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Abstract

Machine learning can be utilized to build models that pre-
dict the run-time of search algorithms for hard combinato-
rial problems. Suchempirical hardness models have previ-
ously been studied for complete, deterministic search algo-
rithms. In this work, we demonstrate that such models can
also make surprisingly accurate run-time predictions for in-
complete, randomized search methods, such as stochastic lo-
cal search algorithms. We also show for the first time how
information about an algorithm’s parameter settings can be
incorporated into a model, and how such models can be used
to automatically adjust the algorithm’s parameters on a per-
instance basis in order to optimize its performance. Empiri-
cal results for Novelty+ and SAPS on random and structured
SAT instances show good predictive performance and signifi-
cant speedups using our automatically determined parameter
settings when compared to the default and best fixed parame-
ter settings.

Introduction
The last decade has seen a dramatic rise in our ability to
solve combinatorial optimization problems in many prac-
tical applications. High-performance heuristic algorithms
increasingly exploit properties of the problem instances to
be solved. Thus, knowledge about the relationship between
problem structure and algorithm behavior forms an impor-
tant basis for the development and successful application of
such algorithms. This has inspired a large amount of re-
search on methods for extracting and acting upon such in-
formation. These range from search space analysis to auto-
mated algorithm selection and tuning methods.

An increasing number of studies explore the
use of machine learning techniques in this con-
text (Horvitz et al. 2001; Lagoudakis & Littman 2001;
Epstein et al. 2002; Carchrae & Beck 2005;
Gebruerset al. 2005). One recent approach uses lin-
ear basis function regression to obtain models of the
time an algorithm will require to solve a given problem
instance (Leyton-Brown, Nudelman, & Shoham 2002;
Nudelmanet al. 2004). These so-calledempirical hardness
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models can be used to obtain insights into the factors respon-
sible for an algorithm’s performance, or to induce distribu-
tions of problem instances that are challenging for a given al-
gorithm. They can also be leveraged to select among several
different algorithms for solving a given problem instance.

In this paper, we present ongoing work based in part on
a more comprehensive technical report (Hutter & Hamadi
2005) and utilizing methods from (Leyton-Brown, Nudel-
man, & Shoham 2002; Nudelmanet al. 2004). Our current
work extends empirical hardness models in three significant
ways. First, past work on empirical hardness models has
focused exclusively on complete, deterministic algorithms.
Our first goal is to show that empirical hardness models
can also be constructed for incomplete, randomized algo-
rithms, and in particular for stochastic local search (SLS)al-
gorithms for SAT. This is important because SLS algorithms
are among the best existing techniques for solving a wide
range of hard combinatorial problems, including hard sub-
classes of SAT (Hoos & Stützle 2004).

The behavior of many randomized heuristic algorithms is
controlled by parameters with continuous or large discrete
domains. This holds in particular for most state-of-the-art
SLS algorithms; for example, the performance of WalkSAT
algorithms such as Novelty (McAllester, Selman, & Kautz
1997) or Novelty+ (Hoos 1999) depends critically on the
setting of a noise parameter whose optimal value is known
to depend on the given SAT instance (Hoos 2002). Under-
standing the relationship between parameter settings and the
run-time behavior of an algorithm is of substantial interest
for both scientific and pragmatic reasons, as it can expose
weaknesses of a given search algorithm and help to avoid
the detrimental impact of poor parameter settings. Thus,
our second goal is to extend empirical hardness models to
include algorithm parameters in addition to features of the
given problem instance.

Finally, reasonably accurate hardness models could also
be used to automatically determine good parameter settings.
Thus, an algorithm’s performance could be optimized for
each problem instance without any human intervention
or significant overhead. Our final goal is to explore the
potential of such an approach for automatic per-instance
parameter tuning.

In what follows, we show that we have achieved all
three of our goals. Specifically, we considered two high-



performance SLS algorithms for SAT, Novelty+ (Hoos
1999) and SAPS (Hutter, Tompkins, & Hoos 2002), and
several widely-studied random and structured instance
distributions. We demonstrate that quite accurate em-
pirical hardness models can be constructed for these SLS
algorithms (we achieve correlation coefficients between pre-
dicted and actual log run-time of up to 0.99), and that these
models can be extended to incorporate algorithm parameters
(still yielding correlation coefficients of up to 0.98). We
also show that these models can be leveraged to perform
automatic per-instance parameter tuning that results in sig-
nificant reductions of the algorithm’s run-time compared to
using default settings (speedups of up to two orders of mag-
nitude) or even the best fixed parameter values for the given
instance distribution (speedups of up to an order of magni-
tude). For reproducibility, all experimental data and Matlab
code this paper is based on will be made available online at
http://www.cs.ubc.ca/labs/beta/Projects/
Empirical-Hardness-Models/.

Run-time Prediction: Randomized Algorithms
Previous work (Leyton-Brown, Nudelman, & Shoham 2002;
Nudelmanet al. 2004) has shown that it is possible to pre-
dict the run-time of algorithms for combinatorial problems
using supervised machine learning techniques. In this sec-
tion, we demonstrate that similar techniques are able to pre-
dict the run-time of algorithms which are both randomized
and incomplete. We support our arguments by presenting
the results of experiments involving two state-of-the-artlo-
cal search algorithms for SAT.

High-performance randomized local search algorithms
tend to exhibit exponential run-time distributions (Hoos &
Stützle 2004), meaning that the run-times of two runs that
differ only in their random seeds can easily vary by more
than one order of magnitude. Even more extreme variabil-
ity in run-time has been observed for randomized complete
search algorithms (Gomeset al. 2000). Due to this inherent
randomness of the algorithm (and since we do not incorpo-
rate information on a particular run), we have to predict a
run-time distribution. Fortunately, exponential distributions
can be characterized completely by a single statistic, suchas
the median (which tends to be statistically more stable than
the mean) (Hoos & Stützle 2004). Note that for randomized
algorithms, the error in a model’s predictions can be thought
of as consisting of two components, one of which describes
the extent to which the model fails to describe the data, and
the second of which expresses the inherent noise in the em-
ployed summary statistic (in our case the median). This lat-
ter component reduces as the number of runs the median is
based on increases. We demonstrate this in Figures 1(a) and
1(b): while empirical hardness models of SLS algorithms
are able to predict the run-time of single runs reasonably
well, their predictions of median run-time are much more
accurate.

Our approach for run-time prediction of randomized
incomplete algorithms largely follows the linear regression
approach with linear and quadratic basis functions that was
already used in (Leyton-Brown, Nudelman, & Shoham
2002). We have previously explored other techniques,

namely support vector regression, multivariate adaptive
regression splines (MARS), and Lasso Regression, but
did not get significantly better run-time predictions when
using these methods.1 While we can handle both complete
and incomplete algorithms, we restrict our experiments
to incomplete local search algorithms. We note, however,
that an extension of our work to randomized tree search
algorithms would be straightforward.

In order to predict the run-time of an algorithmA on a
distributionD of instances, we draw an i.i.d. sample ofN in-
stances fromD. For each instancesn in this training set,A is
run some constant number of times and the median run-time
rn is recorded. We also compute a set ofk = 43 instance
featuresxn = [xn,1, . . . , xn,k] for each instance. This set
is a subset of the features used in (Nudelmanet al. 2004),
including basic statistics, graph-based features, local search
probes, and DPLL-based measures. The computation of all
features took about 2 seconds for each instance.

Given this data for all the training instances, a function
f(x) is fitted that, given the featuresxn of an instancesn,
approximatesA’s median run-time rn. Since linear func-
tions of these raw features may not be expressive enough, we
construct a richer set of basis functions which can include
arbitrarily complex functions ofall featuresxn of an in-
stancesn, or simply the raw features themselves. These ba-
sis functions typically contain a number of elements which
are either unpredictive or highly correlated. Predictive per-
formance can thus be improved (especially in terms of ro-
bustness) by applying some form of feature selection that
identifies a small subset ofD important features; as ex-
plained later, here we use forward selection with a desig-
nated validation set to select up toD = 40 features. We
denote the reduced set ofD basis functions for instancesn

asφn = φ(xn) = [φ1(xn), . . . , φD(xn)].
We then use standard ridge regression(see, e.g., (Bishop

1995)) to fit theD free parametersw = [w1, . . . , wD]T of
a linear functionfw(xn) = wT φ(xn), that is, we compute
w = (δI +Φ

T
Φ)−1

Φ
T r, whereδ is a small regularization

constant (set to10−2 in our experiments),Φ is theN × D
design matrixΦ = [φT

1 , . . . ,φT
N ]T , andr = [r1, . . . , rN ]T .

Given a new, unseen instancesN+1, a run-time prediction
can be obtained by computing its featuresxN+1 and eval-
uatingfw(xN+1) = wT φ(xN+1). One advantage of the
simplicity of ridge regression is a low computational com-
plexity of Θ(max{D3,D2N}) for training and ofΘ(D) for
prediction for an unseen test instance.

We performed experiments using two SLS algorithms,
SAPS and Novelty+. In this section we fix their parame-
ters to their defaults〈α, ρ, Psmooth〉 = 〈1.3, 0.8, 0.05〉 and
〈noise, wp〉 = 〈50, 0.01〉, respectively. We consider mod-
els that incorporate multiple parameter settings in the next
section. We used four widely-studied SAT benchmark dis-
tributions. Our first two distributions each consisted of
20,000 uniform-random 3-SAT instances with 400 variables;
the first (CV-var) varied the clauses-to-variables ratio be-

1Preliminary experiments suggest that Gaussian processes may
increase performance, but their cubic scaling behaviour in the num-
ber of data points complicates their use in practice.
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(a) 1 SAPS run on CV-var
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(b) 1000 SAPS runs on CV-var
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(c) 10 Novelty+ runs on SAT04
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(d) 10 SAPS runs on QWH

Figure 1: Correlation between observed and predicted run-times/medians of run-times of SAPS on various sets of SAT in-
stances. Raw features and their pairwise products were usedas basis functions.

tween 3.26 and 5.26, while the second (CV-fixed) fixed
c/v = 4.26. Our third distribution (SAT04) consisted of
3,000 random instances generated with the generators used
for the 2004 SAT solver competition (with identical param-
eters), while our fourth (QWH) contained 7,498 instances of
the quasigroup completion problem with randomly punched
holes (Gomes & Selman 1997). We chose QWH as a rep-
resentative of structured problems because this domain al-
lows the systematic study of a large instance set with a wide
spread in hardness, and because the structure of the under-
lying Latin squares is similar to the one found in many real-
world applications, such as scheduling, time-tabling, experi-
mental design, and error correcting codes (Gomes & Selman
1997). However, we also verified our techniques on other
structured instances, such as planning and graph colouring.
As is standard in the study of SLS algorithms, all distribu-
tions were filtered to contain only satisfiable instances, lead-
ing to 10,011, 10,129, 1,420, and 7,498 instances of CV-var,
CV-fixed, SAT04, and QWH, respectively.2

All instance sets were randomly split 50:25:25 into train-
ing, validation, and test sets; all experimental results are
based on the test set and were stable with respect to reshuf-
fling. We chose the 43 raw features and the constant1 as our
basis functions, and, where indicated, also included pairwise
multiplicative combinations of all raw features. We then per-
formed forward selection3 to select up to 40 features, stop-
ping when the error on the validation set first began to grow.
Experiments were run on a cluster of 50 dual 3.2GHz Intel
Xeon PCs with 2MB cache and 2GB RAM, running SuSE
Linux 9.1. All runs were cut off after 900 seconds.

Overall, our experiments showed that we can consistently
build surprisingly accurate empirical hardness models. The
results of experiments on each of our benchmark distribu-
tions are summarized in Table 1. Note that a correlation
coefficient of 1 indicates perfect prediction while 0 indicates

2All QWH instances are satisfiable by construction.
3Forward selection is a standard method for feature selection

that starts with an empty feature set and greedily includes one ad-
ditional feature at a time, at each step minimizing an error metric
(in our case RMSE on the validation set when running ridge regres-
sion with the chosen feature set).

Dataset N Algorithm RunsCorrcoeff RMSE
CV-var 10011 SAPS 1 0.89/0.900.38/0.36
CV-var 10011 SAPS 10 0.95/0.960.26/0.22
CV-var 10011 SAPS 100 0.96/0.970.23/0.19
CV-var 10011 SAPS 1000 0.96/0.970.23/0.18

CV-fixed 10129 SAPS 10 0.73/0.740.48/0.47
CV-fixed 10129 Novelty+ 10 0.56/0.580.58/0.59
SAT04 1420 SAPS 10 0.91/0.940.56/0.49
SAT04 1420 Novelty+ 10 0.92/0.930.63/0.59
QWH 7498 SAPS 10 0.98/0.990.38/0.28
QWH 1000 Novelty+ 1 0.97/0.990.67/0.50

Table 1: Evaluation of learned models on test data.N is the
number of instances, split 50:25:25 into training, validation,
and test sets. Columns for correlation coefficient and RMSE
indicate values using only raw features as basis functions,
and then using raw features and their pairwise products. For
the last entry, we restricted experiments to a random subset
of the data and 1 run since Novelty+ was very slow on many
instances of QWH.

random noise; an RMSE of 0 means perfect prediction while
1 roughly means misprediction of one order of magnitude
on average. Figure 1(a) shows a scatterplot of predicted vs.
actual run-time for SAPS on CV-var, where the model is
trained to predict the time SAPS takes to execute a single
run. While a strong trend is evident, there is significant error
in the predictions. Figure 1(b) shows the same algorithm on
the same dataset, but now predicting the median of an em-
pirical run-time distribution based on 1000 runs of SAPS.
The error is substantially reduced; as indicated in Table 1,
the RMSE is halved for medians of 1000 runs but 10 runs
are almost as good. Figure 1(c) shows predictions for the
Novelty+ algorithm on the SAT04 dataset; the higher error
in this figure is partly due to the non-homogeneity of the
data, partly to the smaller number of runs over which the
median is taken, and partly to the smaller amount of training
data. Note that our predictions for Novelty+ and SAPS are
qualitatively similar on all experiments we conducted (see
Table 1). Finally, Figure 1(d) shows the performance of our
models for predicting the run-time of SAPS on the QWH



dataset; the nearly-linear plot shows very good performance
on this structured dataset. Note, however, that even in this
case, there exist instances whose hardness is mispredicted
by up to two orders of magnitude. Also note that some-
times predictions tend to become less accurate with increas-
ing hardness (see, e.g., Figures 1(b) and 1(d)). We attribute
this latter effect to the sparseness of hard training instances;
for example, in Figure 1(b), approximately 90% of the in-
stances can be solved in less than10−2 seconds.

Run-time Prediction: Parametric Algorithms
It is well known that the behaviour of most high-
performance SLS algorithms is controlled by one or more
parameters, and that these parameters often have a substan-
tial effect on the algorithm’s performance (Hoos & Stützle
2004). In the previous section, we showed that good em-
pirical hardness models can be constructed when these pa-
rameters are held constant. In practice, however, we want
to be able to change these parameter values and to under-
stand what will happen when we do. In this section, we
demonstrate that it is possible to incorporate parameters into
empirical hardness models for randomized, incomplete al-
gorithms. These results should carry over directly to deter-
ministic and complete parametric algorithms.

Our approach is to learn a functiong(x, c) that takes as in-
puts both the featuresxn of an instancesn and the parame-
ter configurationc of an algorithmA, and that approximates
the run-time ofA with parameter configurationc when run
on instancesn. In the training phase, for each training in-
stancesn we runA some constant number of times with
a set of parameter configurationscn = {cn,1, . . . , cn,kn

},
and collect the mediansrn = [rn,1, . . . , rn,kn

]T of the
corresponding empirical run-time distributions. We also
computesn’s featuresxn. The key change from the ap-
proach in the last section is that now the parameters that
were used to generate an〈instance,run-time〉 pair are effec-
tively treated as additional features of that training exam-
ple. We define a new set of basis functionsφ(xn, cn,j) =
[φ1(xn, cn,j), . . . , φD(xn, cn,j)] whose domain now con-
sists of the cross product of features and parameter config-
urations. For each instancesn and parameter configuration
cn,j , we will have a row in the design matrixΦ that con-
tainsφ(xn, cn,j)

T — that is, the design matrix now contains
nk rows for every training instance. The target vectorr =
[rT

1 , . . . , rT
N ]T just stacks all the median run-times on top of

each other. We learn the functiongw(x, c) = wT φ(x, c) by
applying ridge regression as in the last section.

Our experiments in this section concentrate on SAPS
since it has three interdependent, continuous parameters,as
compared to Novelty+ which has only two parameters, one
of which (wp) is typically set to a default value that results
in uniformly good behaviour. This difference notwithstand-
ing, we observed qualitatively similar results with Novelty+.
Note that the approach outlined above allows one to use dif-
ferent parameter settings for each training instance. How to
pick these parameter settings for training in the most infor-
mative way is an interesting experimental design question
with relations to active learning that we plan to tackle in the
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(a) SAPS on QWH, 30 settings
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(b) 6 symbol-coded instances

Figure 2: (a) Predictions for SAPS on QWH with 30 param-
eter settings. (b) Data points for 6 instances from SAPS on
SAT04, different symbol for each instance.

future. In this study, for SAPS we used all combinations of
α ∈ {1.2, 1.3, 1.4} andρ ∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9},
keepingPsmooth = 0.05 constant since its effect is highly
correlated with that ofρ. For Novelty+, we usednoise ∈
{10, 20, 30, 40, 50, 60}, fixing wp = 0.01.

For the basis functions, we used multiplicative combina-
tions of the raw instance featuresxn and a 2nd order expan-
sion of all non-fixed (continuous) parameter settings. Fork
raw features (k = 43 in our experiments), this meant3k ba-
sis functions for Novelty+, and6k for SAPS, respectively.
As before we applied forward selection to select up to 40
features, stopping when the error on the validation set first
began to grow. For each data set reported here, we randomly
picked 1000 instances to be split 50:50 for training and val-
idation. We ran one run per instance and parameter con-
figuration yielding 30,000 data points for SAPS and 6,000
for Novelty+. (Training on the median of more runs would
likely improve the results.) For the test set, we used an addi-
tional 100 distinct instances and computed the median of 10
runs for each parameter setting.

In Figure 2(a), we show predicted vs. actual SAPS run-
time for the QWH dataset, where the SAPS parameters are
varied as described above. This may be compared to Figure
1(d), which shows the same algorithm on the same dataset
for fixed parameter values. (Note, however, that Figure 1(d)
was trained on more runs and using more powerful basis
functions for the instance features.) We observe that our
model still achieves excellent performance, yielding a cor-
relation coefficient of .98 and an RMSE of .40, as compared
to .98 and .38 respectively for the fixed-parameter setting
(using raw features as basis functions); for Novelty+, the
numbers are .98 and .58, respectively.

Figure 2(b) shows predicted vs. actual SAPS median run-
time for six instances from SAT04 that cover the whole
range of hardness within this dataset. Runs corresponding
to the same instance are plotted using the same symbol. Ob-
serve that run-time variation due to the instance is often
greater than variation due to parameter settings. However,
harder instances tend to be more sensitive to variation in the
algorithm’s parameters than easier ones. The average cor-
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(a) Automatic vs. best and worst
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(b) Automatic vs. best fixed

Figure 3: (a) Performance of automated parameter setting
for Novelty+ on mixed data set QWH/SAT04, compared to
the best (dots) and worst (crosses) per-instance parameter
setting (out of the 6 parameter settings we employed). (b)
Speedup of Novelty+ over the best data-set specific fixed
parameter setting.

relation coefficient for the 30 points per instance is .52; for
the 6 points per instance in Novelty+ it is .86, much higher.

Automated Parameter Tuning
Our results, as suggested by Figures 2(a) and 2(b), indicate
that our methods are able to predict per-instance and per-
parameter run-times with high accuracy. We can thus hope
that they would also be able to accurately predict which pa-
rameter settings result in the lowest run-time for a given in-
stance. This would allow us to use a learned model to auto-
matically tune the parameter values of an SLS algorithm on
a per-instance basis by simply picking the parameter config-
uration that is predicted to yield the lowest run-time.

In this section we investigate this question, focusing on
the Novelty+ algorithm. We made this choice because we
observed SAPS’s performance around〈α, ρ〉 = 〈1.3, 0.1〉
to be very close to optimal across many different instance
distributions. SAPS thus offers littlepossibility for perfor-
mance improvement through per-instance parameter tuning
(Table 2 quantifies this), and so serves as a poor proving
ground for our techniques. Novelty+, on the other hand, ex-
hibits substantial variation from one instance to another and
from one instance distribution to another, making it a good
algorithm for the evaluation of our approach.4 We used the
same test and training data as in the previous section; thus,
Table 2 summarizes the experiments both from the previ-
ous section and from this section. However, in this section
we also created a new instance distribution “Mixed”, which
is the union of the QWH and SAT04 distributions. This
mix enables a large gain for automated parameter tuning
(when compared to the best fixed parameter setting) since
Novelty+ performs best with high noise settings on random
instances and low settings on structured instances.

4Indeed, the large potential gains for tuning WalkSAT’s noise
parameter on a per-instance basis have been exploited before (Pat-
terson & Kautz 2001).

Figure 3(a) shows the performance of our automatic
parameter-tuning algorithm on test data from Mixed, as
compared to upper and lower bounds on its possible per-
formance. We observe that the run-time with automatic pa-
rameter setting is very close to the optimal configuration per
instance and far better than the worst one, with an increas-
ing margin for harder instances. The average performance
across all parameter configurations (not shown in the figure)
is closer to the worst than to the best setting. Note that this
is the performance one could expect on average when sam-
pling parameter settings at random. Figure 3(b) compares
our automatic tuning against the best fixed parameter set-
ting for the test set. This setting is often the best that can
be hoped for in practice. (A common approach for tuning
parameters is to perform a set of experiments, to identify
the parameter setting which achieves the lowest overall run-
time, and then to fix the parameters to this setting.) Fig-
ure 3(b), in conjunction with Table 2 shows that our tech-
niques dramatically outperform this form of parameter tun-
ing. While Novelty+ achieves an average speedup of over
an order magnitude on Mixed as compared to the best fixed
parameter setting on that set, SAPS improves upon its de-
fault setting by a factor of 2. Considering that our method is
fully automatic and very general, these are very promising
results.

Discussion and Related Work
Empirical hardness models assume the test set to be drawn
from the same distribution as the training set. For many
practical applications, this may pose a severe limitation.
We are currently studying a Bayesian approach to empiri-
cal hardness models that also quantifies the uncertainty of
its predictions. Preliminary experiments promise that this
approach can automatically detect how similar a test case is
to the training set and determine a confidence measure based
on this similarity.

The task of configuring an algorithm’s parameters for
high and robust performance is widely recognized as a te-
dious and time-consuming task that requires well-developed
engineering skills. Automating this task is a very promis-
ing and active area of research. There exists a large num-
ber of approaches to find the best configuration for a given
problem distribution (Kohavi & John 1995; Minton 1996;
Birattari et al. 2002; Srivastava & Mediratta 2005; Adenso-
Daz & Laguna 2006). All these techniques aim to find a pa-
rameter setting that optimizes some scoring function which
averages over all instances from the given input distribution.
If the instances are very homogeneous, this approach can
perform very well. However, if the problem instances to be
solved come from heterogeneous distributions or even from
completely unrelated application areas, the best parameter
configuration may differ vastly from instance to instance.
In such cases it is advisable to apply an approach like ours
that can choose the best parameter setting for each run con-
tingent on the characteristics of the current instance to be
solved. This per-instance parameter tuning is more power-
ful but less general than tuning on a per-distribution basis
in that it requires the existence of a set of discriminative
instance features. However, we believe it to be relatively



Set Algo Gross corrRMSECorr per instancebest fixed paramssbestperinst sworstperinst sdef sbestfixed

SAT04 Nov 0.90 0.78 0.86 50 0.62 275.42 0.89 0.89
QWH Nov 0.98 0.58 0.69 10 0.81 457.09 177.83 0.91
Mixed Nov 0.95 0.8 0.81 40 0.74 363.08 13.18 10.72
SAT04SAPS 0.95 0.67 0.52 〈1.3, 0〉 0.56 10.72 2.00 1.07
QWH SAPS 0.98 0.40 0.39 〈1.2, .1〉 0.65 6.03 2.00 0.93
Mixed SAPS 0.91 0.60 0.65 〈1.2, 0.2〉 0.46 17.78 1.91 0.93

Table 2: Results for automated parameter tuning. For each instance set and algorithm, we give the correlation between actual
and predicted run-time for all instances, RMSE, the averagecorrelation for all the data points of an instance, and the best fixed
parameter setting on the test set. We also give the average speedup over the best possible parameter setting per instance(always
< 1), over the worst possible setting per instance (> 1), the default, and the best fixed setting on the test set. For example,
on Mixed, Novelty+ is on average 10.72 times faster than its best fixed parametersetting. All experiments use second order
expansions of the parameters (combined with the instance features).

straightforward to engineer a good set of instance featuresif
one is familiar with the application domain.

The only other approach for parameter tuning on a per-
instance basis we are aware of is the Auto-WalkSAT frame-
work (Patterson & Kautz 2001). This approach is based
on empirical findings showing that the optimal parameter
setting of WalkSAT algorithms tends to be about 10% above
the one that minimizes the invariance ratio (McAllester, Sel-
man, & Kautz 1997). Auto-WalkSAT chooses remarkably
good noise settings on a variety of instances, but for do-
mains where the above relationship between invariance ratio
and optimal noise setting does not hold (such as logistics
problems), it performs poorly (Patterson & Kautz 2001).
Furthermore, its approach is limited to SAT and in partic-
ular to tuning the (single) noise parameter of the WalkSAT
framework. In contrast, our automated parameter tuning
approach applies to arbitrary parametric algorithms and all
domains for which good features can be engineered.

Finally, reactive search algorithms (Battiti & Brunato
2005), such as Adaptive Novelty+(Hoos 2002) or
RSAPS (Hutter, Tompkins, & Hoos 2002) adaptively mod-
ify their search strategyduring a search. (Complete reactive
search algorithms include (Borrett, Tsang, & Walsh 1995;
Horvitz et al. 2001; Lagoudakis & Littman 2001;
Epstein et al. 2002; Carchrae & Beck 2005).) Many
reactive approaches still have one or more parameters
whose settings remain fixed throughout the search; in these
cases the automated configuration techniques we presented
here should be applicable to tune these parameters. While
reactive approaches have the potential to be strictly more
powerful than ours (they can utilize different search strate-
gies in different parts of the space), they are also typically
less general since their implementations tend to be tightly
coupled to a specific algorithm.

Conclusion and Future Work
In this work, we have demonstrated that empirical hard-
ness models obtained from linear basis function regression
can be used to make surprisingly accurate predictions of
the run-time of randomized, incomplete algorithms, such as
Novelty+ and SAPS. We have also shown for the first time
that the same approach can model the effect of algorithm pa-

rameter settings on run-time, and that these models can be
used as a basis for automated per-instance parameter tuning.
In our experiments, this tuning never hurt and sometimes re-
sulted in substantial and completely automatic performance
improvements, as compared to default or optimized fixed pa-
rameter settings.

There are several natural ways in which this work can
be extended. First, we are working on Bayesian methods
that integrate measures of predictive uncertainty in empir-
ical hardness models. We also pursue even more accurate
predictions by investigating more powerful classes of ma-
chine learning approaches, such as Gaussian processes (Ras-
mussen & Williams 2006). We further plan to study the ex-
tent to which our results generalize to problems other than
SAT and in particular, to optimization problems. Finally,
we would like to apply active learning approaches (Cohn,
Ghahramani, & Jordan 1996) in order to probe the parame-
ter space in the most informative fashion.
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