Automating the Configuration of Algorithms for Solving Hard Computational Problems

Ph.D. Thesis Defence

Frank Hutter

Supervisory committee:

Prof. Holger Hoos (supervisor) Prof. Kevin Leyton-Brown (co-supervisor) Prof. Kevin Murphy (co-supervisor) Prof. Alan Mackworth

University Examiners:

Prof. Michael Friedlander (CS) Prof. Lutz Lampe (ECE)

External Examiner: Prof. ?

Chair: Prof. John Nelson (Forestry)

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)

Most algorithms have parameters

- Decisions that are left open during algorithm design
 - numerical parameters (e.g., real-valued thresholds)
 - categorical parameters (e.g., which heuristic to use)
- Set to maximize empirical performance

State of the art for mixed integer programming (MIP)

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

"Integer programming problems are more sensitive to specific parameter settings, so **you may need to experiment with them**." [CPLEX 10.0 user manual, page 130]

"Experiment with them"

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 63-dimensional space
 - Complex, unintuitive interactions between parameters

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 63-dimensional space
 - Complex, unintuitive interactions between parameters
 - Humans are not good at that

- State of the art for mixed integer programming (MIP)
- Large user base
 - Over 1 300 corporations and over 1 000 universities
- 63 parameters that affect search trajectory

- "Experiment with them"
 - Perform manual optimization in 63-dimensional space
 - Complex, unintuitive interactions between parameters
 - Humans are not good at that
 - \rightsquigarrow developed the first automated tools for this type of problem

Automated Algorithm Configuration

Automate the setting of algorithm parameters

- Eliminate most tedious part of algorithm design and end use
- Save development time
- Improve performance

Automated Algorithm Configuration

Automate the setting of algorithm parameters

- Eliminate most tedious part of algorithm design and end use
- Save development time
- Improve performance
- First to consider the general problem, in particular many categorical parameters
 - E.g. 50/63 CPLEX parameters are categorical
 - ~ Algorithm configuration

Empirical analysis of configuration scenarios

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches

Demonstrated practical relevance of algorithm configuration

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - 1st and 2nd approach to configure algorithms with many categorical parameters
- Demonstrated practical relevance of algorithm configuration

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - 1st and 2nd approach to configure algorithms with many categorical parameters
- Demonstrated practical relevance of algorithm configuration
 - CPLEX: up to 23-fold speedup

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - 1st and 2nd approach to configure algorithms with many categorical parameters
- Demonstrated practical relevance of algorithm configuration
 - CPLEX: up to 23-fold speedup
 - SAT solver: 500-fold speedup for software verification

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration
- 3. Model-Based Search for Algorithm Configuration
- 4. Conclusions

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration

4. Conclusions

Algorithm Configuration as Function Optimization

Deterministic algorithm with continuous parameters

- "Blackbox function" $f: \mathbb{R}^n \to \mathbb{R}$
- Can query function at arbitrary points $oldsymbol{ heta} \in \mathbb{R}^n$

Find $\min_{\boldsymbol{\theta} \in \mathbb{R}^n} f(\boldsymbol{\theta})$

Algorithm Configuration as Function Optimization

Deterministic algorithm with continuous parameters

- "Blackbox function" $f: \mathbb{R}^n \to \mathbb{R}$
- Can query function at arbitrary points $oldsymbol{ heta} \in \mathbb{R}^n$

Find $\min_{\boldsymbol{\theta} \in \mathbb{R}^n} f(\boldsymbol{\theta})$

Randomized algorithm with continuous parameters

- For each θ : distribution D_{θ}
- Optimize statistical parameter τ (e.g., expected value)

Algorithm Configuration as Function Optimization

Deterministic algorithm with continuous parameters

- "Blackbox function" $f: \mathbb{R}^n \to \mathbb{R}$
- Can query function at arbitrary points $oldsymbol{ heta} \in \mathbb{R}^n$

Find $\min_{\boldsymbol{\theta} \in \mathbb{R}^n} f(\boldsymbol{\theta})$

Randomized algorithm with continuous parameters

- For each θ : distribution D_{θ}
- Optimize statistical parameter τ (e.g., expected value)
- Can sample from distribution D_{θ} at arbitrary points $\theta \in \Theta$ Find $\min_{\theta \in \mathbb{R}^n} \tau(D_{\theta})$

Algorithm Configuration: General Case

Difference to "standard" blackbox optimization

Categorical parameters

Algorithm Configuration: General Case

Difference to "standard" blackbox optimization

- Categorical parameters
- Distribution of costs
 - across multiple repeated runs for randomized algorithms
 - across problem instances

Algorithm Configuration: General Case

Difference to "standard" blackbox optimization

- Categorical parameters
- Distribution of costs
 - across multiple repeated runs for randomized algorithms
 - across problem instances
- Can terminate unsuccessful runs early

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration ParamILS: Iterated Local Search in Configuration Space "Real-World" Applications of ParamILS

3. Model-Based Search for Algorithm Configuration

4. Conclusions

1. Problem Definition & Intuition

2. Model-Free Search for Algorithm Configuration ParamILS: Iterated Local Search in Configuration Space "Real-World" Applications of ParamILS

- 3. Model-Based Search for Algorithm Configuration
- 4. Conclusions

Simple manual approach for configuration

Start with some parameter configuration

Simple manual approach for configuration

Start with some parameter configuration

Modify a single parameter

Start with some parameter configuration

Modify a single parameter **if** results on benchmark set improve **then** $_$ keep new configuration Start with some parameter configuration

repeat

Modify a single parameter **if** results on benchmark set improve **then** _ keep new configuration

until no more improvement possible (or "good enough")

Start with some parameter configuration

repeat

Modify a single parameter if results on benchmark set improve then _ keep new configuration

until no more improvement possible (or "good enough")

~ Manually-executed local search

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ Perform *subsidiary local search* on θ
Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ Perform subsidiary local search on θ While tuning time left: $\begin{vmatrix} \theta' := \theta \\ \text{Perform perturbation on } \theta \\ \text{Perform subsidiary local search on } \theta \end{vmatrix}$

Iterated Local Serach in parameter configuration space:

Choose initial parameter configuration θ Perform *subsidiary local search* on θ While tuning time left: $\theta' := \theta$ Perform *perturbation* on θ Perform *subsidiary local search* on θ Based on *acceptance criterion*, keep θ or revert to $\theta := \theta'$

Iterated Local Serach in parameter configuration space:

```
Choose initial parameter configuration \theta

Perform subsidiary local search on \theta

While tuning time left:

\theta' := \theta

Perform perturbation on \theta

Perform subsidiary local search on \theta

Based on acceptance criterion,

keep \theta or revert to \theta := \theta'

With probability p<sub>restart</sub> randomly pick new \theta
```

→ Performs biased random walk over local optima

How to evaluate each configuration?

- BasicILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Blocking: use same N (instance, seed) pairs for each heta

How to evaluate each configuration?

- BasicILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Blocking: use same N (instance, seed) pairs for each heta
- FocusedILS: adaptive choice of $N(\theta)$
 - small N(heta) for poor configurations heta
 - large N(heta) only for good heta

How to evaluate each configuration?

- BasicILS(N): perform fixed number of N runs to evaluate a configuration θ
 - Blocking: use same N (instance, seed) pairs for each heta
- FocusedILS: adaptive choice of $N(\theta)$
 - small N(heta) for poor configurations heta
 - large $N(\theta)$ only for good θ
 - typically outperforms BasicILS

Empirical Comparison to Previous Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, '06]

- Based on fractional factorial designs
- Limited to continuous parameters
- Limited to 5 parameters

Empirical Comparison to Previous Configuration Procedure

CALIBRA system [Adenso-Diaz & Laguna, '06]

- Based on fractional factorial designs
- Limited to continuous parameters
- Limited to 5 parameters

Empirical comparison

- FocusedILS typically did better, never worse
- More importantly, much more general

Adaptive Choice of Cutoff Time

Evaluation of poor configurations takes especially long

Adaptive Choice of Cutoff Time

- Evaluation of poor configurations takes especially long
- Can terminate evaluations early
 - Incumbent solution provides bound
 - Can stop evaluation once bound is reached

Adaptive Choice of Cutoff Time

- Evaluation of poor configurations takes especially long
- Can terminate evaluations early
 - Incumbent solution provides bound
 - Can stop evaluation once bound is reached
- Results
 - Provably never hurts
 - Sometimes substantial speedups (factor 10)

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration ParamILS: Iterated Local Search in Configuration Space "Real-World" Applications of ParamILS
- 3. Model-Based Search for Algorithm Configuration
- 4. Conclusions

- \blacktriangleright Recall: 63 parameters, 1.78×10^{38} possible configurations
- Ran FocusedILS for 2 days on 10 machines

- ▶ Recall: 63 parameters, 1.78×10^{38} possible configurations
- Ran FocusedILS for 2 days on 10 machines
- Compared against default

"A great deal of algorithmic development effort has been devoted to establishing default ILOG CPLEX parameter settings that achieve good performance on a wide variety of MIP models." [CPLEX 10.0 user manual, page 247]

- ▶ Recall: 63 parameters, 1.78×10^{38} possible configurations
- Ran FocusedILS for 2 days on 10 machines
- Compared against default

"A great deal of algorithmic development effort has been devoted to establishing default ILOG CPLEX parameter settings that achieve good performance on a wide variety of MIP models." [CPLEX 10.0 user manual, page 247]

Combinatorial auctions: 7-fold speedup

- ▶ Recall: 63 parameters, 1.78×10^{38} possible configurations
- Ran FocusedILS for 2 days on 10 machines
- Compared against default

"A great deal of algorithmic development effort has been devoted to establishing default ILOG CPLEX parameter settings that achieve good performance on a wide variety of MIP models." [CPLEX 10.0 user manual, page 247]

Combinatorial auctions: 7-fold speedup

Mixed integer knapsack: 23-fold speedup

SAT (propositional satisfiability problem)

- Prototypical \mathcal{NP} -hard problem
- Interesting theoretically and in practical applications

SAT (propositional satisfiability problem)

- Prototypical \mathcal{NP} -hard problem
- Interesting theoretically and in practical applications

Formal verification

- Bounded model checking
- Software verification
- Recent progress based on SAT solvers

SAT (propositional satisfiability problem)

- Prototypical \mathcal{NP} -hard problem
- Interesting theoretically and in practical applications

Formal verification

- Bounded model checking
- Software verification
- Recent progress based on SAT solvers

Spear, tree search solver for industrial SAT instances

- 26 parameters, 8.34×10^{17} configurations

Ran FocusedILS for 2 days on 10 machines

- Ran FocusedILS for 2 days on 10 machines
- Compared to manually-engineered default
 - 1 week of performance tuning
 - competitive with the state of the art

- Ran FocusedILS for 2 days on 10 machines
- Compared to manually-engineered default
 - 1 week of performance tuning
 - competitive with the state of the art

- Ran FocusedILS for 2 days on 10 machines
- Compared to manually-engineered default
 - 1 week of performance tuning
 - competitive with the state of the art

► SAPS, local search for SAT

 $\rightsquigarrow\,$ 8-fold and 130-fold speedup

► SAPS, local search for SAT
 → 8-fold and 130-fold speedup

► SAT4J, tree search for SAT → 11-fold speedup

- ► SAPS, local search for SAT → 8-fold and 130-fold speedup
- SAT4J, tree search for SAT
 11-fold speedup
- ▶ GLS⁺ for Most Probable Explanation (MPE) problem \rightarrow > 360-fold speedup

- ► SAPS, local search for SAT → 8-fold and 130-fold speedup
- SAT4J, tree search for SAT

 \rightsquigarrow 11-fold speedup

- ► GLS⁺ for Most Probable Explanation (MPE) problem → > 360-fold speedup
- Applications by others
 - Protein folding [Thatchuk, Shmygelska & Hoos '07]
 - Time-tabling [Fawcett, Hoos & Chiarandini '09]
 - Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown '09]

- ► SAPS, local search for SAT → 8-fold and 130-fold speedup
- SAT4J, tree search for SAT

 \rightsquigarrow 11-fold speedup

- ► GLS⁺ for Most Probable Explanation (MPE) problem → > 360-fold speedup
- Applications by others
 - Protein folding [Thatchuk, Shmygelska & Hoos '07]
 - Time-tabling [Fawcett, Hoos & Chiarandini '09]
 - Local Search for SAT [Khudabukhsh, Xu, Hoos, & Leyton-Brown '09]
 - → demonstrates versatility & maturity

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration
- 3. Model-Based Search for Algorithm Configuration State of the Art Improvements for Stochastic Blackbox Optimization Beyond Stochastic Blackbox Optimization
- 4. Conclusions

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration

- So far: discussed local search approach
- Now: alternative choice, based on predictive models

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration

- So far: discussed local search approach
- Now: alternative choice, based on predictive models
 - Model-based optimization was less well developed
 - \rightsquigarrow emphasis on methodological improvements

Model-Based Optimization: Motivation

Fundamentally different approach for algorithm configuration

- So far: discussed local search approach
- Now: alternative choice, based on predictive models
 - Model-based optimization was less well developed
 - \rightsquigarrow emphasis on methodological improvements
- In then end: state-of-the-art configuration tool

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration

3. Model-Based Search for Algorithm Configuration State of the Art

Improvements for Stochastic Blackbox Optimization Beyond Stochastic Blackbox Optimization

4. Conclusions

Model-Based Deterministic Blackbox Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

Model-Based Deterministic Blackbox Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

1. Get response values at initial design points

Model-Based Deterministic Blackbox Optimization (BBO)

EGO algorithm [Jones, Schonlau & Welch '98]

1. Get response values at initial design points

- 1. Get response values at initial design points
- 2. Fit a model to the data

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point
- 4. Repeat 2. and 3. until time is up

- 1. Get response values at initial design points
- 2. Fit a model to the data
- 3. Use model to pick most promising next design point
- 4. Repeat 2. and 3. until time is up

Stochastic Blackbox Optimization (BBO): State of the Art

Extensions of EGO algorithm for stochastic case

- Sequential Parameter Optimization (SPO)

[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

- Sequential Kriging Optimization (SKO)

[Huang, Allen, Notz & Zeng, '06]

Stochastic Blackbox Optimization (BBO): State of the Art

Extensions of EGO algorithm for stochastic case

- Sequential Parameter Optimization (SPO)

[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

- Sequential Kriging Optimization (SKO)

[Huang, Allen, Notz & Zeng, '06]

Application domain for stochastic BBO

- Randomized algorithms with continuous parameters
- Optimization for single instances

Stochastic Blackbox Optimization (BBO): State of the Art

Extensions of EGO algorithm for stochastic case

- Sequential Parameter Optimization (SPO)

[Bartz-Beielstein, Preuss, Lasarczyk, '05-'09]

- Sequential Kriging Optimization (SKO)

[Huang, Allen, Notz & Zeng, '06]

Application domain for stochastic BBO

- Randomized algorithms with continuous parameters
- Optimization for single instances

Empirical Evaluation

SPO more robust

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration
- Model-Based Search for Algorithm Configuration State of the Art Improvements for Stochastic Blackbox Optimization Beyond Stochastic Blackbox Optimization
- 4. Conclusions

I: Studied SPO components

- Improved component: "intensification mechanism"
 - Increase $N(\theta)$ similarly as in FocusedILS
 - Improved robustness

I: Studied SPO components

- Improved component: "intensification mechanism"
 - Increase $N(\theta)$ similarly as in FocusedILS
 - Improved robustness

II: Better Models

- Compared various probabilistic models
 - Model SPO uses
 - Approximate Gaussian process (GP)
 - Random forest (RF)

I: Studied SPO components

- Improved component: "intensification mechanism"
 - Increase $N(\theta)$ similarly as in FocusedILS
 - Improved robustness

II: Better Models

- Compared various probabilistic models
 - Model SPO uses
 - Approximate Gaussian process (GP)
 - Random forest (RF)
- New models much better
 - Resulting configuration procedure: ActiveConfigurator
 - Improved state of the art for model-based stochastic BBO

I: Studied SPO components

- Improved component: "intensification mechanism"
 - Increase $N(\theta)$ similarly as in FocusedILS
 - Improved robustness

II: Better Models

- Compared various probabilistic models
 - Model SPO uses
 - Approximate Gaussian process (GP)
 - Random forest (RF)
- New models much better
 - Resulting configuration procedure: ActiveConfigurator
 - Improved state of the art for model-based stochastic BBO
 - Randomized algorithm with continuous parameters
 - Optimization for single instances

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration
- 3. Model-Based Search for Algorithm Configuration

State of the Art Improvements for Stochastic Blackbox Optimization Beyond Stochastic Blackbox Optimization

4. Conclusions

Extension I: Categorical Parameters

Models that can handle categorical inputs

- Random forests: out of the box
- Extended (approximate) Gaussian processes
 - new kernel based on weighted Hamming distance

Extension I: Categorical Parameters

Models that can handle categorical inputs

- Random forests: out of the box
- Extended (approximate) Gaussian processes
 - new kernel based on weighted Hamming distance

Application domain

- Algorithms with categorical parameters
- Single instances

Extension I: Categorical Parameters

Models that can handle categorical inputs

- Random forests: out of the box
- Extended (approximate) Gaussian processes
 - new kernel based on weighted Hamming distance

Application domain

- Algorithms with categorical parameters
- Single instances

Empirical evaluation

ActiveConfigurator outperformed FocusedILS

Extension II: Multiple Instances

Models incorporating multiple instances

- Can still learn probabilistic models of algorithm performance
- Model inputs:
 - algorithm parameters
 - instance features

Extension II: Multiple Instances

Models incorporating multiple instances

- Can still learn probabilistic models of algorithm performance
- Model inputs:
 - algorithm parameters
 - instance features

General algorithm configuration

- Algorithms with categorical parameters
- Multiple instances

Extension II: Multiple Instances

Models incorporating multiple instances

- Can still learn probabilistic models of algorithm performance
- Model inputs:
 - algorithm parameters
 - instance features

General algorithm configuration

- Algorithms with categorical parameters
- Multiple instances

Empirical evaluation

- ActiveConfigurator never worse than FocusedILS
- Overall: model-based approaches very promising

- 1. Problem Definition & Intuition
- 2. Model-Free Search for Algorithm Configuration
- 3. Model-Based Search for Algorithm Configuration
- 4. Conclusions

Algorithm configuration

- Is a high-dimensional optimization problem
 - Can be solved by automated approaches
 - Sometimes much better than by human experts

Algorithm configuration

- Is a high-dimensional optimization problem
 - Can be solved by automated approaches
 - Sometimes much better than by human experts
- Can cut development time & improve results

Algorithm configuration

- Is a high-dimensional optimization problem
 - Can be solved by automated approaches
 - Sometimes much better than by human experts
- Can cut development time & improve results

Scaling to very complex problems allows us to

- Build very flexible algorithm frameworks

Algorithm configuration

- Is a high-dimensional optimization problem
 - Can be solved by automated approaches
 - Sometimes much better than by human experts
- Can cut development time & improve results

Scaling to very complex problems allows us to

- Build very flexible algorithm frameworks
- Apply automated tool to instantiate framework
 Generate custom algorithms for different problem types

Blackbox approaches

- Very general
- Can be used to optimize your parameters

Comprehensive study of the algorithm configuration problem

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches

Comprehensive study of the algorithm configuration problem

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches

Comprehensive study of the algorithm configuration problem

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - Model-free Iterated Local Search approach

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - Model-free Iterated Local Search approach
 - Improved & Extended Sequential Model-Based Optimization
- Demonstrated practical relevance of algorithm configuration

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - Model-free Iterated Local Search approach
 - Improved & Extended Sequential Model-Based Optimization
- Demonstrated practical relevance of algorithm configuration

- Empirical analysis of configuration scenarios
- Two fundamentally different solution approaches
 - Model-free Iterated Local Search approach
 - Improved & Extended Sequential Model-Based Optimization
- Demonstrated practical relevance of algorithm configuration
 - CPLEX: up to 23-fold speedup
 - SPEAR: 500-fold speedup for software verification

Comprehensive study of the algorithm configuration problem

Empirical analysis of configuration scenarios

[Ready for submission]

Two fundamentally different solution approaches

- Model-free Iterated Local Search approach [AAAI'07]
- Improved & Extended Sequential Model-Based Optimization [GECCO'09; EMAA'09]

- CPLEX: up to 23-fold speedup [JAIR'09]
- SPEAR: 500-fold speedup for software verification [FMCAD'07]

Important Directions for the Next Few Years

- Improve configuration procedures from practical point of view
 - Mixed categorical/numerical optimization
 - Make easier to use off the shelf

Important Directions for the Next Few Years

Improve configuration procedures from practical point of view

- Mixed categorical/numerical optimization
- Make easier to use off the shelf
- More sophisticated model-based methods
 - Use model to select most informative instance
 - Use model to select best cutoff time
 - Per-instance setting of parameters

Important Directions for the Next Few Years

Improve configuration procedures from practical point of view

- Mixed categorical/numerical optimization
- Make easier to use off the shelf
- More sophisticated model-based methods
 - Use model to select most informative instance
 - Use model to select best cutoff time
 - Per-instance setting of parameters
- Explore other fields of applications

Thanks to

- Supervisory committee
 - Holger Hoos (supervisor)
 - Kevin Leyton-Brown (co-supervisor)
 - Kevin Murphy (co-supervisor)
 - Alan Mackworth
- Further collaborators
 - Domagoj Babić
 - Thomas Bartz-Beielstein
 - Youssef Hamadi
 - Alan Hu
 - Thomas Stützle
 - Dave Tompkins
 - Lin Xu
- LCI and BETA lab faculty and students