or zero, probability.
Consider the problem of diagnosing locomotion faults on a

robot. The probability of a stalled motor is low and wheels
on the same side generate similar observations. Motors on
any of the wheels may stall at any time. A particle filter that
produces an estimate with a high variance is likely to result
in identifying some arbitrary wheel fault on the same side,
rather than identifying the correct fault.

The variable resolution particle filter introduces the notion of
an abstract particle, in which particles may represent individ-
ual states or sets of states. With this method a single abstract
particle simultaneously tracks multiple states. A limited num-
ber of samples are therefore sufficient for representing large
state spaces. A bias-variance tradeoff is made to dynamically
refine and abstract states to change the resolution, thereby ab-
stracting a set of states and generalizing the samples or spe-
cializing the samples in the state into the individual states that
it represents. As a result reasonable posterior estimates can
be obtained with a relatively small number of samples. In the
example above, with the VRPF the wheel faults on the same
side of the rover would be aggregated together into an abstract
fault. Given a fault, the abstract state representing the side on
which the fault occurs would have high likelihood. The sam-
ples in this state would be assigned a high importance weight.
This would result in multiple copies of these samples on re-
sampling proportional to weight. Once there are sufficient
particles to populate all the refined states represented by the
abstract state, the resolution of the state would be changed
to the states representing the individual wheel faults. At this
stage, the correct hypothesis is likely to be included in this
particle based approximation at the level of the individual
states and hence the correct fault is likely to be detected.



For the variable resolution particle filter we need: (1) A vari-
able resolution state space model that defines the relationship
between states at different resolutions, (2) an algorithm for
state estimation given a fixed resolution of the state space, (3)
a basis for evaluating resolutions of the state space model,
and (4) and algorithm for dynamically altering the resolution
of the state space.

Variable resolution state space model

We could use a directed acyclic graph (DAG) to represent
the variable resolution state space model, which would con-
sider every possible combination of the (abstract) states to
aggregate or split. But this would make our state space ex-
ponentially large. We must therefore constrain the possible
combinations of states that we consider. There are a number
of ways to do this. For the experiments in this paper we use
a multi-layered hierarchy where each physical (non-abstract)
state only exists along a single branch. Sets of states with
similar state transition and observation models are aggregated
together to create successively higher levels in the hierarchy.
In addition to the physical state set {Zk}, the variable reso-
lution model, M consists of a set of abstract states {Sj} that
represent sets of states and or other abstract states.

Sj =

{
{Zk}
∪iSi

(2)

Figure 4(a) shows an arbitrary Markov model and figure 4(b)
shows an arbitrary variable resolution model for 4(a). Figure
4(c) shows the model in 4(b) at a different resolution.

From the dynamics, P(zt|zt−1), and measurement probabili-
ties P(yt|zt), we compute the stationary distribution (Markov
chain invariant distribution) of the physical states π(Zk) [1].

Belief state estimation at a fixed resolution

This section describes the algorithm for estimating a distri-
bution over the state space, given a fixed resolution for each
state, where different states may be at different fixed resolu-
tions. For each particle in a physical state, a sample is drawn
from the predictive model for that state p(zt|zt−1). It is then
assigned a weight proportional to the likelihood of the mea-
surement given the prediction, p(yt|zt). For each particle in
an abstract state, Sj , one of the physical states, zt, that it
represents in abstraction is selected proportional to the prob-
ability of the physical state under the stationary distribution,
π(Zt). The predictive and measurement models for this phys-
ical state are then used to obtain a weighted posterior sample.
The particles are then resampled proportional to their weight.
Based on the number of resulting particles in each physical
state a Bayes estimate with a Dirichlet(1) prior is obtained as
follows:

P̂(zt|y1:t) =
n(zt) + π(zt)

| Nt | +1
,

∑

zt

π(zt) = 1 (3)

where, n(zt) represents the number of samples in the physical
state zt and | Nt | represents the total number of particles in

the particle filter. The distribution over an abstract state Sj at
time t is estimated as:

P̂(Sj |y1:t) =
∑

zt∈Sj

P̂(zt|y1:t) (4)

Bias-variance tradeoff

The loss l, from a particle based approximation P̂(zt|y1:t), of
the true distribution p(zt|y1:t) is:

l = E[P(zt|y1:t)− P̂(zt|y1:t)]
2

= {P(zt|y1:t)− E[P̂(zt|y1:t)]}
2 +

{P̂(zt|y1:t)
2 − E[P̂(zt|y1:t)]

2}

= b(P̂(zt|y1:t))
2 + v(P̂(zt|y1:t)) (5)

where, b(P̂(zt|y1:t)) is the bias and v(P̂(zt|y1:t)) is the vari-
ance.

The posterior belief state estimate from tracking states at the
resolution of physical states introduces no bias. But the vari-
ance of this estimate can be high, specially with small sample
sizes. An approximation of the sample variance at the resolu-
tion of the physical states may be computed as follows:

v(zt) = P̂(zt|y1:t)
P̂(zt|y1:t) [1− P̂(zt|y1:t)]

n(zt) + π(zt)
(6)

The loss of an abstract state Sj , is computed as the weighted
sum of the loss of the physical states zt ∈ Sj , as follows1:

l(Sj) =
∑

zt∈Sj

P̂(zt|y1:t) l(zt) (7)

The generalization to abstract states biases the distribution
over the physical states to the stationary distribution. In other
words, the abstract state has no information about the relative
posterior likelihood, given the data, of the states that it repre-
sents in abstraction. Instead it uses the stationary distribution
to project its posterior into the physical layer. The projection
of the posterior distribution P̂(Sj |y1:t), of abstract state Sj ,
to the resolution of the physical layer P̃(zt|y1:t), is computed
as follows:

P̃(zt|y1:t) =
π(zt)

π(Sj)
P̂(Sj |y1:t) (8)

where, π(Sj) =
∑

z∈Sj
π(z).

As a consequence of the algorithm for computing the poste-
rior distribution over abstract states described in the previous
subsection, an unbiased posterior over physical states zt is
available at no extra computation, as shown in equation (3).
The bias b(Sj), introduced by representing the set of phys-
ical states zt ∈ Sj , in abstraction as Sj is approximated as
follows:

b(Sj) =
∑

zt∈Sj

P̂(zt|y1:t) [P̂(zt|y1:t)− P̃(zt|y1:t)]
2 (9)

1The relative importance/cost of the physical states may also be included
in the weight
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Figure 4. (a) Arbitrary Markov model (b) Arbitrary variable resolution model corresponding to the Markov model in (a).
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abstraction are S1, S2 and S3. (c) The model in (b) with states S4 and S5 at a finer resolution.

It is the weighed sum of the squared difference between the
unbiased posterior P̂(zt|y1:t), computed at the resolution of
the physical states and the biased posterior P̃(zt|y1:t), com-
puted at the resolution of abstract state Sj .

An approximation of the variance of abstract state Sj is com-
puted as a weighted sum of the projection to the physical
states as follows:

v(Sj) =
∑

zt∈Sj

P̂(zt|y1:t)

[
π(zt)

π(Sj)

]2P̂(Sj |y1:t)[1− P̂(Sj |y1:t)]

n(Sj) + π(Sj)

The loss from tracking a set of states zt ∈ Sj , at the resolution
of the physical states is thus:

lp = 0 +
∑

zt∈Sj

v(zt) (10)

The loss from tracking the same set of states in abstraction as
Sj is:

la = b(Sj) + v(Sj) (11)

There is a gain in terms of reduction in variance from gener-
alizing and tracking in abstraction, but it results in an increase
in bias. Here, a tradeoff between bias and variance refers to
the process of accepting a certain increase in one term for a
larger reduction in the other and hence in the total error.

Dynamically varying resolution

The variable resolution particle filter uses a bias-variance
tradeoff to make a decision to vary the resolution of the state
space. A decision to abstract to the coarser resolution of ab-
stract state Sj , is made if the state space is currently at the
resolution of states Si, and the combination of bias and vari-
ance in abstract state Sj , is less than the combination of bias

an variance of all its children Si, as shown below:

b(Sj) + v(Sj) ≤
∑

Si∈{children(Sj)}

[b(Si) + v(Si)] (12)

On the other hand if the state space is currently at the reso-
lution of abstract state Sj , and the reverse of equation (12) is
true, then a decision to refine to the finer resolution of states
Si is made. The resolution of a state is left unaltered if its
bias-variance combination is less than its parent and its chil-
dren. To avoid hysteresis, all abstraction decisions are con-
sidered before any refinement decisions.

Each time a new measurement is obtained the distribution of
particles over the state space is updated. Since this alters the
bias and variance tradeoff, the states explicitly represented at
the current resolution of the state space are each evaluated
for gain from abstraction or refinement. Any change in the
current resolution of the state space is recursively evaluated
for further change in the same direction.

Results: Variable Resoluton Particle Filter

The problem domain for our experiments on the variable res-
olution PF involves diagnosing locomotion faults in a physics
based simulation of a six wheel rover. Figure 5(a) shows a
snapshot of the rover in the Darwin2K [12] simulator.

The experiment is formulated in terms of estimating discrete
fault and operational modes of the robot from continuous
control inputs and noisy sensor readings. The discrete state,
xt, represents the particular fault or operational mode. The
continuous variables, zt, provide noisy measurements of the
change in rover position and orientation. The particle set Pt

therefore consists of N particles, where each particle x
[i]
t is

a hypothesis about the current state of the system. In other
words, there are a number of discrete fault and operational
states that a particle may transition to based on the transition
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Figure 5. (a) Snapshot from the dynamic simulation of the six wheel rocker bogie rover in the simulator, (b) An example
showing the normal trajectory (ND) and the change in the same trajectory with a fault at each wheel. (c) Original discrete state
transition model. The discrete states are: Normal driving (ND), right and left, front, middle and rear wheel faulty (RF, RM, RR,
LF, LM, LR) (d) Abstract discrete state transition model. The states, RF, RM and RR have been aggregated into the Right Side
wheel faulty states and similarly LF, LM and LR into Left Side wheel faulty states (RS and LS). (e) State space model where
RS has been refined. All states have self transitions that have been excluded for clarity.

model. Each discrete fault state has a different observation
and predictive model for the continuous dynamics. The prob-
ability of a state is determined by the density of samples in
that state.

The Markov model representing the discrete state transitions
consists of 7 states. As shown in figure 5(c) the normal driv-
ing (ND) state may transition back to the normal driving state
or to any one of six fault states: right front (RF), right mid-
dle (RM), right rear (RR), left front (LF), left middle (LM)
and left rear (LR) wheel stuck. Each of these faults cause
a change in the rover dynamics, but the faults on each side
(right and left), have similar dynamics.

Given that the three wheels on each side of the rover have
similar dynamics, we constructed a hierarchy that clusters the
fault states on each side together. Figure 5(d) shows this hier-
archical model, where the abstract states right side fault (RS),
and left side fault (LS) represent sets of states {RF, RM, RR}
and {LF, LM, LR} respectively. The highest level of abstrac-
tion therefore consists of nodes {ND, RS, LS}. Figure 5(e)
shows how the state space in figure 5(d) would be refined if
the bias in the abstract state RS given the number of parti-
cles outweighs the reduction in variance over the specialized
states RF, RM and RR at a finer resolution.

When particle filtering is performed with the variable reso-
lution particle filter, the particles are initialized at the highest
level in the abstraction hierarchy,i.e. in the abstract states ND,
RS and LS. Say a RF fault occurs, this is likely to result in a
high likelihood of samples in RS. These samples will mul-
tiply which may then result in the bias in RS exceeding the

reduction in variance in RS over RF, RM and RR thus favor-
ing tracking at the finer resolution. Additional observations
should then assign a high likelihood to RF.

The model is based on the real-world and is not very stochas-
tic. It does not allow transitions from most fault states to other
fault states. For example, the RF fault does not transition to
the RM fault. This does not exclude transitions to multiple
fault states and if the model included multiple faults, it could
still transition to a “RF and RM” fault, which is different from
a RM fault. Hence, if there are no samples in the actual fault
state, samples that end up in fault states with dynamics that
are similar to the actual fault state may end up being identi-
fied as the fault state. The hierarchical approach tracks the
state at an abstract level and does not commit to identifying
any particular specialized fault state until there is sufficient
evidence. Hence it is more likely to identify the correct fault
state.

Figure 6(a) shows a comparison of the error from monitoring
the state using a classical particle filter that tracks the full state
space, and the VRPF that varies the resolution of the state
space. The X axis shows the number of particles used, the
Y axis shows the KL divergence from an approximation of
the true posterior computed using a large number of samples.
1000 samples were used to compute an approximation to the
true distribution. The Kullback-Leibler (KL) divergence [11]
is computed over the entire length of the data sequence and
is averaged over multiple runs over the same data set 2. The
data set included normal operation and each of the six faults.

2The results are an average over 50 to 5 runs with repetitions decreasing
as the sample size was increased.
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Figure 6. Comparison of the KL divergence from the true distribution for the classical particle filter and the VRPF, against (a)
number of particles used, (b) wall clock time.

Figure 6(a) demonstrates that the performance of the VRPF
is superior to that of the classical filter for small sample sizes.
In addition figure 6(b) shows the KL divergence along the Y

axis and wall clock time along the X axis. Both filters were
coded in matlab and share as many functions as possible.

The Variable Resolution Particle filter has also been extended
to use lookahead using UKFs [9]. Lookahead requires com-
puting a UKF for every possible transition to a fault or nom-
inal state at each instance in time. The VRPF introduced
the notion of abstract states that may represent sets of states.
There are fewer transitions between states when they are re-
pented in abstraction. We show that the VRPF in conjunction
with a UKF proposal improves performance and may poten-
tially be used in large state spaces [19].

5. RAO-BLACKWELLIZED PARTICLE FILTERS

Much recent work on Rao-Blackwellized Particle Filter-
ing (RBPF) [2], [14] has focused on combining PFs and KFs
for tracking linear multi-modal systems with Gaussian noise.
This approach is very effective at tracking system state using
a very small number of samples (Problem 2 on our list). In
this kind of model, the belief state is a mixture of Gaussians.
Rather than sampling a complete system state, in RBPF for
hybrid systems, one combines a Particle Filter that samples
the discrete modes zt, and a Kalman Filter for each discrete
mode zt ∈ Z that propagates sufficient statistics (µ

(i)
t ,Σ

(i)
t )

for the continuous parameters xt. The algorithm is shown in
Figure 7. At each time-step t, first, the discrete mode is sam-
pled according to the transition prior. Then, for each particle
p(i) a Kalman filter is called to compute the prior mean ŷ

(i)
t|t−1

and covariance Ŝ
(i)
t of the observation and update the mean

µ
(i)
t and covariance Σ

(i)
t for the continuous parameters. The

variable θ(z
(i)
t ) denotes the parameters of the Kalman Filter

belonging to mode z
(i)
t . Finally, the particle weight is com-

puted as the observation probability P (yt|ŷ
(i)
t|t−1, Ŝ

(i)
t ) of yt

given the prior observation mean and covariance. As in regu-
lar Particle Filtering, a resampling step is necessary to prevent
particle impoverishment.

As shown in [14], it is possible in Rao-Blackwellized Parti-
cle Filtering to sample the discrete modes directly from the
posterior. It is also possible to resample before the transition
according to the expected posterior weight distribution such
that those particles get multiplied which are likely to transi-
tion to states of high confidence. These improvements result
in an even more efficient algorithm called RBPF2 [14].

Non-Linear Estimation

Since RBPF uses a KF for its continuous state estimation, it
is restricted to linear problems with Gaussian noise. Many
of the problems we are interested in do not have these prop-
erties. To overcome this, we propose the Gaussian particle
filter (GPF). In general hybrid systems, there is no tractable
closed-form solution for the continuous variables, so we can-
not maintain sufficient statistics with every sample. It is how-
ever possible to propagate an approximation of the continu-
ous variables. We sample the mode as usual and for every
particle update a Gaussian approximation of the continuous
parameters using an unscented Kalman filter. Since the un-
scented Kalman filter only approximates the true posterior
distribution, the GPF is a biased estimator in non-linear mod-
els; however, by not sampling the continuous state, we greatly
reduce the estimator’s variance.



1. For N particles p(i), i = 1, . . . , N , sample discrete modes z
(i)
0 , from the prior P(Z0).

2. For each particle p(i), set µ
(i)
0 and Σ

(i)
0 to the prior mean and covariance in state z

(i)
0 .

3. For each time-step t do
(a) For each p(i) = (z

(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

i. Sample a new mode:
ẑ
(i)
t ∼ P(Zt|z

(i)
t−1)

ii. Perform Kalman update using parameters from mode ẑ
(i)
t :

(ŷ
(i)
t|t−1, Ŝ

(i)
t , µ̂

(i)
t , Σ̂

(i)
t )← KF (µ

(i)
t−1,Σ

(i)
t−1, yt, θ(z

(i)
t ))

iii. Compute the weight of particle p̂(i):

w
(i)
t ← P(yt|ŷ

(i)
t|t−1, Ŝ

(i)) = N(yt; ŷ
(i)
t|t−1, Ŝ

(i)).

(b) Resample as in step 3.(b) of the PF algorithm (see Figure 1).

Figure 7. The RBPF algorithm.

The GPF algorithm is very similar to the RBPF algorithm pre-
sented in Figure 7. In both of these algorithms particle p(i)

represents the continuous variables with a multivariate Gaus-
sian N(µ

(i)
t ,Σ

(i)
t ). In the case of linear models and RBPF,

this Gaussian is a sufficient statistic, in the case of non-linear
models and GPF, it is an approximation. In the algorithm, the
only change is in line 3.(a)ii of Figure 7, which is replaced
by:

3.a(ii) Perform an unscented Kalman update using pa-
rameters from mode ẑ

(i)
t :

(ŷ
(i)
t|t−1, Ŝ

(i)
t , µ̂

(i)
t , Σ̂

(i)
t )

← UKF (µ
(i)
t ,Σ

(i)
t , yt, θ(z

(i)
t ))

This change is due to the non-linearity of transition and/or
observation function. A Kalman update is simply not possi-
ble, but a good approximation is achieved with an unscented
Kalman filter. The approximation of continuous variables in
the GPF is a mixture of Gaussians rather than the set of sam-
ples as in a PF. Since the expressive power of every particle is
higher, fewer particles are needed to achieve the same approx-
imation accuracy. This more than offsets the small additional
computational cost per sample. Furthermore, this compact
approximation is likely to scale smoothly with an increase in
dimensionality.

Lookahead for Low-Probability Transitions

Like RBPF, the GPF can be improved by sampling directly
from the posterior distribution and resampling before the tran-
sition. This allows us to improve the probability of having a
sample follow a low-probability transition (Problem 1) be-
cause the probability of such a sample is based on the poste-
rior likelihood (the observation is taken into account) of the
transition, rather than the prior. We call the resulting algo-
rithm GPF2 and detail it in Figure 8. For each particle, before
actually sampling a discrete mode, we look at each possible

mode m, update our approximations of the continuous pa-
rameters assuming we had sampled m, and compute the ob-
servation likelihood for those approximations. This and the
transition prior give the posterior probability of transitioning
to m. Then for each particle we sample a new discrete mode
from the posterior we computed for it.

At each time-step t, for every particle p(i), first we enu-
merate each possible successor mode m, i.e. each mode
m ∈ Z such that P (m|z

(i)
t−1) > 0. For each m,

we do an unscented Kalman update, and compute analyt-
ically the observation likelihood P (yt|m,µ

(i)
t−1,Σ

(i)
t−1) =

P (yt|y
(i,m)
t|t−1, S

(i,m)
t ). Then, we compute the unnormalized

posterior probability Post(i,m) of particle p(i) transitioning
to m; this is the product of the transition prior to m and the
observation likelihood in m. Next we compute the weight of
each particle p̂(i) as the sum of the posterior probabilities of
it’s successor modes and resample N particles according to
this weight distribution. Note, that Post(i,m), µ

(i,m)
t and

Σ
(i,m)
t also need to be resampled, i.e. when particle p(i) is

sampled to be particle p̂(k), then Post(i,m) ← P̂ ost(k,m),
µ

(i,m)
t ← µ̂

(k,m)
t and Σ

(i,m)
t ← Σ̂

(k,m)
t for all m.

Finally, for every particle p(i), a successor mode m is sam-
pled according to the posterior probability; this mode is used
as z

(i)
t ; µ

(i)
t and Σ

(i)
t are set to the already computed value

µ
(i,m)
t and Σ

(i,m)
t .

GPF2 only differs from the RBPF2 algorithm in that it is call-
ing an unscented Kalman filter update instead of a Kalman
update due to the non-linear character of the transformations.
It is a very efficient algorithm for state estimation on non-
linear models with transition and observation functions that
transform a Gaussian distribution to a distribution that’s close
to a Gaussian. Very low fault priors are handled especially
gracefully by GPF2 since it samples the discrete modes from
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Figure 9. Performance for the GPF, the GPF when sampling
from the posterior, the UPF, and traditional particle filters.
The x-axis is CPU time, the y-axis is error rate (percentage of
the time the most probable state according to the algorithm is
not the true state of the system). Estimation based on 25 runs.

their true posterior distribution. When there is strong enough
evidence the fault will be detected regardless of how low the
prior is.

Results: The Gaussian Particle Filter

We use a simple model of the suspension system of the K-9
rover (Figure 11) at NASA Ames Research Center. K-9 is
a six wheeled rover with a rocker-bogey suspension, and we
model the suspension’s response to driving over rocks and
other obstacles to anticipate situations where the rover’s sci-
entific instruments could collide with an obstacle, or where
the rover could become “high-centered” on a rock. The model
has six discrete modes and six continuous variables, two of
which are observable. The continuous parameters follow
non-linear trajectories in three of the modes.

Figure 9 shows the rate of state estimation errors for the GPF,
GPF2 and traditional particle filters, as well as the unscented
particle filter (discussed below) on data generated from the
model. The diagnoses are taken to be the maximum a pos-
teriori (MAP) estimate for the discrete modes; a discrepancy
between this MAP estimate and the real discrete mode is an
error. Figure 9 shows the error rates ( #diagnosis errors

#time steps
) for

different numbers of samples; the x-axis is the CPU time.
The graph shows that GPF is a better approximation than PF
given the same computing resources, particularly as the num-
ber of samples increases and the discrete states become ade-
quately populated with samples. GPF2 is considerably slower
per sample but its approximation is superior to PF or GPF.

We are also interested in diagnosing the continuous parame-
ters of the system. Figure 10 shows the mean squared error
(MSE) of the algorithms on artificial data where ground truth
is available.

10
−2

10
−1

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Continuous state estimation errors vs. available time for diagnosis

Time available for diagnosis per time step [s]

M
ea

n 
sq

ua
re

d 
er

ro
r

PF
UPF
GPF
GPF2

Figure 10. Mean squared errors of the four algorithms, aver-
aged over 50 runs. Note the logarithmic scale for both the X-
and Y- axes. At real time (ca. 1/3s per time step), the MSE of
GPF2 is about six times lower than of GPF, ten times lower
than that for UPF and 106 times lower than for PF.

Figure 11. NASA Ames’ K-9 rover.

Finally, we applied GPF to real data from the K-9 rover. In
Figure 12, we show the two observed variables, differential
angle (Y2) and bogey angle (Y1) as well as the discrete mode
estimates PF and GPF2 yield on this data. State 1 repre-
sents flat driving, state 2 driving over a rock with the front
wheel, state 3 with the middle wheel and state 4 with the rear
wheel. State 5 represents the rock being between the front
and the middle wheel and state 6 between the middle and the
rear wheel. Both filters successfully detect the rocks, but the
GPF2 detects all of the rocks before PF detects them. For
the third rock in the data, GPF2 correctly identifies that the
back wheel passed over the rock, while the particle filter only
tracks the first two wheels. Again, we only show the most



1. For N particles p(i), i = 1, . . . , N , sample discrete modes z
(i)
0 , from the prior P(Z0).

2. For each particle p(i), set µ
(i)
0 and Σ

(i)
0 to the prior mean and covariance in state z

(i)
0 .

3. For each time-step t do
(a) For each p(i) = (z

(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

i. For each possible successor mode m ∈ succ(z
(i)
t−1) do

A. Perform unscented Kalman update using parameters from mode m:

(ŷ
(i,m)
t|t−1, Ŝ

(i,m)
t , µ̂

(i,m)
t , Σ̂

(i,m)
t )← UKF (µ

(i)
t−1,Σ

(i)
t−1, yt, θ(m))

B. Compute posterior probability of mode m as:

P̂ ost(i,m) ← P(m|z
(i)
t−1, yt)

= P(m|z
(i)
t−1)N(yt; y

(i,m)
t|t−1, S

(i,m)
t|t−1).

ii. Compute the weight of particle p̂(i): w
(i)
t ←

∑
m∈succ(z

(i)
t−1)

P̂ ost(i,m)

(b) Resample as in step 2.(b) of the PF algorithm (see Figure 1) (also resample Post, µt and Σt).
(c) For each particle p(i) do
i. Sample a new mode:

m ∼ P(Zt|z
(i)
t−1, yt)

ii. Set z
(i)
t ← m, µ

(i)
t ← µ

(i,m)
t and Σ

(i)
t ← Σ

(i,m)
t .

Figure 8. The GPF2 algorithm.

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

6
Discrete modes estimates on real data

Time steps

O
bs

er
va

tio
ns

 a
nd

 fi
lte

r 
es

tim
at

es

Y1
Y2
PF
GPF2

Figure 12. Discrete mode estimates on real data. Y1 is
the bogey angle, Y2 is the rocker angle, and PF and GPF2
show the most probable state according to the particle filter
and Gaussian particle filter with lookahead algorithms respec-
tively.

probable mode at each time-step in the figure.

As well as a standard particle filter, we compare our results
with the unscented particle filter (UPF) of [18]. The GPF and
UPF have a number of similarities. Both use a set of par-
ticles each of which performs an unscented Kalman update
at every time step. In UPF, the Kalman update approxima-
tion N(mut,Σt) of the posterior is used as a proposal for the

particle filter, in GPF this approximation is used as the filter
result.

In our experiments there is little difference between the re-
sults of GPF and UPF. GPF is generally faster by a constant
factor since it does not need to sample the continuous state,
and the weight computation is faster. We would expect the
UPF to yield better results when the shape of the posterior dis-
tribution is very different from a Gaussian and would expect
the GPF to do better when there is a big posterior covariance
Σt such that the sampling introduces high variance on the es-
timate. In this case, the UPF will need more particles to yield
the same results. Since neither of these conditions applies in
our domain, both algorithms show similar performance, with
GPF being slightly faster.

6. FUTURE WORK

The three algorithms we have presented here are in many
ways complementary. For example, we can easily imagine
applying the GPF approach with the hiererchy of abstract
states introduced in the variable resolution algorithm. Sim-
ilarly, we could imagine using the risk-sensitive algroithm to
bias the transition probabilities, although for the GPF2 with
lookahead, this may not be necessary except in circumstances
where the immediate observation does not indicate that the
fault has occurred. We plan to begin integrating ideas from
all three algorithms in the near future.

Another approach that is related to the variable resolution
algorithm is the structured particle filter introduced in [16].
Here the samples themselves are split between states, giving



a similar performance boost and tackling Problem 3, the high-
dimensional state space. We are currently in the process of fit-
ting this algorithm into the GPF. This also makes progress on
the problem of system-level diagnosis. Traditional diagnosis
algorithms are component-based, with an emphasis on prop-
erties such as “no function in structure”, meaning that sub-
system models can be composed to make larger systems with
ease. The challenge is to achieve these goals for hybrid mod-
els as well, and the structured particle filter approach should
be a very effective way to exploit the structure that such a
model implies.

Finally, we have only just begun testing these algorithms on
real rover problems. Mostly this has been due to a lack of
sensing on-board the available rover platforms, and on a lack
of models and data for rover faults. However, if these algo-
rithms are ever going to be used on a real rover mission to
Mars or elsewhere, considerable testing on rovers must be
done to demonstrate that the algorithms are robust, that their
computational needs are not unreasonable, and that they scale
to systems as complex as the whole rover. While this project
has made progress on many of these goals, there is much still
to be done, and in particular, testing on rovers running for
long enough periods that faults do occur, is an important pri-
ority, and something we fully intend to do in the future.
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