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Abstract
The best-performing algorithms for many hard problems are highly parameterized. Selecting
the best heuristics and tuning their parameters for optimal overall performance is often a
difficult, tedious, and unsatisfying task. This thesis studies the automation of this important part
of algorithm design: the configuration of discrete algorithm components and their continuous
parameters to construct an algorithm with desirable empirical performance characteristics.

Automated configuration procedures can facilitate algorithm development and be applied
on the end user side to optimize performance for new instance types and optimization objec-
tives. The use of such procedures separates high-level cognitive tasks carried out by humans
from tedious low-level tasks that can be left to machines.

We introduce two alternative algorithm configuration frameworks: iterated local search in
parameter configuration space and sequential optimization based on response surface models.
To the best of our knowledge, our local search approach is the first that goes beyond local
optima. Our model-based search techniques significantly outperform existing techniques and
extend them in ways crucial for general algorithm configuration: they can handle categorical
parameters, optimization objectives defined across multiple instances, and tens of thousands
of data points.

We study how many runs to perform for evaluating a parameter configuration and how to
set the cutoff time, after which algorithm runs are terminated unsuccessfully. We introduce
data-driven approaches for making these choices adaptively, most notably the first general
method for adaptively setting the cutoff time.

Using our procedures—to the best of our knowledge still the only ones applicable to
these complex configuration tasks—we configured state-of-the-art tree search and local search
algorithms for SAT, as well as CPLEX, the most widely-used commercial optimization tool for
solving mixed integer programs (MIP). In many cases, we achieved improvements of orders
of magnitude over the algorithm default, thereby substantially improving the state of the art in
solving a broad range of problems, including industrially relevant instances of SAT and MIP.

Based on these results, we believe that automated algorithm configuration procedures, such
as ours, will play an increasingly crucial role in the design of high-performance algorithms
and will be widely used in academia and industry.
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introduced the application to CPLEX and has been accepted for publication at JAIR (Hutter
et al., 2009c). That article contains much of the material in Chapters 5, 7, and 8.

Chapter 6 is based on joint work with Domagoj Babić, Holger Hoos, and Alan Hu that
appeared at FMCAD-07 (Hutter et al., 2007a). Domagoj deserves credit for much of the
research presented in that chapter; it is based on a joint case study, in which he played the role
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Chapter 4 is based on joint work with Holger Hoos and Kevin Leyton-Brown, which is
about to be submitted for publication (Hutter et al., 2009d). Thomas Stützle provided valuable
feedback on an early draft of that work.

Chapters 9 and 10 are primarily based on a conference publication at GECCO-09 (Hutter
et al., 2009e), co-authored by Holger Hoos, Kevin Leyton-Brown, and Kevin Murphy, as well
as a book chapter with the same co-authors and Thomas Bartz-Beielstein (Hutter et al., 2009a).

Chapters 11 through 13 are all based on yet-unpublished joint work with Holger Hoos,
Kevin Leyton-Brown, and Kevin Murphy.
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publications with Lin Xu, Holger Hoos, and Kevin Leyton-Brown on per-instance algorithm
selection (Xu et al., 2007b, 2008) fall into the same category. The SAT instance features we
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Part I

Algorithm Configuration: The
Problem

—in which we introduce and motivate the algorithm config-
uration problem and discuss related work
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Chapter 1

Introduction
Civilization advances by extending the number of important operations
which we can perform without thinking of them.
—Alfred North Whitehead, English mathematician and philosopher

Parameterized algorithms are abundant in computer science and its applications. For many
computational problems, there exist a wide array of solution approaches, and it is the task
of computer scientists to identify the one that best matches the domain-specific user require-
ments. Typically, once a general solution approach has been chosen, there are a number of
subsequent lower-level choices to be made before arriving at a complete algorithm speci-
fication. Often, some of those choices are left open; these free parameters allow users to
adapt the algorithm to their particular scenario. Particularly, this is the case for the heuristic
algorithms used for solving computationally hard problems. As an example, consider CPLEX,
the most widely used commercial optimization tool for solving mixed integer programming
problems.1 Its latest version, 11.2, has about 80 parameters that affect the solver’s search
mechanism and can be configured by the user. Other examples of parameterized algorithms
can be found in areas as diverse as sorting (Li et al., 2005), linear algebra (Whaley et al.,
2001), numerical optimization (Audet and Orban, 2006), compiler optimization (Cavazos
and O’Boyle, 2005), parallel computing (Brewer, 1995), computer vision (Muja and Lowe,
2009), machine learning (Maron and Moore, 1994; Kohavi and John, 1995), database query
optimization (Stillger and Spiliopoulou, 1996), database server optimization (Diao et al.,
2003), protein folding (Thachuk et al., 2007), formal verification (Hutter et al., 2007a), and
even in areas far outside of computer science, such as water resource management (Tolson
and Shoemaker, 2007).

In this thesis, we adopt a very general notion of what constitutes an algorithm parameter.
This notion includes numerical parameters (e.g., level of a real-valued threshold); ordinal
parameters (e.g., low, medium, high); and categorical parameters (e.g., choice of heuristic),
with the frequent special case of binary parameters (e.g., algorithm component active/inactive).
Note that categorical parameters can be used to select and combine discrete building blocks of
an algorithm (e.g., preprocessing and variable ordering heuristics in a SAT solver). Conse-
quently, our general view of algorithm configuration includes the automated construction of

1http://www.ilog.com/products/cplex/
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Figure 1.1: Visualization of algorithm configuration. A configuration procedure executes the
target algorithm with specified parameter settings on one or more problem instances, receives
information about algorithm performance, and uses this information to decide about target
algorithm runs to perform subsequently. A configuration scenario includes the target algorithm
to be configured and a collection of instances.

a heuristic algorithm from such building blocks. Thus, while other authors have referred to
the optimization of an algorithm’s performance by setting its (typically few and numerical)
parameters as parameter tuning, we deliberately use the term algorithm configuration to
emphasize our focus on configuring algorithms with potentially many, partially categorical
algorithm parameters. (We discuss related work on parameter tuning in Chapter 2.)

To avoid potential confusion between algorithms whose performance is optimized and
algorithms used for carrying out this optimization task, we refer to the former as target
algorithms and the latter as configuration procedures. We refer to instances of the algorithm
configuration problem as configuration scenarios. This setup is illustrated in Figure 1.1. Note
that we treat algorithm configuration as a black-box optimization problem: our configuration
procedures execute the target algorithm on a problem instance and receive feedback about the
algorithm’s performance; yet, they do not have access to any internal state of the algorithm
(unless it is part of the optimization objective and encoded in the performance measure).
This leads to a clean interface and considerably eases the application of our methods to the
configuration of new algorithms. Different variants of parameter optimization problems have
been considered in the literature, including setting parameters on a per-instance basis and
modifying the parameters while the algorithm is running; we defer a discussion of these
approaches to Chapter 2.

Whether manual or automated, effective configuration procedures are central in the de-
velopment of heuristic algorithms for many classes of problems, particularly for NP-hard
problems. Algorithms with state-of-the-art empirical performance for such problems tend to
be highly heuristic, and their behaviour and efficiency depends strongly and in complex ways
on their parameters. They often combine a multitude of approaches and feature a correspond-
ingly large and structured parameter space (see, e.g., the aforementioned solver CPLEX or
many state-of-the-art solvers for SAT). In this area, algorithm configuration is crucial, as the
runtime of weak and strong algorithms regularly differs by several orders of magnitude on the
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same problem instances. Existing theoretical techniques are typically not powerful enough to
determine whether one parameter configuration is superior to another, and so the algorithm
designer typically relies on manual empirical evaluation to determine the best configuration.

Hence, in this thesis, we propose automated methods for algorithm configuration. We
hope that such methods will spare researchers and practitioners most of the countless (and
often futile) hours spent manually experimenting with different heuristics and “tweaking
parameters”. As we will demonstrate in Chapters 6 and 8, these automated configuration
procedures have already improved the performance of state-of-the-art algorithms for a variety
of problems.

The concepts and approaches we introduce in this thesis are not restricted to the configura-
tion of algorithms for solving hard combinatorial problems. Conversely, the issue of setting
an algorithm’s parameters to achieve good performance is almost omnipresent in algorithmic
problem solutions. There already exists a host of domains for which automated configuration
procedures have been applied successfully—we review these in Chapter 2. However, most
existing work has applied methods geared specifically towards particular applications. We
believe that more general freely-available algorithm configuration procedures could benefit
research in most areas of computer science.

In the remainder of this chapter, we motivate the algorithm configuration problem further,
define the problem formally, summarize the main contributions of our work, and outline the
remainder of the thesis.

1.1 Motivation for Automated Algorithm Configuration
Our main motivation for developing generally-applicable automated procedures for algorithm
configuration is (1) the potential to replace the most tedious and unrewarding part of traditional
algorithm design with an automated process that leads to better results in a fraction of the time.
In particular, automated configuration procedures pave the way for a paradigm of automated
algorithm design from components. Automated algorithm configuration can also be used to
(2) replace its manual counterpart on the end-user side of a complex algorithm, and (3) in
order to enable fairer comparisons between algorithms.

In order to motivate the automated configuration of such algorithms, we first describe the
traditional, manual approach to algorithm design (see also Hoos, 2008). We then show how
this process can be improved by means of automated algorithm configuration.

1.1.1 Traditional, Manual Algorithm Design
State-of-the-art algorithms for solving computationally hard problems are traditionally con-
structed in an iterative, manual process in which the designer gradually introduces or modifies
components or mechanisms. The performance resulting from these modifications is then
evaluated empirically, typically based on rather small-scale experiments (small and fairly easy
sets of benchmark problems, and comparably small cutoff times are typically used to limit the
time required). Based on these experiments, some of the degrees of freedom—typically those
the algorithm designer is most uncertain about—are exposed as parameters, while most others
are hard-coded and usually never re-considered for modification.
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When the iterative design process continues for an extended period of time the considered
space of potential algorithm designs can rapidly grow unwieldy. This is particularly the case
when the number of exposed parameters is not pruned to remain small throughout the process.
An extreme example for this is the commercial optimization tool CPLEX, which—during its
20-year history—has exposed more and more parameters, leading to over 80 user-controllable
parameters in version 10.1. Identifying the best design choices in such an immense design
space requires substantial knowledge about the heuristic algorithm components and their
interactions, which is far beyond what can be expected from a typical user. In fact, even the
algorithm designers themselves often cannot solve this complex problem very well (Hutter
et al., 2007a).

During the development of a typical high-performance algorithm there is only time to
consider a few different algorithm designs (i.e., combinations of parameter settings). This
is because even small-scale empirical evaluations require a considerable amount of time,
and experiments generally have to be launched manually. Instead of rigidly following an
experimental design strategy (e.g., outlined in Crary and Spera, 1996), the designs to be
evaluated are typically chosen in an ad hoc fashion based on the intuition of the algorithm
designer whenever a new feature is implemented. In particular, single design choices are often
evaluated in isolation, with all other choices fixed, implicitly—and falsely—assuming that
design choices do not interact.

Such experiments often lead algorithm designers to make unjustified generalizations, such
as “algorithms using component A1 perform better than algorithms using component A2”.
If these components have only been empirically compared based on fixed instantiations of
other design choices, (e.g., B2, C1, D3), then all that can be claimed is that, for the particular
problem set used, A1 performs better in combination with the remaining design choices (B2,
C1, D3) than does A2. Since design choices often interact in complex and nonintuitive ways
that are hard to grasp by human designers, the manual process is likely to miss the best
combination of design choices (e.g., A2, B2, C3, D2).

In contrast to humans, computer-aided mechanisms tend to perform well at such complex
high-dimensional optimization tasks with many interdependent decisions. This very reason has
brought success to the fields of operations research and constraint programming; the ability to
efficiently handle complex high-dimensional data has also led to some of the most impressive
success stories in artificial intelligence. As an analogy, consider Sudoku puzzles. While
humans can in principle solve these, computer algorithms can do so much more efficiently.
While Sudoku is a fun exercise for the brain, countless days of experimenting with different
heuristics and parameter settings is not; quite the contrary, it holds researchers (often graduate
students) back from spending their time with more meaningful problems (or at the beach, for
that matter). More importantly, this manual experimentation is unlikely to fully realize the
potential of a given algorithm. For this reason, we advocate the use of automated algorithm
configuration tools whenever possible; in the next section, we outline a number of potential
uses.
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1.1.2 Automated Algorithm Design from Components
Efficient approaches for automated algorithm configuration pave the way for a paradigm
of automated algorithm design from components. In this paradigm, the algorithm designer
implements a high-level parameterized framework with interchangeable algorithm components,
as well as a set of high-performance (parameterized) algorithm components that can instantiate
the various parts of the framework. Then, he chooses a type of problem instances and a
performance metric to be minimized (e.g., cost, operational risk, or undesirable impacts on the
environment) and applies an automated algorithm configuration procedure to search for the
framework instantiation that empirically optimizes the metric on the chosen type of instances.

This semi-automated process has the advantage of a clean separation between high-level
cognitive tasks performed by human designers and end users on the one hand and tedious
low-level tasks that can be left to machines2 on the other hand. High-level cognitive tasks
include the conceptual design of the algorithm framework and the specification of which
algorithm components should be considered (and which lower-level parameters should be
exposed for tuning). Together, these high-level design choices comprise the design space that
is later searched by automated procedures. Further high-level choices concern the selection of
a problem distribution and a performance metric of interest. These can in fact be left to the
end user: she simply calls an automated configuration procedure to search the design space
(defined by the algorithm designer) in order to generate an algorithm optimizing the objective
she specified. If her objective or instance distribution ever changes, she can simply repeat the
automated procedure with a modified objective to generate an algorithm customized for the
new problem.

Note that this process of automated algorithm design from components has in fact already
been demonstrated to yield new state-of-the-art algorithms. In particular, we automatically
constructed different instantiations of the SPEAR algorithm and thereby substantially improved
the state of the art for two sets of SAT-encoded industrial verification problems (Hutter et al.,
2007a). The SATENSTEIN framework of local search algorithms for SAT by KhudaBukhsh
et al. (2009) took this process to the extreme, combining a multitude of components from
various existing local search algorithms. Both SPEAR and SATENSTEIN were configured
using ParamILS, one of the automated configuration procedures we introduce in this thesis
(see Chapter 5). We provide full details on the configuration of SPEAR in Chapter 6 and
review the SATENSTEIN application in Section 8.3.1. We hope that automated algorithm
configuration procedures will become a mainstream technique in the design of algorithms;
they have the potential to significantly speed up and improve this process.

1.1.3 Practical End Use of Algorithms
The end use of existing state-of-the-art algorithms is often complicated by the fact that these
algorithms are highly parameterized. This is aggravated by the fact that the ability of complex
heuristic algorithms to solve large and hard problem instances often depends critically on the
use of parameter settings suitable for the particular type of problem instances. End users have

2For the time being, these tasks are addressed by human-designed automated approaches carried out on
machines.
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two options: to use the default parameter configuration and hope for the best or to invest time
in exploring the space of possible parameter configurations.

End users often opt to use the default algorithm configuration, since they typically have
little or no knowledge about the algorithm’s parameter configuration space and little time to
explore alternative parameter configurations. However, even if it has been carefully optimized
on a standard benchmark set, a default configuration typically does not perform as well on the
particular problem instances encountered by a user as a parameter configuration developed
specifically with that type of instances in mind.

In situations where the default configuration does not yield satisfactory performance end
users are forced to experiment with different parameters. For example, the ILOG CPLEX

manual states this explicitly:

“Integer programming problems are more sensitive to specific parameter settings,
so you may need to experiment with them.” (ILOG CPLEX 10.0 user manual,
page 130)

Such experimentation requires expertise in the heuristic methods the algorithm is based on
and experience in their empirical evaluation, which is not necessarily available on the end
user’s side. Most importantly, it is simply very time-consuming. As a consequence, shortcuts
are often taken and suboptimal parameter settings are used, which can result in solutions far
worse than possible. This leads to an opportunity cost in the metric being minimized.

1.1.4 Scientific Studies of Algorithm Performance
A central question in empirical comparisons of algorithms is whether one algorithm out-
performs another one because it is fundamentally superior, or because its developers more
successfully optimized its parameters (Johnson, 2002). In principle, similar efforts should be
exerted for configuring (or tuning) all algorithms participating in a “horse-race” comparison.
In practice, however, algorithm designers are most familiar with their own algorithm, say A,
and often invest considerable manual effort to tune it. Even if a competitor algorithm, B,
exposes a set of parameters and even if the designers of A invest the same amount of effort
for tuning B as they did for A (both of which are desirable but not always true in practice),
they can still be expected to do better at tuning A. This is because they are more familiar with
A and have a better intuition about the importance of each of its parameters and about good
ranges for continuous parameters.

In contrast, using a generally-applicable configuration procedure can mitigate this problem
of unfair tuning and thus facilitate more meaningful comparative studies. One would simply
run an automated configurator for a prespecified amount of time for each algorithm of interest
and then compare the found instantiations of these algorithms against each other. In contrast to
the manual configuration of each competitor algorithm, the use of an automated configuration
method also is a well-defined and repeatable process.

However, we note that absolute fairness might be hard to achieve. One challenge is that the
time allowed for configuration can have a strong influence on the outcome of comparisons. For
example, think of a comparison between a robust (basically) parameter-less algorithm A and a
heavily parameterized algorithm B that strongly depends on a configurator to instantiate it for
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a given domain. It can be expected that for short configuration timesA outperformsB whereas
a specialized configuration of B found given a long enough configuration time outperforms
A. Of course, different configuration procedures might also do better at configuring different
algorithms.

A further potential use of algorithm configuration procedures is for identifying which types
of parameter configurations do well for which types of instances. The model-based approaches
we investigate in Part IV of this thesis show particular promise for linking the performance of
algorithm components to characteristics of the instance at hand. Such insights may lead to new
scientific discoveries and further improve algorithm performance for important subclasses of
problems. They may also guide the (human part of the) algorithm design process.

On the theoretical side, the study of algorithm behaviour with different parameter con-
figurations can yield important insights that may help characterize which core components
of an algorithm are effective for solving various kinds of problem instances. Similar to lab
experiments in the natural sciences, empirical studies can help build intuition and inspire new
theoretical results, such as probabilistic algorithm guarantees (Hoos, 1999b). Furthermore,
note that it is entirely possible to automatically configure algorithms with certain theoretical
performance guarantees. This can be achieved by defining the parameter configuration space
such that all allowed configurations have these guarantees (Hoos, 2008). Finally, if an auto-
mated method could be devised to check whether a certain theoretical property holds for a
given configuration (or which out of a set of properties hold), the same methods we discuss in
this thesis could be used to search for a configuration with the desirable properties.

1.2 Problem Definitions and Notation
The central topic of this thesis is the algorithm configuration problem. This problem can be
informally stated as follows: given an algorithm, a set of parameters for the algorithm, and a
set of input data, find parameter values under which the algorithm achieves the best possible
performance on the input data.

Before we define this problem more formally, we first introduce some notation and
relate the problem to standard blackbox function optimization problems. Let A denote an
algorithm, and let θ1, . . . , θk be parameters of A. We denote the domain of possible values
for each parameter θi as Θi; these domains can be infinite (as for continuous and unbounded
integer parameters), finite and ordered (ordinal), or finite and unordered (categorical). We use
Θ ⊆ Θ1 × . . .×Θk to denote the space of all feasible parameter configurations, and A(θ) to
denote the instantiation of algorithm A with parameter configuration θ ∈ Θ. Let D denote a
probability distribution over a space Π of problem instances, and denote an element of Π, i.e.,
an individual problem instance, as π. D may be given implicitly, as through a random instance
generator or a distribution over such generators. It is also possible (and indeed common) for Π
to consist of a finite sample of instances. In this case, we define D as the uniform distribution
over Π.
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1.2.1 Blackbox Optimization
Algorithm configuration can be seen as a special type of BlackBox Optimization (BBO)
problem. Deterministic BBO problems are problems of the form

minθ∈Θ f(θ),

where f : Θ→ R is a “blackbox function”: we can query f at arbitrary inputs θ ∈ Θ, and
the only information available about f are its function values at these queried points. In typical
BBO problems, the optimization domain is continuous, that is, Θ = Rd.

In stochastic BBO problems, the (deterministic) function f is replaced with a stochastic
process {Fθ|θ ∈ Θ}, a collection of random variables indexed by θ ∈ Θ. The goal in
stochastic BBO is to find the configuration θ ∈ Θ that optimizes a given statistical parameter,
τ (e.g., the expected value or median), of Fθ’s distribution. Denoting the distribution of Fθ as
P{θ}, stochastic BBO problems are thus of the form

minθ∈Θ τ(P{θ}).

For example, in algorithm configuration, P{θ} might be the runtime distribution of a
randomized algorithm with parameter configuration θ, and τ the expected value. We refer to
P{θ} as the configuration’s cost distribution, to observed samples from that distribution as
single observed costs, oi, and to the statistical parameter, τ , of that cost distribution as overall
cost, c(θ):

c(θ) := τ(P{θ}).

Since objectives differ between applications, we leave the definition of the overall cost,
c(θ), up to the user. For example, we might aim to minimize expected runtime or median
solution cost. In this thesis, we predominantly minimize mean runtime (penalizing timed-out
runs as discussed in Section 3.4).

1.2.2 Algorithm Configuration
Algorithm configuration for deterministic algorithms and single instances can be seen as
a deterministic BBO problem, whereas the configuration of randomized algorithms or the
configuration on distributions with infinite support Π would be a stochastic BBO problem.
Since algorithm parameters are often discrete, in algorithm configuration we usually have
Θ 6= Rd.

Another difference between algorithm configuration and (standard) BBO problems lies in
the fact that the cost distribution, P{θ}, of a parameter configuration, θ, contains structure.
For a fixed combination of a parameter configuration, θ, an instance, π, and a pseudorandom
number seed, s, the observed cost, o(θ, π, s), is deterministic.3 Distribution P{θ} is induced

3This discussion relies on the fact that randomized algorithms typically take a seed for a pseudorandom
number generator as an input. Note that this is an artifact of the way random decisions are implemented in
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by sampling instances π from distribution D and seeds from a uniform distribution, S, over
allowable seeds. The structure in this distribution can, indeed, be exploited. For example,
knowing the runtime of configuration θ1 on an instance can yield important information on
the runtime of configuration θ2 on the same instance. This is even the case for random seeds.
Think of two configurations θ1 and θ2 that only differ in a parameter the algorithm never uses;
given o(θ1, π, s1), we perfectly know o(θ2, π, s1), but not o(θ2, π, s2). We can, for example,
exploit such dependence by performing blocked comparisons (see Section 3.6.1).

Finally, we have an additional degree of freedom in algorithm configuration: at which
cutoff time, κ, to terminate a run that is unsuccessful within time κ. In standard BBO problems,
each function evaluation is assumed to take the same amount of time. In contrast, in algorithm
configuration, runtimes with different configurations can vary substantially. For example,
when minimizing algorithm runtime to solve a given problem, runtimes can differ by many
orders of magnitude across parameter configurations. In order to save time spent in long runs
for poor parameter configurations, we can limit the time for each run by a cutoff time, κ.

With this intuition in mind, we now define the algorithm configuration problem formally.

Definition 1 (Algorithm Configuration Problem). An instance of the algorithm configuration
problem is a 6-tuple 〈A,Θ,D, κmax, o, τ〉, where:

• A is a parameterized algorithm;

• Θ is the parameter configuration space of A;

• D is a distribution over problem instances with some domain Π;

• κmax is a cutoff time (or captime), after which each run of A will be terminated if still
running;

• o is a function that measures the observed cost of runningA(θ) on instance π ∈ Π with
captime κ ∈ R; and

• τ is a statistical population parameter to be optimized.

Examples for o are runtime for solving the instance, or quality of the solution found
within the captime; in the former case, o must also define a cost for runs that do not complete
within the captime. Throughout most of this thesis, we aim to minimize the penalized average
runtime of an algorithm on a distribution of instances, where timeouts after κmax are counted
as a · κmax with a ≥ 1, and τ is the expected value (see Section 3.4 for a discussion of that
choice of optimization objective).

Our problem formulation also allows us to express conditional parameter dependencies.
For example, one algorithm parameter, θ1, might be used to select among several search
components, with component i’s behaviour controlled by further parameters.The values of
those further parameters are irrelevant unless θ1 = i; We thus call such parameters conditional
on the higher-level parameter θ1. The configuration framework we introduce in Part III of
this thesis exploits this and effectively searches the space of equivalence classes in parameter

current algorithms. We can exploit this artifact by making informed decisions about which seeds to employ (as for
example in blocking), but our approaches also work for target algorithms that do not rely on seeds to implement
randomness.
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configuration space. In addition, our formulation supports the specification of infeasible
combinations of parameter values, which are excluded from Θ.

Any parameter configuration θ ∈ Θ is a candidate solution of the algorithm configuration
problem. An algorithm configuration procedure (short: configuration procedure or configura-
tor), is a procedure for solving the algorithm configuration problem. For each configuration, θ,
P{θ} denotes the cost distribution induced by function o, applied to instances π drawn from
distribution D and multiple independent runs for randomized algorithms, using captime κmax.
As in the case of stochastic BBO problems, the cost of a candidate solution θ is defined as

c(θ) := τ(P{θ}), (1.1)

the statistical population parameter, τ , of the cost distribution. An optimal solution, θ∗,
minimizes c(θ), i.e.,

θ∗ ∈ argmin
θ∈Θ

c(θ). (1.2)

We cannot optimize c directly, since we cannot write this function analytically. (In
some special cases, writing the function may actually be possible; here, we use a blackbox
formalization for generality.) Instead, we must execute a sequence of runs R of the target
algorithm A with different parameter configurations, derive empirical estimates of c’s values
at particular points in configuration space, and use them to identify a configuration with low
cost.

We denote the sequence of runs executed by a configurator as R = ((θ1, π1, s1, κ1, o1), . . . ,
(θn, πn, sn, κn, on)). The ith run is described by five values:

• θi ∈ Θ denotes the parameter configuration being evaluated;
• πi ∈ Π denotes the instance on which the algorithm is run;
• si denotes the random number seed used in the run (a constant for algorithms that do

not accept seeds);
• κi ∈ R denotes the run’s captime; and
• oi denotes the observed cost of the run.

Note that each of θ, π, s, κ, and o can vary from one element of R to the next, regardless
of whether or not other elements are held constant. This is in particular the case for κ: we
are free to terminate algorithm runs after any captime κ ≤ κmax, but the eventual cost of a
configuration is always computed using the “full” captime, κmax. Also note that R is typically
constructed sequentially. We denote the ith run of R as R[i], and the subsequence of runs
using parameter configuration θ (i.e., those runs with θi = θ) as Rθ.

We use such sequences of runs, R, in order to estimate the cost, c(θ), of a parameter
configuration θ, both online, during runtime of a configurator, as well as offline, for evaluation
purposes. We now introduce the notion of an empirical cost estimate.

Definition 2 (Empirical Cost Estimate). Given an algorithm configuration problem instance
〈A,Θ,D, κmax, o, τ〉, an empirical cost estimate of cost c(θ) based on a sequence of runs
R = ((θ1, π1, s1, κ1, o1), . . . , (θn, πn, sn, κn, on)) is defined as ĉ(θ,R) := τ̂({oi | θi =
θ}), where τ̂ is the sample statistic analogue to the statistical population parameter τ .
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For example, when c(θ) is mean runtime over a distribution of instances and random number
seeds, ĉ(θ,R) is the sample mean runtime of runs Rθ. We often omit R for brevity of notation
and write ĉN (θ) to emphasize that estimates are based on N runs, that is, |Rθ| = N .

All configuration procedures studied in this thesis are anytime algorithms in the sense that
at all times they keep track of the configuration currently believed to have the lowest cost. We
refer to this configuration as the incumbent configuration, or, short, the incumbent, θinc. We
evaluate a configurator’s performance at time t by means of its incumbent’s training and test
performance, defined as follows.

Definition 3 (Training performance). When at some time t a configurator has performed
a sequence of runs R = ((θ1, π1, s1, κ1, o1), . . . , (θt, πt, st, κt, ot)) to solve an algorithm
configuration problem instance 〈A,Θ,D, κmax, o, τ〉, and has thereby found an incumbent
configuration θinc(t), then its training performance at time t is defined as the empirical cost
estimate ĉ(θinc(t),R). We denote training performance at time t as pt,train.

The set of instances {π1, . . . , πt} discussed above is called the training set. While the true
cost of a parameter configuration cannot be computed exactly, it can be estimated using training
performance. However, the training performance of a configurator is a biased estimator of its
incumbent’s true cost, because the same instances are used for selecting the incumbent as for
evaluating it (see, e.g., Birattari, 2005). In order to achieve unbiased estimates during offline
evaluation, we set aside a fixed set of instances {π′1, . . . , π′T } (called the test set) and random
seeds {s′1, . . . , s′T }, both unknown to the configurator, and use these for evaluation. Note that
test set and training set are disjoint.

Definition 4 (Test performance). At some time t, let a configurator’s incumbent for an
algorithm configuration problem instance 〈A,Θ,D, κmax, o, τ〉 be θinc(t) (this is found
by means of executing a sequence of runs on the training set). Furthermore, let Rtest =
((θinc(t), π

′
1, s
′
1, κmax, o1), . . . , (θinc(t), π

′
T , s
′
T , κmax, oT )) be a sequence of runs on the T

instances and random number seeds in the test set (which is performed offline for evaluation
purposes), then the configurator’s test performance at time t is defined as the empirical cost
estimate ĉ(θinc(t),Rtest). We denote test performance at time t as pt,test, or simply as pt.

Finally, we evaluate predictions, ˆµ(θ), of a parameter configuration’s cost measure, c(θ),
by comparing them to θ’s empirical cost estimate on the entire training set. Since this estimate
is computed offline for validation purposes, we refer to it as validation cost, cvalid(θ).

Definition 5 (Validation cost). For an algorithm configuration problem instance 〈A,Θ,D,
κmax, o, τ〉 and a parameter configuration, θ ∈ Θ, let Rvalid = ((θ, π′1, s

′
1, κmax, o1),

. . . , (θ, π′T , s
′
T , κmax, oT )) be a sequence of runs on the T instances and random number

seeds in the training set (which is performed offline for evaluation purposes). Then, the valida-
tion cost, cvalid(θ), of configuration θ is defined as the empirical cost estimate ĉ(θ,Rvalid).

To provide more intuition for the algorithm configuration problem, we visualize the
joint space of configurations and instances faced by configuration procedures. For finite
configuration spaces, Θ, and training sets, Π, we can imagine the algorithm configuration
problem as a matrix of size |Θ| × |Π|, where entry (i, j) contains the (deterministic) cost
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Figure 1.2: Visualization of algorithm configuration: matrix of runtimes for M = 1 000
configurations and all training instances, Π. Each dot in the matrix represents the runtime of a
configuration on a single instance: darker dots represent shorter runtimes; note that the scale
is logarithmic with base 10. Configurations are sorted by penalized average runtime (PAR, see
Section 3.4) on the training set; instances are sorted by hardness (mean runtime of the |Θ|
configurations, analogously to PAR counting runs that timed out at captime κmax as 10 · κ).

(in this thesis typically runtime) of A(θi) using seed sj on instance πj . For visualization
purposes, we randomly sample a subset of parameter configurations θ ∈ Θ and sort them
by their empirical cost estimate ĉ|Π| across the training set. Likewise, we sort instances by
their hardness across configurations. Figure 1.2 shows two configuration scenarios; the target
algorithms and instance sets used in these scenarios are described in detail in Chapter 3.
Briefly, in CPLEX-REGIONS100 (see Figure 1.2(a)) we optimize CPLEX for a homogeneous set
of MIP-encoded winner determination problems in combinatorial auctions, and in SPEAR-IBM

(see Figure 1.2(b)), we optimize the tree search SAT solver SPEAR for a set of industrial
bounded model-checking instances.

This visualization provides some intuition about how different actual instances of the
algorithm configuration problem can be. For example, in scenario CPLEX-REGIONS100, the
difference between the worst and the best configurations was much higher than for SPEAR-IBM:
the worst sampled configuration did not solve any instance within κmax = 5 seconds whereas
the best configuration solved all. In contrast, in scenario SPEAR-IBM every sampled con-
figuration solved the easiest 50% of the instances and no configuration solved the hardest
30%.

Intuitively, in order to find a configuration that minimizes c(θ), algorithm configuration
procedures sequentially execute runs of the target algorithm, thereby filling in entries of the
runtime matrix (only filling in lower bounds in cases where κ is chosen < κmax and the run
times out). It is not obvious how an automatic algorithm configurator should choose which runs
to perform. Filling in the whole matrix is computationally prohibitive: gathering the data for
the visualization in Figures 1.2(a) and 1.2(b) took 1.5 and 2.5 CPU months, respectively. This
is despite the fact that we only used a small fraction of 1 000 randomly-sampled configuration
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from a very large configuration space, Θ (|Θ| = 1.38 · 1037 for CPLEX and |Θ| = 8.34 · 1017

for SPEAR). In order to best minimize c(θ) within a given time budget, we thus have to make
the following choices:

1. Which sequential search strategy should be used in order to select a sequence of
parameter configurations ~Θ to be evaluated?

2. Which problem instances Πθ′ ⊆ Π should be used for evaluating each element of ~Θ,
and how many runs should be performed for it?

3. Which cutoff time κ should be used for each run?

In combination, these choices define the design space for algorithm configuration pro-
cedures. We therefore refer to them as the dimensions of algorithm configuration. It is not
straight-forward to make the right choices for these dimensions; in essence, the topic of this
thesis is to determine choices that result in effective algorithm configuration procedures. As we
will show throughout, using our configuration procedures we found much better configurations
than the simple random sampling approach, in a fraction of the runtime.

1.3 Summary of Contributions
The main contribution of this thesis is a comprehensive study of the algorithm configuration
problem. This includes an empirical analysis approach to study the characteristics of con-
figuration scenarios, two fundamentally different search frameworks to instantiate the first
dimension of algorithm configuration, various adaptive mechanisms for the second and third
dimensions, and a demonstration of algorithm configuration’s practical relevance. Here, we
describe these in somewhat more detail.

• We introduce and experimentally compare two fundamentally different frameworks
(model-free and model-based search) for the first dimension of algorithm configuration,
the search strategy (Parts III and IV). To the best of our knowledge, our model-free
search mechanism is the first that goes beyond local optima. Our model-based search
techniques significantly outperform existing techniques and are substantially more
widely applicable.

• We introduce the first algorithm configuration procedures capable of configuring algo-
rithms with many categorical parameters, such as CPLEX (63 parameters), SPEAR (26
parameters) and SATENSTEIN (41 parameters) (Chapters 5 and 12). Our first method,
PARAMILS (introduced in Chapter 5), is already in use by other research groups to
configure their algorithms for solving hard combinatorial problems.

• We demonstrate the practical relevance of automated algorithm configuration by using
it to substantially advance the state of the art for solving important types of problem
instances. In particular, we configure the tree search SAT algorithm SPEAR, yielding
4.5-fold and over 500-fold speedups for SAT-encoded industrial hardware and software
verification, respectively (Chapter 6). This amounts to a substantial improvement of the
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state of the art for solving these types of instances. Based on the automated configuration
of the commercial optimization tool CPLEX, we also achieve up to 23-fold speedups
of the state of the art for MIP-encoded problem distributions (Section 8.1). Finally, by
configuring GLS+, we improve the state of the art for solving the MPE problem in
certain types of Bayesian networks by more than a factor of 360 (Section 5.4).

• We empirically analyze the tradeoff between the second and third dimensions of algo-
rithm configuration—how many runs to perform for evaluating each configuration and
how to set the per-run captime (Chapter 4). We demonstrate that there exists no optimal
fixed choice. Thus, we introduce data-driven approaches for making these choices
adaptively. We present three new methods for adaptively selecting the number of runs
to perform for each configuration (Sections 5.3, 10.3.1, and 13.6.1). We also introduce
a general method for adaptively setting the captime—to the best of our knowledge, the
first of its kind (Chapter 7).

• Overall, we offer a thorough and systematic study of algorithm configuration and provide
reliable and scalable configuration procedures that can strongly improve algorithm
performance with minimal manual user effort.

A further contribution stems from the improvements and extensions of model-based sequential
optimization procedures.

• We substantially extend the applicability of model-based search techniques to handle
categorical parameters (Chapter 12) and optimization objectives defined across multiple
problem instances (Chapter 13). Furthermore—in contrast to previous methods—our
techniques scale to configuration scenarios that require tens of thousands of target
algorithm runs (Sections 11.3 and 11.4) and smoothly handle non-Gaussian, non-
stationary observation noise (Section 11.2.1).

1.4 How to Read this Thesis
This thesis provides a comprehensive account of algorithm configuration, organized in a
hierarchical fashion (see next section for the outline). The interested but time-constrained
reader can find chapter summaries at the end of all chapters (except the last) that provide a high-
level overview of the material and are designed to be self-contained. Chapters 2 (Related Work)
and 3 (Configuration Scenarios) can largely serve as reference chapters, while Chapter 4 builds
intuition that is likely of more immediate benefit. Parts III (Chapters 5-8) and IV (Chapters
9-13) are largely decoupled. Part III is likely of more immediate interest to practitioners
looking to use algorithm configuration: it covers a simple algorithm configuration framework
and its various existing practical applications. In contrast, Part IV is likely of more interest
to researchers with a background in blackbox optimization or in statistics/machine learning.
It builds on sequential experimental design methods from the statistics literature, improving
and extending them to create a new framework for general algorithm configuration based on
response surface models. Chapter 14 (Conclusion) puts these two different frameworks into
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perspective; it is somewhat self-contained but points to specific pieces of the thesis to make its
points.

1.5 Thesis Outline
This thesis is organized in five parts. Part I introduces and motivates the algorithm configuration
problem (this current chapter) and discusses related work (Chapter 2).

In Part II, we introduce our sets of algorithm configuration scenarios, which provide the
testing grounds for the configuration procedures we discuss in this thesis. In Chapter 3, we
describe the target algorithms, benchmark instances, and optimization objectives used. In
Chapter 4, we present the empirical analysis techniques that we used to gain insight into the
characteristics of a given algorithm configuration scenario. In this analysis, we focus on the
intricate tradeoffs between the number of parameter configurations we are able to evaluate,
the (fixed) number of instances used for each evaluation and the (fixed) captime after which to
terminate unsuccessful algorithm runs. We show that there exists no optimal fixed tradeoff: the
best number of instances and captime to use differs across algorithm configuration scenarios.

In Part III, we discuss our first set of algorithm configuration procedures, as well as
practical applications of it. This part focuses on model-free search for algorithm configuration,
that is, approaches that directly search the space of parameter configurations without relying
on a predictive model of performance to guide the search.

In Chapter 5, we present a framework for iterated local search (ILS) for algorithm con-
figuration called PARAMILS. ILS is one possible choice for the first dimension of algorithm
configuration (which parameter configurations to evaluate). Our FOCUSEDILS algorithm,
one instantiation of the PARAMILS framework, also implements an adaptive mechanism for
making the second fundamental choice of algorithm configuration (how many algorithm runs
to execute for each parameter configuration).

In Chapter 6, we report a “real-life” application study of PARAMILS. In this case study,
we automatically configured the 26 parameters of the tree search SAT solver SPEAR for large
industrial bounded model checking and software verification instances, achieving 4.5-fold and
500-fold speedups in mean runtime over the manually-engineered default, respectively.

In Chapter 7, we introduce a novel adaptive capping scheme that determines automatically
when poor algorithm runs can be terminated early, thereby providing the first adaptive mech-
anism to instantiate the third and last dimension of algorithm configuration (which captime
should be used for each run).

Finally, in Chapter 8, we report further successful “real-life” applications of PARAMILS,
most notably our application to automatically setting the 63 parameters of CPLEX, the most
complex and heavily parameterized algorithm of which we are aware. Even without using
any explicit domain knowledge, we were able to achieve substantial speedups over the well-
engineered CPLEX default parameter configuration, in some domains exceeding a factor of
ten. We also review other applications of PARAMILS, including an application to automated
algorithm design from parameterized components.
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In Part IV, we explore a fundamentally different choice for the first dimension of algorithm
configuration, the search strategy. In particular, we study model-based approaches, which
utilize predictive models of algorithm performance (so-called response surface models) in
order to guide the search for optimal configurations. This approach was much less developed
as a tool for general algorithm configuration, and thus our contribution in this part is mostly
methodologically; nevertheless, after five chapters of improvements and extensions of existing
procedures, we end up with a state-of-the-art procedure for general algorithm configuration.

In Chapter 9, we start this part with an introduction to sequential model-based optimization
(SMBO) for general blackbox function optimization. We introduce a general framework for
SMBO and describe two existing state-of-the-art approaches, SPO and SKO, as instantia-
tions of this framework. We then experimentally compare the two, showing that for some
configuration scenarios SPO is more robust “out-of-the-box”.

We substantially improve upon these approaches in Chapters 10 and 11. In Chapter 10,
we experimentally investigate the components of SPO, and identify and resolve a number of
weaknesses. Most notably, we introduce a novel intensification mechanism, and show that
log transformations of cost statistics can substantially improve the quality of the response
surface model. This mechanism leads to substantially improved robustness of our resulting
configuration procedure, dubbed SPO+, as compared to SPO. To reduce computational
overheads due to the model construction, we also introduce a modification of SPO+, dubbed
SPO∗.

In Chapter 11, we consider the use of different response surface models in SMBO, which
are based on random forests and approximations of Gaussian processes. We demonstrate
qualitatively that these models can improve predictive quality under various noise models as
well as the performance of SMBO. Quantitatively, we demonstrate that our new models lead
to substantially improved predictions. Furthermore, the computational complexity for their
construction is substantially lower than that of traditionally-used models. Our computational
experiments demonstrate that this leads to speedups of orders of magnitude. Based on these
models, we introduce a new family of configuration procedures—dubbed ACTIVECONFIG-
URATOR—which we demonstrate to show significantly better performance than SPO∗.

Next, we substantially expand the scope of SMBO in ways crucial for its use in algorithm
configuration. While, prior to our work, existing SMBO methods have been limited to the
optimization of numerical parameters, in Chapter 12 we extend its scope to include the
optimization of categorical parameters. In particular, we extend our response surface models
to handle categorical inputs and introduce a simple local search mechanism to search for the
most promising parameter configuration to try next. We also compare instantiations of our
ACTIVECONFIGURATOR and PARAMILS frameworks for configuration scenarios with single
instances and show that ACTIVECONFIGURATOR yields state-of-the-art performance.

In Chapter 13, we extend SMBO to handle general algorithm configuration problems
defined across distributions (or sets) of problem instances. We integrate problem instance
features into our response surface model, enabling them to predict the runtime for combinations
of instances and parameter configurations. We discuss different sets of instance features and
experimentally compare models based on them. Overall, we find that in some cases predictive
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performance is excellent, yielding rank correlations between predicted and actual runtimes
of above 0.95. We then compare ACTIVECONFIGURATOR variants based on the different
sets of features, and demonstrate that they achieve state-of-the-art performance in a variety of
configuration scenarios.

Finally, in Part V, we offer conclusions about algorithm configuration in general and about
our methods in particular, and discuss various promising avenues for future work.

1.6 Chapter Summary
In this chapter, we motivated and formally defined the algorithm configuration problem, the
problem central to this thesis. The algorithm configuration problem can be informally stated
as follows: given an algorithm, a set of parameters for the algorithm, and a set of input data,
find parameter values under which the algorithm achieves the best possible performance on
the input data.

An automated method for solving this problem (a so-called algorithm configuration proce-
dure) can be used to replace the most tedious and unrewarding part of traditional algorithm
design. The resulting automated process may only require a fraction of the time human
experts need to establish good parameter settings while yielding better results. Automated
configuration procedures (short: configuration procedures or configurators) not only facilitate
algorithm development, they can also be applied on the end user side to optimize performance
for new instance types and optimization objectives. The use of such procedures separates
high-level cognitive tasks carried out by humans from tedious low-level tasks that can be left
to machines.

Toward the end of the chapter, we also summarized the contributions of this thesis,
provided a guideline on how to read the thesis, and gave an outline of the remainder of the
thesis.
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Chapter 2

Related Work
If I have seen further than others, it is by standing upon the shoulders of
giants.
—Sir Isaac Newton, English physicist and astronomer

Many researchers before us have been dissatisfied with the manual optimization of algorithm
parameters, and various fields have developed their own approaches automating this task. In
particular, research communities that have contributed techniques for algorithm configuration
or parameter tuning include planning (Gratch and Dejong, 1992), evolutionary computa-
tion (Bartz-Beielstein, 2006), meta-heuristics (Birattari, 2005), genetic algorithms (Fukunaga,
2008), parallel computing (Brewer, 1995), and numerical optimization (Audet and Orban,
2006). In this review of previous work, we focus on the proposed techniques, only mentioning
application areas in passing. However, in the end of the chapter (in Section 2.4), we discuss
some additional promising application areas.

We broadly categorize approaches related to our work into three categories, discussed in
the first three sections of this Chapter: (1) approaches that optimize an algorithm’s fixed set of
parameters; (2) approaches for the automated construction of algorithms; and (3) approaches
that deal with related problems (such as per-instance approaches, algorithm portfolios, and
online approaches).

2.1 Algorithm Configuration and Parameter Optimization
In this section, we present previous algorithm configuration and parameter optimization
methods based on direct search, model-based search and racing.

2.1.1 Direct Search Methods
Approaches for automated algorithm configuration go back at least to the early 1990s, when
a number of systems were developed for what Gratch and Chien (1996) called adaptive
problem solving. Gratch and Dejong (1992)’s Composer system performs a hill-climbing
search in configuration space, taking moves if enough evidence has been gathered to render
a neighbouring configuration statistically significantly better than the current configuration.
Gratch and Chien (1996) successfully applied Composer to improving the five parameters of
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an algorithm for scheduling communication between a collection of ground-based antennas
and spacecraft in deep space.

Around the same time, Minton (1993, 1996) developed the MULTI-TAC system. MULTI-
TAC takes as input a number of generic heuristics as well as a specific problem domain and a
distribution over problem instances. It adapts the generic heuristics to the problem domain
and automatically generates domain-specific LISP programs implementing them. In order to
choose the best program, it uses a beam search, evaluating each program by running it on a
number of problem instances sampled from the given distribution.

Terashima-Marı́n et al. (1999) introduced a genetic algorithm for configuring a constraint
satisfaction algorithm for large-scale university exam scheduling. They constructed and
configured an algorithm that works in two stages and has seven configurable categorical
parameters. They optimized these choices with a genetic algorithm for each of 12 problem
instances, and for each of them found a configuration that improved performance over a
modified Brelaz algorithm. However, note that they performed this optimization separately for
each instance. Their paper did not quantify how long these optimizations took, but stated that
“Issues about the time for delivering solutions with this method are still a matter of research”.

Muja and Lowe (2009) applied a custom algorithm configuration procedure to the problem
of identifying the best-performing approximate nearest neighbour algorithm for a specific
type of data set. They select between multiple randomized kd-trees and a new version of
hierarchical k-means trees, and also select the best parameter setting for the algorithm. Their
automated configuration procedure first evaluates multiple parameter configurations; it then
employs the Nelder-Mead downhill simplex procedure initialized at the best of these to locally
optimize numerical parameters. Evaluations are based on cross-validation using a fixed-
size data set, typically only one tenth of the available dataset to reduce the computational
burden. The reported experiments show a roughly ten-fold speedup compared to the best
previously-available software for approximate nearest neighbour matching.

A multitude of direct search algorithms exist for the optimization of numerical parameters.
Here, we discuss only the ones that have been used to optimize algorithm performance.

Coy et al. (2001) presented another search-based approach that uses a fixed training set.
Their approach works in two stages. First, it finds a good parameter configuration θi for
each instance Ii in the training set by a combination of experimental design (full factorial
or fractional factorial) and gradient descent. Next, it combines the parameter configurations
θ1, . . . ,θN thus determined by setting each parameter to the average of the values taken in
all of them. This averaging step restricts the applicability of the method to algorithms with
exclusively numerical parameters.

A similar approach, also based on a combination of experimental design and gradient
descent, using a fixed training set for evaluation, is implemented in the CALIBRA system
of Adenso-Diaz and Laguna (2006). CALIBRA starts by evaluating each parameter config-
uration in a full factorial design with two values per parameter. It then iteratively homes
in to good regions of parameter configuration space by employing fractional experimental
designs that evaluate nine configurations around the best performing configuration found so
far. The grid for the experimental design is refined in each iteration. Once a local optimum is
found, the search is restarted (with a coarser grid). Experiments showed CALIBRA’s ability to
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find parameter settings for six target algorithms that matched or outperformed the respective
originally-proposed parameter configurations. Its main drawback is the limitation to tuning
numerical and ordinal parameters, and to a maximum of five parameters.

Tolson and Shoemaker (2007) presented a simple global optimization algorithm.
Their algorithm, called dynamically dimensioned search (DDS), can be interpreted as

a variable-neighbourhood local search mechanism in continuous space. Limited to tuning
continuous parameters only, DDS starts from an initial solution and then iterates the following
steps: (1) randomly select a subset of parameters; (2) perturb the values of the selected
parameters by sampling a new value for each selected parameter θi from a Gaussian distribution
N (θi, 0.2 · ri), where θi is the parameter’s current value and ri is the parameter’s range;
and (3) accept the perturbed solution if it yields a performance improvement. Related to
simulated annealing, the probability for selecting parameters to be perturbed shrinks over
time. Experiments for the automatic calibration of watershed simulation models with 6 to 30
dimensions showed that some parameterizations of DDS could outperform a competitor, the
shuffled complex evolution algorithm.

Work on automated parameter tuning can also be found in the numerical optimization
literature. In particular, Audet and Orban (2006) proposed the mesh adaptive direct search
(MADS) algorithm. Designed for purely continuous parameter configuration spaces, MADS is
guaranteed to converge to a local optimum of the cost function. The optimization objective
in their work was the runtime and number of function evaluations required by interior point
methods for solving a set of large unconstrained regular problems from the CUTEr collec-
tion (Gould et al., 2004). To reduce training cost, MADS used a set of smaller problems
from the same collection to evaluate training performance. Although this bears the risk of
improving performance for small problems but worsening performance for large problems, the
experiments reported by Audet and Orban (2006) demonstrated performance improvements
of around 25% over the classical configuration of four continuous parameters of interior
point methods. Audet and Orban (2006) mentioned very small amounts of noise (around 1%
variation between evaluations of the same parameter configuration), but did not specifically
address them by stochastic optimization techniques.

As discussed in Section 1.2.2, algorithm configuration can be seen as a stochastic optimiza-
tion problem, and there exists a large body of algorithms designed for such problems (see, e.g.,
Spall, 1999, 2003). However, many of the algorithms in the stochastic optimization literature
require explicit gradient information and are thus inapplicable to algorithm configuration.
Often, one can simply approximate gradients by finite differences, but this typically increases
the number of required function evaluations substantially. Since algorithms with purely
continuous parameter configuration spaces can be expected to have very few local minima,
this approach is promising for tuning such algorithms. For objective functions with many
local minima, simulated annealing is a frequently-used technique in stochastic optimization.
However, in the context of optimizing functions with many categorical parameters, simulated
annealing often yields suboptimal results (Hoos and Stützle, 2005). For details on stochastic
optimization, we refer the reader to the book by Spall (2003).
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2.1.2 Model-Based Optimization
Model-based optimization techniques are typically developed for blackbox optimization,
where the only information available about a function to be optimized are values of the
function at some queried data points. Given these values, these techniques construct a response
surface model, that is, a model that predicts the true value of the function at unseen data points.
They use this response surface in order to identify optimal parameter settings. Experimental
design is concerned with the study of which design points to choose in order to gather data
for learning the model. Several measures of a design’s optimality exist—for a review on the
extensive literature on experimental design see, e.g., the article by Chaloner and Verdinelli
(1995).

Sequential model-based optimization methods combine a response surface model with
a criterion for selecting the next design point. A very prominent response surface model in
statistics, used for example, by Sacks et al. (1989), Jones et al. (1998), and Santner et al.
(2003), is a combination of a linear regression model and a noise-free stochastic Gaussian
process model (also referred to as a “kriging” model in the statistics literature) that is fitted
on the residual errors of the linear model. This model has come to be known as the “DACE”
model—an acronym for the “Design and Analysis of Computer Experiments”, the title of the
paper by Sacks et al. (1989) which popularized the method. A popular criterion for selecting
the next design point θ is the expectation of positive improvement over the incumbent solution
at θ (where the expectation is taken over the response at θ with respect to the current model).
This expected improvement criterion goes back to the work of Mockus et al. (1978) and
continues to be the most widely-used criterion today. The combination of the DACE model,
the expected improvement criterion and a branch and bound method for optimizing the
expected improvement criterion makes up the efficient global optimization (EGO) algorithm
by Jones et al. (1998), a popular framework in statistics for deterministic blackbox function
optimization.

The EGO algorithm has been extended by three different lines of work. Two of these
extensions deal with an extension to noisy functions: the sequential kriging optimization
(SKO) algorithm by Huang et al. (2006), and the sequential parameter optimization (SPO)
procedure by Bartz-Beielstein et al. (2005); Bartz-Beielstein (2006). SKO extends EGO by
adding noise to the DACE model and augmenting the expected improvement criterion. SPO
computes an empirical summary statistic for each design point and fits a noise-free Gaussian
process to the values of this statistic. Over time, it increases the number of runs this statistic is
based on. For a more detailed description and a comparison of SKO and SPO, see Chapter
10. The third extension, presented by Williams et al. (2000), constructs a Gaussian process
model that predicts the response value integrated over a set of “environmental conditions”. We
discuss this approach in detail in Section 13.2.1. Briefly, it uses its model to optimize marginal
performance across the environmental conditions. In the context of algorithm configuration,
this could be used to optimize mean performance across a set of problem instances. This
extension is computationally expensive, and only applicable for optimizing mean performance.
As we will demonstrate in Chapter 9.4, it is not compatible with transformations of the
response variable, which are often crucial for strong model performance (Jones et al., 1998;
Huang et al., 2006).
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From the point of view of algorithm configuration, the main drawbacks of the EGO line of
work are

• its limitation to continuous parameters;

• its limitation to noise-free functions or Gaussian-distributed noise;

• the cubic scaling of the time complexity of Gaussian process regression models with
respect to the number of data points; and

• its limitation to single problem instances (or mean performance across instances with
the limitation that no response transformation be applied.)

In Chapters 10 through 13, we will address these issues in a model-based optimization
framework that follows the EGO line of work in its broad strokes.

Not all work on model-based optimization of algorithm parameters builds on Gaussian
processes. Ridge and Kudenko (2007) employed classical experimental design methods to tune
the parameters of the Max-Min Ant System (MMAS) for solving the travelling salesperson
problem. First, they selected values for ten search parameters that represent “low” and “high”
levels of that parameter (in statistical terms, factor). Then, they employed a fractional factorial
design with a number of replicates for each design point, leading to 1452 design points. Out
of these design points, they discarded 3% outliers and then fitted a quadratic model. They
used this model for two purposes: to predict the relative importance of each parameter and to
predict which combination of parameter settings can be expected to be optimal. It also relies
on Gaussian noise assumptions that are often not met by cost distributions in an algorithm
configuration setting (Hoos and Stützle, 2005).

Srivastava and Mediratta (2005) used a decision tree classifier to partition parameter
configuration space into good and bad configurations for a given domain. All their parameters
were discrete or discretized, and the experiments covered scenarios with less than 200 possible
parameter configurations. Unfortunately, their evaluation is inconclusive, since the only
comparison made is to the worst parameter configuration, as opposed to the default or the best
parameter configuration.

Bartz-Beielstein and Markon (2004) compared tree-based regression techniques to the
DACE model and to a classical regression analysis. Their application domain was to optimize
the parameters of an evolution strategy (with four binary and five continuous parameters) and
a simulated annealing algorithm (with two continuous parameters) for a single elevator control
problem instance. Their experiments are based on 16 data points from a fractional factorial
design. Based on the results on this very small data set, they suggested tree-based methods be
used in a first stage of algorithm configuration for screening out important factors since they
can handle categorical parameters.

2.1.3 Racing Algorithms
A rather different approach for algorithm configuration is based on adaptations of racing
algorithms in machine learning (such as Hoeffding races, introduced by Maron and Moore
(1994)). Birattari et al. [2002; 2004] developed a procedure dubbed F-Race and used it to
configure various stochastic local search algorithms. F-Race takes as input an algorithm A,
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a finite set of parameter configurations Θ, and an instance distribution D. It iteratively runs
the target algorithm with all “surviving” parameter configurations on a number of instances
sampled from D (in the simplest case, each iteration runs all surviving configurations on one
instance). After each iteration, F-Race performs a non-parametric Friedman test to check
whether there are significant differences among the configurations. If this is the case, it
eliminates the inferior configurations using a series of pairwise tests. This process is iterated
until only one configuration survives or a given cutoff time is reached. Various applications of
F-Race have demonstrated very good performance (for an overview, see the PhD thesis by
Birattari (2004)). However, since at the start of the procedure all candidate configurations are
evaluated, this approach is limited to situations in which the space of candidate configurations
can practically be enumerated. In fact, published experiments with F-Race have been limited
to applications with at most 1 200 configurations. A recent extension presented by Balaprakash
et al. (2007) iteratively performs F-Race on subsets of parameter configurations. This approach
scales better to large configuration spaces, but the version described in that paper handles only
algorithms with numerical parameters.

In related work, Chen et al. (2000) introduced an algorithm dubbed optimal computing
budget allocation (OCBA). Their application domain is identifying the best out of a finite
number of competing designs for a complex system modelled by simulation experiments. This
problem is in principle equivalent to the problem of identifying the best out of a finite number
of parameter configurations for solving a single problem instance. OCBA is a sequential
algorithm for this problem that asymptotically maximizes the probability of identifying the best
design given a fixed computational budget (i.e., a fixed number of allowed simulation runs).
Their experiments are promising but limited to small configuration spaces (they considered
their space of 210 designs “huge”).

2.2 Related Work on the Construction of Algorithms
Some approaches aim to automatically construct algorithms to solve instances of a given type.
Here, we review methods from the fields of algorithm synthesis and genetic programming.

2.2.1 Algorithm Synthesis
Cognizant of the time-intensive and error-prone nature of manual implementations of complex
algorithms, researchers have introduced systems that transform formal problem specifications
into synthesized software that is correct by construction. We note that the approaches for
algorithm synthesis discussed here complement work on automated algorithm configuration
and parameter optimization. They focus on reducing implementation effort, while the particular
choice of heuristics still rests with the algorithm designer.

Westfold and Smith (2001) described techniques for the automatic reformulation of
problems into an effective representation that allows efficient constraint propagation and
pruning. They also showed how to automatically derive efficient code for these operations.
The authors reported the synthesized programs to be very efficient (sometimes orders of
magnitudes faster than manually written programs for the same problem), and attributed this
to the specialized representation of constraints and their optimized propagation.
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Van Hentenryck and Michel (2007) described the automated synthesis of constraint-based
local search methods. In their approach, the algorithm designer only needs to provide a model
of the problem in a high-level constraint-based language specifying objectives as well as hard
and soft constraints. Their code synthesizer analyzes this high-level model, deduces facts
about type and tightness of constraints and uses this information to automatically select local
search operators guaranteed to preserve feasibility. The actual code synthesis is based on
Comet (Hentenryck and Michel, 2005), an object-oriented programming language that includes
modelling and control abstractions to support constraint-based local search. Experiments for a
range of constraint programming problems demonstrated that the synthesized code performed
almost as good as hand-coded solutions for a large variety of constraint programming domains.
We note that in this approach the user still has to specify the meta-heuristic to be used, as well
as its parameters. Thus, this approach is perfectly orthogonal to the topic of this thesis. Indeed,
we see a lot of potential in combining the two approaches in future work: simply search in the
space of possible parameterized meta-heuristics and evaluate a configuration by synthesizing
the code for it and running it.

In follow-up work, Monette et al. (2009) introduced the AEON system for the domain of
scheduling. AEON analyzes a given high-level input model to identify problem characteristics,
uses these to classify the problem (using a lookup table) and selects the appropriate solving
strategy based on the classification output. (AEON is closely related to the per-instance
algorithm configuration approach discussed later in this Chapter, except that here it is applied
at the level of problems not problem instances.) It then uses the corresponding implementation
for this solving strategy. Note that AEON supports both complete search and local search, as
well as hybrid algorithms generated by composition (e.g., first use a Tabu Search to find a
bound B on solution quality, and then apply branch and bound using bound B). As with the
work discussed above, we believe that algorithm configuration could be used to explore the
space of possible algorithms defined by all basic search procedures and their parameters, as
well as their compositions.

Finally, Di Gaspero and Schaerf (2007) presented EasySyn++, a different tool for the
synthesis of source code for stochastic local search (SLS) methods. Based on the EasyLocal++
framework for developing SLS algorithms, EasySyn++ is a software environment for the
fast prototyping of SLS algorithms. While the above-mentioned Comet system follows a
top-down approach that—given a high-level problem specification—generates a complete
program not to be touched by the user, EasySyn++ follows a bottom-up approach. In particular,
it synthesizes most of the code needed on top of the EasyLocal++ framework, leaving only a
small—but crucial—portion of the source code to be written by the algorithm designer. While
the necessity of having to write low-level code is a drawback, the advantage of EasySyn++ is
that algorithm designers have more control over the details of their algorithm.

2.2.2 Genetic Programming
Genetic programming (see, e.g., Poli et al., 2008) evolves a population of programs for solving
a given problem. The fitness of an individual can, for example, be assessed by executing the
program and measuring its performance on a training set. Thus, it is in principle possible to
directly generate effective programs for solving instances of a given class of problems.
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Fukunaga (2008) used genetic programming to construct complex variable selection
mechanisms for a generic local search algorithm for SAT. These mechanisms are constructed
as LISP programs and generated from terminals and functions by means of composition.
There is no clear separation between the space of possible mechanisms and the method used
to search it: the space of mechanisms is unbounded, but the genetic programming procedure
limits itself to a bounded subspace. Fukunaga’s generic algorithm only supports variable
selection methods based on the prominent SAT local search algorithms GSAT and WalkSAT.
His experiments demonstrated that for Random-3-SAT instances the automatically-generated
variable selection mechanisms achieved performance comparable to the best local search SAT
algorithms in the year 2002.

Li et al. (2005) applied genetic programming to generate optimized sorting algorithms.
Their paper introduced two applications of genetic programming to selecting the best combi-
nation of various sorting primitives for a given sorting instance. Both approaches take into
account instance features, such as number of elements and entropy of values to be sorted.
Similar to Fukunaga’s work discussed above, the first approach is based on the composition of
various primitives in a tree; this approach also shares the problem of an unbounded search
space. The second approach is used to generate a classifier system that partitions the space of
possible instance features and selects the most appropriate sorting algorithm for each partition.
In the experiments Li et al. reported, both new genetic programming approaches yielded
substantial speedups over state-of-the-art algorithm libraries on multiple architectures.

Oltean (2005) employed genetic programming to evolve genetic algorithms themselves,
searching for the best combination of genetic programming operators, such as mutation,
crossover, and selection of individuals. In his experiments the automatically-evolved genetic
algorithms outperformed standard implementations of genetic algorithms on a variety of
tasks, such as function optimization, the travelling salesperson and the quadratic assignment
problem (Oltean, 2005). However, this work did not use a separate test set to evaluate the
performance of the final configurations found. Thus, it is unclear to what extent the reported
results would generalize to other problem instances.

In a similar vein, Bölte and Thonemann (1996) applied genetic programming to optimize
simulated annealing. In particular, they optimized the annealing schedule for solving the
quadratic assignment problem. In their experiments, an automatically-found oscillating
schedule outperformed the best previously-known simulated annealing algorithms.

Finally, Stillger and Spiliopoulou (1996) applied genetic programming to the database
query optimization problem. They evolved a population of query execution plans (QEPs),
using QEPs directly instead of using a string representation as had been done in previous
work. One interesting feature of the application to database query optimization is that the
fitness of a particular individual does not require an execution of the QEPs. In contrast, the
performance of any QEP can be evaluated before its execution. It is thus possible to search for
the best QEP to a given query, and then execute that QEP. Stillger and Spiliopoulou (1996)
reported experiments in which the QEPs their method found yielded performance similar to
the performance of QEPs constructed with a widely-used iterative improvement method.
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2.3 Approaches for Related Problems
So far we have focused on the problem of finding the best parameter configuration for an
entire set (or distribution) of problem instances. Related problems are (1) to find the best
configuration or algorithm on a per-instance basis; (2) to run multiple algorithms or copies
of a single algorithm at once; (3) to adapt algorithm components or parameters during the
execution of an algorithm, and (4) to combine algorithms to find the best solution for a single
problem. We now survey approaches for these problems.

2.3.1 Per-Instance Approaches
While some algorithms and parameter configurations dominate others in the sense that they
perform better on all instances of a problem class, often there is not a single best approach
for all problem instances.1 This observation led Rice (1976) to define the algorithm selec-
tion problem: selecting the best algorithm for each problem instance based on computable
properties of the instance. In what we call per-instance algorithm configuration (PIAC),
analogously, the task is to select the best parameter configuration for each problem instance.
Note that per-instance algorithm configuration is a generalization of algorithm selection: the
choice between different algorithms can be encoded as a categorical top-level parameter of
a portfolio-based algorithm that chooses between subalgorithms. PIAC is more complex,
however, since it also deals with ordinal and numerical parameters, and since the parameter
configuration space is structured. Most importantly, the number of possible configurations to
choose from is typically quite small in algorithm selection and typically very large in PIAC.
This fact often renders it impossible to perform experiments with every single configuration,
as is often done in algorithm selection (see, e.g., Xu et al., 2008).

Methods for solving PIAC are relevant for many of the application scenarios given in
Section 1.1, namely the design and development of complex algorithms; empirical studies,
evaluations, and comparisons of algorithms; and the actual end use of algorithms in order to
solve problems. A robust solution to PIAC would enable algorithm developers to focus on the
development of algorithm components and use the PIAC solver to pick the right combination
of components for every problem instance. PIAC is in principle more powerful than the
“per-distribution” algorithm configuration we consider throughout this thesis. However, it
requires the existence of cheaply-computable features that characterize problem instances and
are informative about which kind of approaches would work well for a given instance. The
models this approach is based on can also require a large amount of training data.

Knuth (1975) introduced a Monte-Carlo approach to estimate the size of a search tree,
which can be used to judge the hardness of an instance. Lobjois and Lemaı̂tre (1998) used a
similar approach to choose the algorithm which can traverse the entire search tree quickest. A
related approach was presented by Kilby et al. (2006).

Leyton-Brown et al. (2003b,a, 2009) introduced portfolio-based algorithm selection using
predictive models of algorithm runtime, dubbed empirical hardness models. These models

1One citation typically used in support of this argument is the so-called No Free Lunch (NFL) Theorem (Wolpert
and Macready, 1997). However, note that this theorem only applies to optimization problems for which the objective
function is specified as a blackbox lookup table—which is far from typical for hard combinatorial problems.
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predict the hardness of an unseen test instance based on a set of polytime-computable instance
features. In most of their work, Leyton-Brown et al. use linear basis function regression
to predict log-transformed algorithm performance. Nudelman et al. (2004) demonstrated
that empirical hardness models work on (uniform-random) SAT. Hutter et al. (2006) showed
how to apply them to randomized, incomplete algorithms. Xu et al. (2007a) introduced
hierarchical hardness models, which first apply a classifier to predict the type or solution
status of an instance, and then combine the prediction of lower-level models for the separate
classes. Empirical hardness models can be used in a straightforward manner for portfolio-
based algorithm selection: simply predict the performance of each candidate algorithm and
select the one with best predicted performance. This idea was first used by Leyton-Brown
et al. (2003b,a) and was later extended by Xu et al. (2007b, 2008). These portfolio approaches
have been repeatedly demonstrated to yield state of the art performance for various classes of
SAT problems. Most notably, in each of the 2007 and the 2009 SAT competitions, SATzilla
won three gold and two other medals.

Brewer (1994, 1995) proposed a very similar approach in the context of parallel computing.
That work used linear regression models to predict the runtime of different implementations of
portable, high-level libraries for multiprocessors, with the goal of automatically selecting the
implementation and parameter setting with the best predicted runtime on a new architecture.
While most other work we discuss here is concerned with solvingNP-hard problems, Brewer
focused on problems of low polynomial complexity (sorting and stencil computations, with
respective asymptotic complexities of O(n log n) and O(n1.5)).

While some approaches exist for algorithm selection, there is not much work for algorithm
configuration on a per instance basis, that is, approaches that pick a parameter configuration
depending on instance features (but then keep it fixed). Patterson and Kautz (2001) introduced
the Auto-WalkSAT algorithm. This approach is based on an easily computable characteristic
(the “invariant ratio”, see the work by McAllester et al., 1997), which was empirically found to
typically be 10% less than the optimal value for WalkSAT’s noise parameter. Auto-WalkSAT
simply computes the invariant ratio and then sets the noise parameter to its value plus 10%.
The experiments Patterson and Kautz (2001) reported show that this simple approach found
almost optimal settings of the noise parameter for such heterogeneous problem classes as
unstructured, graph colouring, and blocksworld instances. However, it failed for logistics
instances for which the above mentioned relationship between invariant ratio and optimal
noise parameter does not hold. Auto-WalkSAT is inherently limited to SAT and in particular
to the WalkSAT framework and its single noise parameter.

Gebruers et al. (2005) used case-based reasoning—a classification technique—in order
to determine the best configuration of a constraint programming algorithm on a per-instance
basis. In particular, the parameters being optimized included problem modelling, propagation,
the variable selection heuristic, and the value selection heuristic. However, they used a flat
representation of all possible parameter configurations that did not exploit the structured
parameter configuration space and led to a simple algorithm selection problem instead of a
structured per-instance algorithm configuration problem. They did not specify how many
parameter configurations are possible nor which kind of instance features were used (except
that they are extracted offline, before the algorithm starts). Experiments demonstrated that the
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case-based reasoning approach performed better than C4.5 with default parameters for solving
instances of the social golfer problem.

Hutter and Hamadi (2005) and Hutter et al. (2006) used an approach based on empirical
hardness models in order to select the best parameter settings of two local search algorithms
for SAT. They used linear basis function regression in order to fit a joint model of instance
characteristics and (continuous) algorithm parameter settings. They then used this model
to determine the appropriate parameter settings to be used on a per-instance basis. Their
experiments showed that for a mixed benchmark set parameter settings that were automatically
selected on a per-instance basis outperformed the best fixed parameter setting by a factor of
almost 10. However, the methods introduced in these papers were limited to purely continuous
algorithm parameters.

Finally, there are applications of per-instance approaches in compiler optimization. For
example, for each program a different combination of compiler optimizations yields the best
performance; this is even true on a per-method basis. Both of these problems can be formalized
in the PIAC framework, with program features in the first case and method features in the
second one. There are a number of possible compiler optimizations, and optimally, one would
like to determine the optimal sequence. Cavazos and O’Boyle (2006) simplified this problem
to only picking the optimizations to be performed, with their order defined externally. For each
compiler optimization flag, they performed a binary logistic regression to determine whether or
not the optimization would lead to a speedup in a given method. They generated training data
offline and for all logistic regressions at once by compiling a large number of training methods
under all possible compiler optimizations and recording the best optimization sequence for
each one. Whether or not optimization i is used in the best optimization sequence for a training
method determines the method’s training label for the ith logistic regression. This approach
does not take interactions between the optimizations into account. However, the experimental
results reported by Cavazos and O’Boyle (2006) showed strong results, suggesting that the
independent treatment of optimizations was not too detrimental.

In another application in compiler optimization, Agakov et al. (2006) predicted which
program optimizations were promising on a per-program basis. In an offline training phase,
they evaluated 1,000 optimization sequences for a set of training programs and kept all good
sequences for each training program (within 5% of optimal). For each new program P to be
compiled, their method determines the closest training program, P ′, in Euclidean PCA-reduced
feature space, and creates a probability distribution D based on the optimization sequences
with good performance on P ′. Then, their method uses distribution D in a rather simple way
to bias a search in parameter space towards good compiler optimizations for P : randomly
sample from D or initialize the population of a genetic algorithm based on a random sample
from D. Their experiments showed that this approach sped up the search for good compiler
optimizations by up to an order of magnitude compared to a random search or initialization of
the GA with a random sample.

2.3.2 Dynamic Algorithm Portfolios
Work on dynamic restarts of algorithms involves multiple independent runs of an algorithm.
The approach by Horvitz et al. (2001) and Kautz et al. (2002) executes one algorithm run
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at a time, and after an initial observation horizon predicts whether the algorithm run will be
good or bad. For this prediction, it uses a binary classification into long and short runs by
means of a decision tree. Due to the sometimes extraordinarily long runtimes of bad runs,
such an approach can lead to significant speedups of algorithms with heavy-tailed runtime
distributions. However, this approach does not scale to drawing multiple decisions during an
algorithm run: for each decision, it requires a separate classifier. In order to scale to a more
general online case, one would like to learn a single classifier which can handle features that
are computed at arbitrary times during the search.

Gagliolo and Schmidhuber (2006) introduced dynamic algorithm portfolios, which run
multiple algorithms with different shares in parallel. This approach fits a runtime distribution
across instances. (When instance features are available, such a model could also take them
into account.) Gagliolo and Schmidhuber stress that the learning in this case does not happen
offline but rather in a life-long learning scenario, by which the learned models are updated
after each solved problem instance. Arguably, the more important novelty in this work is that
predictions are no longer just used to make a single irreversible decision about which algorithm
to use. Rather, the decision about how to prioritize algorithms is constantly revisited in the light
of new evidence, namely the fact that algorithms have not terminated after having been alloted
a certain time. Later work on learning restart strategies by Gagliolo and Schmidhuber (2007)
is another example of dynamic algorithm portfolios, applying more principled methodology
based on a bandit problem solver.

Finally, low-knowledge algorithm control is an approach by Carchrae and Beck (2004,
2005) to build reactive algorithm portfolios for combinatorial optimization problems. They
assume that all algorithms in the portfolio are anytime algorithms that continuously improve a
lower bound on solution quality and assign priorities to each algorithm based on its respective
improvements of solution quality over time. Algorithms only communicate by sharing the
best solutions found so far.

2.3.3 Online Methods
Finally, there exist a variety of approaches that combine different solution strategies during a
single algorithm run. The most appropriate strategy to use typically varies over the course of
a search trajectory, and online approaches aim to select the most appropriate one in a given
situation.

It is hard to attribute the improvements an algorithm incrementally achieves during a
search trajectory to single decisions or series of decisions made by the algorithm. This blame-
attribution problem invites the use of reinforcement learning. Examples for reinforcement
approaches include the STAGE algorithm by Boyan and Moore (2000), as well as work
by Lagoudakis and Littman (2000, 2001) on algorithm selection and selecting branching
rules in the DPLL procedure for SAT solving. The original results for STAGE were very
encouraging, but unfortunately we are not aware of any follow-up work that showed STAGE
to outperform state-of-the-art meta-heuristics, in particular iterated local search with simple
random perturbations. Lagoudakis and Littman (2000, 2001) showed that in simple domains
it is possible to perform better than the best single approach for a particular instance. However,
their reinforcement learning approach was limited to very simple characteristics of the current
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search state, such as problem size for algorithm selection and number of unassigned variables
for SAT tree search algorithms. How to make reinforcement learning work with a more
expressive set of search state features is an open and interesting research problem.

Some approaches adaptively change the heuristics to be used in tree search algorithms.
Samulowitz and Memisevic (2007) applied an online approach to the problem of solving
quantified Boolean formulae (QBF). Their tree search method solves an algorithm selection
problem at various levels of the search tree in order to determine the best solution approach
for the particular subtree rooted at the current decision point. Even though this approach does
not taken future decisions into account (as a reinforcement learner would), their experiments
showed that it sped up the search substantially. A more heuristic approach was taken by
Borrett et al. (1995). Their quickest first principle (QFP) employs a number of algorithms of
increasing power (but also increasing complexity), and switches to the next approach when
search stagnation is detected. The Adaptive Constraint Engine (ACE) by Eppstein and Freuder
(2001) and Epstein et al. (2002) uses a set of so-called advisors, heuristics that vote for possible
actions during the search. These votes are taken at every decision point during the search and
effectively compose the variable- and value-selection heuristics of ACE.

Work in hyper-heuristics originates in the meta-heuristic2 community and is concerned
with the development of heuristics that search a space of heuristic algorithms to identify one
of them to be used in a given situation. Burke et al. (2003) surveyed the area and stated as
the main motivation behind hyper-heuristics that many competitive meta-heuristics are too
problem-specific or too knowledge-intensive to be implemented cheaply in practice. Hyper-
heuristics are hoped to raise the level of generality and ease of use of meta-heuristics. Burke
et al. gave a framework for hyper-heuristic algorithms, which iterates the following central
step: given a problem state Si, find a heuristic ingredient that is most suitable for transforming
that state, and apply it to reach a new state Si+1.

Cowling et al. (2002) discussed the application of such a hyper-heuristic to a university
personnel scheduling problem. They introduced several possible move types and defined
low-level heuristics that iteratively use one move type until some termination criterion is met.
One of their proposed hyper-heuristics adaptively ranks the low-level heuristics and selects
effective ones more often. The results presented show that this hyper-heuristic produced very
good results, dramatically better than those found manually or by a constructive heuristic.

The local search community has developed a great variety of approaches for adapting
search parameters to the algorithm trajectory. The reactive search framework by Battiti et al.
(2008) uses a history-based approach to decide whether the search is trapped in a small region
of the search space, and makes a diversification move more likely when trapped. For example,
reactive tabu search makes the tradeoff between intensification (more intensely searching a
promising small part of the search space) and diversification (exploring other regions of the
search space) via its tabu tenure—the number of steps for which a modified variable cannot
be changed after a modification. When search stagnation is detected, reactive tabu search
increases the tabu tenure exponentially, and otherwise slowly decreases it.

Hoos (2002a) used a very similar mechanism in an adaptive noise mechanism for WalkSAT.
2Note that the term “meta-heuristic” is commonly used to refer to a set of heuristics that are generally applicable

to more than one problem. Unlike hyper-heuristics, it does not refer to heuristics that act on heuristics.
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Instead of the tabu tenure, the resulting Adaptive Novelty+ algorithm controls its noise
parameter. Adaptive Novelty+ increases its noise if its does not observe any improvement in
the objective function for too long and decreases it otherwise. Introduced in 2002, Adaptive
Novelty+ is still a competitive local search algorithm for SAT. Hutter et al. (2002) introduced
a similar reactive variant for the SAPS algorithm. Reactive SAPS, or RSAPS, adapts the
probability of performing a smoothing step, where smoothing corresponds to an intensification
of the search. Since the optimal parameter setting may change during the course of the
search, in principle, this strategy has the potential to achieve better performance than any fixed
parameter setting. In practice this is true for some instances, but overall, SAPS still shows
more robust performance with its default parameter settings than RSAPS.

One could argue that online methods are more powerful than approaches that commit to
a given parameter configuration before running the algorithm. The flexibility of modifying
algorithm components during runtime leads to a much larger configuration space that may
indeed contain much better algorithms. However, it is not clear that existing online methods
make the best use of this flexibility. Since many decisions have to be made during the course
of a search, the computational efficiency of the learning component also becomes an important
issue. Thus, research focuses on simple heuristics or hard-coded learning rules (where this
use of the term “learning” does not have much in common anymore with traditional machine
learning approaches). One exception is the more principled work on reinforcement learning
for search. However, so far, this line of work has not resulted in state-of-the algorithms for
SAT or related problems. We hope that the type of response surface models we discuss in Part
IV of this thesis can be generalized to help tackling the problem of reactively tuning algorithm
parameters and choosing algorithms while solving a problem instance.

Finally, work on online methods and on algorithm configuration is in part orthogonal.
Online methods often retain many parameters whose settings are kept fixed throughout the
search. Thus, it is perfectly possible to configure online methods using automated algo-
rithm configuration procedures. In particular, dynamic methods are often more complex than
their static counterparts and automated configuration procedures can facilitate the consider-
ation of such complex mechanisms. In fact, such methods have already have been used to
optimize the parameters of a dynamic multi-armed bandit approach for adaptive operator
selection (Maturana et al., 2009).

2.3.4 Finding a Single Good Solution for Optimization Problems
Cases where the objective is simply to find a good solution for a given optimization problem
cannot be formalized as algorithm configuration problems, except in the case of deterministic
algorithms. In algorithm configuration, we try to identify a configuration with good perfor-
mance across repeated runs, such as, for example, mean solution quality across test runs. In
contrast, in some optimization problems, the objective is simply to achieve good performance
once; the objective function is thus the maximal performance across a number of training
runs. For deterministic algorithms, this can be formalized as an algorithm configuration
problem where training and test set coincide. For randomized algorithms, one could still
apply the algorithm configuration approaches discussed here, but they can be expected to yield
suboptimal results since they optimize a different objective function.
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Cicirello and Smith (2004) introduced the max k-armed bandit problem in order to
model scenarios, in which the goal is to maximize the maximal performance achieved during
training. Their framework can be used to prioritize runs of various randomized algorithms for
optimization problems (or runs of a single algorithm with several parameter configurations).
While earlier work (Cicirello and Smith, 2004, 2005; Streeter and Smith, 2006a) assumed
generalized extreme value distributions of performance, Streeter and Smith (2006b) applied a
distribution-free approach. This approach was used to assign priorities to five different priority
dispatching rules for the resource-constrained project scheduling problem with maximal
time lags (RCPSP/max). For this problem, round-robin sampling achieved better overall
performance than any single rule, and the max k-armed bandit approach further reduced the
regret of round-robin sampling by half.

2.4 Further Promising Application Areas for Algorithm
Configuration

While the discussion above concentrated on methods, here we discuss two promising applica-
tion areas for automated algorithm configuration; these applications are rather different from
the ones we focus on in this thesis.

2.4.1 Machine Learning
For potential applications of algorithm configuration in supervised machine learning, we
distinguish between model parameters and algorithm parameters. In order to fit a given data
set, supervised learners typically select the best-fitting model from a given hypothesis space,
using either closed-form solutions or some sort of optimization to set a number of model
parameters. This is not what we would refer to as algorithm configuration or parameter tuning.
In contrast, there exist algorithm parameters that determine the hypothesis space or the method
for searching this space; it is those parameters which would lend themselves to the use of
automated configuration techniques. Further parameters that could be determined by algorithm
configuration procedures are model hyper-parameters or model complexity parameters; for
simplicity, we also refer to these as algorithm parameters. Model parameters are typically set
automatically within the learning algorithm to minimize some loss function, whereas algorithm
parameters are typically determined manually or optimized based on cross-validation. Typical
examples include the number of hidden layers in a neural network, the number of neighbours
in a nearest neighbour classifier, the choice of which numerical optimizer to use (and how
to initialize it), and the manual setting of hyper-parameters. Similar to what is the case
for algorithms outside machine learning, in some situations certain algorithm parameters
can be transformed into model parameters or avoided altogether: for example, the depth
to which to build a decision tree does not need to be specified if one instead uses pruning
techniques. The typical optimization objective in machine learning is predictive performance
on a previously-unseen test set of instances.

As one of many examples, consider the work of Kohavi and John (1995). They demon-
strated that it is possible to automatically find good parameter configurations θ for the popular
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decision tree learning algorithm C4.5. In that study, a parameter configuration consisted of
the instantiation of one integer, one continuous, and two binary parameters; the parameter
configuration space Θ was discretized to a total of 1156 choices. For each of 33 data sets in
their study, they performed a best-first search in Θ, where each θ ∈ Θ was evaluated by cross
validation on the training set. Their approach found different well-performing configurations
for each of their data sets which significantly outperformed the default parameter configuration
of C4.5 in nine of 33 cases. Note that in our terminology, “machine learning data set” translates
to “problem instance π ∈ Π”. A k-fold cross-validation on the training set can thus be seen as
assessing average performance of a parameter configuration across k instances. Alternative
problem formulations could have been to find the configuration θ with best performance
across the 33 data sets, or—given some cheaply computable features for data sets—the best
configuration on a per-data-set basis.

Some machine learning algorithms have a rather large number of parameters. One example
can be found in the training of restricted Boltzmann machines and deep belief networks, which
relies on various implementation “tricks” (Sversky and Murphy, 2009). The right combination
of the parameters associated with these “tricks” can be found with automated configuration
procedures, an approach that is far closer to the philosophy of machine learning than the
manual optimization of such parameters.

2.4.2 Optimizing Algorithms for Frequently-Used Polytime Operations
In this thesis, we focus on the optimization of algorithms for solving hard computational
problems, such as, e.g.,NP-hard problems. Very similar approaches would also be applicable
to the empirical optimization of polytime algorithms for many prominent problems, such as,
e.g., sorting, finding shortest paths in graphs, and linear algebra operations. Here, algorithm
configuration interfaces with algorithm engineering, an area that combines theoretical algo-
rithm design with the empirical analysis of practical algorithm performance. While algorithm
engineering manually combines algorithm components to yield algorithms that are often
provably efficient (but can also include heuristics), some or all of this task could be automated.
Even though the theoretical performance guarantees may not change (and even if they degrade,
as, e.g., in Quicksort compared to MergeSort), empirical performance can improve by orders
of magnitude when using careful implementations.

As an example, consider the construction of fast sorting algorithms. One example for
the engineering effort necessary in this task is given by Bentley and McIlroy (1993). That
paper specifically concludes “We have added a few new tricks to Quicksort’s bag [...] We
mixed these with a few old tricks, ignored many others, and arrived at the new champion
Program.” We note that these “tricks” often involve numerical parameters and combinations
of categorical algorithm components. For example, in their work there are three integer
parameters which determine the size of subarray for which to use InsertionSort and select
between different adaptive partitioning schemes. Further, the swapping macro is highly
optimized and contains categorical decisions about whether to inline algorithm code or not.
These explicit optimizations sped up swaps by a factor of 12 for the common special case of
sorting integer arrays.

Another example can be found in the problem of finding the shortest path between
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two vertices of a graph (V,E). Even though this problem can be solved by Dijkstra’s
classical algorithm (Dijkstra, 1959) in time O(|E|+ |V | log(|V |)), until recently practitioners
used heuristic solutions without correctness guarantees. Only the last decade has seen the
development of (parameterized) algorithms that are both exact and empirically outperform
Dijkstra’s algorithm by up to a factor of one million (Sanders and Schultes, 2007).

A final but no less important problem is the optimization of high-performance libraries,
such as those in a linear algebra package. Research in automatically optimizing such libraries
has demonstrated that frequently-used routines can be optimized to run orders of magnitude
faster than naı̈ve implementations (Whaley, 2004). However, the optimizations are platform-
specific and an optimization on one platform may cause a performance decrease on another.
Thus, the approach taken in the ATLAS project (Whaley et al., 2001) is to optimize algorithm
performance on the end user side. Custom search heuristics are used to automatically determine
the most appropriate implementation for the user’s architecture, which—next to setting various
numerical parameters—also requires making some categorical choices. General algorithm
configuration procedures could be used for cases where custom heuristics either do not perform
well or simply have not been developed yet.

In all of these potential applications of automated algorithm configuration procedures, sin-
gle algorithm runs would only require a small fraction of the time they take in the applications
typical for this thesis. Nevertheless, the configuration procedures we introduce in this thesis
would remain valid. However, for the optimization of extremely fast operations it appears
advisable to pay special attention to keeping the overhead of configuration procedures small.
Another characteristic shared by algorithms for all these applications is their widespread use.
Improvements would thus have an immediate impact on a large user base.

2.5 Chapter Summary
In this chapter, we discussed related work from various fields of research. We started with
the most closely-related work, methods that apply relatively directly to (special cases) of the
algorithm configuration problem we defined in Section 1.2.2. Most such existing methods are
based on direct search in parameter configuration space, some are based on response surface
models, and some on statistical racing techniques.

We then discussed methods for automatically constructing algorithms. This included
methods for the construction of correct implementations based on high-level specifications
and no or little manual implementation effort in low-level programming languages. We
also discussed related methods from genetic programming that evolve programs for solving
problem instances of a given type. In such methods, the specification of possible programs is
often tightly coupled to the methods used to search the space of programs.

Next, we discussed a variety of approaches for problems related to algorithm configuration,
such as per-instance algorithm selection and parameter tuning, algorithm portfolios, and
methods that adapt algorithm parameters while solving a problem instance.

Finally, we discussed two areas of research that promise to hold much potential for applying
automated algorithm configuration procedures: machine learning and the optimization of
algorithms for frequently-used polytime operations.
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Part II

Algorithm Configuration: Scenarios
and Empirical Analysis

—in which we introduce our algorithm configuration scenar-
ios and empirically analyze their characteristics
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Chapter 3

Algorithm Configuration Scenarios
We have to learn again that science without contact with experiments
is an enterprise which is likely to go completely astray into imaginary
conjecture.
—Hannes Alfvén, Swedish plasma physicist

In this chapter, we describe the algorithm configuration scenarios we use throughout this
thesis to experimentally evaluate configuration procedures. We constructed these configuration
scenarios—instances of the algorithm configuration problem—to study various aspects of
algorithm configuration.

Algorithm configuration aims to improve the performance of existing target algorithms
for solving sets of instances of a problem. First, in Section 3.1, we discuss the two problems
we focus on: propositional satisfiability (SAT) and mixed integer programming (MIP). Then,
we introduce target algorithms (Section 3.2) for these problems, sets of benchmark instances
(Section 3.3), and optimization objectives (Section 3.4). Next, we introduce seven sets of
configuration scenarios that we will use throughout the thesis (Section 3.5). Finally, at the end
of this chapter, we also discuss experimental preliminaries that apply throughout the thesis.

This chapter serves as a reference and can be skimmed or skipped by readers eager to
move on.

3.1 Problems
We studied algorithm configuration for two problems in detail. In particular, we focused on
SAT, the most-widely studied NP-complete problem, and mixed integer programming (MIP),
which is important due to the wide spread of problem formulations as MIP in industry and
academia.

Beyond these two, we considered additional problems to demonstrate the generality of
our methods. In particular, we studied global continuous blackbox optimization and the most
probable explanation problem (MPE).
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3.1.1 Propostitional Satisfiability (SAT)
The propositional satisfiability (SAT) problem is the prototypical NP-hard problem (Garey
and Johnson, 1979). All SAT instances we used were propositional formulae in conjunctive
normal form (CNF), that is, each instance is a conjunction of disjunctions of literals (negated
or non-negated variables). The goal is to determine whether or not there exists a variable
assignment under which the formula evaluates to TRUE. We restrict ourself to CNF-encoded
formulae since this is the widely-accepted standard input format for SAT solvers. Any
propositional formula can be encoded into CNF with linear overhead by adding additional
variables.

3.1.2 Mixed Integer Programming (MIP)
Mathematical programs are general optimization problems of the form

min f(x)

s.t. c(x),

where f(·) is the objective function and c(·) expresses feasibility constraints. In integer
programs, all variables xi are constrained to be integer. In mixed integer programs only a
subset of variables is constrained in that way. In the frequent case of mixed integer linear
programs (MILP), f(·) is a linear function. Even with binary domains for each xi this
conceptually simple problem is NP-hard.

All MIP instances we used can be expressed in the rather general representation used by
CPLEX 10.1.1, which we used to solve these instances:

minimize 1/2 · xT ·Q · x+ cT · x
subject to A · x ./ b

aT
i · x+ xT ·Q′i · x ≤ ri for i = 1, . . . , q

li ≤ xi ≤ ui for i = 1, . . . , n

xi is integer for i in a subset of {1, . . . , n},

where ./ may be ≥, ≤, or =, x denotes the n optimization variables,Q is an n× n matrix of
quadratic coefficients of the objective function, c is a column vector of linear coefficients of
the objective function, the m× n matrixA and the column vector b specify linear constraints,
the n× n matricesQ′i and scalars ri specify quadratic constraints, and the scalars li and ui
specify lower and upper bounds on xi. These lower and upper bounds can be positive or
negative infinity or any real number.

3.2 Target Algorithms
In this section, we first describe the SAT solvers we used, then the commercial optimization
tool CPLEX for MIP, and finally the algorithms for the other two problems. Table 3.1 gives
an overview of those target algorithms for which we considered a discretized parameter
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Algorithm Parameter type # params of type # values considered Total # configs, |Θ|
Categorical 50 2–7

CPLEX Integer 8 5–7 1.38 · 1037

Continuous 5 3–5
Categorical 10 2–20

SPEAR Integer 4 5–8 8.34 · 1017

Continuous 12 3–6
Categorical 16 2–13

SATENSTEIN Integer 5 4–9 4.82 · 1012

Continuous 20 3–10
Categorical 4 3–6

SAT4J Integer 4 5–7 567 000
Continuous 3 5

SAPS Continuous 4 7 2 401

Categorical 1 2
GLS+ Integer 2 5–7 1 680

Continuous 2 4–6

Table 3.1: Target algorithms and their parameters. We list those algorithms for which we
discretized all parameters, in order of decreasing complexity (measured in terms of total
number of parameter configurations).

Algorithm Parameter type # parameters of type
SAPS Continuous 4

CMA-ES
Integer 1

Continuous 3

Table 3.2: Target algorithms with only numerical parameters.

configuration space. Table 3.2 lists our target algorithms with only numerical parameters.
Note that SAPS is contained in both tables; we performed experiments with both discretized
and continuous versions of its parameter configuration space.

Throughout, we paid careful attention to only selecting high-performance solvers as target
algorithms to be configured. Improving poor algorithms might be much easier, but good
results for such algorithms might not imply improvements of the state of the art.

3.2.1 Target Algorithms for SAT
For SAT, we considered two local search and two tree search algorithms.

Stochastic Local Search Algorithms for SAT

SAPS This stochastic local search (SLS) SAT solver is a type of dynamic local search
algorithm, that is, it dynamically changes its internal cost function during the search. SAPS

does this by associating weights with the clauses of the input SAT formula. In each encountered
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local minimum, m, it increases the weights of the currently unsatisfied clauses, thereby
changing the cost function to ensure that m is not a local minimum anymore. At each iteration,
with a certain probability clause weights are smoothed towards the uniform distribution.
SAPS(short for “Scaling And Probabilistic Smoothing”) was introduced by Hutter et al.
(2002); we use the UBCSAT implementation by Tompkins and Hoos (2004). When introduced
in 2002, SAPS was a state-of-the-art solver, and, with appropriately-chosen parameters, it
still offers high performance on many types of “crafted” and unstructured instances. We
chose to study this algorithm because it is well known, it has relatively few parameters, we
are intimately familiar with it, and we knew from earlier work that SAPS’s parameters can
have a strong impact on its performance (Hutter et al., 2006). Its four continuous parameters
control the scaling and smoothing of clause weights, as well as the percentage of random
steps. Their original defaults were set through manual configuration based on experiments
with prominent sets of benchmark instances; this manual experimentation kept the percentage
of random steps fixed and took up about one week of development time. We gained more
experience with SAPS’ parameters for more general problem classes in our early work on
parameter optimization (Hutter et al., 2006). Informed by that work, we chose promising
intervals for each parameter, including but not centered at the original default.

For our experiments with procedures restricted to discretized configuration spaces, we
picked seven possible values for each parameter. These were spread uniformly across its
respective interval, that is, equally dividing the interval. For the one multiplicative parameter
(‘α’), we picked these seven values uniformly on a log scale, that is, by an equal division of its
log-transformed interval. This resulted in 2 401 possible parameter configurations (exactly the
values used in Hutter et al., 2007b). As the starting configuration for configuration procedures
requiring discretized values, we used the center of each parameter’s interval.

We also performed configuration experiments without discretizing SAPS’ parameters. In
these experiments, we used the same interval as above for each parameter, extending from the
minimum to the maximum of the seven values chosen above. Since the original SAPS default
is contained in this continuous space, we used it as the starting configuration.

SATENSTEIN This highly parameterized framework for stochastic local search (SLS) SAT
solvers was very recently introduced by KhudaBukhsh et al. (2009). SATENSTEIN draws
on components from WalkSAT-based algorithms (Selman et al., 1996), dynamic local search
algorithms (Hutter et al., 2002) and G2WSAT variants (Li and Huang, 2005), all combined
in a highly parameterized framework solver with a total of 41 parameters. It covers almost
all state-of-the-art SLS solvers for SAT and is designed to be used in conjunction with a
configuration procedure to automatically construct new SLS solvers for new types of problem
instances of interest.

The parameter configuration space of SATENSTEIN is highly structured. There is one
top-level parameter that decides whether to construct a dynamic local search (DLS) type
algorithm or a non-DLS algorithm. The subspace for DLS algorithms has 21 parameters, 17
out of which are conditional parameters that are only active depending on certain instantiations
of other (higher-level) parameters. The non-DLS subspace has 36 parameters, 29 of which are
conditional parameters. Thus, an efficient mechanism for handling conditional parameters
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might be important for the effective configuration of SATENSTEIN. In total, the configuration
space of SATENSTEIN is of size 4.82 · 1012. When studying 1 000 random configurations of
SATENSTEIN in Chapter 4, we used 500 configurations from each of those two subspaces.

Tree Search Algorithms for SAT

SPEAR This recent tree search algorithm for SAT solving was developed by Babić (2008).
It is a state-of-the-art SAT solver for industrial instances, and with appropriate parameter
settings it is the best available solver for certain types of SAT-encoded hardware and software
verification instances (Hutter et al., 2007a). Furthermore, configured with one of the algorithm
configuration tools we introduce in this thesis (PARAMILS), SPEAR won the quantifier-free
bit-vector arithmetic category of the 2007 Satisfiability Modulo Theories Competition.

SPEAR has 26 parameters, including ten categorical, four integer, and twelve continuous
parameters. Their default values were manually engineered by its developer, using a benchmark
set of relatively small software verification and bounded model checking instances. (Manual
tuning required about one week.) The categorical parameters mainly control heuristics for
variable and value selection, clause sorting, resolution ordering, and also enable or disable
optimizations, such as the pure literal rule. The continuous and integer parameters mainly
deal with activity, decay, and elimination of variables and clauses, as well as with the interval
of randomized restarts and percentage of random choices. We discretized the integer and
continuous parameters by choosing lower and upper bounds at reasonable values and allowing
between three and eight discrete values spread relatively uniformly across the resulting interval,
including the default. The number of discrete values was chosen according to our intuition
about the importance of the parameter. After this discretization, there were 3.7 · 1018 possible
parameter configurations. Exploiting the fact that nine of the parameters are conditional
(i.e., only relevant when other parameters take certain values) reduced this to 8.34 · 1017

configurations. As the starting configuration for our configuration procedures, we used the
default.

In Section 6.3.1, we discuss SPEAR’s parameter configuration space in more detail in the
context of a case study for algorithm configuration.

SAT4J This library1, developed by Le Berre, provides an implementation of SAT solvers
in Java. It is targeted at users who would like to embed a black box SAT solver in their
application without worrying about the details. SAT4J is based on an implementation of
MiniSAT (Eén and Sörensson, 2004), extended with new heuristics and learning strategies. In
our experiments, we used a modified version of SAT4J version 1.5, for which all parameters
had been made accessible from the command line (the version number outputted by the code is
“OBJECTWEB.1.0.113”).2 These parameters include categorical choices of variable ordering,
learning strategy, data structure and clause minimization. One variable ordering heuristic
and three learning heuristics are parameterized with one additional continuous parameter

1http://www.sat4j.org/index.php
2Many thanks to Daniel Le Berre for preparing this version for us.
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each. Finally, three other numerical parameters govern variable decay, first restart and the
multiplication factor of the restart interval.

We only experimented with SAT4J early on and replaced it with SPEAR later, since
SPEAR was typically faster and in particular was the best available algorithm for some
important industrial benchmark distributions. However, we do see much promise in integrating
automated algorithm configuration techniques with current versions of SAT4J. SAT4J’s
typical usage scenarios as a blackbox SAT solver for users unfamiliar with SAT technology
could be combined nicely with an automated option to improve the solver for the (a priori
unknown) types of problem instances it faces.

3.2.2 Target Algorithm for MIP

CPLEX The most-widely used commercial optimization tool for solving mixed integer
programs is ILOG CPLEX. As stated on the CPLEX website (http://www.ilog.com/products/
cplex/), currently over 1 300 corporations and government agencies use CPLEX, along with
researchers at over 1 000 universities. CPLEX is massively parameterized and considerable
effort has been expended to engineer a good default parameter configuration:

“A great deal of algorithmic development effort has been devoted to establishing
default ILOG CPLEX parameter settings that achieve good performance on a
wide variety of MIP models.” (ILOG CPLEX 10.0 user manual, page 247)

Despite these efforts, the end user still sometimes has to experiment with parameters:

“Integer programming problems are more sensitive to specific parameter settings,
so you may need to experiment with them.” (ILOG CPLEX 10.0 user manual,
page 130)

As such, the automated configuration of CPLEX is very promising and has the potential to
directly impact a large user base.

For the experiments in this thesis, we used CPLEX version 10.1.1. Out of its 159 user-
specifiable parameters, we identified 81 parameters that affect its search trajectory. We did
this without any experience with CPLEX, solely based on two days spent with its manual.
Thus, we may have omitted some important parameters or included inconsequential ones. We
were careful to omit all parameters that change the problem formulation (e.g., by changing the
numerical accuracy of a solution). Many CPLEX parameters deal with MIP strategy heuristics
(such as variable and branching heuristics, probing, dive type, and subalgorithms) and amount
and type of preprocessing to be performed. There are also nine parameters each governing how
frequently a different type of cut should be used (there are four magnitude values and the value
“choose automatically”; note that this last value prevents the parameters from being ordinal). A
considerable number of other parameters deal with simplex and barrier optimization, and with
various other algorithm components. For categorical parameters with an automatic option, we
considered all categorical values as well as the automatic one. In contrast, for continuous and
integer parameters with an automatic option, we chose that option instead of hypothesizing
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values that might work well. We also identified some parameters that primarily deal with
numerical accuracy, and fixed those to their default values. For other numerical parameters,
we chose up to five possible values that seemed sensible, including the default. For the many
categorical parameters with an automatic option, we included the automatic option as a choice
for the parameter, but also included all the manual options. Finally, we ended up with 63
configurable parameters, leading to 1.78 · 1038 possible configurations. Exploiting seven
conditional parameters reduced this to 1.38 · 1037 distinct configurations. As the starting
configuration for our configuration procedures, we used the CPLEX default settings.

3.2.3 CMA-ES for Global Continuous Function Optimization
This prominent gradient-free global optimization algorithm for continuous functions (Hansen
and Ostermeier, 1996; Hansen and Kern, 2004) is based on an evolutionary strategy that uses
a covariance matrix adaptation scheme. CMA-ES has been used as an application domain of
parameter optimization algorithms (Bartz-Beielstein et al., 2008). We used the interface they
wrote for the SPO toolbox, which used the Matlab implementation of CMA-ES 2.54.3 As an
evolutionary strategy, CMA-ES has two obvious parameters: the number of parents, N , and
a factor ν ≥ 1 relating the number of parents to the population size. (The population size is
defined as bN · ν + 0.5c.) Furthermore, Bartz-Beielstein et al. (2008) modified CMA-ES’s
interface to expose two additional parameters: the “learning rate for the cumulation for the
step size control”, cσ or cs, and the damping parameter, dσ or damps (for details, see Hansen,
2006). All these parameters are numerical. We used CMA-ES as a test case for optimizing
such parameters without the need for discretization.

3.2.4 GLS+ for the Most Probable Explanation (MPE) Problem
GLS+ is a guided local search algorithm for solving the Most Probable Explanation (MPE)
problem in discrete-valued graphical models, that is, the problem of finding the variable
instantiation with maximal overall likelihood (Hutter et al., 2005; Hutter, 2004). It has
five parameters, one binary and four continuous. The binary parameter decides whether to
initialize at random or by using a weight-bounded version of the Mini-Buckets approximation
algorithm (Dechter and Rish, 2003). The numerical parameters govern the scaling of clause
penalties (amount and interval), the weighting factor for clause weights and the weight
bound on preprocessing with Mini-Buckets. We only performed experiments with discretized
parameters (between 4 and 7 values per numerical parameter, depending on our intuition as to
its importance). This led to a parameter configuration space of size 1 680.

3.3 Benchmark Sets
We selected our benchmark distributions by the following principles. Firstly, we only used
standard benchmark distributions for a problem that had previously been used to evaluate
algorithms for that problem. This avoided the potential issue of creating a problem distribution

3The newest CMA-ES version, 3.0, differs mostly in the interface and in supporting “separable” CMA (see
the change log at http://www.lri.fr/∼hansen/cmaes inmatlab.html).
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that lends itself to our approach. Secondly, whenever possible we used distributions of
practical relevance, to ensure improvements we make by automated configuration would have
immediate impact. Prime examples are our two sets of industrial verification instances; some
of our CPLEX distributions are also derived from industrial applications. We selected instance
distributions of varying hardness. While easy instances were useful for facilitating algorithm
development, we needed to verify the performance of our configurators on harder instance
distributions. Along the same lines, for the evaluation of configuration procedures that are
limited to single instances, we selected a variety of single instances of varying hardness.

Generally, we randomly split each benchmark set 50-50 into training and test sets. All
configuration runs only had access to the training set, and we report results on the test set
unless explicitly stated. For benchmark “sets” that only contain one instance, we measured
test performance on independent test runs with different random seeds but on the same single
instance.

3.3.1 SAT Benchmarks
For our experiments on configuring the various SAT solvers discussed above, we selected
structured instances from two broad categories: “crafted” instances, based on encodings of
randomly-generated instances of otherNP-hard problems that are prominent in SAT research,
and “industrial” instances based on encodings of industrial verification instances. For the
study of configuration procedures that are limited to single problem instances, we selected
instances of varying hardness within each of these categories. All instances we study contain
structure that can potentially be exploited by SAT solvers. This structure is due to the SAT
encoding and to the structure in the original problem.

Encodings of Randomly Generated Instances of Other Hard Problems

QCP This benchmark set contains 23 000 instances of the quasi-group completion problem
(QCP), which has been widely studied by researchers in artificial intelligence and constraint
programming. The objective in this problem is to determine whether the unspecified entries
of a partial Latin square can be filled to obtain a complete Latin square. Latin squares play a
role in applications such as scheduling, timetabling, experimental design, and error correcting
codes. They have been widely used for benchmarking purposes (Gomes and Selman, 1997).
Xu generated these QCP instances around the solubility phase transition, using the parameters
given by Gomes and Selman (1997). Specifically, the order n was drawn uniformly from the
interval [26, 43], and the number of holes H (open entries in the Latin square) was drawn
uniformly from [1.75, 2.3] · n1.55.

For use with complete SAT solvers, we sampled 2 000 of these SAT instances uniformly at
random. These had on 1 497±1 094 variables (mean± standard deviation across all instances)
and 13 331± 12 473 clauses; 1 182 of the instances were satisfiable. For use with incomplete
SAT solvers, we randomly sampled 2 000 instances from the subset of satisfiable instances
(determined using a complete algorithm). Their number of variables and clauses were very
similar to those of the set used for complete solvers (1 515± 1 173 variables, 14 304± 12 528
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clauses).

Single Instances QCPmed, QCPq075, and QCPq095 These three single instances are the in-
stances at the 50%, 75%, and 95% quantiles of the subset of satisfiable instances of QCP in
terms of hardness for SAPS with its default configuration. They contain 1 009, 2 367, and
2 946 variables and 7 647, 23 332, and 29 096 clauses, respectively.

Single Instance QWH This benchmark consists of a single quasigroup completion problem
based on a quasigroup with randomly punched holes. (QWH differs from QCP in that QWH
instances are always satisfiable by construction.) It is one of a set of 10 000 instances that
Xu generated using lsencode by Gomes and Selman (1997), namely the instance at the
50% quantile of hardness for SAPS with its default configuration. This instance contains
1 077 variables and 7 827 clauses. In our experiments, it could be solved by SAPS in a
median number of 85 500 search steps, taking well below a second on our reference machines
(see Section 3.6). It thus allowed us to perform many target algorithm runs quickly and so
facilitated algorithm development. For this reason, we used this instance extensively in early
development phases of both algorithm configuration frameworks discussed in this thesis:
model-free search in Part III and model-based search in Part IV.

SWGCP This benchmark set contains 20 000 instances of the graph colouring problem (GCP)
based on the small world (SW) graphs of Gent et al. (1999). Using their generator, Xu created
these instances, with a ring lattice size sampled uniformly at random from [100, 400], each
node connected to the 10 nearest neighbours, a rewiring probability of 2−7 and chromatic
number 6. We sampled 2 000 of these instances uniformly at random for use with complete
SAT solvers. These had 1 813 ± 703 variables and 13 902 ± 5 393 clauses; 1 109 of the
instances were satisfiable. For use with incomplete local search solvers, we randomly sampled
2 000 satisfiable instances (again, determined using a complete SAT algorithm). Their number
of variables and clauses was very similar to that in the set for complete solvers (1 958± 646
variables, 15 012± 4 953 clauses).

Single Instances SWGCPmed, SWGCPq075, and SWGCPq095 These three single instances are
the instances at the 50%, 75%, and 95% quantiles of the subset of satisfiable instances of
SWGCP in terms of hardness for SAPS with its default configuration. They contain 2 616,
2 586, and 1 956 variables respectively; and 20 056, 19 826, and 14 996 clauses, respectively.
(Note that although often instance hardness correlates with instance size, this is not a strict
rule.)

Structured Instances from Industrial Verification Problems

SWV This set of SAT-encoded software verification instances comprises 604 instances gener-
ated with the CALYSTO static checker (Babić and Hu, 2007b), used for the verification of five
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programs: the spam filter Dspam, the SAT solver HyperSAT, the Wine Windows OS emulator,
the gzip archiver, and a component of xinetd (a secure version of inetd). These instances con-
tain 64 416± 53 912 variables and 195 058± 174 534 clauses. (We only employed complete
solvers for these instances, and thus did not create a separate subset of satisfiable instances.)

Single Instances SWVmed, SWVq075, and SWVq095 These three single instances are the in-
stances at the 50%, 75%, and 95% quantiles of SWV in terms of hardness for SPEAR with
its default configuration. They contain 92 737, 72 596, and 114 395 variables and 273 793,
214 459, and 370 825 clauses, respectively.

BMC This set of SAT-encoded bounded model checking instances comprises 765 instances
generated by Zarpas (2005); these instances were selected as the instances in 40 randomly-
selected folders from the IBM Formal Verification Benchmarks Library. These instances
contained an average of 91 041 variables and 386 171 clauses, with respective standard de-
viations of 149 815 and 646 813. Some of the instances in this set are extremely hard, the
largest instance containing 1 400 478 variables and 5 502 329 clauses. (As above, we only
employed complete solvers for these instances and did not create a separate subset of satisfiable
instances.)

Single Instances IBMq025 and IBMmed These two single instances are the instances at the
25% and 50% quantiles of BMC in terms of hardness for SPEAR with its default configuration.
They contain 45 853 and 29 725 variables and 151 611 and 125 883 clauses, respectively.
(Unlike in the case of the other single instances, we did not use instances from the 75%
and 95% quantiles from this distribution since these could not be solved by any parameter
configuration we studied.)

3.3.2 MIP Benchmarks
For our configuration experiments with CPLEX, we considered a variety of benchmark sets
that have previously been used in computational experiments for CPLEX. As in the case of
SAT, we used encodings of another NP-hard problem prominent in the evaluation of MIP
algorithms, as well as prominent instance types based on industrial applications.

Benchmarks from the Combinatorial Auction Test Suite

In some types of auctions, bidders can bid on sets of goods rather than on single goods. The
winner determination problem in such combinatorial auctions is to determine the revenue-
maximizing allocation of goods to bidders. This problem is NP-hard (Rothkopf et al., 1998)
and instances of it can be easily encoded as MILPs. We created two instance sets using the
generator provided with the Combinatorial Auction Test Suite (Leyton-Brown et al., 2000).
These two sets are very similar, only differing in instance size, which allows us to study how
our methods scale to larger instances. Instances based on this generator have been used before
to model CPLEX performance and to perform per-instance algorithm selection (Leyton-Brown
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et al., 2009).

Regions100 For this benchmark set we generated 2 000 MILPs based on the above
generator and using the regions option with the ‘goods’ parameter set to 100 and the
‘bids’ parameter set to 500. The resulting MILP instances contained 501 variables and 193
inequalities on average, with a standard deviation of 1.7 variables and 2.5 inequalities.

Regions200 This set is very similar to the Regions100 set, but its instances are much
larger. We generated 2 000 MILP instances as above, but now with the ‘goods’ parameter
set to 200 and the ‘bids’ parameter set to 1 000. These instances contain an average of 1 002
variables and 385 inequalities, with respective standard deviations of 1.7 and 3.4.

Benchmarks from Berkeley Computational Optimization Lab

We obtained a variety of instance sets from the Berkeley Computational Optimization Lab.4.
We only used sets of instances that were large and homogeneous enough to be split into
disjoint training and test sets and still have the training set be quite representative.

MJA This benchmark set, introduced by Aktürk et al. (2007), comprises 343 machine-job
assignment instances encoded as mixed integer quadratically constrained programs (MIQCP).
These instances contain 2 769± 2 133 variables and 2 255± 1 592 constraints.

CLS This set comprises 100 capacitated lot-sizing instances encoded as mixed integer linear
programs (MILP). It was introduced by Atamtürk and Muñoz (2004). All 100 instances
contain 181 variables and 180 constraints.

MIK This set of 120 MILP-encoded mixed-integer knapsack instances was originally intro-
duced by Atamtürk (2003). The instances in this set contain an average of 384± 309 variables
and 151± 127 constraints.

Other MIP Benchmarks

QP This set of quadratic programs originated from RNA energy parameter optimization (An-
dronescu et al., 2007). Andronescu generated 2 000 instances for our experiments. These
instances contain 9 366± 7 165 variables and 9 191± 7 186 constraints. Since the instances
are polynomial-time solvable quadratic programs. Thus, in configuration scenarios in which
we optimize CPLEX performance for these instances, we set a large number of inconsequential
CPLEX parameters concerning the branch and cut mechanism to their default values, ending up
with 27 categorical, 2 integer and 2 continuous parameters to be configured, for a discretized
parameter configuration space of size 3.27 · 1017.

4http://www.ieor.berkeley.edu/∼atamturk/bcol/ (where set MJA has the name conic.sch)
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ORLIB This benchmark set includes a heterogeneous mix of 140 instances from OR-
LIB (Beasley, 1990): 59 set covering instances, 20 capacitated p-median problems, 37
capacitated warehouse location instances, and 24 airplane landing scheduling instances. We
obtained these instances from the website by Saxena (2008). We selected this set to study the
characteristics of a very heterogeneous instance set consisting of various clusters of instances.

3.3.3 Test Functions for Continuous Global Optimization
For the optimization of the global continuous optimization algorithm CMA-ES, we considered
four canonical 10-dimensional test functions that have previously been used in published
evaluations of CMA-ES. We used one rather simple test function whose global optimum is its
only local optimum, as well as three global test functions with many local optima. For each of
these functions, the global optimum is x∗ = [0, . . . , 0] with function value f(x∗) = 0. We
now define the four functions, in n dimensions each:
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x2
i .

fAckley(x) = 20− 20 · exp
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x2
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For all of these functions, we used Hansen’s implementations, which are part of the
CMA-ES source code.5

3.4 Optimization Objective: Penalized Average Runtime
As stated in Section 1.2.2, the optimization objective in algorithm configuration can be chosen
by the user to best reflect the intended use of the configured algorithm. Indeed, we explored
several optimization objectives in some of our published work: maximizing solution quality
achieved in a given time, minimizing the runtime required to reach a given solution quality,
and minimizing the runtime required to solve a single problem instance (Hutter et al., 2007b).

Throughout this thesis, however, we concentrate on the objective of minimizing the mean
runtime over instances from a distribution D. This optimization objective naturally occurs in
many practical applications. It also implies a strong correlation between the true cost c(θ) of
a configuration and the amount of time required to obtain a good empirical estimate of c(θ).

5http://www.lri.fr/∼hansen/cmaes inmatlab.html
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Specifically, in a given time, the expected number of algorithm runs we can perform with
a configuration θ is directly proportional to the true cost of θ. In Chapter 7 we exploit this
relationship to significantly speed up our configuration procedures.

One might wonder whether the mean is the best choice for aggregating empirical runtimes.
While we used medians in our first publication on algorithm configuration (Hutter et al., 2007b),
we later found that the optimization of quantiles can result in parameter configurations with
poor robustness. This is intuitive because theQ-percent quantile does not reflect characteristics
of the distribution above that quantile: (100−Q− ε) percent of runs may have a very large,
even infinite, runtime. Empirically, we found that minimizing mean runtime led to parameter
configurations with overall good runtime performance, including rather competitive median
runtimes, while minimizing median runtime yielded less robust parameter configurations that
timed out on a large (but < 50%) fraction of the benchmark instances.

However, when we encounter runs that do not terminate within the given cutoff time, we
are unable to estimate the mean reliably; we only know a lower bound. In order to penalize
timeouts, we define the penalized average runtime (PAR) of a set of runs with cutoff time κ
to be the mean runtime over those runs, where unsuccessful runs are counted as a · κ with
penalization constant a ≥ 1. There is clearly more than one way of sensibly aggregating
runtimes in the presence of capping. One reason we chose PAR is that it generalizes two other
natural schemes;

1. “lexicographic”: the number of instances solved, breaking ties by total runtime (used in
the 2009 SAT competition6); and

2. total (or average) runtime across instances, treating timeouts as completed runs.

Scheme 1 is PAR with a = ∞, while Scheme 2 is PAR with a = 1. In this thesis, we use
a = 10 throughout to emphasize the importance of timeouts more than in the second scheme,
but to yield a more robust measure than the first scheme. KhudaBukhsh et al. (2009) studied
different penalization constants for the comparison of various algorithms and found the relative
rankings between them to be robust with respect to this choice.

There are two exceptions to our use of mean runtime in this thesis. Firstly, for historical
reasons, in scenario SAPS-QWH we minimize SAPS median runtime, measured as the number of
local search steps taken. Secondly, in the experiments with the global optimization algorithm
CMA-ES, we followed the example of Bartz-Beielstein et al. (2008), measuring the solution
cost of each CMA-ES run as the minimal function value found in a given number of function
evaluations. We minimized the mean of this solution cost over repeated runs.

3.5 Configuration Scenarios
We now define the algorithm configuration scenarios we use throughout this thesis. These
scenarios are organized into seven sets. We describe them in increasing complexity in the
following sections.7

6http://www.satcompetition.org/2009/spec2009.html
7A few additional configuration scenarios are only used very locally and we defer their respective discussion

to the points at which we use them: Section 5.4 for scenarios using SAT4J and GLS+ and Section 8.2 for the
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Scenario Algorithm Instance κmax [s] # runs of target algo allowed
SAPS-QWH SAPS QWH 1 20 000

CMAES-ACKLEY CMA-ES Ackley – 1 000
CMAES-GRIEWANGK CMA-ES Griewangk – 1 000
CMAES-RASTRIGIN CMA-ES Rastrigin – 1 000
CMAES-SPHERE CMA-ES Sphere – 1 000

Table 3.3: Summary of our BLACKBOXOPT configuration scenarios. For the CMA-ES sce-
narios, the optimization objective to be minimized is average solution cost; for SAPS-QWH it is
median runtime, measured in search steps. The CMA-ES scenario did not have a cutoff time.
Rather, CMA-ES had a budget of 1 000 to 10 000 function evaluations—see Table 3.4.

Test function Dimensionality Initial point # function evaluations CMA-ES was allowed
Sphere 10 [10, . . . , 10]T ∈ R10 1 000
Ackley 10 [20, . . . , 20]T ∈ R10 1 000

Griewangk 10 [20, . . . , 20]T ∈ R10 10 000
Rastrigin 10 [20, . . . , 20]T ∈ R10 10 000

Table 3.4: Experimental setup for the CMA-ES test cases.

3.5.1 Set of Configuration Scenarios BLACKBOXOPT
Our conceptually-easiest scenarios deal with the configuration of algorithms with only contin-
uous parameters for single problem instances. This is equivalent to the problem of blackbox
function optimization with noisy responses (where noise is due to randomness in the algorithm
and is typically not Gaussian distributed). In blackbox function optimization, the available
budget is typically defined in terms of a number of function evaluations. In our case, this
corresponds to the number of target algorithm runs the configurators are allowed.

To evaluate algorithms following this paradigm (which we do in Chapters 9 and 10), we
use our set of configuration scenarios BLACKBOXOPT, summarized in Table 3.3. This set
contains five scenarios, each of which deals with the optimization of four continuous algorithm
parameters for a single instance, given a budget on the number of target algorithm runs. In
the first scenario, the objective is to minimize median SAPS runtime on instance QWH. The
remaining four scenarios deal with the configuration of CMA-ES (on the four test functions
defined in Section 3.3.3). The optimization objective for those scenarios is to minimize average
solution cost.

In these CMA-ES experiments, we used different starting points and allowed CMA-
ES different budgets. Following Bartz-Beielstein et al. (2008), for the Sphere function, we
initialized CMA-ES at the point [10, . . . , 10]T ∈ R10. To test global search performance, in
the other three test functions, we initialized CMA-ES further away from the optima, at the
point [20, . . . , 20]T ∈ R10. For the first two functions (Sphere and Ackley), we optimized
mean solution quality reached by CMA-ES within 1 000 function evaluations, while for the
latter two functions we set a limit of 10 000 function evaluations. This setup is described in
Table 3.4. Since the slow implementation of one configuration procedure (SKO) could not

self-configuration of PARAMILS.
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Scenario Algorithm Benchmark Set κmax [s] Configuration Time [h]
SAPS-QWH SAPS QWH 1 0.5

SAPS-QCP-MED SAPS QCPmed 5 0.5
SAPS-QCP-Q075 SAPS QCPq075 5 0.5
SAPS-QCP-Q095 SAPS QCPq095 5 0.5
SAPS-SWGCP-MED SAPS SWGCPmed 5 0.5
SAPS-SWGCP-Q075 SAPS SWGCPq075 5 0.5
SAPS-SWGCP-Q095 SAPS SWGCPq095 5 0.5

Table 3.5: Summary of our SINGLEINSTCONT scenarios. For all scenarios except SAPS-QWH,
the optimization objective is to minimize PAR. For SAPS-QWH it is to minimize median runtime,
measured in number of search steps.

Scenario Algorithm Benchmark Set κmax [s] Configuration Time [h]
SPEAR-IBM-Q025 SPEAR IBMq025 5 0.5
SPEAR-IBM-MED SPEAR IBMmed 5 0.5
SPEAR-SWV-MED SPEAR SWVmed 5 0.5
SPEAR-SWV-Q075 SPEAR SWVq075 5 0.5
SPEAR-SWV-Q095 SPEAR SWVq095 5 0.5

Table 3.6: Summary of our SINGLEINSTCAT scenarios. For all scenarios, the optimization
objective is to minimize PAR.

handle as many as 1 000 runs of the target algorithm, we only allowed 200 CMA-ES runs
in the experiments of Chapter 9 (where SKO was one of the procedures being evaluated). In
the experiments reported in Chapter 10 we did not use SKO and so used a budget of 1 000
CMA-ES runs for configuration.

3.5.2 Set of Configuration Scenarios SINGLEINSTCONT
In our SINGLEINSTCONT configuration scenarios (used in Chapters 11 and 12), we continue
to study the configuration of algorithms with only continuous parameters for single problem
instances. In particular, in these scenarios SAPS is optimized on seven single SAT instances.
Table 3.5 summarizes these scenarios. Note that, in contrast to the BLACKBOXOPT scenarios,
the computational budget for configuration is now measured in CPU time. We used short time
budgets of 30 minutes per run of the configurator in order to facilitate algorithm development.

3.5.3 Set of Configuration Scenarios SINGLEINSTCAT
In our SINGLEINSTCAT configuration scenarios (used in Chapter 12), we study the configura-
tion of algorithms with only categorical parameters for single problem instances. In particular,
in these scenarios we optimize SPEAR on five single instances. Table 3.6 summarizes these
scenarios. As for set SINGLEINSTCONT, we used short configuration budgets of 30 minutes
per run of the configurator in order to facilitate algorithm development.
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Scenario Algorithm Benchmark Set κmax [s] Configuration Time [h]
SAPS-QCP SAPS QCP 5 5

SAPS-SWGCP SAPS SWGCP 5 5
SPEAR-QCP SPEAR QCP 5 5

SPEAR-SWGCP SPEAR SWGCP 5 5
CPLEX-REGIONS100 CPLEX Regions100 5 5

Table 3.7: Summary of our BROAD configuration scenarios. The optimization objective is to
minimize penalized average runtime (PAR).

Scenario Algorithm Benchmark Set κmax [s] Configuration Time [h]
SPEAR-IBM SPEAR BMC 300 48
SPEAR-SWV SPEAR SWV 300 48

Table 3.8: Summary of our VERIFICATION configuration scenarios. The optimization objec-
tive is to minimize penalized average runtime (PAR).

3.5.4 Set of Configuration Scenarios BROAD
Our set of BROAD configuration scenarios (used in Chapters 5 and 7 and Section 8.2) comprises
quite heterogeneous scenarios dealing with the configuration of categorical parameters for
multiple instances. Summarized in Table 3.7, these scenarios reach from the configuration
of SAPS (whose 4 continuous parameters were discretized) to the configuration of CPLEX

(with 63 parameters). The benchmark sets are also quite different. While instance hardness
for the SAPS default on the QCP and SWGCP is spread across many orders of magnitude, the
Regions100 set used for CPLEX is quite homogeneous. To facilitate algorithm development,
we employed rather short configuration times of five hours. This is still ten times larger than
for sets SINGLEINSTCONT and SINGLEINSTCAT, due to the extra complexity stemming from
heterogeneity across instances.

3.5.5 Set of Configuration Scenarios VERIFICATION
Our VERIFICATION configuration scenarios, summarized in Table 3.8 and used in Chapter 6,
comprise two scenarios dealing with the configuration of SPEAR for the industrial benchmark
sets BMC and SWV. Since the instances in these sets are very hard (at least for the algorithm
defaults), we set rather large cutoff times of 300 seconds per run and allowed a time budget of
two days for configuration.

3.5.6 Set of Configuration Scenarios CPLEX
Our CPLEX configuration scenarios, summarized in Table 3.8, serve in our study of configuring
CPLEX in Section 8.1. As for set VERIFICATION, we set comparably large cutoff times of
300 seconds per run and allowed two days of configuration time.
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Scenario Algorithm Benchmark Set κmax [s] Configuration Time [h]
CPLEX-REGIONS200 CPLEX Regions200 300 48

CPLEX-CLS CPLEX CLS 300 48
CPLEX-MJA CPLEX MJA 300 48
CPLEX-MIK CPLEX MIK 300 48
CPLEX-QP CPLEX QP 300 48

Table 3.9: Summary of our CPLEX configuration scenarios. The optimization objective is to
minimize penalized average runtime (PAR).

Scenario Algorithm Benchmark Set κmax [s]
SATENSTEIN-QCP SATENSTEIN QCP 5

SATENSTEIN-SWGCP SATENSTEIN SWGCP 5
CPLEX-REGIONS100 CPLEX Regions100 5

CPLEX-ORLIB CPLEX ORLIB 300
SPEAR-IBM SPEAR BMC 300
SPEAR-SWV SPEAR SWV 300

Table 3.10: Summary of our COMPLEX configuration scenarios. The optimization objective is
to minimize penalized average runtime (PAR).

3.5.7 Set of Configuration Scenarios COMPLEX
Our set of COMPLEX configuration scenarios, summarized in Table 3.10, is a heterogeneous
collection of scenarios, comprising the configuration of the most complex target algorithms we
have experimented with. It is used in Chapter 4 to study the many ways in which configuration
scenarios can differ. Note that we did not actually run configuration procedures for these
scenarios in Chapter 4. Rather, we empirically analyzed the performance of 1 000 randomly-
sampled configurations.

3.6 Experimental Preliminaries
Here, we summarize experimental preliminaries for the remainder of the thesis.

3.6.1 Selecting Instances and Seeds
The comparison of empirical cost statistics of two parameter configurations is inherently noisy.
In order to reduce the variance in these comparisons, following common practice (see, e.g.,
Birattari et al., 2002; Ridge and Kudenko, 2006), we blocked on instances. That is, we ensured
that whenever two parameter configurations were compared, both were run on exactly the
same instances. This serves to avoid noise effects due to differences between instances. For
example, it prevents us from making the mistake of considering configuration θ to be better
than configuration θ′ just because θ was tested on easier instances. For randomized algorithms
we also blocked on random seeds to avoid similar noise effects.

When dealing with randomized target algorithms, there is also a tradeoff between the
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Symbol Meaning
θinc(t) Incumbent parameter configuration at time t

PAR Penalized average runtime (of a configuration on a benchmark set):
mean runtime, counting timed-out runs at κmax as 10 · κmax

pt,train Training performance of θinc(t) (PAR of θinc(t) on used training instances)
pt,test Test performance of θinc(t) (PAR of θinc(t) on test instances). Also abbreviated as pt

Table 3.11: Summary of performance measures for configurators.

number of problem instances used and the number of independent runs performed on each
instance. In the extreme case—for a given sample size N—one could perform N runs on
a single instance or a single run on N different instances. This latter strategy is known to
result in minimal variance of the estimator for common optimization objectives, such as
minimization of mean runtime (which we consider here) or maximization of mean solution
quality (see, e.g., Birattari, 2004). Consequently, we only performed multiple runs per instance
when we wanted to acquire more samples of the cost distribution than there were instances in
the training set.

Based on these considerations, the configuration procedures we study in this thesis have
been implemented to take a list of 〈instance, random number seed〉 pairs as one of their
inputs. Empirical estimates ĉN (θ) of the cost measure c(θ) to be optimized were determined
from N 〈instance, seed〉 pairs in that list (in Part III of this thesis always from the first N
pairs in that list). Each list was constructed as follows. Given a training set consisting of M
problem instances, for N ≤M , we drew a sample of N instances uniformly at random and
without replacement and added them to the list. If we wished to evaluate an algorithm on more
samples than we had training instances, that is, in the case N > M (which only is allowed for
randomized algorithms), we repeatedly drew random samples of size M as described before.
Each such batch corresponded to a random permutation of the N training instances; we then
added a final sample of size N mod M < M , as in the case N ≤M . As each instance was
drawn, it was paired with a random seed that was chosen uniformly at random from the set of
all possible seeds (here, {1, . . . , 231 − 1}) and added to the list of 〈instance, seed〉 pairs.

3.6.2 Comparison of Configuration Procedures
We measure a configurator’s performance given a time budget t by evaluating the performance
of its incumbent configuration at time t, denoted θinc(t). With few exceptions (which we
explicitly state), our objective function throughout this thesis is penalized average runtime,
PAR, with penalization constant 10. We denote training and test performance (as defined in
Section 1.2.2) at time t as pt,train and pt,test, respectively. Table 3.11 summarizes this notation
for easy reference.

Since the choice of instances (and to some degree of seeds) is very important for the
final outcome of the optimization, in our experimental evaluations we always performed a
number of independent runs of each configuration procedure (typically 25) and report summary
statistics of pt,train and pt,test across the 25 runs. We created a separate list of instances and
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seeds for each run as explained above, where the kth run of each configuration procedure
uses the same kth list of instances and seeds. (Note, however, that test set performance was
measured on the same set for all runs.)

We performed two types of statistical tests to compare the (training or test) performance of
two configuration procedures. In cases, where the kth run of each algorithm shared important
external settings, we performed a two-sided paired Max-Wilcoxon test with the null hypothesis
that there was no difference in the performances, considering p-values below 0.05 to be
statistically significant. In cases where such pairings did not apply we used the (unpaired)
Mann-Whitney U test. The p-values reported in all tables were derived using these tests;
p-values shown in parentheses refer to cases where the procedure we expected to perform
better actually performed worse.

3.6.3 Reference Machines
We carried out almost all of our experiments on a cluster of 55 dual 3.2GHz Intel Xeon PCs with
2MB cache and 2GB RAM, running OpenSuSE Linux 10.1, measuring runtimes as CPU time
on these reference machines. The exception were experiments with configuration procedures
other than our own that required the Windows operating system. For these experiments,
local to Section 5.4 and Chapter 9, we ran the original configurator under Windows XP but
still executed all target algorithm runs on the machines stated above. This was achieved
by a wrapper script that connected to one of the above cluster nodes, performed the target
algorithm run there and returned the result of the run. Thus, only the overhead times of these
configurators are affected by the different computing environment; all runtimes of the target
algorithms are for the above cluster nodes.

3.6.4 Implementation
There are two types of overhead in algorithm configuration procedures. The first type is
implementation-specific and could be reduced with better-engineered code. For example, the
overhead of calling a target algorithm on the command line can be substantial if performing
tens of thousands of runs. It is about 0.1 seconds per algorithm run in our Ruby implementation
of the model-free configuration framework in Part III and about 0.2 seconds for our Matlab
implementation of the model-based configuration framework in Part IV. We do not include
these overheads when we report the runtime of our methods since they could be drastically
reduced by using a more native language. We also omit other overheads due to the use of
Ruby and Matlab. For example, in “easy” configuration scenarios, where most algorithm runs
finish in milliseconds, the overhead of our use of Ruby scripts can be substantial. Indeed,
the configuration run with the largest overhead we observed took 24 hours to execute five
hours worth of target algorithm runtime. In contrast, for scenarios with longer target algorithm
runtimes we observed virtually no overhead.

The second type of overhead is due to the computational complexity of our approaches.
While this complexity is negligible in model-free optimization, model-based optimization in-
curs substantial overheads from learning response surface models and optimizing the expected
improvement criterion. We strove to keep the constants low by implementing computationally-
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expensive bottleneck procedures in MEX—C code callable from Matlab. We do include
the remaining overhead of these procedures when computing the runtime of a configuration
procedure since it is not straightforward to reduce.

3.7 Chapter Summary
In this chapter, we defined a variety of configuration scenarios (instances of the algorithm
configuration problem) we use in our experiments thoughout this thesis. The main components
of a configuration scenario are a target algorithm, a set of benchmark instances, and an opti-
mization objective. Our main target algorithms are state-of-the-art tree search and local search
solvers for propositional satisfiability (SAT), the commercial optimization tool CPLEX for
mixed integer programming (MIP), and CMA-ES for continuous blackbox optimization. We
used prominent benchmark instances that have been previously used to assess the performance
of these target algorithms. As our optimization objective, in most cases we chose average
penalized runtime (PAR), counting timed-out runs at a cutoff time κmax as a · κmax; we set
a = 10 throughout the thesis.

We grouped configuration scenarios into seven sets, in increasing complexity: BLACKBOX-
OPT, SINGLEINSTCONT, SINGLEINSTCAT, BROAD, VERIFICATION, CPLEX, and COMPLEX.
Whenever we compare configuration procedures in this thesis, that comparison is based on
one of these sets of scenarios.

Finally, we discussed experimental preliminaries. We described how we selected instances
and seeds to enable blocking in our configuration procedures, how we compared configuration
procedures (based on the test performance achieved in multiple independent runs of the
configurators, using statistical tests), which computational environment we used, and some
implementation details.

56



Chapter 4

Empirical Analysis of Algorithm
Configuration Scenarios Based on
Random Sampling

I think that in the discussion of natural problems we ought to begin not
with the Scriptures, but with experiments, and demonstrations.
—Galileo Galilei, Italian physicist and astronomer

As stated in the introduction, algorithm configuration is hard for two reasons: first, there
can be an enormous number of candidate parameter configurations; and second, empirically
determining the performance of even a single configuration on a large set of non-trivial
instances of an NP-hard problem can be costly. Thus, it is necessary to make careful choices
about (1) the number of configurations to consider and (2) the number of problem instances to
use in evaluating them. Furthermore, it is ideally desirable to avoid prematurely terminating
any run, or “censoring” it’s runtime. (This issue arises particularly in the context of configuring
algorithms with the goal of minimizing the runtime required for solving a given problem
instance or reaching a certain solution quality.) Again, however, time constraints can make
this impractical, requiring us to choose (3) some captime at which runs will be terminated
whether or not they have completed.

In this chapter1, we empirically study the tradeoff between these three dimensions of
algorithm configuration. (2) and (3) are very related to the second and third dimensions
of algorithm configuration presented in Section 1.2.2. Here, we study these dimensions in
the context of a very simple instantiation of the first dimension: selecting the sequence of
configurations to be evaluated uniformly at random.

4.1 Introduction
Automated methods for performing parameter optimization and algorithm configuration can
be understood as sophisticated heuristics for deciding which configurations to consider and

1This chapter is based on joint work with Holger Hoos and Kevin Leyton-Brown about to be submitted for
publication (Hutter et al., 2009d).

57



how many instances to use for their evaluation.2 Racing algorithms (Maron and Moore,
1994; Birattari et al., 2002; Birattari, 2005; Balaprakash et al., 2007) emphasize using as few
problem instances as possible to reliably choose among a fixed set of parameter configurations.
More specifically, they incrementally expand the instance set (i.e., perform more runs for all
configurations) and at each step eliminate configurations that are statistically significantly
worse than others in terms of observed performance. In contrast, research on sequential search
algorithms focuses on the question of which parameter configurations to evaluate. Many search
algorithms, such as Multi-TAC (Minton, 1996), Calibra (Adenso-Diaz and Laguna, 2006),
the mesh adaptive direct search algorithm (Audet and Orban, 2006) and BASICILS (Hutter
et al., 2007b, see also Section 5.2), use a fixed, user-defined instance set. Other search
algorithms include mechanisms for adapting the set of instances used for evaluating parameter
configurations; examples are Composer (Gratch and Dejong, 1992), SPO (Bartz-Beielstein,
2006, see also Section 9.5) and FOCUSEDILS (Hutter et al., 2007b, see also Section 5.3).

The literature on automatic algorithm configuration places less emphasis on the choice of
captime.3 However, the issue has been studied in the context of evaluating heuristic algorithms.
Segre et al. (1991) demonstrated that small captimes can lead to misleading conclusions
when evaluating explanation-based learning algorithms. Etzioni and Etzioni (1994) extended
statistical tests to deal with partially-censored runs in an effort to limit the large impact of
captimes observed by Segre et al. (1991). Simon and Chatalic (2001) demonstrated the relative
robustness of comparisons between SAT solvers for three different captimes.

Here, we present the first detailed empirical study of the role of this captime in algorithm
configuration. We show that the impact of captime is similar to that of the size of the instance
set based upon which configurations are compared. Large captimes lead to unreasonable
time requirements for evaluating single parameter configurations (especially poor ones); this
typically limits the number of problem instances on which configurations are evaluated, which
in turn can lead to misleading performance results. On the other hand, evaluations based on
overly aggressive captimes favour parameter configurations with good initial performance, and
thus the configurations chosen on the basis of these evaluations may not perform competitively
when allowed longer runs.

In this chapter, we do not yet propose a new method for making choices about which
parameter configurations to explore, which benchmark set to use, or how much time to
allocate to each run of the target algorithm. Rather, we first study the many ways in which
algorithm configuration scenarios differ. This study is based on an empirical analysis approach
we propose for investigating the tradeoffs between the choices any (manual or automated)
approach to algorithm configuration must make.

Based on the data that we analyze in this chapter, we can answer a number of questions
about a given configuration scenario that are important for both manual and automated
algorithm configuration.4 Here, we focus on the following eight questions:

2Of course, essentially the same point can be made about manual approaches, except that they are typically
less sophisticated, and they have been discussed less rigorously in the literature.

3The only exception of which we are aware is our own recent extension of the PARAMILS framework, which
dynamically adapts the per-run cutoff time (Hutter et al., 2009c). We discuss this adaptive capping mechanism in
Chapter 7.

4We note, however, that our methods are typically very costly; our methods are applied only post hoc, not

58



1. How much does performance vary across parameter configurations?
2. How large is the variability in hardness across benchmark instances?
3. Which benchmark instances are useful for discriminating between parameter configura-

tions?
4. Are the same instances “easy” and “hard” for all or most configurations?
5. Given a fixed computational budget and a fixed captime, how should we trade off the

number of configurations evaluated vs the number of instances used in these evaluations?
6. Given a fixed computational budget and a fixed number of instances, how should we

trade off the number of configurations evaluated vs the captime used for each evaluation?
7. Given a budget for identifying the best of a fixed set of parameter configurations,

how many instances, N , and which captime, κ, should be used for evaluating each
configuration?

8. Likewise, how should we trade off N and κ if the goal is to rank a fixed set of parameter
configurations?

Our experimental analysis approach allows us to answer each of these questions for each
of our six COMPLEX configuration scenarios. Throughout, we discuss these answers in detail
for two rather different scenarios (CPLEX-REGIONS100 and SPEAR-IBM), and summarize our
findings for the others. Overall, our experimental analysis demonstrates that the configuration
scenarios we studied differ in important ways: the answers to the questions above differ widely
across scenarios. As a consequence, in later chapters of this thesis we will develop adaptive
methods for selecting captime and number of training instances in a data-driven way.

After covering experimental preliminaries in the next section, we introduce our empirical
analysis approach. In Section 4.3, we investigate distributions of instance hardness, quality of
parameter configurations and the interaction between the two, thereby answering Questions
1–4 above. In Section 4.4 we present an empirical study of the tradeoffs between the number
of instances used and the captime, if the objective is to identify the best configuration θ ∈ Θ;
this serves to answer Questions 5–7. In Section 4.5, we investigate the same tradeoffs in the
context of the problem of ranking parameter configurations (or algorithms) in order to answer
Question 8.

4.2 Gathering a Matrix of Runtimes
In this chapter, we study the COMPLEX configuration scenarios defined in Section 3.5.7. These
scenarios include the configuration of SATENSTEIN (local search for SAT), SPEAR (tree
search for SAT), and CPLEX (tree search for MIP). For detailed descriptions of these algo-
rithms, see Section 3.2. For each of these algorithms, we study two benchmark distributions,
resulting in the six COMPLEX configuration scenarios: SATENSTEIN-QCP, SATENSTEIN-SWGCP,
SPEAR-IBM, SPEAR-SWV, CPLEX-REGIONS100, and CPLEX-ORLIB. The optimization objective
in these configuration scenarios is penalized average runtime (PAR, which counts timed-out
runs at captime κ as 10 · κ; see Section 3.4). We note, however, that all methods we study in

online.
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Configuration Scenario κmax [s] Default Best known Best sampled
SATENSTEIN-SWGCP 5 21.02 0.035 (from KhudaBukhsh et al., 2009) 0.043
SATENSTEIN-QCP 5 10.19 0.17 (from KhudaBukhsh et al., 2009) 0.21

SPEAR-IBM 300 1393 795 (from Hutter et al., 2007a) 823
SPEAR-SWV 300 466 1.37 (from Hutter et al., 2007a) 1.90

CPLEX-REGIONS100 5 1.76 0.32 (from Hutter et al., 2009b) 0.86
CPLEX-ORLIB 300 74.4 74.42 (CPLEX default) 54.1

Table 4.1: Quality of default, best-known, and best randomly-sampled configuration. For each
of our six algorithm configuration scenarios, we give penalized average runtime (PAR) of the
default, of the best known domain-specific parameter configuration (including its source), and
of the best of our randomly sampled configurations.

this chapter are also well defined and meaningful under other configuration objectives, such as
median runtime and more complicated measures, such as, for example, the SAT competition
scoring function.5 When estimating PAR of a parameter configuration based on N runs, we
only perform a single run for each of N problem instances since this yields an estimator with
minimal variance for a given sample size N ; see our discussion in Section 3.6.1. We also
use a blocking scheme as described in that section, using the same N instances and seeds to
evaluate each configuration.

In order to analyze the enormous parameter configuration spaces of SATENSTEIN, SPEAR

and CPLEX in an unbiased way, we sampled parameter configurations by instantiating all free
parameters at random. One may wonder how well these randomly-sampled configurations
actually perform: after all, in many other optimization problems, sampling candidate solutions
at random could yield very poor solutions. As it turns out, this is not the case in the algorithm
configuration scenarios we consider here. In Table 4.1, for each scenario we compare the
performance of the algorithm default, the best known configuration for the scenario, and the
best out of 999 randomly sampled configurations. In all scenarios, the best randomly sampled
configuration performed better than the default, typically by a substantial margin. For the
SATENSTEIN and the SPEAR scenarios, its performance was close to that of the best known
configuration, while for CPLEX-REGIONS100 the difference was somewhat larger. (For ORLIB,
we are not aware of any published parameter setting of CPLEX and thus only compared to the
CPLEX default.)

The empirical analysis approach for the study of algorithm configuration scenarios we
propose in this chapter is based on very simple input data: a M × P matrix containing the
performance of M parameter configurations on a set of P problem instances. Here, we
used the algorithm default plus M − 1 = 999 random configurations. However, our methods
are not limited to random configurations. Parameter configurations may also be obtained
from trajectories of automated configuration procedures, or manually. Indeed, our empirical
analysis approach does not even require that all configurations are instantiations of a single
algorithm; it also works for entirely different algorithms. To demonstrate this, in Section 4.5,
we use ten solvers from a recent SAT competition as “configurations”.

For the comparably easy instances in configuration scenarios SATENSTEIN-QCP,
5See http://www.satcompetition.org/2007/rules07.html and http://www.satcompetition.org/2009/spec2009.html.
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Figure 4.1: Raw data: matrix of runtime of each of the M = 1 000 sampled parameter
configurations on each of the P instances. Each dot in the matrix represents the runtime of a
configuration on a single instance. Darker dots represent shorter runtimes; The colour scale is
logarithmic with base 10. Configurations are sorted by their PAR score across all P instances.
Instances are sorted by hardness (mean runtime of the M configurations, analogous to PAR
counting runs that timed out at captime κ as 10 · κ).

SATENSTEIN-SWGCP and CPLEX-REGIONS100, we evaluated each of our M = 1 000 configu-
rations on P = 2 000 instances, terminating unsuccessful runs after a captime of κmax = 5
seconds. Scenarios SPEAR-IBM, SPEAR-SWV and CPLEX-ORLIB contain much harder instances,
and we thus used a captime of κmax = 300 seconds and benchmark instance sets of size
P = 140, P = 100 and P = 100, respectively. Gathering the data for the input matrices
in this chapter took around 1.5 CPU months for each of the three scenarios with κmax = 5
seconds, one CPU month for SPEAR-SWV, and 2.5 CPU months for each of SPEAR-IBM and
CPLEX-ORLIB. (For information on machines used, see Section 3.6.3.)

4.3 Analysis of Runtime Variability across Configurations and
Instances

In this section, we provide an overview of the interaction between configurations, instances,
and how much time is allocated to each run. Figures 4.1 and 4.2 together give an overall
description of this space. In Figure 4.1, we plot the raw data: the runtime for all combinations
of instances and parameter configurations. In Figure 4.2 we give more detailed information
about the precise runtime values for six configurations (the default, the best, the worst, and three

61



10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

q
0.75

(a) CPLEX-REGIONS100

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

(b) SATENSTEIN-SWGCP

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

q
0.75

worst

(c) SPEAR-IBM

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

q
0.75

worst

(d) CPLEX-ORLIB

10
−2

10
−1

10
0

10
1

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

q
0.75

worst

(e) SATENSTEIN-QCP

10
−2

10
−1

10
0

10
1

10
2

0

20

40

60

80

100

CPU time[s]

%
 in

st
an

ce
s 

so
lv

ed

 

 

default
.

best
q

0.25

q
0.50

q
0.75

worst

(f) SPEAR-SWV

Figure 4.2: Hardness variation across all P instances in different algorithm configuration
scenarios. For each scenario, the plot shows the percentage of benchmark instances solved by
six parameter configurations (default, best and worst sampled configuration, and configurations
at the q0.25, q0.50, and q0.75 quantiles of quality across the sampled configurations) as a function
of allowed time. In cases where a configuration did not solve any of the P instances, we do
not show it in the figure.

quantiles), plotting a cumulative distribution of the percentage of benchmark instances solved
by θ as a function of time. Based on these plots, we can make four key observations about our
configuration scenarios, providing answers to Questions 1–4 posed in the introduction.

Q1: How much does performance vary across parameter configurations?
The variability of quality across parameter configurations differed substantially across scenar-
ios. For example, in CPLEX-REGIONS100, the worst sampled parameter configuration did not
solve a single problem instance, while the best one solved all instances in less than five seconds
(see Figures 4.1(a) and 4.2(a)). In contrast, the difference between worst and best configuration
was much smaller for scenario SPEAR-IBM (see Figures 4.1(c) and 4.2(c)). The SATENSTEIN

scenarios showed even larger variation across configurations than CPLEX-REGIONS100, while
CPLEX-ORLIB and SPEAR-SWV showed less variation, comparable to SPEAR-IBM. We believe
that scenarios with large performance variations across parameter configurations require algo-
rithm configuration procedures that emphasize an effective search for good configurations. In
other scenarios, an effective mechanism for selecting the best number of instances and cutoff
time to use might be more important.
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Q2: How large is the variability in hardness across benchmark instances?
The variability of hardness across benchmark instances also differed substantially between
scenarios. For example, in scenario CPLEX-REGIONS100, there was “only” about an order
of magnitude difference between a configuration’s runtime on the easiest and the hardest
instances (see Figure 4.2(a)). In contrast, this difference was at least five orders of magnitude
for scenario SPEAR-IBM (see Figure 4.2(c)). Scenario SATENSTEIN-SWGCP was similar to
scenario CPLEX-REGIONS100 in having small variability of instance hardness, while the other
scenarios were more similar to scenario SPEAR-IBM in this respect. In some scenarios (e.g.,
SATENSTEIN-SWGCP; see Figure 4.2(b)), the difference in hardness between the easiest and the
hardest instance depended on the parameter configuration, good configurations showing more
robust performance across all instances.

Q3: Which benchmark instances are useful for discriminating between parameter config-
urations?
In some—but not all—scenarios, only a subset of instances was useful for distinguishing
between parameter configurations. For example, in scenario CPLEX-REGIONS100 all instances
were useful. In contrast, in scenario SPEAR-IBM, over 35% of the instances were infeasi-
ble for all considered configurations within the cutoff time of κmax = 300s (see Figure
4.1(c)), and were thus useless for comparing configurations. Similarly, about 10% of the
instances in that scenario were trivially solvable for all configurations. Next to SPEAR-IBM,
only SATENSTEIN-QCP and SPEAR-SWV had substantial percentages of trivially solvable in-
stances. While uniformly easy instances do not pose a problem in principle (since they can
always be solved quickly) they can pose a problem for automated configuration procedures
that tend to evaluate configurations based on a few instances. For example, the performance of
FOCUSEDILS (see Section 5.3) and SPO (see Section 9.5) could be expected to degrade if
many trivial instances were added. On the other hand, uniformly infeasible instances pose a
serious problem, both for manual and automated configuration methods: every algorithm run
on such an instance costs valuable time without offering any information.

Q4: Are the same instances “easy” and “hard” for all or most configurations?
In some scenarios, the ranking was fairly stable across instances: i.e., the runtime of a
parameter configuration, θ, on an instance, π, was largely determined by the overall quality of
θ (averaged across instances) and the overall hardness of π (averaged across configurations).
This was approximately the case for scenario CPLEX-REGIONS100 (see Figure 4.1(a)), where
better-performing configurations solved the same instances as weaker configurations, plus
some additional ones. The ranking was also comparably stable in scenario SPEAR-IBM and
SATENSTEIN-QCP. In contrast, in some scenarios we observed instability in the ranking of
parameter configurations from one instance to another: whether or not a configuration θ
performed better on an instance π than another configuration θ′ depended on the instance π.
One way this is evidenced in the matrix is as a “checkerboard pattern”; see, e.g., rows 400–
900 and the two instance sets in columns 76–83 and 84–87 in Figure 4.1(f): configurations
that did well on the first set of instances tended to do poorly on the second set and vice
versa. Overall, the most pronounced examples of this behaviour were CPLEX-ORLIB and
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SPEAR-SWV (see Figures 4.1(d) and 4.1(f), and the crossings of cumulative distributions in
Figures 4.2(d) and 4.2(f).) Scenarios in which algorithm rankings are unstable across instances
are problematic to address with both manual and automated configuration methods, because
different instances often require very different mechanisms to be solved effectively. This
suggests splitting such heterogeneous sets of instances into more homogeneous subsets, using
portfolio techniques (Gomes and Selman, 2001; Horvitz et al., 2001; Xu et al., 2008), or
using per-instance algorithm configuration (Hutter et al., 2006). However, note that in some
cases (e.g., scenario SPEAR-SWV) the instability between relative rankings is local to poor
configurations, and it is possible to find a single good configuration that performs very well
on all instances, limiting the potential for improvements by more complicated per-instance
approaches.

4.4 Tradeoffs in Identifying the Best Configuration
In this section, we study how we should trade off (a) the number of configurations evaluated,
(b) the number of instances used in these evaluations and (c) the captime used for each
evaluation when the objective is to identify the best parameter configuration.

4.4.1 Overconfidence and overtuning
One might imagine that without resource constraints but given a fixed set of instances from
some distribution of interest, it would be easy to identify the best parameter configuration.
Specifically, we could just evaluate every configuration on every instance, and then pick the
best. This method indeed works for identifying the configuration with the best performance on
the exact instances used for evaluation. However, when the set of instances is too small, the
observed performance of the configuration selected may not be reflective of—and, indeed, may
be overly optimistic about—performance on other instances from the same underlying distri-
bution. We call this phenomenon overconfidence. This effect is notorious in machine learning,
where it is well known that models fit on small datasets often generalize poorly (Hastie et al.,
2001). Furthermore, generalization performance can actually degrade when the number of
parameter configurations considered (in machine learning the hypothesis space) grows too
large. This effect is called overfitting in machine learning (Hastie et al., 2001) and overtuning
in optimization (Birattari et al., 2002; Birattari, 2005; Hutter et al., 2007b). In this section,
we examine the extent to which overconfidence and overtuning can arise in our scenarios.
Before doing so, we need to explain how we evaluate the generalization performance of a
configuration.

Up to this point, we have based our analysis on the full input matrix. From now on, we
partition instances into a training set Π and a test set Π′. We compute training performance
and test performance at time step t as defined in Section 1.2.2.

To reduce variance, in this chapter we do not use fixed training and test sets, but instead
average across many repetitions with different splits of the instances into training and test sets.
We use an iterative sampling approach to estimate the expected training and test performance
given a computational budget t, N training instances and captime κ. In each iteration, we
draw a training set of N instances Π ⊆ Πinput and start with an empty set of configurations
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Figure 4.3: Overconfidence and overtuning for training sets of size N = 10. We plot training
and test performance (penalized average runtime, PAR, for N = 10 training instances and
P/2 test instances) of IS-Best(N = 10, κ, t), where κ is the “full” captime of the configuration
scenario (κ = 300s for CPLEX-ORLIB and SPEAR-SWV, and κ = 5s for SATENSTEIN-SWGCP).

Θtrain. We then expand Θtrain by randomly adding elements of Θinput \Θtrain, until either
Θtrain = Θinput or the time for evaluating all θ ∈ Θtrain on all instances π ∈ Πtrain with
captime κ exceeds t. Finally, we evaluate training and test performance of Θtrain based on
Πtrain and κ. In what follows, we always work with expected training and test performance,
sometimes dropping the term “expected” for brevity. We calculate these quantities based
on K = 1 000 iterations, each of them using independently sampled disjoint training and
test sets. We always use test sets of cardinality |Π′| = P/2, but vary the size of the training
set Πtrain from 1 to P/2. We refer to the resulting expected performance using a training
set of N instances, captime κ, and as many configurations as can be evaluated in time t as
IS-Best(N,κ, t), short for IterativeSampling-Best.

Using this iterative sampling approach, we investigated the difference between training
and test performance for three scenarios in Figure 4.3. Based on training sets of size N = 10,
we saw clear evidence for overconfidence (divergence between training and test performance)
in these three scenarios, and evidence for overtuning (test performance that degrades as we
increase the number of configurations considered) for CPLEX-ORLIB and SATENSTEIN-SWGCP.
Of our six scenarios, the three shown gave rise to the most pronounced training/test perfor-
mance gap. We believe that this occurred because of the relative instability of relative rankings
of configurations across the respective instance sets (which we observed in Figures 4.1(b),
4.1(d), and 4.1(f)). Based on a small subset of instances, different parameter configurations
performed best than for a large set of instances. Furthermore, for SPEAR-SWV the large percent-
age of trivial instances (see Figure 4.1(f)) effectively reduced the number of instances used for
meaningful comparisons by about 50%.

4.4.2 Trading off number of configurations, number of instances, and captime
Now we investigate tradeoffs between the number of parameter configurations evaluated, the
size of the benchmark set N , and the captime κ, given a time budget. This will serve to answer
Questions 5–7 from the introduction.
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Figure 4.4: Test performance (PAR for P/2 test instances) of IS-Best(N,κ, t), where κ
is the “full” captime of the configuration scenario (κ = 300s for CPLEX-ORLIB and the
SPEAR scenarios, and κ = 5s for the rest); we plot graphs for N = 1, N = 10, and
N = min(100, P/2). For reference, we plot test performance of the default.

Q5: Given a fixed computational budget and a fixed captime, how should we trade off
the number of configurations evaluated vs the number of instances used in these evalua-
tions?
To answer this question, we study how the performance of IS-Best(N,κ, t) progressed as
we increased the time t for three different values of N and fixed κ = κmax. In Figure
4.4, for each total amount of CPU time t available for algorithm configuration, we plot the
performance arising from using each of these three values of N .6 The optimal number of
training instances, N , clearly depended on the overall CPU time available, and the impact of
using different values of N differed widely across the scenarios. For example, for scenario
CPLEX-REGIONS100 (see Figure 4.4(a)), using a single training instance (N = 1) yielded very
poor performance throughout. For total time budgets t below about 5 · 104 seconds, the best
tradeoff was achieved using N = 10. After that time, all M = 1000 configurations had
been evaluated, but using N = 100 yielded better performance. For scenario SPEAR-IBM

(see Figure 4.4(c)), the optimal tradeoff was quite different. For total time budgets below
6The plots for N = 1 and N = 10 end at the point where all of the M given parameter configurations have

been evaluated. It would be appealing to extend the curves corresponding to lower values of N by considering
more parameter configurations Θadditional. Unfortunately, this is impossible without filling in our whole input
matrix for the new configurations. This is because IS-Best(N,κ, t) averages across many different sets of N
instances, and we would thus require the results of Θadditional for all instances. Furthermore, all curves are based
on the same population of parameter configurations.
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Figure 4.5: Test performance (PAR for P/2 test instances) of IS-Best(min(P/2, 100), κ, t) for
various values of κ. We plot graphs for the “full” captime used in the scenario (κ = 300s for
CPLEX-ORLIB and the SPEAR scenarios, and κ = 5s for the rest), a tenth of it, and a hundredth
of it. For reference, we plot test performance of the default configuration.

3 000 seconds, using a single training instance (N = 1) actually performed best. For total
time budgets between 3 000 and about 70 000 seconds, N = 10 yielded the best perfor-
mance, and only for larger time budgets did N = 100 yield better results. For brevity, we
do not discuss each scenario in depth, but rather summarize some highlights and general
trends. In most scenarios, N = 1 typically led to poor test performance, particularly for
scenario CPLEX-ORLIB, which showed very pronounced overtuning. N = 10 yielded good
performance for scenarios that showed quite stable relative rankings of algorithms across
instances, such as CPLEX-REGIONS100 and SATENSTEIN-QCP (see Figures 4.4(a) and 4.4(e)).
In contrast, for scenarios where the relative ranking of algorithms depended on the particular
subset of instances used, such as CPLEX-ORLIB and SPEAR-SWV, N = 10 led to overconfidence
or even overtuning (see Figures 4.4(d) and 4.4(f)). For the very heterogeneous instance set
in scenario CPLEX-ORLIB, even using P/2 = 70 instances led to slight overtuning, yielding
a configuration worse than the default. This illustrates that even though the best sampled
parameter configuration outperformed the CPLEX default, we could not actually identify this
configuration based on a limited training set of 70 instances.

Q6: Given a fixed computational budget and a fixed number of instances, how should
we trade off the number of configurations evaluated vs the captime used for each evalua-
tion?
To answer this question, we study how the performance of IS-Best(N,κ, t) progressed as we
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increased the time t for fixed N = 100 and three different values of κ (the “full” captime,
κmax, of the respective scenario, as well as κmax/10 and κmax/100). To our best knowledge,
this constitutes the first detailed empirical investigation of captime’s impact on the outcome
of empirical comparisons between algorithms. In Figure 4.5, for each total amount of CPU
time t available for algorithm configuration, we plot the performance arising from using
each of these three values of κ. We observe that captime’s impact depended on the overall
CPU time available, and that this impact differed widely across the different scenarios. For
scenario CPLEX-REGIONS100, the lowest captime, κmax/100, performed extremely poorly,
leading to extreme overtuning. Similarly, captime κmax/10 led to overtuning, leaving the best
choice to be κmax, irrespective of the total time budget available. For scenario SPEAR-IBM,
the situation was very different. The lowest captime, κmax/100, performed extremely well
and was the optimal choice for time budgets below t = 104 seconds. For time budgets
between 104 seconds and 8 · 105 seconds, the optimal choice of captime was κmax/10. Above
that, all M = 1 000 configurations had been evaluated, and using a larger captime of κmax
yielded better performance. Once again, we only summarize highlights of the other scenarios.
SATENSTEIN-QCP is an extreme case of good performance with low captimes: using κmax/100
yields very similar results as κmax, at one-hundredth of the time budget. A similar effect is true
for SATENSTEIN-SWGCP for captime κmax/10. For scenario CPLEX-ORLIB, captime κmax/100
actually seemed to result in better performance than larger captimes. We hypothesize that
this is a noise effect related to the small number of instances and the instability in the relative
rankings of the algorithms with respect to different instances. It is remarkable that for the
SPEAR-IBM scenario, which emphasizes very hard instances (Zarpas, 2005), captimes as low
as κmax/100 = 3s actually yielded good results. We attribute this to the relative stability
in the relative rankings of algorithms across different instances in that scenario (see Figures
4.1(c) and 4.2(c)): parameter configurations that solved many instances quickly also tended to
perform well when allowed longer runtimes.

Q7: Given a budget for identifying the best of a fixed set of parameter configurations, how
many instances, N , and which captime, κ, should be used for evaluating each configura-
tion?
To answer this question, we studied the performance of IS-Best(N,κ,∞) for various combi-
nations of N and κ. Figure 4.6 shows the test performance of these selected configurations.
Unsurprisingly, given unlimited resources, the best results were achieved with the maximal
number of training instances (N = P/2) and the maximal captime (κ = 5s), and perfor-
mance degraded when N and κ decreased. However, how much performance degraded with
lower N and κ differed widely across our configuration scenarios. For example, in scenario
CPLEX-REGIONS100, with a budget of 100 seconds for evaluating each parameter configuration,
much better performance could be achieved by using the full captime κmax = 5s and N = 20
instances than with other combinations, such as, for example, κ = 0.5s N = 200. (To see
this, inspect the diagonal of Figure 4.6(a) where N · κ = 300s.) In contrast, in scenario
SPEAR-IBM larger N were much more important, and, for example, with a budget of 1 500
seconds for evaluating each configuration, much better performance could be achieved by
using all N = 50 training instances and κ = 30s than with any other combination, such as, for
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Figure 4.6: Test performance (PAR for P/2 test instances) of IS-Best(N,κ,∞) as depending
on the number of training instances, N , and the captime, κ, used. Note that each combination
of N and κ was allowed to evaluate the same number of M = 1 000 configurations, and that
the time required for each combination was thus roughly proportionally to N · κ.

example, N = 5 and κ = 300s (inspect the diagonal of Figure 4.6(c) where N · κ = 1 500s).
For the other scenarios, larger N was typically more important for good performance than
larger κ. In particular, for some scenarios, reductions of κ to a certain point seemed to have
no negative effect on performance at all. We note that it is quite standard in the literature
for researchers to set captimes high enough to ensure that they will rarely be reached, and to
evaluate fewer instances as a result. Our findings suggest that more reliable comparisons can
often be achieved by inverting this pattern, evaluating a larger set of instances with a more
aggressive cutoff.

4.5 Tradeoffs in Ranking Configurations
We now investigate the same tradeoff between number of training instances and captime
studied in the previous section, but with the new objective of ranking parameter configurations
rather than to simply choosing one as the best. This addresses Question 8 from the introduction.

Although not of immediate relevance to algorithm configuration, this problem arises in
any comparative study of several parameter configurations—or indeed of several different
algorithms—in which our interest is not restricted to the question of identifying the best-
performing one.
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Figure 4.7: Reliability of comparisons between solvers for results from 2007 SAT competition
(scoring metric: total runtime across instances). The 234 instances were split equally into
training and test instances.

One prominent example of such a comparative study is the quasi-annual SAT competition7,
one purpose of which is to compare new SAT solvers with state of-the-art solvers. To
demonstrate the versatility of our methods—and how those methods can be used in this
expanded context—we obtained the runtimes of the ten finalists for the second phase of the
2007 SAT competition on the 234 industrial instances.8 These runtimes constitute a matrix
just like the input matrices we have used for our algorithm configuration scenarios throughout.
Thus, we can employ our methods “out-of-the-box” to visualize the data (see Figure 4.7(a));
we observe a strong checker-board patterns indicating a lack of correlation between the solvers.

As before, we split the instances into training and test instances using a random permuta-
tion, and used the test instances solely to obtain an unbiased performance estimate. Beyond
the characteristics evaluated before, we computed the percentage of “wrong” pairwise compar-
isons, that is, those with an outcome opposite than the one by a pairwise comparison based on
the test set and the “full” captime of κ = 5000s per run. Figure 4.7(b) gives this percentage for
various combinations of N and κ. We can see that large cutoff times were indeed necessary
in the SAT competition to provide an accurate ranking of solvers. However, Figure 4.7(c)
shows that much lower captimes would have been sufficient to identify a solver with very good
performance. (In fact, in this case, test performance of algorithms selected based on captimes
of around 300 seconds was better than that based on the full captime of 5000 seconds. Again,
we hypothesize that this is related to the instability in the relative rankings of the algorithms
with respect to different instances. We also observed multiple crossings in the cumulative
distributions of the number of instances solved for the ten algorithms considered here.) This
analysis demonstrates that if one wanted to run the SAT competition within one-tenth of the
CPU budget, it would be better to impose a tighter captime than to drop instances.

7www.satcompetition.org
8http://www.cril.univ-artois.fr/SAT07/
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Figure 4.8: Ratio of pairwise comparisons based on N training instances and captime κ whose
outcome is different than the outcome based on P/2 test instances and the “full” captime of
the configuration scenario (κ = 300s for CPLEX-ORLIB and the SPEAR scenarios, and κ = 5s
for the rest).

Q8: Given a time budget, how should we trade off N and κ if the goal is to rank a fixed set
of parameter configurations?
We applied the same method to the six COMPLEX configuration scenarios studied throughout
this chapter, leading to the percentages of wrong comparisons shown in Figure 4.8. Comparing
that plot to Figure 4.6, we note that when the objective is to obtain an accurate ranking, the
optimal tradeoff tends to employ higher captimes than when the objective is to only identify the
best algorithm. This is intuitive since only the best configurations solve instances within a low
captime; the resulting runtime information is sufficient to determine the best configurations
but not reliable rankings.

4.6 Chapter Summary
In this chapter, we introduced a novel, general empirical analysis approach to study algorithm
configuration scenarios. The only input this empirical analysis approach requires is a matrix
of runtimes for a set of parameter configurations (or, in fact a set of algorithms) and a set
of instances. We demonstrated the generality of this approach by applying it to study our
COMPLEX configuration scenarios and a set of runtime data available from the 2007 SAT
competition.

From the empirical analysis presented in this chapter we gained valuable intuition about
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the many ways in which algorithm configuration scenarios differ. Each of the eight questions
we posed in the introduction of this chapter has different answers for the six COMPLEX

configuration scenarios we studied here.
Most importantly, the optimal combination of fixed captime and number of training

instances differs substantially across configuration scenarios. We thus conclude that these
choices should be made adaptively, depending on the characteristics of the configuration
scenario at hand. As a consequence, in Sections 5.3 and 10.3.1 we will describe adaptive
methods for selecting the number of training instances to use for evaluating configurations. In
Chapter 7, we will also introduce a general method for adaptively setting the captime.
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Part III

Model-free Search for Algorithm
Configuration

—in which we introduce a simple yet effective algorithm
configuration framework and demonstrate its ability to con-
figure the most complex algorithms of which we are aware
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Chapter 5

Methods I: PARAMILS—Iterated
Local Search in Parameter
Configuration Space

Besides black art, there is only automation and mechanization.
—Federico Garcia Lorca, Spanish poet

In this part of the thesis, we focus on model-free search for algorithm configuration. Ap-
proaches in this category perform a search in parameter configuration space without relying
on an explicit performance model. Many successful algorithm configuration approaches fall
into this category (see Section 2.1.1). However, none of them are general enough to configure
algorithms as complex as those we consider.

This part is organized as follows. First, we introduce the first general approach that scales
to the configuration of algorithms with many categorical parameters (this chapter). Next,
we report a case study for applying this approach to configure a state-of-the-art tree search
algorithm for two sets of SAT-encoded industrial verification problems (Chapter 6). Then, we
introduce a general method for adaptively setting the cutoff time to be used for each target
algorithm run, thereby improving our approach further (Chapter 7). Finally, we demonstrate
the applicability of the improved approach to configure a wide range of algorithms (Chapter
8).

In this chapter1, we introduce a simple local search framework that provides one possible
answer to the first dimension of algorithm configuration: which sequential search strategy
should be used to select the parameter configurations ~Θ to be evaluated? We also provide one
possible answer to the second dimension: how many runs should be performed to evaluate
each configuration θ? For now, we fix the third dimension, using cutoff time κmax for the
evaluation of each parameter configuration.

In this chapter, we use the five BROAD configuration scenarios defined in Section 3.5.4:
SAPS-SWGCP, SAPS-QCP, SPEAR-SWGCP, SPEAR-QCP, and CPLEX-REGIONS100. All these sce-
narios use short captimes of κmax = 5 seconds per algorithm run and configuration times of 5

1This chapter is based on published joint work with Holger Hoos, Thomas Stützle, and Kevin Leyton-
Brown (Hutter et al., 2007b, 2009c).
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hours. We selected these comparably “easy” scenarios to facilitate an in-depth study of our
algorithm components. Experiments for more challenging scenarios are discussed in Chapters
6 and 8.

Note that we introduce the components of our framework one piece at a time. Some
of these pieces make an experimental difference that might appear small (albeit statistically
significant). This is partly due to our measure of penalized average runtime (PAR), which
de-emphasizes large differences: very large (potentially infinite) runtimes are counted as
10 · κmax = 50 seconds, which limits the potential for improvements. However, with all
components in place, our configuration procedures achieved substantial improvements; we
defer this final evaluation to the end of Chapter 7 (Table 7.5 and Figure 7.5 on pages 112 and
113), after all components have been described. As we will see there, our configurators led to
substantial improvements of our target algorithms even for our BROAD scenarios, with speedup
factors between 2 and 3 540.

5.1 The PARAMILS framework
Consider the following manual parameter optimization process.

1. Begin with some initial parameter configuration;

2. Experiment with modifications to single parameter values, accepting new configurations
whenever they result in improved performance;

3. Repeat step 2 until no single-parameter change yields an improvement.

This widely used procedure corresponds to a manually-executed local search in parameter
configuration space. Specifically, it corresponds to an iterative first improvement procedure
with a search space consisting of all possible configurations, an objective function that
quantifies the performance achieved by the target algorithm with a given configuration, and a
neighbourhood relation based on the modification of one single parameter value at a time (i.e.,
a “one-exchange” neighbourhood).

Viewing this manual procedure as a local search algorithm is advantageous because it
suggests the automation of the procedure as well as its improvement by drawing on ideas
from the stochastic local search community. For example, note that the procedure stops as
soon as it reaches a local optimum (a parameter configuration that cannot be improved by
modifying a single parameter value). A more sophisticated approach is to employ iterated
local search (ILS, see Lourenço et al., 2002) to search for performance-optimizing parameter
configurations. ILS is a stochastic local search method that builds a chain of local optima by
iterating through a main loop consisting of (1) a solution perturbation to escape from local
optima, (2) a subsidiary local search procedure and (3) an acceptance criterion that is used to
decide whether to keep or reject a newly obtained candidate solution.

PARAMILS (outlined in pseudocode as Algorithm Framework 5.1) is an ILS method
that searches parameter configuration space. It uses a combination of a given default and r
random configurations for initialization, employs iterative first improvement as a subsidiary
local search procedure, uses a fixed number, s, of random moves for perturbation, and always
accepts better or equally-good parameter configurations, but re-initializes the search at random
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Algorithm Framework 5.1: PARAMILS(θ0, r, prestart, s)
Outline of iterated local search in parameter configuration space. The specific variants of
PARAMILS we study, BASICILS(N) and FOCUSEDILS, are derived from this framework
by instantiating procedure better (which compares θ,θ′ ∈ Θ). BASICILS(N) uses betterN
(Procedure 5.3), while FOCUSEDILS uses betterFoc (Procedure 5.5). Note that the incumbent,
θinc, is a global variable that is updated whenever new target algorithm runs are performed in
Procedure objective (see Procedure 7.1 on page 105; that function is called from the various
better functions).

Input : Initial configuration θ0 ∈ Θ, algorithm parameters r, prestart, and s.
Output : Best parameter configuration θ found.
for i = 1, . . . , r do1

θ ← random θ ∈ Θ;2
if better(θ,θ0) then θ0 ← θ;3

θils ← IterativeFirstImprovement (θ0);4
while not TerminationCriterion() do5

θ ← θils;6

// ===== Perturbation
for i = 1, . . . , s do7

θ ← random θ′ ∈ Nbh(θ);8

// ===== Basic local search
θ ← IterativeFirstImprovement (θ);9

// ===== AcceptanceCriterion
if better(θ,θils) then10

θils ← θ;11

with probability prestart do θils ← random θ ∈ Θ;12

return overall best θinc found;13

Procedure 5.2: IterativeFirstImprovement(θ)
The neighbourhood Nbh(θ) of a configuration θ is the set of all configurations that differ from
θ in one parameter, excluding configurations differing in a conditional parameter that is not
relevant in θ.

Input : Starting configuration, θ ∈ Θ
Output : Locally optimal configuration, θ.
repeat1

θ′ ← θ;2
foreach θ′′ ∈ Nbh(θ′) in randomized order do3

if better(θ′′,θ′) then θ ← θ′′; break;4

until θ′ = θ;5
return θ;6

with probability prestart.2 PARAMILS is based on a one-exchange neighbourhood, that is, we
2Our original parameter choices 〈r, s, prestart〉 = 〈10, 3, 0.01〉 (from Hutter et al., 2007b) were somewhat

arbitrary, though we expected performance to be quite robust with respect to these settings. We revisit this issue in
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always consider changing only one parameter at a time. To deal with conditional parameters
(whose setting is only relevant if some higher-level parameters take on certain values), it uses
a neighbourhood of each configuration θ that only contains configurations which differ in a
parameter that is relevant in θ.

Since PARAMILS performs an iterated local search using a one-exchange neighbourhood,
it is very similar in spirit to local search methods for other problems, such as SAT (Selman
et al., 1992; Hoos and Stützle, 2000; Schuurmans and Southey, 2001), CSP (Minton et al.,
1992), and MPE (Kask and Dechter, 1999; Hutter, 2004). Since PARAMILS is a local search
method, existing theoretical frameworks (see, e.g., Hoos, 2002b; Mengshoel, 2008), could in
principle be used for its analysis. The main factor distinguishing our problem from those faced
by “standard” local search algorithms is the stochastic nature of our optimization problem (for
a discussion of local search for stochastic optimization, see, e.g., Spall, 2003). Furthermore,
there exists no compact representation of the objective function that could be used to guide
the search. To illustrate this, consider local search for SAT, where the candidate variables
to be flipped can be limited to those occurring in currently-unsatisfied clauses. In general
algorithm configuration, on the other hand, such a mechanism cannot be used because of
the problem’s blackbox nature: the only information available about the target algorithm
is its performance with the combinations of parameter configurations, instances, and seeds
considered so far. While, obviously, other (stochastic) local search methods could be used
as the basis for algorithm configuration procedures, we chose iterated local search, mainly
because of its conceptual simplicity and flexibility.

5.2 The BASICILS Algorithm
In order to turn PARAMILS as specified in Algorithm Framework 5.1 into an executable
configuration procedure, it is necessary to instantiate the function better that determines which
of two parameter settings should be preferred. We will ultimately propose several different
ways of doing this.

5.2.1 Algorithm Statement
Here, we describe the simplest approach, which we call BASICILS. Specifically, we use the
term BASICILS(N ) to refer to a PARAMILS algorithm in which the function better(θ1,θ2) is
implemented as shown in Procedure 5.3: simply comparing estimates ĉN of the cost measures
c(θ1) and c(θ2) based on N runs each.

Like many other related approaches (see, e.g., Minton, 1996; Coy et al., 2001; Adenso-
Diaz and Laguna, 2006), BASICILS deals with the stochastic part of the optimization problem
by using an estimate based on a fixed number, N , of training instances. It evaluates every
parameter configuration by running it on the same N training benchmark instances using
the same seeds. This amounts to a simple blocking strategy which reduces the variance in
comparing two configurations. (See 3.6.1 for a more detailed discussion of blocking.) When
benchmark instances are very heterogeneous or when the user can identify a rather small

Section 8.2, where we automatically optimize the parameters of PARAMILS itself.
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Procedure 5.3: betterN (θ1,θ2)
Procedure used in BASICILS(N ) and RANDOMSEARCH(N ) to compare two parameter configu-
rations. Procedure objective(θ, N) returns the user-defined objective achieved by A(θ) on the
first N instances and keeps track of the incumbent solution; it is detailed in Procedure 7.1 on
page 105.

Input : Parameter configuration θ1, parameter configuration θ2
Output : True if θ1 performs better than or equal to θ2 on the first N instances; false

otherwise
Side Effect : Adds runs to the global caches of performed algorithm runs Rθ1 and Rθ2 ;

updates the incumbent, θinc
ĉN (θ2)← objective(θ2, N)1
ĉN (θ1)← objective(θ1, N)2
return ĉN (θ1) ≤ ĉN (θ2)3

“representative” subset of instances, this approach can find good parameter configurations with
comparably low computational effort.

5.2.2 Experimental Evaluation
In this section, we evaluate the effectiveness of BASICILS(N ) against two of its components:

1. a simple random search, used in BASICILS for initialization (we dub it RANDOM-
SEARCH(N ) and provide pseudocode for it in Algorithm 5.4); and

2. a simple local search, the same type of iterative first improvement search used in
BASICILS(N ), ending in the first local minimum (we dub it SIMPLELS(N )).

If there is sufficient structure in the search space, we expect BASICILS to outperform RAN-
DOMSEARCH. If there are local minima, we expect BASICILS to perform better than basic
local search. Our experiments showed that BASICILS did indeed offer the best performance.

Here, we are solely interested in comparing how effectively the approaches search the space
of parameter configurations, rather than how the found parameter configurations generalize to
unseen test instances. Thus, in order to reduce variance in our comparisons, we compare the
configuration methods in terms of their performance on the training set. For all configuration
procedures, we performed 25 independent repetitions, each of them with a different training
set of 100 instances (constructed as described in Section 3.6.1).

First, we present our comparison of BASICILS against RANDOMSEARCH. In Figure
5.1, we plot the performance achieved by the two approaches at a given time, for the two
configuration scenarios with the least and the most pronounced differences between the
two configuration procedures: SAPS-SWGCP and CPLEX-REGIONS100. BASICILS started with
r = 10 random samples, which meant that performance for the first part of the trajectory
was always identical (the kth run of each configurator used the same training instances
and seeds). After these random samples, BASICILS performed better, quite clearly so for
CPLEX-REGIONS100. Table 5.1 quantifies the performance of both approaches on our BROAD
configuration scenarios. BASICILS always performed better on average, and in three of the five
scenarios the difference was statistically significant as judged by a paired Max-Wilcoxon test
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Algorithm 5.4: RANDOMSEARCH(N,θ0)
Outline of random search in parameter configuration space; θinc denotes the incumbent parameter
configuration, betterN compares two configurations based on the first N instances from the
training set.

Input : Number of runs to use for evaluating parameter configurations, N ; initial
configuration θ0 ∈ Θ.

Output : Best parameter configuration θinc found.
θinc ← θ0;1
while not TerminationCriterion() do2

θ ← random θ ∈ Θ;3
if betterN (θ,θinc) then4

θinc ← θ;5

return θinc6
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cant.

Figure 5.1: Comparison of BASICILS(100) and RANDOMSEARCH(100). For each time step t,
we compute training performance pt,train (penalized average runtime, PAR, over N = 100
training instances using the procedures’ incumbents, θinc(t)). We plot median pt,train across
25 runs of each configurator (plots are similar for means, but more variable and thus cluttered).
Note the logarithmic scale on the x-axis, and the difference in y-axis scales: we chose a
log-scale for SAPS-SWGCP due the large performance variation seen for this scenario, and a
linear scale for CPLEX-REGIONS100, where even poor configurations performed quite well. We
will use these two configuration scenarios for visualization purposes throughout, always using
the same y-axes as in this plot.

(see Section 3.6.2). Table 5.1 also lists the performance of the default parameter configuration
for each of the configuration scenarios. We note that both BASICILS and RANDOMSEARCH

consistently made substantial (and statistically significant) improvements over these default
configurations.

Next, we compared BASICILS against its second component, SIMPLELS. This method is
identical to BASICILS but stops at the first local minimum encountered. We used it in order to
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Training performance (PAR, CPU seconds)
Scenario Default RANDOMSEARCH(100) BASICILS(100) p-value

SAPS-SWGCP 19.93 0.46± 0.34 0.38 ± 0.19 0.94
SPEAR-SWGCP 10.61 7.02± 1.11 6.78 ± 1.73 0.18
SAPS-QCP 12.71 3.96± 1.185 3.19 ± 1.19 1.4 · 10−5

SPEAR-QCP 2.77 0.58± 0.59 0.36 ± 0.39 0.007

CPLEX-REGIONS100 1.61 1.45± 0.35 0.72 ± 0.45 1.2 · 10−5

Table 5.1: Comparison of RANDOMSEARCH(100) and BASICILS(100). We performed 25 runs of the
configurators and computed their training performance ptrain,t (PAR over N = 100 training instances
using the procedures’ final incumbents θinc(t)) for a configuration time of t = 18 000s = 5h. We
list training performance of the algorithm default, mean ± stddev of ptrain,t across the 25 runs for
BASICILS(100) & FOCUSEDILS, and the p-value for a paired Max-Wilcoxon test (see Section 3.6.2)
for the difference between the two configurators’ performances.

Scenario SIMPLELS(100) BASICILS(100) p-value
Performance Performance Avg. # ILS iterations

SAPS-SWGCP 0.5± 0.39 0.38 ± 0.19 2.6 9.8 · 10−4

SAPS-QCP 3.60± 1.39 3.19 ± 1.19 5.6 4.4 · 10−4

SPEAR-QCP 0.4± 0.39 0.36 ± 0.39 1.64 0.008

Table 5.2: Comparison of SIMPLELS(100) and BASICILS(100). We performed 25 runs of the
configurators and computed their training performance ptrain,t (PAR over N = 100 training instances
using the procedures’ final incumbents θinc(18000)). We list mean ± stddev of ptrain,t across the 25
runs and the p-value for comparing their performance. In configuration scenarios SPEAR-SWGCP and
CPLEX-REGIONS100, BASICILS did not complete its first ILS iteration in any of the 25 runs; the two
approaches were thus identical and are not listed here.

study whether local minima pose a problem for simple first improvement search. Table 5.2
shows that in the three configuration scenarios where BASICILS had time to perform multiple
ILS iterations, its training set performance was statistically significantly better than that of
SIMPLELS. Thus, we conclude that for these scenarios the parameter configuration space
contains structure that can be exploited with a local search algorithm as well as local minima
that can limit the performance of iterative improvement search.

5.3 FOCUSEDILS: Adaptively Selecting the Number of Training
Instances

The question of how to choose the number of training instances, N , in BASICILS(N ) has no
straightforward answer: optimizing performance using too small a training set intuitively leads
to good training performance but poor generalization to previously unseen test benchmarks.
On the other hand, we clearly cannot evaluate every parameter configuration on an enormous
training set—if we did, search progress would be unreasonably slow. Furthermore, as we saw
in our empirical analysis in Chapter 4, the best fixed value for N differs across configuration
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scenarios.

5.3.1 Algorithm Statement
FOCUSEDILS is a variant of PARAMILS that adaptively varies the number of training samples
considered from one parameter configuration to another. We denote the number of runs
available to estimate the cost of a parameter configuration, θ, by N(θ). Having performed
different numbers of runs using different parameter configurations, we face the question of
comparing two parameter configurations θ1 and θ2 for which N(θ1) 6= N(θ2). One option
would be simply to compute the empirical cost statistic based on the available number of
runs for each configuration. However, this could lead to systematic biases if, for example,
the first instances are easier than the average instance. For this reason, when comparing two
parameter configurations θ and θ′ with N(θ) ≤ N(θ′), we simply compare them based on
the first N(θ) runs. As in BASICILS, these first N(θ) runs use the same instances and seeds
to evaluate both configurations, which amounts to a blocking strategy.

This approach to comparison leads us to a concept of domination. We say that θ1 dominates
θ2 when at least as many runs have been conducted on θ1 as on θ2, and the performance of
A(θ1) on the first N(θ2) runs is at least as good as that of A(θ2) on all of its runs.

Definition 6 (Domination). θ1 dominates θ2 if and only ifN(θ1) ≥ N(θ2) and ĉN(θ2)(θ1) ≤
ĉN(θ2)(θ2).

Now we are ready to discuss the comparison strategy encoded in Procedure betterFoc(θ1,θ2),
which is used by the FOCUSEDILS algorithm (see Procedure 5.5). This procedure first ac-
quires one additional sample for the configuration i having smaller N(θi), or one run for both
configurations if they have the same number of runs. Then, it continues performing runs in this
way until one configuration dominates the other. At this point it returns true if θ1 dominates
θ2, and false otherwise. We also keep track of the total number of configurations evaluated
since the last improving step (i.e., since the last time betterFoc returned true); we denote this
number as B. Whenever betterFoc(θ1,θ2) returns true, we perform B “bonus” runs for θ1 and
reset B to 0. This mechanism ensures that we perform many runs with good configurations,
and that the error made in every comparison of two configurations θ1 and θ2 decreases on
expectation.

5.3.2 Theoretical Analysis
It is not difficult to show that in the limit, FOCUSEDILS will sample every parameter configu-
ration an unbounded number of times. The proof relies on the fact that, as an instantiation of
PARAMILS, FOCUSEDILS performs random restarts with positive probability.

Lemma 7 (Unbounded number of evaluations). Let N(J,θ) denote the number of runs
FOCUSEDILS has performed with parameter configuration θ at the end of ILS iteration
J to estimate c(θ). Then, for any constant K and configuration θ ∈ Θ (with finite Θ),
limJ→∞ P [N(J,θ) ≥K] = 1.
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Procedure 5.5: betterFoc(θ1,θ2)
Procedure used in FOCUSEDILS to compare two parameter configurations. Procedure
objective(θ, N) returns the user-defined objective achieved by Aθ on the first N instances,
keeps track of the incumbent solution, and updates Rθ (a global cache of algorithm runs per-
formed with parameter configuration θ); it is detailed in Procedure 7.1 on page 105. For each
θ, N(θ) = length(Rθ). B is a global counter denoting the number of configurations evaluated
since the last improvement step.

Input : Parameter configuration θ1, parameter configuration θ2
Output : True if θ1 dominates θ2; false otherwise (in that case, here, θ2 dominates θ1)
Side Effect : Adds runs to the global caches of performed algorithm runs Rθ1 and Rθ2 ;

updates the global counter B of bonus runs, and the incumbent, θinc
B ← B + 11
if N(θ1) ≤ N(θ2) then2

θmin ← θ1;θmax ← θ23
if N(θ1) = N(θ2) then B ← B + 14

else θmin ← θ2;θmax ← θ15
repeat6

i← N(θmin) + 17

// ===== If N(θmin) = N(θmax), the next line adds a new run to Rθmax .
ĉi(θmax)← objective(θmax, i)8
ĉi(θmin)← objective(θmin, i) // Adds a new run to Rθmin .9

until dominates(θ1, θ2) or dominates(θ2, θ1)10
if dominates(θ1, θ2) then11

// ===== Perform B bonus runs.
ĉN(θ1)+B(θ1)← objective(θ1, N(θ1) +B) // Adds B new runs to Rθ1 .12
B ← 013
return true14

else return false15

Procedure 5.6: dominates(θ1,θ2)
Input : Parameter configuration θ1, parameter configuration θ2
Output : True if θ1 dominates θ2, false otherwise
Side Effect : Adds runs to the global caches of performed algorithm runs Rθ1

and Rθ2
;

updates the incumbent, θinc
if N(θ1) < N(θ2) then return false1
else return objective(θ1, N(θ2)) ≤ objective(θ2, N(θ2))2

Proof. After each ILS iteration of PARAMILS, with probability prestart > 0 a new configura-
tion is picked uniformly at random, and with a probability of 1/|Θ|, this is configuration θ.
The probability of visiting θ in an ILS iteration is thus p ≥ prestart

|Θ| > 0. Hence, the number of
runs performed with θ is lower-bounded by a binomial random variable B(k; J, p). Then, for
any constant k < K we obtain limJ→∞ B(k; J, p) = limJ→∞

(
J
k

)
pk(1 − p)J−k = 0. Thus,

limJ→∞ P [N(J,θ) ≥K] = 1.
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Definition 8 (Consistent estimator). ĉN (θ) is a consistent estimator for c(θ) iff

∀ε > 0 : lim
N→∞

P (|ĉN (θ)− c(θ)| < ε) = 1.

When ĉN (θ) is a consistent estimator of c(θ), cost estimates become more and more
reliable as N goes to infinity, eventually eliminating overconfidence and the possibility of
mistakes in comparing two parameter configurations (and thus, over-tuning). This fact is
captured in the following lemma.

Lemma 9 (No mistakes for N →∞). Let θ1,θ2 ∈ Θ be any two parameter configurations
with c(θ1) < c(θ2). Then, for consistent estimators ĉN , limN→∞ P (ĉN (θ1) ≥ ĉN (θ2)) = 0.

Proof. Write c1 as shorthand for c(θ1), c2 for c(θ2), ĉ1 for ĉN (θ1), and ĉ2 for ĉN (θ2). Define
m = 1

2 · (c2 + c1) as the midpoint between c1 and c2, and ε = c2 −m = m− c1 > 0 as its
distance from each of the two points.

Since ĉN is a consistent estimator for c, the estimate ĉ1 comes arbitrarily close to the real
cost c1. That is, limN→∞ P (|ĉ1− c1| < ε) = 1. Since |m− c1| = ε, the estimate ĉ1 cannot be
greater than or equal to m: limN→∞ P (ĉ1 ≥ m) = 0. Similarly, limN→∞ P (ĉ2 < m) = 0.
Since

P (ĉ1 ≥ ĉ2) = P (ĉ1 ≥ ĉ2 ∧ ĉ1 ≥ m) + P (ĉ1 ≥ ĉ2 ∧ ĉ1 < m)

= P (ĉ1 ≥ ĉ2 ∧ ĉ1 ≥ m) + P (ĉ1 ≥ ĉ2 ∧ ĉ1 < m ∧ ĉ2 < m)

≤ P (ĉ1 ≥ m) + P (ĉ2 < m),

we have limN→∞ P (ĉ1 ≥ ĉ2) ≤ limN→∞ (P (ĉ1 ≥ m) + P (ĉ2 < m)) = 0 + 0 = 0.

Combining our two lemmata we can now show that in the limit, FOCUSEDILS is guaran-
teed to converge to the true best parameter configuration.

Theorem 10 (Convergence of FOCUSEDILS). When FOCUSEDILS optimizes a cost measure
c based on a consistent estimator ĉN and a finite configuration space Θ, the probability that it
finds the true optimal parameter configuration θ∗ ∈ Θ approaches one as the number of ILS
iterations goes to infinity.

Proof. According to Lemma 7, N(θ) grows unboundedly for each θ ∈ Θ. For each θ1, θ2,
as N(θ1) and N(θ2) go to infinity, Lemma 9 states that in a pairwise comparison, the truly
better configuration will be preferred. Thus eventually, FOCUSEDILS visits all (finitely-many)
parameter configurations and prefers the best one over all others with probability arbitrarily
close to one.

In many practical scenarios, cost estimators may not actually be consistent. This limits the
applicability of Theorem 10. For example, when a finite training set, Π, is used during
configuration rather than a distribution over problem instances, then even for large N , ĉN
will only accurately reflect the cost of parameter configurations on Π. For small |Π|, the cost
estimate based on Π may differ substantially from the true cost as defined by performance
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across the distribution, D. As |Π| goes to infinity, the difference vanishes, assuming Π is
sampled uniformly at random from D.

To the best of our knowledge, Theorem 10 is the first convergence results for an algorithm
configuration procedure. Prominent competitors, such as F-Race (Birattari et al., 2002;
Birattari, 2004), do not admit such a result. However, we do note that essentially the same
argument could be applied to a simple round-robin procedure that loops through all parameter
configurations; nevertheless, we would not expect that procedure to perform very well in
practice. Thus, in what follows, we will rely on experimental evidence to test FOCUSEDILS’s
practical performance.

5.3.3 Experimental Evaluation
In this section we investigate FOCUSEDILS’ performance experimentally. In contrast to
our previous comparison of RANDOMSEARCH, SIMPLELS, and BASICILS using training
performance, we now compare FOCUSEDILS against (only) BASICILS using test performance.
This is motivated by the fact that, while in our previous comparison all approaches used the
same number of target algorithm runs to evaluate a parameter configuration, the number of
target algorithm runs FOCUSEDILS uses to evaluate configurations grows over time. However,
the cost measure to be optimized, c, remains constant; therefore test performance (an unbiased
estimator of c) provides a fairer basis for comparison than training performance. We only
compare FOCUSEDILS to BASICILS, since BASICILS was already shown to outperform
RANDOMSEARCH and SIMPLELS in Section 5.2.2.

The first experiment we performed was for scenario SAPS-QWH, a simple configuration
scenario with the objective of minimizing the median number of search steps SAPS requires to
solve a single quasigroups with holes (QWH) instance (see Section 3.5 for details about this
configuration scenario). This simple scenario is convenient because it allows us to perform a
large number of configuration runs fairly cheaply. Figure 5.2 compares the test performance
of FOCUSEDILS and BASICILS(N ) with N = 1, 10 and 100. In this experiment, BASIC-
ILS(1) showed clear evidence of over-tuning. In contrast, using a large number of target
algorithm runs to evaluate every configuration—as done in BASICILS(100)—resulted in a
very slow search, but eventually led to configurations with good test performance. FOCUSED-
ILS combined the best of these two schemes: its search progress started about as quickly as
BASICILS(1), but it also performed better than BASICILS(10) and BASICILS(100) at all
times.

Figure 5.3 shows a similar comparison on the two BROAD scenarios we have used for
visualization throughout. This comparison confirms the same overall pattern as the comparison
for the simpler configuration scenario SAPS-QWH. For CPLEX-REGIONS100, over-tuning is much
less of an issue (as we already saw in the empirical analysis in Section 4.4); thus, BASICILS(1)
actually performed quite competitively for this scenario.

We compare the performance of FOCUSEDILS and BASICILS(100) for our BROAD config-
uration scenarios in Table 5.3. For three SAPS and CPLEX scenarios, FOCUSEDILS performed
statistically significantly better than BASICILS(100). However, we found that in both sce-
narios involving the SPEAR algorithm, BASICILS(100) actually performed better on average
than FOCUSEDILS, albeit not statistically significantly. We attribute this to the fact that for a
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Figure 5.2: Comparison of BASICILS(N ) with N = 1, 10, and 100 vs FOCUSEDILS for
scenario SAPS-QWH. For each time step t, we compute test performance pt,test (SAPS median
runlength across 1 000 test runs, using the procedures’ incumbents, θinc(t)). We plot median
ptest,t across 100 runs of the configurators.
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Figure 5.3: Comparison of BASICILS(N ) withN = 1, 10, and 100 vs FOCUSEDILS. For each
time step t, we compute test performance ptest,t (PAR across 1 000 test instances, using the
procedures’ incumbents, θinc(t)). We plot median ptest,t across 25 runs of the configurators
for two scenarios. Performance in the other three BROAD scenarios was qualitatively similar:
BASICILS(1) was the fastest to move away from the starting parameter configuration, but its
performance was not robust at all; BASICILS(10) was a rather good compromise between
speed and generalization performance, but given enough time was outperformed by BASIC-
ILS(100). FOCUSEDILS started finding good configurations quickly (except for scenario
SPEAR-QCP, where it took even longer than BASICILS(100) to improve over the default) and
always was among the best approaches at the end of the configuration process.
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Test performance (PAR, CPU seconds)
Scenario Default BASICILS(100) FOCUSEDILS p-value

SAPS-SWGCP 20.41 0.59± 0.28 0.32 ± 0.08 1.4 · 10−4

SPEAR-SWGCP 9.74 8.13 ± 0.95 8.40± 0.92 (0.21)
SAPS-QCP 12.97 4.87± 0.34 4.69 ± 0.40 0.042
SPEAR-QCP 2.65 1.32 ± 0.34 1.35± 0.20 (0.66)

CPLEX-REGIONS100 1.61 0.72± 0.45 0.33 ± 0.03 1.2 · 10−5

Table 5.3: Comparison of BASICILS(100) and FOCUSEDILS. We performed 25 runs of the
configurators and computed their test performance ptest,t (PAR across 1 000 test instances,
using θinc(t)) for a configuration time of t = 18 000s = 5h. We give test performance of
the algorithm default, mean ± stddev of ptest,t across the 25 runs for BASICILS(100) and
FOCUSEDILS, and p-values for a test comparing the configurators.

complete, industrial solver, such as SPEAR, the two benchmark distributions QCP and SWGCP
are quite heterogeneous. We expect FOCUSEDILS to have problems in dealing with highly
heterogeneous distributions, due to the fact that it tries to extrapolate performance based on
only a few runs per parameter configuration.

5.4 Configuration of SAPS, GLS+ and SAT4J
In our first publication on PARAMILS (Hutter et al., 2007b), we reported experiments on three
target algorithms to demonstrate the effectiveness of the approach: SAPS, GLS+, and SAT4J.
These algorithms are described in more detail in Section 3.2. As a brief reminder, GLS+ (with
1 binary and 4 numerical parameters) is a dynamic local search algorithm for solving the Most
Probable Explanation (MPE) problem in Bayesian networks (Hutter et al., 2005). SAT4J3

is a tree search SAT solver with 4 categorical and 7 numerical parameters. We studied four
configuration scenarios: SAPS-QWH, GLS+-GRID, SAPS-SW-HOM, SAT4J-SW-HOM. SAPS-QWH is
as used throughout this thesis; it is discussed in detail in Section 3.5. The other three are only
used locally in this section and we thus describe them here.

GLS+-GRID In this scenario, we aimed to optimize mean solution quality achieved by GLS+

for MPE in grid-structured Bayesian networks. Hutter et al. (2005) showed that GLS+

was the state-of-the-art algorithm for these networks, and we are not aware of a better,
more recent algorithm for solving them. In particular, we optimized the solution quality
found (i.e., the likelihood of the most likely instantiation found) within one minute of
GLS+ runtime. For each instance we computed the ratio ε of the likelihood found by
the GLS+ default within one hour and the likelihood GLS+ found with a configuration
θ within one minute. We then averaged across instances. If ε < 1, this means that GLS+

with the automatically-found configurations yielded better solutions in one minute than
with the default in one hour.

SAPS-SW-HOM Here, the objective is to minimize the median runtime of SAPS on a homo-
3http://www.sat4j.org
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Scenario Default CALIBRA(100) BASICILS(100) FOCUSEDILS p-value

GLS+-GRID ε = 1.81
1.240± 0.469 0.965± 0.006 0.968± 0.002

1.234± 0.492 0.951± 0.004 0.949± 0.0001 0.0016

SAPS-QWH
85.5K 8.6K ± 0.7K 8.7K ± 0.4K 10.2K ± 0.4K

steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K 0.52

SAPS-SW-HOM
5.60 0.044± 0.005 0.040± 0.002 0.043± 0.005

seconds 0.053± 0.010 0.046± 0.01 0.043± 0.005 0.0003

SAT4J-SW-HOM
7.02 N/A (too many 0.96± 0.59 0.62± 0.21

seconds parameters) 1.19± 0.58 0.65± 0.2 0.00007

Table 5.4: Configuration of GLS+, SAPS, and SAT4J. For each scenario and approach, training and
test performance are listed in the top and bottom row, respectively (mean ± stddev over 25 independent
runs); “p-value” refers to the p-value of a Wilcoxon signed rank test for testing the null hypothesis
“there is no difference between CALIBRA and FOCUSEDILS results” (BASICILS vs FOCUSEDILS for
SAT4J).

geneous subset of benchmark set SWGCP (a set of SAT-encoded small-world graph-
colouring instances discussed in Section 3.3.1). For this subset, we selected only those
2 202 instances that SAT4J could solve in a median runtime between five and ten
seconds.

SAT4J-SW-HOM Here, the objective is to minimize the median runtime of SAT4J on a homo-
geneous subset of benchmark set SWGCP. For this subset, we selected only those 213
instances that SAPS could solve in a median runtime between five and ten seconds.

For scenarios SAPS-QWH, SAPS-SW-HOM, and GLS+-GRID, we allowed each configuration
procedure to execute 20 000 runs of the target algorithm. This led to time budgets of 1 hour
for SAPS-QWH, 10 hours for SAPS-SW-HOM, and 55 hours for GLS+-GRID. For SAT4J-SW-HOM,
we used a time budget of 10 hours.

We compared the performance of the respective algorithm’s default performance, and the
performance with the configurations found by BASICILS, FOCUSEDILS, and the CALIBRA
system (Adenso-Diaz and Laguna, 2006). We described CALIBRA in detail in Section 2.1.1.
Recall that it is limited to tuning continuous parameters, and to a maximum of five parameters.
Overall, automated parameter optimization using PARAMILS consistently achieved substantial
improvements over the algorithm defaults.

We summarize the results in Table 5.4. GLS+ was sped up by a factor of more than 360
(configured parameters found better solutions in 10 seconds than the default found in one
hour), SAPS by factors of 8 and 130 on SAPS-QWH and SAPS-SW-HOM, respectively, and SAT4J
by a factor of 11. CALIBRA led to speedups of a similar magnitude, but to significantly worse
results than PARAMILS in two of three configuration scenarios. For the fourth, it was not
applicable since it could not handle the categorical parameters of SAT4J.

We also studied the generalization of the parameter configuration found by PARAMILS to
harder problem instances from benchmark set SWGCP. Figure 5.4 shows that this generalization
was extremely good, leading to a speedup of more than a factor of 600 on average.
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Figure 5.4: Comparison of manually-engineered default vs configuration found in single run of
FOCUSEDILS for scenario SAPS-SW-HOM. Automated configuration used a homogeneous subset, but
here we plot 500 randomly-sampled instances of the whole benchmark set SWGCP. Mean runtimes
were 263 seconds (default) vs 0.43 seconds (automatically-configured), a speedup factor of over 600.

5.5 Chapter Summary
In this chapter, we introduced a general framework for iterated local search in parameter
configuration space, providing one possible answer to the first dimension of algorithm con-
figuration: which sequential search strategy to use? We provided two instantiations of this
framework, BASICILS and FOCUSEDILS. The primary difference between the two is in their
choice for the second dimension of algorithm design: how many runs, N , should be used to
evaluate each configuration? BASICILS uses a fixed N , whereas FOCUSEDILS adaptively
chooses a different number of runs, N(θ), for each configuration, θ. In this chapter, we fixed
the third dimension of algorithm configuration, using a constant cutoff time of κmax. We
focus on that dimension in Chapter 7.

A comparison of BASICILS to a simple random search procedure on a broad collection of
configuration scenarios showed that BASICILS often performed significantly and sometimes
also substantially better. In scenarios where BASICILS had the time to perform several
iterations, it also significantly improved upon the first local optimum. A comparison of
FOCUSEDILS and BASICILS showed that FOCUSEDILS starts its search as quickly as BASIC-
ILS with a smallN but also achieves good performance for long runtimes (similarly to BASIC-
ILS with a large N ). For three of our five BROAD scenarios, it performed significantly better
than BASICILS, and for two of them (SAPS-SWGCP and CPLEX-REGIONS100) the differences
were substantial.

Finally, we reported experiments comparing PARAMILS to the previous CALIBRA
system. In that comparison, FOCUSEDILS was significantly better than CALIBRA in 2 of 3
scenarios. More importantly, our PARAMILS approach is more generally-applicable, handling
the configuration of complex algorithms with many categorical parameters. We showed that
by configuring SAPS on SWGCP instances, we achieved a 600-fold speedup over the SAPS
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default. In the next chapter, we demonstrate similar speedups for configuring a state-of-the-art
tree search solver on a set of industrial SAT-encoded software verification problem instances.
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Chapter 6

Applications I: A Case Study on the
Configuration of SPEAR for
Industrial Verification Problems

It is the weight, not numbers of experiments that is to be regarded.
—Sir Isaac Newton, English physicist and astronomer

In this chapter1, we present a case study that demonstrates the potential of algorithm configu-
ration in general, and PARAMILS in particular, to substantially improve the performance of an
existing high-performance SAT solver. Our target algorithm in this case study is SPEAR (Babić,
2008), a modular arithmetic decision procedure and SAT solver, developed by Domagoj Babić
in support of the CALYSTO static checker (Babić and Hu, 2007b). Here, we only use the SAT
solver component of SPEAR. With 26 user-definable search parameters, this part has a complex
parameter configuration space. Although the performance of an early, manually-configured
version of SPEAR was comparable to that of a state-of-the-art SAT solver (MiniSAT 2.0 (Eén
and Sörensson, 2003)), we ultimately achieved speedup factors of 4.5 for SAT-encoded indus-
trial bounded model checking instances, and of over 500 for software verification instances.
The use of PARAMILS also influenced the design of SPEAR and gave the algorithm designer
some important insights about differences between (SAT-encoded) hardware and software
verification problems. For example, the software verification instances generated by the
CALYSTO static checker required more aggressive use of SPEAR’s restart mechanism than the
bounded model checking hardware verification benchmarks we studied.

6.1 Formal Verification and Decision Procedures
The problems encountered in automated formal verification are typically hard. As with other
computationally difficult problems, the key to practical solutions lies in decision procedures

1This chapter is based on published joint work with Domagoj Babić, Holger Hoos and Alan Hu (Hutter et al.,
2007a). Domagoj deserves credit for much of the material presented in this chapter; it is based on a joint case
study performed when he was still a PhD student at UBC. In this case study, Domagoj played the role of algorithm
designer while the author of this thesis performed the algorithm configuration using PARAMILS.
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that use heuristic techniques. This is true for a wide range of decision procedures, be they based
on a binary decision diagram (BDD, see, e.g., Bryant, 1986) package, a Boolean satisfiability
(SAT) solver (see, e.g., Prasad et al., 2005), or an automated theorem prover based on the
Nelson-Oppen framework (Nelson, 1979).

A high-performance decision procedure typically uses multiple heuristics that interact
in complex ways. Some examples from the SAT-solving world include variable and value
selection, clause deletion, next watched literal selection, and initial variable ordering heuris-
tics (see, e.g., Silva, 1999; Moskewicz et al., 2001; Bhalla et al., 2003). The behaviour and
performance of these heuristics is typically controlled by parameters, and the complex effects
and interactions between these parameters render their configuration extremely challenging.

The typical development of a heuristic decision procedure follows the manual process
already outlined in Section 1.1.1: certain heuristic choices and parameter settings are tested
incrementally, typically using a modest collection of benchmark instances that are of particular
interest to the developer. Many choices and parameter settings thus made are “locked in”
during early stages of the process, and typically, only few parameters are exposed to the users
of the finished solver. In many cases, these users never change the default settings of the
exposed parameters or manually tune them in a manner similar to that used earlier by the
developer.

There are almost no publications on automated parameter optimization for decision
procedures for formal verification. Seshia (2005) explored using support vector machine
(SVM) classification to choose between two encodings of difference logic into Boolean SAT.
The learned classifier was able to choose the better encoding in most instances tested, resulting
in a hybrid encoding that mostly dominated the two pure encodings.

There is, however, a fair amount of previous work on optimizing SAT solvers for particular
verification applications. For example, Shtrichman (2000) considered the influence of variable
and phase decision heuristics (especially static ordering), restriction of the set of variables
for case splitting, and symmetric replication of conflict clauses on solving bounded model
checking (BMC) problems. He evaluated seven strategies on the Grasp SAT solver, and found
that static ordering performed fairly well, although no parameter combination was a clear
winner. Later, Shacham and Zarpas (2003) showed that Shtrichman’s conclusions do not apply
to zChaff’s less greedy VSIDS heuristic on their set of benchmarks, claiming that Shtrichman’s
conclusions were either benchmark- or engine-dependent. Shacham and Zarpas evaluated four
different decision strategies on IBM BMC instances, and found that static ordering performed
worse than VSIDS-based strategies. Lu et al. (2003) exploited signal correlations to design a
number of techniques for SAT solving specific for automatic test pattern generation (ATPG).
Their technique showed roughly an order of magnitude improvement on a small set of ATPG
benchmarks.

6.2 Algorithm Development
The core of SPEAR is a DPLL-style (Davis et al., 1962) SAT solver, but with several novelties.
For example, SPEAR features an elaborate clause prefetching mechanism that improves
memory locality. To improve the prediction rate of the prefetching mechanism, Boolean
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constraint propagation (BCP) and conflict analysis were redesigned to be more predictable.
SPEAR also features novel heuristics for decision making, phase selection, clause deletion,
and variable and clause elimination.2 Given all of these features, extensions, and heuristics,
many components of SPEAR are parameterized. This includes the choice of heuristics, as
well as enabling (or disabling) of various features, such as, for example, the pure-literal rule,
randomization, clause deletion, and literal sorting in freshly learned clauses. In total, SPEAR

has 26 search parameters (10 categorical, 12 continuous, and 4 integer).

6.2.1 Manual Tuning
After the first version of SPEAR was written and its correctness thoroughly tested, its developer,
Domagoj Babić, spent one week on manual performance optimization, which involved: (i)
optimization of the implementation, resulting in a speedup by roughly a constant factor, with
no noticeable effects on the search parameters; and (ii) manual optimization of roughly twenty
search parameters, most of which were hard-coded and scattered around the code at the time.

The manual parameter optimization was a slow and tedious process done in the following
manner: first, the SPEAR developer collected several medium-sized benchmark instances that
SPEAR could solve in at most 1 000 seconds, and attempted to come up with a parameter
configuration that would result in a minimum total runtime on this set. The benchmark set was
very limited and included several medium-sized BMC and some small software verification
(SWV) instances generated by the CALYSTO static checker (Babić and Hu, 2007b).3 Such a
small set of test instances facilitates fast development cycles and experimentation, but can
(and, as we will see, did) lead to over-tuning.

Quickly, it became clear that implementation optimization gave more consistent speedups
than manual parameter optimization. The variations due to different parameter settings were
huge, but no consistent pattern could be identified manually. The algorithm designer even
found one case (Alloy analyzer instance handshake.als.3 (Jackson, 2000)) where the difference
of floating point rounding errors between Intel’s non-standard 80-bit and IEEE 64-bit precision
resulted in an extremely large difference in the runtimes on the same processor. The same
instance was solved in 0.34 sec with 80-bit precision and timed out after 6 000 sec with 64-bit
precision. The difference in rounding initially caused minor differences in variable activities,
which are used to compute the dynamic decision ordering. Those minor differences quickly
diverged, pushing the solver into two completely different parts of search space. Since most
parameters influence the decision heuristics in some way, the solver can be expected to be
equally sensitive to parameter changes.4 Given the costly and tedious nature of the process,
no further manual parameter optimization was performed after finding a configuration that

2In addition, SPEAR has several enhancements for software verification, such as support for modular arithmetic
constraints (Babić and Musuvathi, 2005), incrementality to enable structural abstraction/refinement (Babić and Hu,
2007b), and a technique for identifying context-insensitive invariants to speed up solving multiple queries that
share common structure (Babić and Hu, 2007a). These components are, however, not used in our experiments with
the core SAT solver.

3Small instances were selected because CALYSTO tends to occasionally generate very hard instances that
would not be solved within a reasonable amount of time.

4This emphasizes the need to find a parameter configuration that lead to more robust performance, with different
random seeds, as well as across instances.
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Figure 6.1: MiniSAT 2.0 vs SPEAR using its original, manually-configured default parameter settings.
(a) The two solvers performed comparably on bounded model checking instances, with average runtimes
of 298 seconds (MiniSAT) vs 341 seconds (SPEAR) for the instances solved by both algorithms. (b)
Performance on easy and medium software verification instances was comparable, but MiniSAT scaled
better for harder instances. The average runtimes for instances solved by both algorithms were 30
seconds (MiniSAT) and 787 seconds (SPEAR).

seemed to work well on the chosen test set.

6.2.2 Initial Performance Assessment
At this point, the author of this thesis got involved since SPEAR promised to be an ideal
challenging testbed for automated algorithm configuration. As a first step, we established the
baseline performance of this manually-configured version of SPEAR. For this purpose, we
compared it against MiniSAT 2.0 (Eén and Sörensson, 2003), the winner of the industrial
category of the 2005 SAT Competition and of the 2006 SAT Race. (This study was done in
early 2007, at which time MiniSAT 2.0 was the clear state-of-the-art algorithm for industrial
instances.) Throughout our case study, we used the two VERIFICATION benchmarks sets
BMC and SWV described in Section 3.5.5: two benchmarks sets of industrial problem instances,
namely 754 BMC instances from IBM created by Zarpas (2005) and 604 verification conditions
generated by the CALYSTO static checker (Babić and Hu, 2007b).

As can be seen from the runtime correlation plots shown in Figure 6.1, MiniSAT 2.0
and the manually-configured version of SPEAR performed quite similarly for bounded model
checking and easy software verification instances. For difficult software verification instances,
however, MiniSAT clearly performed better. We expect that this effect was due to the focus of
manual configuration on a small number of rather easy instances.
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6.3 Automated Configuration of SPEAR
While parameter optimization typically ends with the identification of a well-performing
default setting, this was only the starting point for our automatic configuration experiments.

6.3.1 Parameterization of SPEAR

The availability of an automatic configuration procedure encouraged its developer, Domagoj
Babić, to parameterize many aspects of SPEAR. While the first versions of SPEAR we used for
preliminary algorithm configuration experiments only exposed a few important parameters, the
results of automated configuration of those first versions prompted its developer to expose more
and more search parameters, up to the point where not only every single hard-coded parameter
was exposed, but also a number of new parameter-dependent features were incorporated.
This process not only significantly improved SPEAR’s performance, but also has driven the
development of SPEAR itself.

The resulting version of the SPEAR SAT solver, version 1.2.1.1, was the one we used
throughout this thesis. It has 26 parameters:

• 7 types of heuristics (with the number of different heuristics available shown in paren-
theses):

– Variable selection heuristics (20)
– Heuristics for sorting learned clauses (20)
– Heuristics for sorting original clauses (20)
– Resolution ordering heuristics (20)
– Value selection heuristics (7)
– Clause deletion heuristics (3)
– Resolution heuristics (3)

• 12 double-precision floating point parameters, including variable and clause decay,
restart increment, variable and clause activity increment, percentage of random variable
and value decisions, heating/cooling factors for the percentage of random choices, etc.

• 4 integer parameters which mostly control restarts and variable/clause elimination.

• 3 Boolean parameters which enable/disable simple optimizations such as the pure literal
rule.

For each of SPEAR’s floating point and integer parameters we chose lower and upper
bounds on reasonable values and considered a number of values spread uniformly across the
respective interval. This number ranged from three to eight, depending on our intuition about
importance of the respective parameter. The total number of possible combinations after this
discretization was 3.78 · 1018. Exploiting conditional parameters reduced this to 8.34 · 1017

distinct parameter configurations.
We then performed two sets of experiments: automated configuration of SPEAR on a

general set of instances for the 2007 SAT competition, and application-specific configuration
for two real-world benchmark sets.
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6.3.2 Configuration for the 2007 SAT Competition
The first round of automatic algorithm configuration was performed in the context of preparing
a version of SPEAR for submission to the 2007 SAT Competition. We used this as a case study
in algorithm configuration for real-world problem domains. The algorithm developer provided
an executable of SPEAR and information about its parameters as well as reasonable values for
each of them. The default parameter configuration, however, was not revealed. The goal of
this study was to see whether the performance achieved with automatic methods could rival
the performance achieved by the manually-engineered default parameters.

Since the optimization objective was to achieve good performance on the industrial
benchmarks of the 2007 SAT Competition (which were not disclosed before the solver
submission deadline), we used a collection of instances from previous competitions for
configuration: the 176 industrial instances from the 2005 SAT Competition, the 200 instances
from the 2006 SAT Race, as well as 30 SWV instances generated by the CALYSTO static
checker. A subset of 300 randomly selected instances was used for training, and the remaining
106 instances were used as a test set. Since the 2007 SAT competition scoring function
rewarded per-instance performance relative to other solvers, the optimization objective used in
this phase was geometric mean speedup over SPEAR with the (manually-optimized) default
parameter settings.

We ran a single run of BASICILS(300) for three days on the 300 designated training
instances. (FOCUSEDILS had not yet been developed at this time.) We refer to the parameter
configuration thus identified as Satcomp. During configuration, we took the risk of setting
a low captime of κmax = 10 seconds in order to save time. This exposed us to the risk of
over-tuning the solver for good performance on short runs but poor performance on longer runs,
and we expected that parameter configuration Satcomp might be too aggressive and hence
perform poorly on harder instances. Indeed, when presented with the automatically-configured
parameter configuration, the algorithm designer observed that the multiplicative factor for
increasing the allowed number of learned clauses was quite large (1.3) and feared that this
“might cause the solver to run really well on small instances and really terribly on large ones”.

In contrast, our experimental results showed that configuration Satcomp performed very
well, both on the data from previous SAT competitions and on the BMC and SWV benchmark
sets. Figure 6.2 compares the performance of SPEAR’s default and configuration Satcomp
using 1 000 seconds as a timeout for each of the 300 instances used for SAT competition
configuration as well as the 106 held-out test instances. We plot training and test instances
into the same figure in order to enable a visual check for over-tuning. Qualitatively, the
results for training and test instances are comparable (if anything, the improvements due to
automatic configuration seem a little larger for the test set instances). Quantitatively, while
the SPEAR default timed out on 96 instances, configuration Satcomp only timed out on 85
(74 instances remained unsolved by either approach). For the remaining instances, Satcomp
achieved a geometric mean speedup of 21%, with a trend to perform better for larger instances.
Figure 6.3 demonstrates that this speedup and the favourable scaling behaviour carried over
to both our verification benchmark sets: Satcomp performed better than the SPEAR default
on BMC (with an average speedup factor of about 1.5) and clearly dominated it for SWV (with
an average speedup factor of about 78). The fact that these empirical results contradicted the
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Figure 6.2: Improvements by automated parameter optimization for 2007 SAT competition. Perfor-
mance of SPEAR with automatically-configured parameter configuration Satcomp parameters vs. its
default. We plot performance for both training and test instances. Timeouts after 1 000 seconds are
plotted at 10 000 seconds for visual distinction from runs taking close to 1 000 seconds.

algorithm designer’s intuition illustrates clearly the limitations of even an expert’s ability to
comprehend the complex interplay between the many parameters of a sophisticated heuristic
algorithm such as SPEAR.

Based on these improvements, SPEAR performed very well in the 2007 SAT competition.5

We submitted three versions of SPEAR (Babić and Hutter, 2007): the manually-configured
default, version Satcomp and a newer version with further code optimizations.6 As can be
seen from the data available for the first stage on industrial instances, SPEAR placed 17th with
its default configuration (solving 82 instances), 8th with configuration Satcomp (solving 93
instances), and 5th with the further-optimized version (solving 99 instances). For reference,
MiniSAT—which eventually won three medals in the industrial category—placed 6th in this
first stage (solving 97 instances). For a convenient summary of those results, see the bottom
of http://www.satcompetition.org/2009/spec2009.html. SPEAR was not allowed to participate in
the second round of this competition (and thus was not eligible to win any medals) since its
developer preferred to not make the source code available.

6.3.3 Configuration for Specific Applications
While general algorithm configuration on a mixed set of instances as performed for the 2007
SAT competition resulted in a solver with strong overall performance, in practice, one often
mostly cares about excellent performance on a specific type of instances, such as BMC or SWV.
For this reason we performed a second set of experiments — configuring SPEAR for these two

5See http://www.cril.univ-artois.fr/SAT07.
6Note that all results we report for SPEAR, with default or optimized parameter configurations, use version

1.2.1.1 of SPEAR, the version that already includes these code optimizations.
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Figure 6.3: Improvements by automated parameter optimization on a mix of industrial instances:
SPEAR with the original default parameter configuration vs SPEAR with configuration Satcomp. (a)
Even though a few instances could be solved faster with the SPEAR default, parameter configuration
Satcomp was considerably faster on average (mean runtime 341 vs 223 seconds). Note that speedups
were larger than they may appear in the log-log plot: for the bulk of the instances Satcomp was about
twice as fast. (b) Satcomp improved much on the scaling behaviour of the SPEAR default, which
failed to solve four instances in 10 000 seconds. Mean runtimes on the remaining instances were 787
seconds vs 10 seconds, a speedup factor of 78.

specific sets of problems.
For both sets, we chose penalized average runtime (PAR) with penalization constant 10 as

our optimization objective. As the training captime we chose 300 seconds, which according
to SPEAR’s internal book-keeping mechanisms turned out to be sufficient for exercising all
techniques implemented in the solver.

In order to speed up the optimization, in the case of BMC we removed 95 hard instances
from the training set that could not be solved by SPEAR with its default parameter configuration
within one hour, leaving 287 instances for training. Note the relation to our discussion on
selecting the most useful instances for comparing parameter configurations in Section 4.3.
Here, we performed that step manually.

We performed parameter optimization by executing 10 runs of FOCUSEDILS for three
days in the case of SWV and for two days for BMC. We performed these runs in parallel, on
different machines, and for each instance set, picked the parameter configuration with the best
training performance.

Figure 6.4 demonstrates that these application-specific parameter configurations further
improved over the optimized configuration for the SAT competition, Satcomp. SPEAR’s
performance was boosted for both application domains, by an average factor of over 2 for
BMC and over 20 for SWV. The scaling behaviour also clearly improved, especially for SWV.

Figure 6.5 shows the total effect of automatic configuration by comparing the performance
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Figure 6.4: Improvements by automated parameter optimization on specific instance distributions:
SPEAR with configuration Satcomp vs SPEAR with parameters optimized for the specific applications
BMC and SWV. Results are on independent test sets disjoint from the instances used for parameter
optimization. (a) The parameter configuration configured for set BMC solved four instances for which
configuration Satcomp timed out after 10 000 seconds. For the remaining instances, mean runtimes
were 223 seconds (Satcomp) and 96 seconds (configured for BMC), a speedup factor of about 2.3. (b)
Both parameter settings solved all 302 instances, mean runtimes were 36 seconds (Satcomp) and 1.5
seconds (configured for SWV), a speedup factor of 24.

of SPEAR with the (manually-optimized) default settings against that achieved when using the
automatically-found parameter configurations for the BMC and SWV benchmark sets. For both
sets, the scaling behaviour of the automatically-found configuration was much better and on
average large speedups were achieved: the speedup factors were as high as 4.5 for BMC and
500 for SWV. For the SWV benchmark set, SPEAR with default parameters timed out on four
test instances after 10 000 seconds, while the automatically-found configuration solved every
instance in less than 20 seconds.

A final comparison against our baseline, MiniSAT 2.0, demonstrates that the configured
SPEAR versions performed much better. Figure 6.6 shows average speedup factors of 4.8 for
BMC and of 100 for SWV. For both domains, SPEAR showed much better scaling behavior for
harder instances. Table 6.1 summarizes the performance of MiniSAT 2.0 and SPEAR with
parameter settings default, Satcomp, and the settings specifically configured for BMC and
SWV.7

After the completion of the case study presented in this chapter, we used PARAMILS to
optimize SPEAR for Satisfiability Modulo Theories (SMT) instances. Performance did not

7The averages in this table differ from the runtimes given in the captions of Figures 6.1-6.5, because averages
are taken with respect to different instance sets. For each solver, this table takes averages over all instances solved
by that solver, whereas the figure captions state averages over the instances solved by both solvers compared in the
respective figure.
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Figure 6.5: Overall improvements achieved by automatic configuration: SPEAR with its manually
engineered default parameter configuration vs the optimized versions for sets BMC and SWV. Results
are on test sets disjoint from the instances used for parameter optimization. (a) The default timed
out on 90 instances after 10 000 seconds, while the configured configuration solved four additional
instances. For the instances that the default solved, mean runtimes are 341 seconds (default) and
75 seconds (automatically-configured), a speedup factor of 4.5. (b) The default timed out on four
instances after 10 000 seconds, the configured configuration solved all instances in less then 20 seconds.
For the instances that the default solved, mean runtimes are 787 seconds (default) and 1.35 seconds
(automatically-configured), a speedup factor of over 500.

improve over the configuration found for benchmark set SWV, but that parameter configuration
was already strong enough to win the quantifier-free bit-vector arithmetic category of the 2007
Satisfiability Modulo Theories Competition.8

6.4 Discussion
The automated configuration of SPEAR provided its developer, Domagoj Babić, with a number
of insights into properties of the benchmark instances used in our study. Since these insights
are not part of the contributions of this thesis we only briefly summarize the most interesting
parts here for completeness, focusing on the SWV benchmark set (for full details, see Hutter
et al., 2007a). The algorithm designer combined knowledge about the generation process
of the software verification instances in set SWV with the knowledge of which parameter
configuration performed well for these instances, yielding interesting conclusions. The best-
found configuration for benchmark set SWV uses an activity-based heuristic that resolves ties
by picking the variable with the larger product of occurrences. This heuristic might seem too
aggressive, but helps the solver to focus on the most frequently used common subexpressions.
It seems that a relatively small number of expressions play a crucial role in (dis)proving each

8See http://www.smtcomp.org/2007/.
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Figure 6.6: Final comparison against baseline: MiniSAT 2.0 vs the configured versions of SPEAR
for BMC and SWV. Results are on independent test sets disjoint from the instances used for parameter
optimization. (a) MiniSAT timed out for 88/377 test instances after 10,000 seconds, SPEAR configured
for BMC instances could solve an additional two instances. For the remaining 289 instances, the average
runtimes were 361 seconds (MiniSAT) vs 75 seconds (SPEAR), a 4.8-fold speedup. (b) Both MiniSAT
and SPEAR solved all 302 SWV test instances; the average runtimes were 161.3 seconds for MiniSAT
vs 1.5 seconds for SPEAR, a hundred-fold speedup.

verification condition, and this heuristic quickly narrows the search down to such expressions.
The SWV instances favoured very aggressive restarts (first after only 50 conflicts), which in
combination with our experimental results shows that most such instances can be solved
quickly if the right order of variables is found. Interestingly, out of seven possible value
selection heuristics, one of the simplest was selected for benchmark set SWV (always assign
FALSE first). The SWV instances correspond to NULL-pointer dereferencing checks, and this
value selection heuristic attempts to propagate NULL values first (all FALSE), which explains
its effectiveness.

The use of automated parameter optimization also influenced the design of SPEAR in
various ways. An early version of SPEAR featured a rudimentary implementation of clause
and variable elimination. Prior to using automated algorithm configuration, these mechanisms
did not consistently improve performance, and therefore, considering the complexity of
finalizing their implementation, the SPEAR developer considered removing them. However,
these elimination techniques turned out to be effective after PARAMILS found good heuristic
settings to regulate the elimination process. Another feature that was considered for removal
was the pure literal rule, which ended up being useful for BMC instances (but not for SWV).
Similarly, manual optimization gave inconclusive results about randomness, but automated
optimization found that a small amount of randomness actually did help SPEAR in solving
BMC (but not SWV) instances.

From this case study, we can draw a number of general conclusions about algorithm
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Solver Bounded model checking Software verification
#(solved) runtime for solved #(solved) runtime for solved

MiniSAT 2.0 289/377 360.9 302/302 161.3
SPEAR original 287/377 340.8 298/302 787.1
SPEAR general configured 287/377 223.4 302/302 35.9
SPEAR specific configured 291/377 113.7 302/302 1.5

Table 6.1: Summary of results for configuring SPEAR. For each solver and instance set, #(solved)
denotes the number of instances solved within a CPU time of 10 hours, and the runtimes are the
arithmetic mean runtimes for the instances solved by that solver. (Geometric means were not meaningful
here, as all solvers solved a number of easy instances in “0 seconds”; arithmetic means better reflect
practical user experience as well.) If an algorithm solves more instances, the shown average runtimes
include more, and typically harder, instances. In particular, SPEAR configured for BMC solved two
more instances than MiniSAT. On the instances MiniSAT solved, it took an average of 75 seconds, a
speedup factor of 4.8. The two additional hard instances pushed SPEAR’s average runtime up to 113.7.
Likewise, two missing hard instances for the SPEAR default reduce its average runtime below that of
MiniSAT; however, as we saw in Figure 6.1, MiniSAT is faster: if these two instances are not counted
for MiniSAT either, its average runtime is 298 seconds.

configuration. We believe that the optimized versions of SPEAR resulting from our application
of PARAMILS represent a considerable improvement in the state of the art of solving decision
problems from hardware and software verification using SAT solvers. Not too surprisingly,
our experimental results suggest that optimized search parameters are benchmark dependent—
which highlights the advantages of automated algorithm configuration over the conventional
manual approach. The fact that SPEAR’s designer invested considerable time to manually
configure SPEAR prior to applying PARAMILS, combined with the large speedups automated
configuration yielded, argues strongly in favour of applying automated algorithm configuration
procedures in the development of complex algorithms for solving computationally hard
problems. Doing so can save costly human expert time and exploit the full performance
potential of a highly parameterized heuristic solver.

6.5 Chapter Summary
In this chapter, we presented a case study for the configuration of SPEAR, a state-of-the-art
tree search SAT solver, on industrially-relevant instances. SPEAR has 26 parameters (10
categorical, 12 continuous, 4 integer), which had initially been set by its designer to optimize
performance on a mix of bounded model-checking (BMC) and software verification (SWV)
instances; manual tuning took about one week.

We applied PARAMILS to optimize SPEAR’s performance in two usage scenarios. First,
we optimized SPEAR for overall good performance on industrial instances; this resulted in a
very competitive solver in the 2007 SAT competition (which couldn’t win any medals due to its
proprietary source code). This solver achieved a 1.5-fold speedup in average-case performance
over the manually-engineered SPEAR default for a set of BMC instances, and a 78-fold speedup
for a set of SWV instances. (These results—and all results of this kind in this thesis—are for
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disjoint test sets of instances that were unknown to the configuration procedures.)
Second, we achieved even more impressive speedups by optimizing performance on

homogeneous instance distributions. When optimizing performance for BMC, we achieved a
4.5-fold speedup over the default. When optimizing for SWV, we achieved a 500-fold speedup;
while the SPEAR default timed out on the four hardest SWV test instances after ten hours of
runtime, the optimized parameter setting solved each of the test instances within 20 seconds.
(Again, the test instances were unknown at the time of configuration.) Importantly, in all cases
there was a trend for the automatically-found parameter configurations to perform increasingly
better than the default for harder instances.

We demonstrated that the resulting versions of SPEAR considerably outperformed the
state-of-the-art industrial solver MiniSAT 2.0, and thereby substantially advanced the state of
the art for solving these types of problem instances. The speedups over the previous state of
the art were 4.5-fold (BMC) and over 100-fold (SWV).
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Chapter 7

Methods II: Adaptive Capping of
Algorithm Runs

Don’t say you don’t have enough time. You have exactly the same number
of hours per day that were given to Helen Keller, Pasteur, Michaelan-
gelo, Mother Teresa, Leonardo da Vinci, Thomas Jefferson, and Albert
Einstein.
—H. Jackson Brown Jr., American author

In this chapter1, we improve upon the methods introduced in Chapter 5. In particular, we
consider the third dimension of automated algorithm configuration, the cutoff time for each
run of the target algorithm. We introduce an effective and simple capping technique that
adaptively determines the cutoff time for each run. The motivation for this capping technique
comes from a problem encountered by all configuration procedures considered in this thesis:
often the search spends a lot of time evaluating parameter configurations that are much worse
than other, previously-seen configurations.

Consider, for example, a case where parameter configuration θ1 takes a total of 10 seconds
to solve N = 100 instances (i.e., it has a mean runtime of 0.1 seconds per instance), and
another parameter configuration θ2 takes 100 seconds to solve the first of these instances. In
order to compare the mean runtimes of θ1 and θ2 based on this set of instances, knowing all
runtimes for θ1, it is not necessary to run θ2 on all 100 instances. Instead, we can already
terminate the first run of θ2 after 10 + ε seconds. This results in a lower bound on θ2’s mean
runtime of 0.1 + ε/100 since the remaining 99 instances could take no less than zero time.
This lower bound exceeds the mean runtime of θ1, and so we can already be certain that the
comparison will favour θ1. This insight provides the basis for our adaptive capping technique.

7.1 Adaptive Capping for RANDOMSEARCH
The simplest case for our adaptive capping technique is RANDOMSEARCH. Whenever this con-
figurator evaluates a new parameter configuration θ, it performs a comparison betterN (θ,θinc)

1This chapter is based on published joint work with Holger Hoos, Kevin Leyton-Brown, and Thomas
Stützle (Hutter et al., 2009b,c).

103



(see Algorithm 5.4 on page 79). Without adaptive capping, these comparisons can take a long
time, since runs with poor parameter configurations often take orders of magnitude longer
than those with good configurations (see Section 4.3).

For the case of optimizing the mean of non-negative cost functions (such as runtime or
solution cost), we implement a bounded evaluation of a parameter configuration θ based
on N runs and a given performance bound in Procedure objective (see Procedure 7.1).
This procedure sequentially performs runs for parameter configuration θ and after each run
computes a lower bound on ĉN (θ) based on the i ≤ N runs performed so far. Specifically,
for our objective of mean runtime we sum the runtimes of each of the i runs, and divide this
sum by N ; since all runtimes must be nonnegative, this quantity lower bounds ĉN (θ). Once
the lower bound exceeds the bound passed as an argument, we can skip the remaining runs
for θ. In order to pass the appropriate bounds to Procedure objective, we need to slightly
modify Procedure betterN (see Procedure 5.3 on page 78) for adaptive capping. Procedure
objective now has a bound as an additional third argument, which is set to∞ in line 1 of
betterN , and to ĉN (θ2) in line 2. Note that the reason for computing ĉN (θ2) before ĉN (θ1)
is that θ2 is typically a good configuration that can provide a strong bound. For example, in
RANDOMSEARCH, θ2 is always the current incumbent, θinc.

Because the use of adaptive capping results in the computation of exactly the same function
betterN as without it, RANDOMSEARCH(N ) with capping follow exactly the same search
trajectory it would have followed without it, but typically requires much less runtime. Hence,
within the same amount of overall running time, this modified RANDOMSEARCH version
tends to be able to search a larger part of the parameter configuration space.

Although in this work we focus on the objective of minimizing mean runtime for decision
algorithms, we note that our adaptive capping technique can be applied to other configuration
objectives. This is straightforward in the case of any other objective that is based on a mean
(e.g., mean solution quality). It also works for other configuration objectives, in particular
for quantiles, such as the median or the 90% quantile, which we have considered in previous
work. In the case of the median, with M ≤ N/2 runs we can only obtain a trivial bound
of zero; however, for M > N/2, the dN/2eth-lowest cost of the M runs provides a lower
bound on ĉN (θ). A similar result holds for other quantiles. Interestingly, the more emphasis
is put on robustness, the better for our adaptive capping technique. When the Q% runtime
quantile is to be minimized, bounds become non-trivial after observing the performance for
M > N/(100−Q) runs. For example, after 11 timeouts at κ for a configuration θ, we know
that θ′s 90% quantile based on 100 runs is at least κ.

We now present evidence demonstrating that adaptive capping speeds up RANDOM-
SEARCH. Figure 7.1 compares training performance of RANDOMSEARCH on two config-
uration scenarios with and without adaptive capping, and Table 7.1 quantifies the speedups
for all BROAD scenarios. Overall, adaptive capping enabled RANDOMSEARCH to evaluate
between 2.8 and 33 times as many parameter configurations in the same time, while yielding
exactly the same result based on the same number of configurations considered (given the
same random seeds). This improved training performance statistically significantly in all
BROAD scenarios. (As before, we use training rather than test performance here to yield a
lower variance estimate.) Note that the speedups are small at the beginning and grow as
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Procedure 7.1: objective(θ, N, optional parameter bound)

This procedure computes ĉN (θ), either by performing new runs or by exploiting previous cached
runs; ‘bound’ specifies a bound on the computation to be performed. When this parameter is not
specified, the bound is taken to be∞. For each θ, N(θ) is the number of runs performed for θ,
i.e., the length of the global array Rθ . We count runtimes for unsuccessful runs according to the
PAR criterion.

Input : Parameter configuration θ, number of runs, N , optional bound bound
Output : ĉN (θ) if ĉN (θ) ≤ bound, otherwise a large constant (maxPossibleObjective) plus

the number of instances that remain unsolved when the bound was exceeded
Side Effect: Adds runs to the global cache of performed algorithm runs, Rθ; updates global

incumbent, θinc
// ===== Maintain invariant: N(θinc) ≥ N(θ) for any θ
if θ 6= θinc and N(θinc) < N then1

ĉN (θinc)← objective(θinc, N,∞) // Adds N −N(θinc) runs to Rθinc2

// ===== For aggressive capping, update bound.
if Aggressive capping then bound← min(bound, bm · ĉN (θinc))3
// ===== Update the run results in tuple Rθ .
for i = 1...N do4

sum runtime← sum of runtimes in Rθ[1], . . . ,Rθ[i− 1] // Tuple indices starting at 1.5
κ′i ← min(κ,N · bound− sum runtime) // typo in original: it said max instead of min6
if N(θ) ≥ i then (θ, πi, κi, oi)← Rθ[i]7
if N(θ) ≥ i and ((κi ≥ κ′i and oi = “unsuccessful”) or (κi < κ′i and8
oi 6= “unsuccessful”)) then

o′i ← oi // Previous run is longer yet unsuccessful or shorter yet successful⇒ can re-use result9

else10
o′i ← objective from a newly executed run of A(θ) on instance πi with seed si and11
captime κ′i// typo in original: it said κi instead of κ′i

Rθ[i]← (θ, πi, κ
′
i, o
′
i)12

if 1/N · (sum runtime + o′i) > bound then13
return maxPossibleObjective + (N + 1)− i14

if N = N(θinc) and (sum of runtimes in Rθ) < (sum of runtimes in Rθinc
) then15

θinc ← θ16

return 1/N · (sum of runtimes in Rθ)17

configuration time increases. This is because every time a better incumbent is found, the
runtime needed for ruling out new configurations decreases.

Intuitively, the speedups are greatest for scenarios with large differences between very good
and very bad configurations. This is reflected in our results. For example, consider scenarios
SPEAR-SWGCP and SAPS-SWGCP, for which the speedups were the least and the most pronounced.
While the default configuration yielded considerably faster runs for SPEAR-SWGCP than for
SAPS-SWGCP, the best found configurations were more than 10 times faster for SAPS-SWGCP.
Thus, there is a much larger potential for time savings in scenario SAPS-SWGCP.
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cant.

Figure 7.1: Speedup of RANDOMSEARCH due to adaptive capping. For RANDOM-
SEARCH(100) with and without adaptive capping and for each time step t, we compute
training performance pt,train (PAR across 100 training instances, using the procedures’ in-
cumbents, θinc(t)). We plot median ptrain,t across the 25 runs.

Scenario Training performance (PAR, CPU seconds) Avg. # conf. evaluated
No capping Capping p-value No capping Capping

SAPS-SWGCP 0.46± 0.34 0.21 ± 0.03 1.2 · 10−5 60 2004

SPEAR-SWGCP 7.02± 1.11 6.70 ± 1.20 6.1 · 10−5 71 199

SAPS-QCP 3.73± 1.53 3.40 ± 1.53 4.0 · 10−5 127 434

SPEAR-QCP 0.58± 0.59 0.45 ± 0.51 6.0 · 10−5 321 1951

CPLEX-REGIONS100 1.29± 0.28 0.70 ± 0.12 1.8 · 10−5 45 1004

Table 7.1: Speedup of RANDOMSEARCH due to adaptive capping. We performed 25 runs of
RANDOMSEARCH(100) with and without adaptive capping and computed their training per-
formance ptrain,t (PAR across 100 training instances, using the procedures’ final incumbents,
θinc(t)) for a configuration time of t = 18 000s = 5h. We report mean ± stddev of ptrain,t
across the 25 runs, p-values for comparing the configurators (as judged by a paired Max-
Wilcoxon test, see Section 3.6.2), and the average number of configurations they evaluated.
Note that the speedup is highly significant in all scenarios.

7.2 Adaptive Capping in BASICILS
Now we consider the application of adaptive capping to BASICILS. First, we introduce a
trajectory-preserving capping (TP capping) technique that maintains BASICILS’ trajectory.
Then we modify this strategy heuristically to perform more aggressive adaptive capping (Aggr
capping), potentially yielding even better performance in practice.
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7.2.1 Trajectory-Preserving Capping
In essence, adaptive capping for BASICILS can be implemented by applying the same changes
to Procedure betterN as described above for RANDOMSEARCH. In fact, for SIMPLELS (one
iteration of BASICILS), no changes are required at all. However, in BASICILS—unlike in
RANDOMSEARCH and SIMPLELS—the current configuration is not always compared to the
incumbent, θinc. In contrast, the second argument of Procedure betterN is typically the best
configuration encountered in the current ILS iteration (where a new ILS iteration begins after
each perturbation). During most of the search process, this configuration is quite good; thus,
adaptive capping can lead to significant time savings.

7.2.2 Aggressive Capping
There are, however, cases where the trajectory-preserving capping mechanism described above
is less efficient in combination with the PARAMILS framework than it could be. This is
because the best configuration in the current ILS iteration can be substantially worse than the
overall incumbent. (Note that in RANDOMSEARCH and SIMPLELS every pairwise comparison
of configurations involves the current incumbent, such that TP capping and the aggressive
variant discussed here are identical.) In particular, at the beginning of a new iteration it is
initialized to a potentially very poor configuration resulting from a random perturbation. In
the frequent case that this configuration performs poorly, the capping criterion uses a much
weaker bound than the performance of the overall incumbent. To counteract this effect, we
introduce a more aggressive capping strategy that can terminate the evaluation of a poorly-
performing configuration at any time. In this heuristic extension of our adaptive capping
technique, we bound the evaluation of any parameter configuration by the performance of the
incumbent parameter configuration multiplied by a factor that we call the bound multiplier,
bm. When a comparison between any two parameter configurations, θ and θ′, is performed
and the evaluations of both are terminated preemptively, the configuration having solved more
instances within the allowed time is taken to be the better one. (This behaviour is achieved by
line 14 in Procedure objective, which keeps track of the number of instances solved when
exceeding the bound.) Ties are broken to favour moving to a new parameter configuration
instead of staying with the current one.

Depending on the bound multiplier, the use of this aggressive capping mechanism may
change the search trajectory of BASICILS. For bm =∞, the heuristic method reduces to our
trajectory-preserving method, while a very aggressive setting of bm = 1 means that once we
know a parameter configuration to be worse than the incumbent, we stop its evaluation. In
our experiments we set bm = 2: once the lower bound on the performance of a configuration
exceeds twice the performance of the incumbent solution, its evaluation is terminated. (In
Section 8.2, we revisit this choice of bm = 2, optimizing the parameters of PARAMILS itself.)

In four of our five BROAD scenarios, TP capping significantly sped up SIMPLELS and
BASICILS. Figure 7.2 illustrates this speedup for two configuration scenarios. In both cases,
capping led to substantial speedups and, as a consequence, improved training performance
at the end of the trajectory. Table 7.2 quantifies these improvements for all five BROAD

configuration scenarios. TP capping enabled up to four times as many ILS iterations and
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Figure 7.2: Speedup of BASICILS due to adaptive capping. For BASICILS(100) without adap-
tive capping and with TP capping and for each time step t, we compute training performance
pt,train (PAR across 100 training instances, using the procedures’ incumbents, θinc(t)). We
plot median ptrain,t across the 25 runs.

Scenario Training performance (PAR, CPU seconds) Avg. # ILS iterations
No capping TP capping p-value No capping TP capping

SAPS-SWGCP 0.38± 0.19 0.24 ± 0.05 6.1 · 10−5 3 12
SPEAR-SWGCP 6.78± 1.73 6.65 ± 1.48 0.01 1 1

SAPS-QCP 3.19± 1.19 2.96 ± 1.13 9.8 · 10−4 6 10
SPEAR-QCP 0.361± 0.39 0.356 ± 0.44 0.66 2 3

CPLEX-REGIONS100 0.67± 0.35 0.47 ± 0.26 7.3 · 10−4 1 1

Table 7.2: Speedup of BASICILS due to adaptive capping. We performed 25 runs of BASIC-
ILS(100) with and without adaptive capping and computed their training performance ptrain,t
(PAR across 100 training instances, using the procedures’ final incumbents, θinc(t)) for a
configuration time of t = 18 000s = 5h. We report mean ± stddev of ptrain,t across the 25
runs, p-values for comparing the configurators, and the average number of ILS iterations they
performed.

improved average performance in all scenarios. The improvement was statistically significant
in all scenarios except SPEAR-QCP.

In two scenarios (SPEAR-SWGCP and CPLEX-REGIONS100), BASICILS did not finish its first
iteration and was thus identical to SIMPLELS. In both of these scenarios, training performance
improved significantly due to capping. For CPLEX-REGIONS100, this improvement was also
quite substantial, leading to a 1.4-fold speedup of CPLEX (compared to its performance with
the configurations found without capping).

Aggressive capping further improved BASICILS performance for scenario SAPS-SWGCP.
Here, it increased the number of ILS iterations completed within the configuration time from
12 to 219, leading to a significant improvement in performance. For the other configuration
scenarios, differences were not significant.

108



10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

CPU time used for tuner [s]

M
ea

n 
ru

nt
im

e 
[s

], 
tra

in

 

 
RandomSearch(100)
BasicILS(100)

(a) SAPS-SWGCP, not statistically significant.

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

CPU time used for tuner [s]

M
ea

n 
ru

nt
im

e 
[s

], 
tra

in

 

 
RandomSearch(100)
BasicILS(100)

(b) CPLEX-REGIONS100, statistically signifi-
cant.

Figure 7.3: Comparison of BASICILS(100) and RANDOMSEARCH(100), with adaptive
capping. This is the analogue of Figure 5.1, but with adaptive capping (Aggr capping with
bm = 2).

Scenario Training performance (PAR, CPU seconds)
p-value

RANDOMSEARCH(100) BASICILS(100)
SAPS-SWGCP 0.215± 0.034 0.214 ± 0.034 0.35
SPEAR-SWGCP 6.70± 1.20 6.65 ± 1.48 0.51
SAPS-QCP 3.48± 1.24 3.02 ± 1.15 5.2 · 10−5

SPEAR-QCP 0.45± 0.51 0.36 ± 0.41 0.28
CPLEX-REGIONS100 0.73± 0.1 0.47 ± 0.26 0.0013

Table 7.3: Comparison of RANDOMSEARCH(100) and BASICILS(100), with adaptive capping.
This is the analogue of Table 5.1, but with adaptive capping (Aggr capping with bm = 2).

Since adaptive capping improved RANDOMSEARCH more than BASICILS, one might
now wonder how our previous comparison between these approaches changes when adap-
tive capping is used. We found that the gap between the techniques narrowed, but that the
qualitative difference persisted. Figure 7.3 compares the training performance of RANDOM-
SEARCH and BASICILS for two tuning scenarios; it is the analogue of Figure 5.1 but with
adaptive capping. We note that the capping improved RANDOMSEARCH more than BASIC-
ILS, and that for scenario SAPS-SWGCP their performances are visually indistinguishable. For
scenario CPLEX-REGIONS100, RANDOMSEARCH outperformed BASICILS for short configu-
ration times, but with larger configuration times BASICILS still performed much better. Table
7.3 compares the training performance of RANDOMSEARCH(100) and BASICILS(100) with
adaptive capping enabled. Comparing this to the performance differences without capping
(see Table 5.1), now BASICILS only performed significantly better in two of the five BROAD
scenarios (as opposed to three without capping). The gap between the methods narrowed, but
BASICILS still performed better on average for all configuration scenarios.
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7.3 Adaptive Capping in FOCUSEDILS
The main difference between BASICILS and FOCUSEDILS is that the latter adaptively varies
the number of runs used to evaluate each parameter configuration. This difference complicates,
but does not preclude the use of adaptive capping. This is because FOCUSEDILS always
compares pairs of parameter configurations based on the same number of runs for each
configuration, even though this number can differ from one comparison to the next.

Thus, we can extend adaptive capping to FOCUSEDILS by using separate bounds for
every number of runs, N . Recall that FOCUSEDILS never moves from one configuration,
θ, to a neighbouring configuration, θ′, without performing at least as many runs for θ′ as
have been performed for θ. Since we keep track of the performance of θ with any number
of runs M ≤ N(θ), a bound for the evaluation of θ′ is always available. Therefore, we can
implement both trajectory-preserving and aggressive capping as we did for BASICILS.

As for BASICILS, for FOCUSEDILS the inner workings of adaptive capping are imple-
mented in Procedure objective (see Procedure 7.1). We only need to modify Procedures
betterFoc and dominates (see Procedures 5.5 and 5.6 on page 82) to call objective with the
appropriate bounds. This leads to the following changes. Procedure dominates now takes a
bound as an additional argument and passes it on to the two calls to objective in line 2. The
two calls of dominates in line 10 of betterFoc and the one call in line 11 all use the bound
ĉθmax . The three direct calls to objective in lines 8, 9, and 12 use bounds∞, ĉθmax , and∞,
respectively.

We now evaluate the usefulness of capping for FOCUSEDILS. Training performance is
not a useful quantity in the context of comparing different versions of FOCUSEDILS, since
the number of target algorithm runs this measure is based on varies widely between runs
of the configurator. Instead, we used two other measures to quantify search progress: the
number of ILS iterations performed and the number of target algorithm runs performed for
the incumbent parameter configuration. Table 7.4 shows these two measures for our five
BROAD configuration scenarios and the three capping schemes (none, TP, Aggr). For all BROAD
scenarios, on average, TP capping improved both measures, and Aggr capping achieved further
improvements. Most of these improvements were statistically significant. Figure 7.4 shows
that for two configuration scenarios FOCUSEDILS reached the same solution qualities more
quickly with capping than without. (However, after finding the respective configurations, the
performance of FOCUSEDILS showed no further noticeable improvement.)

Adaptive capping improved BASICILS somewhat more than FOCUSEDILS, and thereby
reduced the gap between the two. In particular, for SAPS-SWGCP, where, even without adaptive
capping, FocusedILS achieved the best performance we have encountered for this scenario,
BasicILS caught up when using adaptive capping. Similarly, for CPLEX-REGIONS100, Fo-
cusedILS already performed very well without adaptive capping while BasicILS did not. Here,
BasicILS improved based on adaptive capping, but still could not rival FocusedILS. For the
other scenarios, adaptive capping did not affect the relative performance much; compare
Tables 5.3 (without capping) and 7.5 (with capping) for details.
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Number of ILS iterations performed
Scenario No capping TP capping p-value Aggr capping p-value

SAPS-SWGCP 121± 12 166± 15 1.2 · 10−5 244 ± 19 1.2 · 10−5

SPEAR-SWGCP 37± 12 43± 15 0.0026 47 ± 18 9 · 10−5

SAPS-QCP 142± 18 143± 22 0.54 156 ± 28 0.016

SPEAR-QCP 153± 49 165± 41 0.03 213 ± 62 1.2 · 10−5

CPLEX-REGIONS100 36± 13 40± 16 0.26 54 ± 15 1.8 · 10−5

Number of runs N(θinc) performed for the incumbent parameter configuration
Scenario No capping TP capping p-value Aggr capping p-value

SAPS-SWGCP 993± 211 1258± 262 4.7 · 10−4 1818 ± 243 1.2 · 10−5

SPEAR-SWGCP 503± 265 476± 238 (0.58) 642 ± 288 0.009
SAPS-QCP 1575± 385 1701± 318 0.065 1732 ± 340 0.084
SPEAR-QCP 836± 509 1130± 557 0.02 1215 ± 501 0.003

CPLEX-REGIONS100 761± 215 795± 184 0.40 866 ± 232 0.07

Table 7.4: Speedup of FOCUSEDILS due to adaptive capping. We give the number of ILS
iterations performed and the number of runs N(θinc) performed for the incumbent parameter
configuration. We report mean of both of these measures across 25 runs of the configurator
without capping, with TP capping, and with Aggr capping, p-values for comparing no capping
vs TP capping, and no capping vs Aggr capping.

7.4 Final Evaluation of Default vs Optimized Parameter
Configurations

Now that we have introduced all components of our model-free configuration procedures, we
conduct a more thorough experimental evaluation. In particular, we show that our configuration
procedures lead to very substantial improvements over the default. For each of our five BROAD
configuration scenarios, we compare the performance of the respective algorithm’s default
configuration against the configurations found by BASICILS(100) and FOCUSEDILS, both
with adaptive capping. Table 7.5 shows penalized average runtimes; Figure 7.5 demonstrates
the magnitude of the speedups when we use larger cutoff times to evaluate configurations.

Table 7.5 shows that both BASICILS and FOCUSEDILS consistently found configurations
much better than the default. There was often a rather large variance in performance across
configuration runs, and the configuration found in the run with best training performance also
tended to yield better test performance than the others. Thus, we used that configuration as
the combined result of the various runs. Note that choosing the configuration with the best
training set performance is legitimate since it does not require knowledge of the test set. Of
course, the improvements thus achieved come at the price of increased overall running time,
but the independent runs of the configurator can easily be performed in parallel.

The speedups this automatically-found parameter configuration achieved over the default
are clearest in Figure 7.5. For that figure, runs were allowed to last up to one hour. This reveals
the magnitude of the improvements achieved: while the PAR score reported in Table 7.5
counts runtimes larger than κmax = 5 seconds as 10 · κmax = 50 seconds, here timeouts and
mean runtimes for the instances solved by both approaches are reported separately. Speedups
were greatest for scenarios SAPS-SWGCP, SAPS-QCP, and SPEAR-QCP: 3540-fold, 416-fold and
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(a) SAPS-SWGCP
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(b) CPLEX-REGIONS100

Figure 7.4: Speedup of FOCUSEDILS due to adaptive capping. For FOCUSEDILS without adaptive
capping, with TP capping and with Aggr capping and for each time step t, we compute test performance
pt,test (PAR across 1 000 test instances, using the procedures’ incumbents, θinc(t)). We plot median
ptest,t across 25 runs of the configurators. The differences at the end of the trajectory were not
statistically significant. However, with capping the time required to achieve that quality was lower in
these two configuration scenarios. In the other three scenarios, the gains due to capping were smaller.

Test performance (PAR, CPU seconds)
Scenario mean ± stddev. for 25 runs Run with best training perf.

Default BASICILS FOCUSEDILS BASICILS FOCUSEDILS
SAPS-SWGCP 20.41 0.32± 0.06 0.32 ± 0.05 0.26 0.26
SPEAR-SWGCP 9.74 8.05 ± 0.9 8.30± 1.06 6.8 6.6
SAPS-QCP 12.97 4.86± 0.56 4.70 ± 0.39 4.85 4.29
SPEAR-QCP 2.65 1.39± 0.33 1.29 ± 0.2 1.16 1.21

CPLEX-REGIONS100 1.61 0.5± 0.3 0.35 ± 0.04 0.35 0.32

Table 7.5: Final evaluation of default configuration vs configurations found with BASICILS
and FOCUSEDILS. We performed 25 runs of the configurators (both with Aggr Capping and
bm = 2) and computed their test performance ptest,t (PAR across 1 000 test instances, using
the procedures’ final incumbents, θinc(t)) and training performance ptrain,t (PAR, across
used training instances, using θinc(t)) for a configuration time of t = 18 000s = 5h. We
list test performance of the algorithm default, mean ± stddev of ptest,t across the 25 runs
for BASICILS(100) & FOCUSEDILS, and ptest,t of the BASICILS and FOCUSEDILS runs
with lowest training performance ptrain,t. Boldface indicates the better of BASICILS and
FOCUSEDILS.
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(b) SPEAR-SWGCP.
33s vs 17s; 3 vs 2 timeouts
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(c) SAPS-QCP.
72s vs 0.17s; 149 vs 1 timeouts

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Runtime [s], default

R
un

tim
e 

[s
], 

au
to

−
tu

ne
d

(d) SPEAR-QCP.
9.6s vs 0.85s; 1 vs 0 timeouts

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Runtime [s], default

R
un

tim
e 

[s
], 

au
to

−
tu

ne
d

(e) CPLEX-REGIONS100.
1.61s vs 0.32s; no timeouts

Figure 7.5: Comparison of default vs automatically-determined parameter configurations for
our five BROAD configuration scenarios. Each dot represents one test instance; timeouts (after
one CPU hour) are denoted by circles. The dashed line at five CPU seconds indicates the cutoff
time of the target algorithm used during the configuration process. The subfigure captions give
mean runtimes for the instances solved by both of the configurations (default vs optimized), as
well as the number of timeouts for each.

11-fold, respectively. The number of timeouts was also greatly reduced (see Figure 7.5).

7.5 Chapter Summary
In this chapter, we focused on the third dimension of algorithm configuration: how to set the
cutoff time for each run of the target algorithm? We introduced a novel method for adaptively
setting this cutoff time for each algorithm run. To the best of our knowledge, this is the first
mechanism of its kind.

Our adaptive capping method is general and can be applied to a variety of configuration
procedures. In particular, here we applied it to RANDOMSEARCH, BASICILS, and FOCUSED-
ILS. The speedups due to this mechanism were greatest in configuration scenarios with a
large spread in the quality of configurations. Without adaptive capping, the search spends
most of its time with costly evaluations of poor configurations. With adaptive capping, once
good configurations are detected these enable aggressive bounds and can thereby dramatically
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speed up the search.
Speedups were largest for RANDOMSEARCH, which only compares parameter configura-

tions to the current incumbent—this allows us always to use the strongest bound known so far,
the performance of the incumbent. Here, adaptive capping led to significant and substantial
improvements for all five BROAD configuration scenarios. For BASICILS and FOCUSEDILS,
we introduced both a trajectory-preserving variant and a heuristic extension. These mecha-
nisms significantly improved BASICILS performance in three of our five BROAD configuration
scenarios, on two of them substantially. In the case of FOCUSEDILS, adaptive capping did
not lead to significantly better configurations in the end of the trajectory. However, we found
that it did speed up FOCUSEDILS significantly, enabling it to find configurations of the same
quality faster.
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Chapter 8

Applications II: Configuration of
Various Target Algorithms based on
PARAMILS

Science means simply the aggregate of all the recipes that are always
successful. All the rest is literature.
—Paul Valéry, French poet

In this chapter1, we discuss applications of PARAMILS to configure algorithms for a wide
variety of computationally hard problems. These problems include SAT, MIP, timetabling,
protein folding, and algorithm configuration itself. We first discuss configuration experi-
ments performed by the author of this thesis and then review further work by others. These
experiments demonstrate both the generality and maturity of PARAMILS.

8.1 Configuration of CPLEX
When motivating the use of algorithm configuration procedures in Section 1.1, we have
prominently discussed CPLEX as an example of an important algorithm with an intimidatingly
large number of parameters. Improvements of this solver are highly relevant: with users at
more than 1 300 corporations and government agencies, as well as 1 000 universities, it is the
most widely-used commercial optimization tool for mathematical programming.2

Here, we demonstrate that PARAMILS can improve CPLEX’s performance for a variety of
interesting benchmark distributions, in particular our CPLEX configuration scenarios, defined
in Section 3.5.6. To the best of our knowledge, these results, which we first presented in Hutter
et al. (2009b), are the first published results for the automated configuration of CPLEX or any
algorithm of comparable complexity.3

1This chapter is based on published joint work with Holger Hoos, Kevin Leyton-Brown, and Thomas
Stützle (Hutter et al., 2009b,c).

2See http://www.ilog.com/products/cplex/.
3Note that the newest CPLEX version, 11.2, contains an automated procedure for optimizing CPLEX’s pa-

rameters on a given problem set. The inner workings of this mechanism are not disclosed and we have not yet
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Scenario Type of benchmark instances & citation # training # test
CPLEX-REGIONS200 Combinatorial Auctions (CATS) (Leyton-Brown et al., 2000) 1 000 1 000

CPLEX-MJA Machine-Job Assignment (BCOL) (Aktürk et al., 2007) 172 171
CPLEX-CLS Capacitated Lot Sizing (BCOL) (Atamtürk and Muñoz, 2004) 50 50
CPLEX-MIK Mixed-integer knapsack (BCOL) (Atamtürk, 2003) 60 60

CPLEX-QP Quadratic programs from RNA energy 1 000 1 000
parameter optimization (Andronescu et al., 2007)

Table 8.1: Overview of our five CPLEX configuration scenarios. BCOL stands for Berkeley Computa-
tional Optimization Lab, CATS for Combinatorial Auction Test Suite.

Note that much effort has gone into establishing the CPLEX default:

“A great deal of algorithmic development effort has been devoted to establishing
default ILOG CPLEX parameter settings that achieve good performance on a
wide variety of MIP models.” (ILOG CPLEX 10.0 user manual, page 247)

Nevertheless, we will demonstrate that our automatically-found configurations performed
substantially better than this default. However, our goal is not to improve this general-case
default, but rather to automatically find better parameter settings for homogeneous subsets of
instances.

8.1.1 Experimental Setup
For our experimental evaluation, we used a broad range of MIP benchmarks described in Sec-
tion 3.3.2. We summarize the CPLEX configuration scenarios using these benchmarks in Table
8.1. Note that the quadratic programs from RNA energy parameter optimization (Andronescu
et al., 2007) could be solved in polynomial time.

As our optimization objective, we used penalized average runtime, with a cutoff time
of κmax = 300 seconds and a penalization constant of 10. We used our final versions
of BASICILS(100) and FOCUSEDILS, both with aggressive capping (bm = 2), with a
configuration time of two days (see Section 3.6.3 for a description of the machines used for
these experiments). We performed ten runs of each configurator, and measured training and
test set performance of each run. As before (see Section 7.4), we report mean and standard
deviation of test performance. We also report the test set performance of the parameter
configuration found in the repetition with the best training performance, and show scatter
plots comparing that configuration against the CPLEX default.

8.1.2 Experimental Results
In Table 8.2, Figure 8.1, and Figure 8.2, we summarize our experimental results. The table lists
the CPLEX default performance and summarizes results of the ten runs of each configurator. It

experimented with it. The research presented here preceded that development; it dates back to joint work with
Holger Hoos, Kevin Leyton-Brown, and Thomas Stützle in summer 2007, which was presented and published at a
doctoral symposium (Hutter, 2007). At that time no other mechanism for automatically configuring CPLEX was
available.
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(b) CPLEX-MJA. 5.37s vs 2.39.5s
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(c) CPLEX-CLS. 309s vs 21.5s
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(d) CPLEX-MIK. 28s vs 1.2s

Figure 8.1: Comparison of default vs automatically-determined parameter configuration for the four
CPLEX configuration scenarios with NP-hard instances. Each dot represents one test instance. The
blue dashed line at 300 CPU seconds indicates the cutoff time of the target algorithm used during the
configuration process. The subfigure captions give mean runtimes for the test instances (default vs
optimized); in none of these cases there were any timeouts.

also gives the performance of the configuration found in the run with best training performance,
both for BASICILS and FOCUSEDILS. The two figures compare the performance of that latter
configuration FOCUSEDILS found against the CPLEX default.

Figure 8.1 clearly shows the large speedups we achieved for the four sets of instances of
NP-hard MIP problems. As before, for that offline evaluation, we allowed larger runtimes of
up to one hour. All runs completed successfully in that time. The speedup factors achieved
by automated configuration were 6.9, 2.2, 14.4, and 23.3 for scenarios CPLEX-REGIONS200,
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(b) CPLEX-QP. 296s vs 234s; 0 vs 21 timeouts out
of 1 000 instances

Figure 8.2: Comparison of default vs automatically-determined parameter configuration for CPLEX-QP,
for two different test cutoff times. Subfigure (a) shows cutoff time κmax = 300 seconds, which we
chose for the automated configuration; subfigure (b) shows a higher cutoff time of 3 000 seconds used
in an offline test. The subfigure captions give mean runtimes for the instances solved by each of the
configurations (default vs optimized), as well as the number of timeouts for each.

CPLEX-MJA, CPLEX-CLS, and CPLEX-MIK, respectively. For CPLEX-CLS, and CPLEX-MIK, there
was also a clear trend towards more pronounced improvements for harder instances. (Recall
that this was also the case for our experiments in Section 5.4, Chapter 6, and Section 7.4.)

Figure 8.2 reports our results for scenario CPLEX-QP. Recall that we used a cutoff time
of κmax = 300 seconds in all CPLEX configuration scenarios discussed here. As the figure
shows, with that cutoff time, the optimized parameter configuration achieved a roughly two-
fold improvement over the CPLEX default on the test instances, both in terms of number of
timeouts and in terms of average time spent for solved instances (see Figure 8.2(a)). However,
this improvement did not carry over to the higher cutoff of one hour used in an offline test
(see Figure 8.2(b)): within that one hour, the CPLEX default solved all test instances, while
the configuration optimized for κmax = 300 second timed out on 21 instances. Thus, the
parameter configuration found by FOCUSEDILS did generalize well to previously unseen
test data, but not to larger cutoff times. This is a “real-life” manifestation of the over-tuning
problem with low captimes we discussed in our empirical analysis in Section 4.4.2.

We now compare the performance of BASICILS(100) and FOCUSEDILS in some more
detail. Table 8.2 shows that, similar to the situation described in Section 7.4, in some
configuration scenarios (e.g., CPLEX-CLS, CPLEX-MIK) there was substantial variance between
the different runs of the configurators, and the run with the best training performance indeed
yielded a parameter configuration with good test performance. Furthermore, FOCUSEDILS
tended to show higher performance variation than BASICILS. Even in configuration scenarios
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Test performance (mean runtime over test instances, in CPU seconds)
Scenario Default mean ± stddev. for 10 runs Run with best training performance

BASICILS FOCUSEDILS BASICILS FOCUSEDILS
CPLEX-REGIONS200 72 45± 24 11.4± 0.9 15 10.5

CPLEX-MJA 5.37 2.27± 0.11 2.4± 0.29 2.14 2.35
CPLEX-CLS 712 443± 294 327± 860 80 23.4
CPLEX-MIK 64.8 20± 27 301± 948 1.72 1.19
CPLEX-QP 969 755± 214 827± 306 528 525

Table 8.2: Experimental results for our CPLEX configuration scenarios. We performed 25 runs of
BASICILS and FOCUSEDILS (both with Aggr Capping and bm = 2) and computed their training
performance ptrain,t (PAR across used training instances, using the methods’ final incumbents θinc(t))
and test performance ptest,t (PAR across 1 000 test instances, using θinc(t)) for a configuration time
of t = 2 days. We list test performance of the CPLEX default, mean ± stddev of ptest,t across the 25
runs of the, and ptest,t of the configurators’ runs with lowest training performance ptrain,t. Boldface
indicates the better of BASICILS and FOCUSEDILS.

where BASICILS performed better on average, this high variance sometimes helped FOCUSED-
ILS to achieve better performance than BASICILS when only using its run with best training
performance. (Examples of this effect are the scenarios CPLEX-MIK and CPLEX-QP.) While
BASICILS outperformed FOCUSEDILS in three of these five scenarios in terms of mean
test performance across the ten runs, FOCUSEDILS achieved the better test performance in
the run with the best training performance for all but one scenario, in which it performed
almost as well. For scenarios CPLEX-REGIONS200 and CPLEX-CLS, FOCUSEDILS performed
substantially better than BASICILS.

One run for configuration scenario CPLEX-MIK demonstrated an interesting failure mode of
FOCUSEDILS. In this scenario 9 out of 10 FOCUSEDILS runs yielded parameter configurations
with average runtimes below two seconds. One run, however, was very unfortunate. There,
θinc, one of the first visited configurations solved the first instance, π1, in 0.84 seconds, and
no other configuration managed to solve π1 in less than 2 · 0.84 = 1.68 seconds. Thus, every
configuration θ 6= θinc timed out on π1 due to the aggressive capping strategy with bm = 2
used in these experiments. FOCUSEDILS then iterated the following steps: perturbation
to a new configuration θ; comparison of θ against a neighbour θ′ using a single run each
on π1, both of which timed out after 1.68 seconds, breaking the tie in favour of θ′ since
N(θ) = N(θ′) = 1; two bonus runs forN(θ′); comparison of θ′ against all its neighbours θ′′

using a single run on π1, and breaking ties in favour of θ′ since N(θ′) > N(θ′′); 202 bonus
runs for θ′. In the seven iterations performed within two CPU days, this process did not find a
configuration better than θinc, which, when evaluated on the test set did not manage to solve a
single instance. Since the runtime of unsuccessful runs was counted as ten times the cutoff
time, this resulted in an average runtime of 10 · 300 = 3 000 seconds for this unfortunate run.
This example demonstrates the risk of capping too aggressively, and underlines the importance
of using the result of multiple FOCUSEDILS runs with different orderings of the training
instances.4 As discussed above, the best of 10 FOCUSEDILS runs found a configuration with

4Another option to avoid this failure would be to not use a fixed order of instances in FOCUSEDILS. In
more recent work, we have experimented with a different mechanism in the context of model-based algorithm
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average runtime 1.2 seconds, which outperformed the CPLEX default by a factor of more than
20.

To summarize our CPLEX experiments, in all scenarios studied here PARAMILS managed
to find parameter configurations that substantially improved upon the CPLEX default in terms
of the objective being optimized. For benchmark set QP, a timeout of κmax = 300 seconds
turned out to be too low, leading to over-tuning. In the four other scenarios, performance
improvements did scale to larger runtimes and we achieved substantial speedups, between a
factor of 2 and 23.

8.2 Self-Configuration of PARAMILS
As discussed in the introduction, algorithm configuration is itself a hard combinatorial problem.
Not surprisingly, therefore, most configuration procedures use heuristic mechanisms and are
typically controlled by a number of parameters. In the case of PARAMILS, these parameters
are as follows:

• r, the number of random configurations to be sampled at the beginning of search;

• s, the perturbation strength;

• prestart, the probability of random restarts; and

• bm, the bound multiplier used in our aggressive capping mechanism.

In all experiments reported in previous sections, we have used the manually-determined
default values 〈r, s, prestart, bm〉 = 〈10, 3, 0.01, 2〉. These parameters were determined based
on preliminary experiments during the early design of PARAMILS. Although the time spent
for this preliminary manual parameter optimization is hard to quantify (since it was interleaved
with algorithm development), we estimate the overhead caused by this manual experimentation
to be about one week of developer time. Since PARAMILS is a general method for automated
algorithm configuration, it is natural to wonder whether we could find settings of comparable
quality by using PARAMILS to configure itself.

Figure 8.3 illustrates this process of self-configuration. We use PARAMILS with its default
parameters as a meta-configurator in order to configure the target configurator PARAMILS,
which in turn is run and evaluated on instances of the algorithm configuration problem. These
instances correspond to configuration scenarios, each of which consists of a parameterized
target base algorithm and a set of input data. In other words, configuration scenarios, such
as SPEAR-QCP, play the same role in configuring the target configurator (here: PARAMILS),
as SAT instances do in configuring a SAT algorithm, such as SPEAR. The objective to be
optimized is performance across a number of configuration scenarios (here we chose geometric
mean across 20 runs on each of 5 configuration scenarios).

For the self-configuration experiment described in the following, we chose FOCUSEDILS
with aggressive capping as the target configurator and used the sets of parameter values shown

configuration procedures (see Section 13.6.1). We plan to implement this or a similar mechanism in PARAMILS in
the near future.
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Figure 8.3: Visualization of self-configuration. The target algorithm is now PARAMILS itself, and
its “benchmark instances” are configuration scenarios. The meta-configurator PARAMILS (with
default parameters) searches for good parameter settings for the target configurator, PARAMILS,
evaluating each parameter setting by running PARAMILS on the appropriate configuration scenarios,
with geometric mean quality of the results serving as the performance measure. The same binary was
used for the meta-configurator and the target configurator.

in Table 8.3. During the development of PARAMILS, we had already considered making the
perturbation strength s dependent on the number of parameters to be configured, but ended
up not implementing this idea, because we did not want to introduce too many parameters.
However, equipped with an automated configuration tool, we now introduced a Boolean
parameter that would switch between two conditional parameters: fixed absolute perturbation
strength sabs and relative perturbation strength srel (a factor to be multiplied by the number
of parameters to be configured), which yields different perturbation strengths in different
configuration scenarios. In total, we considered 4 + 4 = 8 settings for perturbation strength,
2 different restart probabilities, 3 possible numbers of random steps in the beginning, and 5
options for the bound multiplier, leading to 8 ·2 ·3 ·5 = 240 possible parameter configurations.

In order to run the self-configuration experiment within a reasonable amount of time on
our cluster, parallelization turned out to be crucial. Because BASICILS is easier to parallelize
than FOCUSEDILS, we chose BASICILS(100) as the meta-configurator. Furthermore, to avoid
potentially problematic feedback between the meta-configurator and the target configurator,
we treated them as two distinct procedures with separate parameters; therefore, changes to the
parameters of the target configurator, FOCUSEDILS, had no impact on the parameters of the
meta-configurator, BASICILS(100), which we kept fixed to the previously-discussed default
values.

BASICILS(100) evaluated each parameter configuration θ of the target configurator,
FOCUSEDILS, by performing 20 runs of FOCUSEDILS(θ) on each of our five BROAD con-
figuration scenarios. Unlike in previous experiments, we limited the total running time of
FOCUSEDILS to one CPU hour per configuration scenario. This reduction was necessary
to keep the overall computational burden of our experiments within reasonable limits.5 We

5We note, however, that, similar to the effect observed for scenario CPLEX-QP in the previous section, there is
a risk of finding a parameter configuration that only works well for runs up to one hour and works poorly thereafter.
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Parameter Note Values considered
r Number of initial random configurations 0, 10, 100
bm Bound multiplier for adaptive capping 1.1, 1.3, 1.5, 2, 4

prestart Probability of random restart 0.01, 0.05
pert Type of perturbation absolute, relative
sabs Abs. perturbation strength; only active when pert=absolute 1,3,5,10
srel Rel. perturbation strength; only active when pert=relative 0.1,0.2,0.4,0.8

Table 8.3: Parameters of PARAMILS, the possible values considered for the self-configuration,
and the values determined for FOCUSEDILS in the self-configuration experiment. Val-
ues in italic font are the default values, bold faced values are chosen by the meta-
configurator. (Default: 〈r, bm, prestart, pert, sabs〉 = 〈10, 2, 0.01, absolute, 3〉; Self-configured:
〈r, bm, prestart, pert, srel〉 = 〈10, 4, 0.05, relative, 0.4〉) In the case of relative perturbation strength,
we computed the actual perturbation strength as max(2, srel ·M), whereM is the number of parameters
to be set in a configuration scenario.

then evaluated the incumbent parameter configuration of the base algorithm found in each
of these one-hour runs of the target configurator on a validation set (consisting of the 1 000
training instances but using different random seeds), using 1 000 runs and a cutoff time of five
CPU seconds. Thus, including validation, each run of the target configurator required up to
approximately 2.5 CPU hours (one hour for the configuration process6 plus up to 5 000 CPU
seconds for validation).

The meta-configurator used the geometric mean of the 100 validation results obtained from
the 20 runs for each of the 5 configuration scenarios to assess the performance of configuration
θ. (We used geometric instead of arithmetic means because the latter can easily be dominated
by the results from a single configuration scenario.) We note that, while this performance
measure is ultimately based on algorithm runtimes (namely those of the base algorithms
configured by the target configurator), unlike the objective used in previous sections, it does
not correspond to the runtime of the target configurator itself. Rather, it corresponds to the
solution quality the target configurator achieves within a bounded runtime of one hour.

The 100 runs of the target configurator performed in order to evaluate each parameter
configuration were run concurrently on 100 CPUs. We ran the meta-configurator BASIC-
ILS(100) for a total of five iterations in which 81 parameter configurations were evaluated.
This process took a total of about 500 CPU days (where some of the 100 CPUs used in
the experiment were occasionally idle after validation tasks requiring less than 5 000 CPU
seconds). The best configuration of the target configurator, FOCUSEDILS, found in this
experiment is shown in Table 8.3; it had a geometric mean runtime of 1.40 CPU seconds
across the 100 validation runs (as compared to a geometric mean runtime of 1.45 achieved

6PARAMILS’s CPU time is typically dominated by the time spent running the target algorithm. However,
in configuration scenarios where each execution of the base algorithm is very fast this was not always the case,
because of overhead due to bookkeeping and calling algorithms on the command line. In order to achieve a wall
clock time close to one hour for each PARAMILS run in the self-configuration experiments, we minimized the
amount of bookkeeping in our simple Ruby implementation of PARAMILS and counted every algorithm execution
as taking at least one second. This lower bound on algorithm runtimes is a parameter of PARAMILS that was set to
0.1 seconds for all other experimental results.
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Scenario Default PARAMILS Self-configured PARAMILS p-value
SAPS-SWGCP 0.316 ± 0.054 0.321± 0.043 (0.50)
SPEAR-SWGCP 8.30± 1.06 8.26 ± 0.88 0.72
SAPS-QCP 5.21± 0.39 5.16 ± 0.32 0.69
SPEAR-QCP 1.29± 0.20 1.22 ± 0.18 0.28

CPLEX-REGIONS100 0.35± 0.05 0.34 ± 0.02 0.34

Table 8.4: Effect of self-configuration. We compare test set performance (mean runtime of best
configuration found, in CPU seconds) for FOCUSEDILS with its default parameter settings and with
the parameter settings found via self-configuration. For each configuration scenario, we report mean ±
stddev of the test performance over 25 repetitions of the configurators, and the p-value for a paired
Max-Wilcoxon test (see Section 3.6.2).

using FOCUSEDILS’s default settings) and was found after a total runtime of 71 CPU days;
it was the 17th of the 81 configurations evaluated by BASICILS(100) and corresponded to
the first local minimum reached. The next three iterations of BASICILS all led to different
and slightly worse configurations. In the fifth iteration, the same best configuration was found
again.

Table 8.4 reports the performance achieved by FOCUSEDILS with this new, automatically
determined parameter setting, on the original BROAD configuration scenarios. We note that the
performance measure used here differs from the objective optimized by the meta-configurator.
Nevertheless, the self-configuration process resulted in competitive performance. There was no
statistically significant difference between the performance of the resulting configuration and
the manually-engineered PARAMILS default, but the automatically-determined configuration
performed better on average for four of the five configuration scenarios.

Even though self-configuration led to slightly improved results, we believe that this
experiment did not exploit its full potential. The objective function used for training (geometric
mean performance across 5 · 20 configuration runs) was very different than the one measured
at test time (comparison to default for each scenario separately). As we showed in Chapter 4,
configuration scenarios are also very heterogeneous: the optimal approach to use differs across
scenarios. Furthermore, the cutoff times during training were most likely too short to properly
reflect the performance of the configurator in longer runs. Finally, PARAMILS seems to be
quite robust with respect to its parameter settings. We expect that configuration procedures that
rely more on good settings of their parameters will benefit more from self-configuration. For
example, note that our empirical analysis in Section 4.4.2 showed that the best combination of
N and κmax strongly depends on the configuration scenario and on the budget available for
configuration. Thus, if we were to configure BASICILS(N) on single configuration scenarios,
making N and κmax configurable parameters, we would expect self-configuration to improve
upon the configurator’s default.
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8.3 Applications of PARAMILS by Other Researchers
Here, we review applications by researchers other than the author of this thesis. This demon-
strates the generality and the maturity of the approach. Note that the work reviewed here is not
a contribution of this thesis. The configuration of SATENSTEIN is described in more detail
than the other applications since it demonstrates an important usage scenario of PARAMILS.

8.3.1 Configuration of SATenstein
In the introduction, we prominently discussed the possibility of using automated algorithm
configuration procedures to automatically design algorithms from components. Here, we
ground that discussion by reviewing an application of PARAMILS to that purpose.

KhudaBukhsh et al. (2009) used PARAMILS to perform automatic algorithm design in
the context of stochastic local search algorithms for SAT. Specifically, they introduced a
new framework for local search SAT solvers called SATenstein, and used PARAMILS to
choose good instantiations of the framework for given instance distributions. SATenstein spans
three broad categories of SLS-based SAT solvers: WalkSAT-based algorithms, dynamic local
search algorithms and G2WSAT variants. All of these are combined in a highly parameterized
framework solver with a total of 41 parameters and 4.82 · 1012 distinct instantiations; see
Section 3.2.1 for more details.

FOCUSEDILS was used to configure SATenstein on six different problem distributions,
and the resulting solvers were compared to eleven state-of-the-art SLS-based SAT solvers.
The results, summarized in Table 8.5, show that the automatically configured versions of
SATenstein outperformed all of the eleven state-of-the-art solvers in all six categories, some-
times by a large margin. (On R3SAT, PAWS performed better in terms of median runtime, but
SATenstein-LS[R3SAT] solved hard instances more effectively and, consequently, achieved
better mean runtime.)

These results clearly demonstrate that automated algorithm configuration methods can go
beyond simple “parameter tuning” and can be used to construct new algorithms by combining
a wide range of components from existing algorithms in novel ways. Due to the low degree of
manual work required by this approach, we believe that such automated design of algorithms
from components will become a mainstream technique in the development of algorithms for
hard combinatorial problems.

Key to the successful application of FOCUSEDILS for configuring SATENSTEIN was the
careful selection of homogeneous instance distributions, most instances of which could be
solved within a comparably low cutoff time of 10 seconds per run. As in Section 7.4, for each
configuration scenario multiple independent runs of FOCUSEDILS were performed in parallel
(here 10), and the configuration with the best training quality was selected.

8.3.2 Configuration of a Monte Carlo Algorithm for Protein Folding
Thachuk et al. (2007) used BASICILS in order to determine performance-optimizing parameter
settings of a new replica exchange Monte Carlo algorithm for protein folding in the 2D-HP and
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Distribution SATenstein-LS[D] GNOV AG20 AG2+ RANOV G2 VW ANOV AG2p SAPS RSAPS PAWS
0.13 422.33 1051 1080.29 76.22 2952.56 1025.9 28.3 1104.42 1256.2 1265.37 1144.2

QCP 0.01 0.03 0.03 0.03 0.1 361.21 0.25 0.01 0.02 0.03 0.04 0.02
100% 92.7% 80.5% 80.3% 98.7% 50.6% 82.2% 99.6% 79.4% 79.2% 78.4% 80.8%
0.03 0.24 0.62 0.45 0.15 4103.27 159.67 0.06 0.45 3872.08 5646.39 4568.59

SW-GCP 0.03 0.09 0.12 0.08 0.12 N/A 40.96 0.03 0.07 N/A N/A N/A
100% 100% 100% 100% 100% 30.5% 98.9% 100% 100% 33.2% 5% 22.1%
1.51 10.93 2.37 3.3 14.14 5.32 9.53 12.4 2.38 22.81 14.81 2.4

R3SAT 0.14 0.14 0.14 0.16 0.32 0.13 0.75 0.21 0.13 1.80 2.13 0.12
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
0.03 52.87 139.33 138.84 156.96 110.02 177.9 147.53 107.4 48.31 38.51 73.27

HGEN 0.02 0.73 0.57 0.61 0.95 0.61 3.23 0.76 0.49 3.00 2.44 0.96
100% 99.4% 98% 97.8% 97.7% 98.4% 97.5% 97.6% 98.4% 99.5% 99.7% 99.2%
12.22 5912.99 3607.4 1456.4 943.26 5944.6 3411.93 3258.66 1989.91 17.39 19.39 26.51

FAC 8.03 N/A N/A 237.50 155.77 N/A N/A N/A 315.48 11.60 12.88 12.62
100% 0% 30.2% 84.2% 92.1% 0% 31.7% 37.2% 72.5% 100% 100% 99.9%
5.59 2238.7 2170.67 2161.59 1231.01 2150.31 385.73 2081.94 2282.37 613.15 794.93 1717.79

CBME(SE) 0.02 0.75 0.67 0.77 0.66 0.68 0.27 5.81 3.18 0.04 0.03 19.99
100% 61.13% 61.13% 61.13% 79.73% 64.12% 92.69% 61.79% 61.13% 90.03% 85.38% 68.77%

Table 8.5: Performance summary of SATenstein-LS and its 11 challengers, reproduced from
the paper by KhudaBukhsh et al. (2009), with permission from the authors. Every algorithm was
run 10 times on each instance with a cutoff of 600 CPU seconds per run. Each row summarizes the
performance of SATenstein-LS[D] and 11 challengers on the test set for a particular instance
distribution D as a/b/c, where a (top) is the penalized average runtime (counting timeouts after 600
seconds as 6 000 seconds); b (middle) is the median of the median runtimes over all instances (not
defined if fewer than half of the median runs failed to terminate); c (bottom) is the percentage of
instances solved (i.e., for which median runtime < cutoff).

3D-HP models.7 Even though their algorithm has only four parameters (two categorical and
two continuous, discretized to a total of 9 000 configurations), BASICILS achieved substantial
performance improvements. While the manually-selected configurations were biased in favour
of either short or long protein sequences, BASICILS found a configuration which consistently
yielded good mean runtimes for all types of sequences. On average, the speedup factor
achieved was approximately 1.5, and for certain classes of protein sequences up to 3. For each
manually-selected configuration there were instances for which it performed worse than the
previous state-of-the-art algorithm. In contrast, the robust parameter configurations selected
by BASICILS yielded uniformly better performance than that algorithm.

8.3.3 Configuration of a Local Search Algorithm for Time-Tabling
In very recent work, Fawcett et al. (2009) used several variants of PARAMILS (including
a version that has been slightly extended beyond those presented here) to design a mod-
ular stochastic local search algorithm for the post-enrollment course timetabling problem.
They followed a design approach that used automated algorithm configuration in order to
explore a large design space of modular and highly parameterized stochastic local search
algorithms. This quickly led to a solver that placed third in Track 2 of the second International
Timetabling Competition (ITC2007) and subsequently produced an improved solver that
achieves consistently better performance than the top-ranked solver from the competition.

7BASICILS was used, because FOCUSEDILS had not yet been developed when that study was conducted.
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8.4 Chapter Summary
In this chapter, we presented a number of successful applications of PARAMILS to the
configuration of algorithms for various hard combinatorial problems: SAT, MIP, protein
folding, scheduling, and algorithm configuration itself. In self-configuration, PARAMILS
found a parameter configuration marginally better than the manually-engineered PARAMILS
default. In all other applications, algorithm configuration led to substantial performance
improvements, often of several orders of magnitude, with a trend towards larger improvements
for harder instances. This confirms the trend in scaling behaviour we already observed in the
formal verification domain in Chapter 6.

Most noteworthy are our results for optimizing the most widely-used commercial opti-
mization tool ILOG CPLEX. Even though ILOG has expended substantial efforts to establish
a well-performing CPLEX default configuration, we achieved between 2-fold and 23-fold
speedups in various configuration scenarios. This result has the potential to substantially
facilitate the use of CPLEX in both industry and academia.

PARAMILS was also used in three applications by researchers other than the author of this
thesis; this serves as an independent validation of the approach. Together, the applications in
this chapter underline the generality and the maturity of algorithm configuration in general,
and PARAMILS in particular.
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Part IV

Model-based Search for Algorithm
Configuration

—in which we improve sequential model-based optimization
approaches and substantially extend their scope to include
general algorithm configuration
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Chapter 9

Sequential Model-Based
Optimization:
The State of The Art

The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct
which, with the addition of certain verbal interpretations, describes
observed phenomena. The justification of such a mathematical construct
is solely and precisely that it is expected to work.
—John von Neumann, Hungarian American mathematician

At this point of the thesis, we have hopefully convinced the reader that automated algorithm
configuration can lead to substantial reductions in the development time of complex algorithms,
and that it has the potential to improve algorithm performance by orders of magnitude. We
now switch focus and consider an alternative, rather different, framework for algorithm
configuration, which will turn out to yield the most effective configuration procedures for
some types of configuration scenarios. This framework is based on so-called response surface
models, regression models that aim to predict the cost of parameter configurations. In the
context of multiple instances, these models can also be used to predict the cost distribution for
a combination of a parameter configuration and an instance.

Response surface models can be useful in a variety of contexts. They can be used to
interpolate performance between parameter configurations, and to extrapolate to previously-
unseen regions of the configuration space. They can also be used to quantify the importance
of each parameter, as well as interactions between parameters, and—in the context of multiple
instances—between parameters and instance characteristics. Thereby, they can provide
intuition about the parameter response that cannot be gathered from model-free methods. This
can be a substantial help for algorithm designers seeking to understand and improve aspects
of their algorithm.

Here, we use response surface models in order to guide the search for new and promising
parameter configurations. The resulting model-based framework thus provides another possible
answer to the first dimension of algorithm configuration: which sequential search strategy
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should be used to select the parameter configurations ~Θ to be evaluated?
In this part of the thesis, we make the connection between algorithm configuration and

(stochastic) blackbox optimization (see Section 1.2.1) more explicit than before, starting out
from methods for the latter problem. While a multitude of model-free approaches exist for
blackbox optimization, in this part of the thesis we focus on model-based procedures. We first
study existing state-of-the-art sequential model-based optimization procedures (developed for
blackbox optimization), improve them in various ways, and extend them piece by piece to
handle increasingly-general algorithm configuration problems. In particular, we focus on the
following problems.

• Optimization of continuous parameters of a randomized algorithm on a single problem
instance, given a budget on the number of target algorithm runs (this chapter and Chapter
10). This can be formulated as a canonical stochastic blackbox optimization problem.

• Optimization of continuous parameters of a randomized algorithm on a single problem
instance, given a time budget (Section 10.4 and Chapter 11). The presence of such a
time budget amounts to a change of the termination criterion in the associated stochastic
blackbox optimization problem.

• Optimization of categorical parameters of a randomized algorithm on a single prob-
lem instance (Chapter 12). This can be formulated as a discrete stochastic blackbox
optimization problem.

• General configuration of algorithms with categorical parameters across multiple in-
stances (Chapter 13). As discussed in Section 1.2.2, this can, in principle, be formulated
as a discrete stochastic blackbox optimization problem. However, this formulation
sacrifices the possibility of selecting which instances (and seeds) to use for each run of
the target algorithm.

In this chapter1, we review the concepts behind sequential model-based optimization (SMBO),
discuss two prominent existing SMBO approaches and empirically compare their performance.
Since the procedures we study originate in the statistical literature on sequential experimental
design, we borrow some terminology from that field to describe them. In particular, to be
consistent with that literature, we refer to parameter configurations θi as design points, and to
the outcome (cost) of a single target algorithm run, oi, as the response value at design point θi.

9.1 A Gentle Introduction to Sequential Model-Based
Optimization (SMBO)

Model-based optimization methods fit a so-called response surface model and use this model
for optimization. This regression model is fitted using a set of training data points {(θi, oi)}ni=1,
where θi = (θi1, . . . ,θid)

T is a design point (a parameter configuration) and oi is the response
value at that design point (the cost of the target algorithm run with configuration θi). In

1This chapter is based on published joint work with Holger Hoos, Kevin Leyton-Brown, Kevin Murphy, and
Thomas Bartz-Beielstein (Hutter et al., 2009e,a).
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(a) SMBO, step 1
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(b) SMBO, step 2

Figure 9.1: Two steps of SMBO for the optimization of a 1-d function. The true function
is shown in red, the blue circles denote our observations. The dotted black line denotes the
mean prediction of the DACE model, with the grey area denoting its uncertainty. Expected
improvement (scaled for visualization) is shown as a dashed green line. See the text for details.

sequential model-based optimization, the selection of new design points (new parameter
configurations to be evaluated) can depend on the response values observed at previous design
points.

As a simple example, consider the global minimization of a one-dimensional noise-free
function. This simple setting—used here for illustrative purposes only—is demonstrated in
Figure 9.1(a). The red line in that figure depicts the true function to be optimized; we use the
Levy function2 with input range [−15, 10] normalized to [0, 1]. Note that this function has
multiple local minima. Thus, local optimization approaches, such as quasi-Newton methods,
are unlikely to work well.

A typical sequential model-based optimization approach would start by sampling the
function at a number of inputs, usually defined by a Latin hypercube design (LHD) (Santner
et al., 2003) in the region of interest (the Cartesian product of the intervals considered for each
parameter; in algorithm configuration, this corresponds to the configuration space, Θ). In our
one-dimensional example in Figure 9.1, blue circles denote samples we took of the function:
10 samples equally spread out across the region of interest (an LHD in one dimension), plus
one point in the middle.3

In model-based optimization, we fit a response surface model to these samples in order
2This function is defined as f(x) = s + (z − 1)2 · (1 + (sin(2 · π · z))2), where z = 1 + (x − 1)/4 and

s = sin(π · z)2. (See Hedar, 2009)
3That additional point in the middle is due to our implementation of configuration procedures, which we used

to generate these plots. This implementation always start by evaluating the default, which, here, we chose as the
middle of the parameter interval.
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to approximate the function. In most recent work on sequential model-based optimization,
this model takes the form of a Gaussian stochastic process (GP) (Rasmussen and Williams,
2006). In particular, assuming deterministic responses, Jones et al. (1998) and Santner et al.
(2003) use a popular noise-free GP model, which has come to be known as the DACE model
(an acronym for “Design and Analysis of Computer Experiments”, the title of the paper by
Sacks et al. (1989) that popularized the model). Our example in Figure 9.1(a) also shows
a fit by a DACE model. Note that such a model provides not only a point estimate of the
function, but for any given query point, it provides a predictive distribution. In GP models this
predictive distribution takes the form of a Gaussian; in fact, for N query points, the predictive
distribution is a N -variate Gaussian. In Figure 9.1(a), we plot the mean ± two standard
deviations of the predictive distribution. Note that this does not perfectly fit the true function
everywhere—especially in the regions where the function oscillates more strongly—but that it
captures the overall trend fairly well.

Now that we have an approximation of the true function, we use it to sequentially select
the next design point θ to query. (In the context of algorithm configuration, we have a
predictive model of the cost of parameter configurations, and, based on that, we select the
next configuration to run the target algorithm with.) In this decision, we have to trade off
learning about new, unknown parts of the parameter space and intensifying the search locally
in the best known region (a so-called exploration/exploitation tradeoff). The most popular
criterion for selecting the next design point θ is the expectation of positive improvement
over the incumbent solution θinc at θ (where the expectation is taken with respect to the
predictive distribution that the current model attributes to θ). This expected improvement
criterion (EIC) goes back to the work of Mockus et al. (1978) and continues to be the most
widely used criterion today. In our example in Figure 9.1(a), the dashed green line denotes this
EIC (normalized to an interval [0,max] for visualization purposes), evaluated throughout the
region of interest. Note that EIC is high in regions of low predictive mean and high predictive
variance; these regions are most likely to contain configurations θ with cost lower than that of
the incumbent, θinc.

In the next step, we select the design point θi with maximal EIC, query it, and update the
model based on the observed response value, oi (in algorithm configuration, the performance
of the single new target algorithm run with configuration θi). We demonstrate this in our
example in Figure 9.1(b). Note the additional data point at an x-value around 0.7. This data
point improves the model, in this case mostly locally.4 In particular, the uncertainty around
the new data point is greatly reduced and the promising region is split in two. In the next step,
the left-most of these regions would be explored, since it has higher EIC.

The combination of a noise-free GP model and the EIC described above makes up the
efficient global optimization (EGO) algorithm by Jones et al. (1998), a popular method for
blackbox function optimization. We formalize GP models in the next section. Then, we
introduce two independent extensions of EGO that deal with the global optimization of noisy
functions. (In the context of algorithm configuration, this extension enables the procedures to
configure randomized algorithms.)

4However, we note that at times a single additional data point can have dramatic effects on the global structure
of the model.
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9.2 Gaussian Process Regression
To construct a Gaussian process (GP) regression model, first we need to select a parameterized
kernel function kλ : Θ × Θ → R+, specifying the similarity between two parameter
configurations. We also need to set the variance σ2 of Gaussian-distributed measurement
noise (also known as observation noise; in algorithm configuration, this corresponds to the
variance of the target algorithm’s runtime distribution). The predictive distribution of a
zero-mean Gaussian stochastic process for response on+1 at input θn+1 given training data
D = {(θ1, o1), . . . , (θn, on)}, measurement noise of variance σ2 and kernel function k is then

p(on+1|θn+1,θ1:n,o1:n) = N (on+1|k∗T[K + σ2I]−1o1:n, k∗∗ − k∗T[K + σ2I]−1),

where

K =

k(θ1,θ1) . . . k(θ1,θn)
. . .

k(θn,θ1) . . . k(θn,θn)


k∗ = (k(θ1,θn+1), . . . , k(θn,θn+1))

k∗∗ = k(θn+1,θn+1) + σ2,

I is the n-dimensional identity matrix, and p(a|b) = N (a|µ,Σ) denotes that the conditional
distribution of a given b is a Gaussian with mean µ and covariance matrix Σ. See, e.g., the
book by Rasmussen and Williams (2006) for a derivation. A variety of kernel functions are
possible, but the most common is a kernel of the form

K(θi,θj) = exp

[
d∑
l=1

(−λl(θil − θjl)2)

]
,

where λ1, . . . , λd are the kernel parameters. This kernel is most appropriate if the response
is expected to vary smoothly in the input parameters θ. The kernel parameters and the
observation noise variance σ2 constitute the hyper-parameters φ, which are typically set by
maximizing the marginal likelihood p(o1:N ) with a gradient-based optimizer. Using the chain
rule, the gradient is

∂ log p(o1:N )

∂φj
=
∂ log p(o1:N )

∂(K + σ2I)

∂(K + σ2I)

∂φj
.

In noise-free GP models, such as the popular DACE model used in EGO, the observation noise
variance is fixed to σ2 = 0.

Learning a GP model from data can be computationally expensive. Inverting the n by n
matrix [K + σ2I] takes time O(n3), and has to be done in every step of the hyper-parameter
optimization. (We discuss approximations later in Section 11.3.2.) We refer to the process
of optimizing hyper-parameters and computing the inverse as fitting the model. Training,
learning, or building the model are used as synonyms of “fitting”. Once the fitting has been
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(a) Standard GP fit
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(b) Noise-free GP fit on cost statistics

Figure 9.2: Alternative ways of fitting a response surface to noisy observations. Here, the
additive noise is sampled from N (0, 4). Note that we plot mean ± two standard deviations of
the predictive mean; the predicted observation noise would need to be added to this (but is
zero for the DACE model in (b)).

done, subsequent predictions are relatively cheap, only requiring matrix-vector multiplications
and thus time O(n2).

9.3 Two Methods for Handling Noisy Data
In this section, we discuss two different methods for modelling functions with observation
noise. In the context of algorithm configuration, such observation noise is due to randomization
in the algorithm or to extraneous nuisance variables, such as differences in the runtime
environment caused by other processes executed in parallel.

9.3.1 Standard Gaussian Processes
The standard approach to handle observation noise in Gaussian stochastic process (GP)
models is to simply assume the noise to be Gaussian-distributed with mean zero and unknown
variance σ2, and to carry on as described in Section 9.2, treating σ2 as a hyper-parameter to
be optimized.

In Figure 9.2(a), we visualize this approach. In that figure, the red line is the same true
function as in the noise-free example in Figure 9.1(a). We now have ten noisy observations
for each of the design points considered in the previous example, depicted by blue circles.
Note that we plot the predictive distribution for the posterior mean at each data point. With
additional data, the uncertainty in this prediction for the mean will shrink, while the predicted
observation noise (not illustrated) will not.
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9.3.2 Noise-free Gaussian Processes Trained on Empirical Statistics
Another possibility for handling noisy response values in sequential optimization is to first
compute a (user-defined) empirical cost statistic ĉ(θ) across the observations for each config-
uration θ, and then to fit a noise-free GP model to these empirical cost statistics. We illustrate
this approach in Figure 9.2(b), using the sample mean as the empirical cost statistic. We note
that—in contrast to the standard GP—this version yields uncertainty estimates that are exactly
zero for the training data points. The two sequential optimization methods we compare in
Section 9.5 employ these two approaches for handling noisy data; we discuss the ramifications
of these choices in detail in Section 9.5.3.

9.4 Log Transformations of Raw Data and Cost Statistics
In some cases, the GP model fit can be improved by a transformation of the response data.
Transformations that have been suggested in the literature include log transformations (Jones
et al., 1998; Williams et al., 2000; Huang et al., 2006; Leyton-Brown et al., 2002), nega-
tive inverse transformations (Jones et al., 1998), and square root or cube root transforma-
tions (Leyton-Brown, 2003). In all these references, transformations were applied to the
raw data (as opposed to transformations of cost statistics, which we apply at the end of this
section).

Here, we focus on the log transformation. This is because our main interest is in minimizing
positive functions with spreads of several orders of magnitude that arise in the optimization of
runtimes. In this chapter, we study a number of scenarios where the objective is to minimize
positive solution cost; cost metrics that can be negative can be transformed to positive functions
by subtracting a lower bound.

One issue that seems to have been overlooked in previous work is that in combination with
noisy response values, such transformations in fact change the objective function modelled by
the response surface. Take the example of minimizing arithmetic mean runtime in combination
with a log transform. The GP simply fits the mean of the response data used to train it; if those
response data are log-transformed the GP will fit the mean of the logs. Note that this mean of
the logs is in fact closely related to the geometric mean:

geometric mean = n

√√√√ n∏
i=1

xi =

[
exp

(
n∑
i=1

log(xi)

)](1/n)

= exp

[
1

n

n∑
i=1

log(xi)

]
= exp (mean of logs).

The exp(·) function is monotonic; thus, comparing the mean of the logs of two parameter
configurations is equivalent to comparing their geometric means. Consider an example where
this causes problems. Let parameter configuration θ1 yield a deterministic algorithm with
(mean) runtime of one second, and let configuration θ2 yield a randomized algorithm, which
terminates in 0.001 seconds in 60% of cases but takes 1000 seconds in the remaining 40%.
Clearly, when optimizing arithmetic mean runtime, θ2 is a very poor choice. However, it
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(a) Standard GP fit to log-transformed raw data
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(b) DACE fit to log-transformed cost statistics

Figure 9.3: Alternative GP fits to log-transformed data. The noise in this example is non-
stationary and multiplicative. Note that the y-axis now shows log-transformed responses. The
standard GP fits the mean of the logs, i.e., the geometric mean. The noise-free DACE model
trained on log-transformed cost statistics fits the log of the arithmetic mean.

would be judged preferable to θ1 by a GP model fitted on log responses:

0.6 · log10(0.001) + 0.4 · log10(1000) = −0.6 < 0 = log10(1).

We illustrate this problem on the Levy function shown in Figure 9.3. Here, we chose
non-stationary multiplicative noise. That is, the noise at parameter value x depends on the
function value f(x) and also on the value of x; here, the lower x, the larger the noise.5 In
particular, we drew each response value from a Weibull distribution with mean f(x) and
standard deviation f(x) · exp(5 · (1− x))/10. Figure 9.3(a) demonstrates that the standard
GP model fits the mean of the logs, which here largely differs from the log of the mean. This
leads both to poor choices for the location of the next design point and to a poor choice of
incumbent.

For the second approach, we simply choose the log of the mean as our cost statistic, and
then fit a DACE model to that cost statistic. Figure 9.3(b) shows the result of this approach for
the same data as used above. The prediction closely follows the (log of the) true function. Note
that this approach works for any combination of user-defined cost statistic and transformation.
We are not aware of any previous discussion of an instance of this approach.

5Note that multiplicative noise is very common in randomized algorithms: the standard deviation is often
roughly proportional to the mean of the runtime distribution (in fact, runtime distributions can often be approxi-
mated well by exponential distributions (Hoos, 1999a), for which mean and standard deviation are identical). The
variance of an algorithm’s runtime distribution also often varies with the value of some parameter. For example, up
to a point additional randomization tends to improve an algorithm’s robustness and thereby decrease the variance
of its runtime distribution.
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Symbol Meaning
Θ Space of allowable parameter configurations (region of interest)
θ Parameter configuration, element of Θ

θi:j Vector of parameter configurations, [θi,θi+1, . . . ,θj ]
d dimensionality of Θ (number of parameters to be tuned)
y Response variable (performance of target algorithm)

R Sequence of runs, with elements (θi, πi, si, κi, oi) as defined in Section 1.
R[i] ith element of R
Rθ Subsequence of runs using configuration θ (i.e., those runs with θi = θ)

N(θ) Length of Rθ

ĉ(θ) Empirical cost statistic over the N(θ) runs with θ: τ̂({R[i].o|θi = θ})
M Predictive model
r Number of repeats in SPO (increases over time). Initial value: SPO parameter

Θhist Set of configurations in SPO that have been incumbents in the past (changes over time)

Table 9.1: Summary of notation used in pseudocode.

Parameter Meaning
initR Initial number of repeats in SPO
maxR Maximal number of repeats in SPO

D Size of initial design in SPO
m Number of configurations determined with EIC to evaluate in each iteration in SPO
p Number of previous configurations to evaluate in each iteration of SPO+

Table 9.2: SPO and SPO+ algorithm parameters. We used m = 1 and p = 5 throughout.
For the comparison to SKO in this chapter, we changed the code to use SKO’s initial design,
setting initR = 1, maxR =∞, and D = 40. Elsewhere, we used initR = 2, D = 250, and
maxR = 2 000.

9.5 Two Existing SMBO Approaches for Noisy Functions: SKO
and SPO

In this section, we review two existing model-based optimization methods for noisy responses:
the sequential kriging optimization (SKO) algorithm by Huang et al. (2006), and the sequential
parameter optimization (SPO) procedure by Bartz-Beielstein et al. (2005; 2006). SKO uses
a standard GP model, whereas SPO uses a DACE model trained on cost statistics for the
parameter configurations tried so far.

9.5.1 A Framework for Sequential Model-Based Optimization
In this section, we describe SKO and SPO in a unified framework given as pseudocode in
Algorithm Framework 9.1. We will use this framework to describe all approaches developed
in this part of the thesis.

Table 9.1 summarizes our notation. Note in particular N(θ) and ĉ(θ). N(θ) denotes the
number of runs we have so far executed with a parameter configuration θ; ĉ(θ) denotes the
empirical performance across the N(θ) runs that have been performed for θ. These can be
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Algorithm Framework 9.1: Sequential Model-Based Optimization.
Input : Target algorithm A
Output: Incumbent parameter configuration θinc
[R, θinc]← Initialize()1

M← NULL2

repeat3

[M,θinc]← FitModel(M, R, θinc)4
~Θnew ← SelectNewConfigurations(M, θinc, R)5

[R,θinc]← Intensify(~Θnew, θinc,M, R)6

until total budget for configuration exhausted7

return θinc8

thought of as macros that respectively count the runs of θ performed so far and compute their
empirical cost statistic.

9.5.2 Initialization
We outline the initialization of SKO and SPO in Procedures 9.2 and 9.4, respectively. Proce-
dure Initialize is called as

[R,θinc] = Initialize().

SKO starts with a Latin hypercube design (LHD) of 10 · d parameter configurations,
where d is the number of parameters to be optimized. It executes the target algorithm at
these configurations and then performs an additional run for the d configurations with the
lowest response. (The execution of target algorithm runs is a common building block used in
configurators; we describe it in Procedure 9.3, ExecuteRuns.) The incumbent θinc is chosen
as the configuration with the lowest empirical cost ĉ(θ) amongst these d configurations. In
SPO, D parameter configurations are chosen according to a LHD and the target algorithm is
executed r times for each of them; D and r are parameters of SPO. The incumbent θinc is
chosen as the parameter configuration with the lowest empirical cost ĉ(θ).

9.5.3 Fit of Response Surface Model
Both SKO and SPO base their predictions on a combination of a linear model and a GP
model fitted on the residual errors of the linear model. However, both of them default to
using only a single constant basis function in the linear model, thus reducing the linear model
component to a constant offset term, the mean response value. Throughout this chapter, we use
these defaults; the model we use is thus an offset term plus a zero-mean Gaussian stochastic
process. SPO uses the DACE Matlab toolbox to construct this predictive model, while SKO
implements the respective equations itself. The exact equations used in both SKO and the
DACE toolbox implement methods to deal with ill conditioning; we refer the reader to the
original publications for details (Huang et al., 2006; Bartz-Beielstein, 2006; Lophaven et al.,
2002).
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Procedure 9.2: Initialize() in SKO
Input : none (in order to avoid bloated interfaces, the parameter configuration space, Θ, and its

dimension, d, are global parameters)
Output: Sequence of target algorithm runs, R; incumbent parameter configuration θinc
R← []1
k ← 10 · d2
θ1:k ← LatinHypercubeDesign(Θ, k)3
for i = 1, . . . , k do4

R← ExecuteRuns(R, θi, 1)5

θk+1:k+d ← the d configurations θj out of θ1:k with smallest ĉ(θj)6
for i = 1, . . . , d do7

R← ExecuteRuns(R, θk+i, 1)8

θinc ← random element of argminθ∈{θ1,...,θk}(ĉ(θ))9
return [R, θinc]10

Procedure 9.3: ExecuteRuns(R, θ, numRuns)
Input : Sequence of target algorithm runs, R; parameter configuration, θ; number of runs to perform,

numRuns
Output: (Extended) sequence of target algorithm runs, R
for i = 1, . . . , numRuns do1

Let s denote a previously-unused seed2
Let π denote the problem instance under consideration in the configuration scenario3
Execute A(θ) with seed s and captime κmax on instance π, store response in o4
Append (θ, π, s, κ, o) to R5

return R6

Procedure FitModel is called as

[M,θinc] = FitModel(M,R,θinc).

When it is first called,M is undefined (NULL). Note that this interface allows the procedure to

Procedure 9.4: Initialize() in SPO
Input : none (parameter configuration space, Θ, is a global parameter; the size of the initial design,

D, and the number of initial repetitions, initR, are global parameters of SPO.)
Output : Sequence of target algorithm runs, R; incumbent parameter configuration θinc
Side Effect: Changes SPO’s global parameters r (number of repetitions), and Θhist (set of configurations

that ever were incumbents)
R← []1
θ1:D ← LatinHypercubeDesign(Θ, D)2
for i = 1, . . . , D do3

R← ExecuteRuns(R, θi, initR)4

θinc ← random element of argminθ∈{θ1,...,θD}(ĉ(θ))5
Θhist ← {θinc}6
r ← initR7
return [R, θinc]8
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Procedure 9.5: FitModel(M, R, θinc) in SKO
SKO fits a standard GP model to the raw response values R[i].o and sets its incumbent θinc based on the
learned model; n denotes the length of R

Input : GP model,M (NULL at first invocation); sequence of target algorithm runs, R; incumbent
configuration, θinc

Output: GP model,M; incumbent configuration, θinc
if (M is NULL) or (n/M.lastUpdate > 1.1) then1

Fit standard GP modelM and hyper-parameters for data
⋃n
i=1{(R[i].θ,R[i].o)}2

M.lastUpdate← n3
else4

Fit standard GP modelM for data
⋃n
i=1{(R[i].θ,R[i].o)}, reusing hyper-parameters saved in5

previousM
Θseen ←

⋃n
i=1{R[i].θ}6

for all θ ∈ Θseen do7
[µθ, σ

2
θ]← Predict(M, θ)8

θinc ← random element of argminθ∈Θ(µθ + σθ)9
return [M,θinc]10

Procedure 9.6: FitModel(M, R, θinc) in SPO
SPO fits a DACE model to cost statistics ĉ(θ) (aggregates across all observed response values for θ). It
does not update its incumbent θinc in this procedure; n denotes the total number of target algorithm runs
so far.

Input : DACE model,M; sequence of target algorithm runs, R; incumbent configuration, θinc
Output: DACE model,M; incumbent configuration, θinc
Θseen ←

⋃n
i=1{R[i].θ}1

Fit DACE modelM and hyper-parameters for data
⋃

θ∈Θseen
{θ, ĉ(θ)}, with fixed σ2 = 02

return [M,θinc]3

update the incumbent configuration, θinc. SKO uses this option, while SPO does not. (Instead,
it updates θinc in Procedure Intensify.)

SKO uses Gaussian stochastic process models in the conventional manner to fit noisy
response data directly; we describe this in Procedure 9.5. Note that when a GP model is fitted
directly on noisy response data, measurement noise is assumed to be Gaussian-distributed—an
assumption that is violated in many applications of parameter optimization. While distributions
of solution qualities across multiple runs of a randomized heuristic algorithm can often be
approximated quite well with a Gaussian distribution, it is well known that the distributions
of runtimes of randomized heuristic algorithms for solving hard combinatorial problems tend
to exhibit substantially heavier tails.

As also described in Procedure 9.9, after fitting its model, SKO selects a new incumbent,
θinc, based on the new model. The parameter configuration that minimizes a GP model’s
mean prediction is not necessarily the best choice of incumbent, because it may be based
on dramatically fewer runs of the target algorithm than other, similar-scoring configurations.
Recognizing this fact, SKO implements a risk-averse strategy: it picks the previously-evaluated
parameter configuration that minimizes predicted mean plus one predicted standard deviation.

SPO uses GP models in the non-standard manner discussed in Section 9.3.2. It first
computes the user-defined empirical cost statistic ĉ(θ) for each parameter configuration θ
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Procedure 9.7: SelectNewConfigurations(M,θinc,R) in SKO
Input : Model,M; incumbent configuration, θinc; sequence of target algorithm runs, R
Output: Sequence of parameter configurations to evaluate, here with one element, [θnew]
θnew ← the single parameter configuration found optimizing the augmented expected improvement1
criterion from (Huang et al., 2006) with the Nelder-Mead simplex method.
return [θnew]2

Procedure 9.8: SelectNewConfigurations(M,θinc,R) in SPO
Note that m is a parameter of SPO.

Input : Model,M; incumbent configuration, θinc; sequence of target algorithm runs, R
Output: Sequence of parameter configurations to evaluate, ~Θnew

// ===== Select m parameter configurations with expected improvement
Θrand ← set of 10 000 elements drawn uniformly at random from Θ1
for all θ ∈ Θrand do2

[µθ, σ
2
θ]← Predict(M, θ)3

EI(θ)← Compute expected improvement criterion E[I2(θ)] (see Section 10.3.2) given µθ and σ2
θ4

~Θnew ← list of all θ ∈ Θrand, sorted by decreasing EI(θ)5
~Θnew ← ~Θnew[1, . . . ,m]6

return ~Θnew7

evaluated so far, and then fits a DACE model (a noise-free GP model) to learn a mapping
from parameter configurations to the cost statistic. This approach has a number of benefits
and drawbacks. In addition to those discussed in Section 9.4, fitting the GP model on the
cost statistic directly enables SPO to optimize almost arbitrary user-defined cost statistics,
which could not be done with standard Gaussian stochastic processes. Examples include
median performance, empirical variance across runs, and tradeoffs between empirical mean
and variance. To our best knowledge, SPO is the only existing model-based method with such
flexibility in the objective function being optimized. Another benefit is that the assumption of
Gaussian-distributed response values is dropped. The final benefit of collapsing the data to a
single point per parameter configuration is reduced computational complexity. While SKO
has cubic scaling behaviour in the number of target algorithm runs performed, SPO only takes
time cubic in the number of distinct parameter configurations evaluated.

9.5.4 Selection of new Parameter Settings to Evaluate
Following Jones et al. (1998), both SKO and SPO use an expected improvement criterion
(EIC) to determine which parameter configurations to investigate next, thereby drawing on
both the mean and variance predictions of the GP model. This criterion trades off learning
about new, unknown parts of the parameter space and intensifying the search locally in the
best known region.

Procedure SelectNewConfigurations is called as

~Θnew = SelectNewConfigurations(M,θinc,R).
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SKO selects a single new parameter configuration by maximizing an augmented expected
improvement criterion using the Nelder-Mead simplex method (Nelder and Mead, 1965). The
augmentation adds a bias away from parameter configurations for which predictive variance
is low; see Huang et al. (2006). SPO, on the other hand, evaluates the E[I2] expected
improvement criterion (Schonlau et al., 1998, see also Section 10.3.2) at 10 000 randomly
selected parameter configurations and picks the m ones with highest expected improvement.
Here, we use the default m = 1. For completeness, we give the simple pseudocode for these
methods in Procedures 9.7 and 9.8.

9.5.5 Intensification
Any parameter-optimization method must make decisions about which parameter configuration
θinc to return to the user as its incumbent solution, both if interrupted during the search
progress and (especially) upon completion. Candidate parameter configurations are suggested
by Procedure SelectNewConfigurations, and in order to decide whether they, the current
incumbent, or even another parameter configuration should become the new incumbent, it is
advisable to perform additional runs of the target algorithm. Which parameter configurations
to use, how many runs to execute with each of them, and how to determine the new incumbent
based on those runs is specified in Procedure Intensify, which is called as

[R,θinc] = Intensify(~Θnew,θinc,M,R). (9.1)

Note that this procedure allows an update of the incumbent, θinc. SPO makes use of this
option, while SKO updates its incumbent in Procedure FitModel (see Procedure 9.5).

In order to provide more confident estimates for its incumbent, SPO implements an
explicit intensification strategy. In SPO, predictive uncertainty cannot be used to decide
which parameter configuration to select as incumbent. That is because its DACE model (a
noise-free GP model) predicts exactly zero uncertainty at all previously-evaluated parameter
configurations. An alternative measure of confidence is gained by the number of evaluations
performed for a parameter configuration. SPO performs additional runs for its incumbent
parameter configuration θinc in order to make sure θinc is a truly good parameter configuration
(as opposed to having been selected since it simply happened to yield low response values
in the limited number of target algorithm runs previously performed with θinc). How many
evaluations are used exactly differs between SPO versions 0.3 and 0.4; Procedures 9.10 and
9.11 detail these two versions. In contrast, SKO does not implement an explicit intensifi-
cation strategy; in each iteration, it only performs a single run with the selected parameter
configuration.

9.6 An Experimental Comparison of SKO and SPO
To the best of our knowledge, SPO is the only sequential model-based optimization procedure
that has been applied to optimizing algorithm performance. Even for SPO we are not aware
of any applications for the minimization of runtime to solve decision problems. Rather, the
focus in SPO’s applications has been the optimization of the solution quality that a target
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Procedure 9.9: Intensify(~Θnew, θinc,M, R) in SKO
SKO only performs a single target algorithm run and does not update its incumbent in this procedure.

Input : Sequence of parameter configurations to evaluate, ~Θnew, here with one element; incumbent
configuration, θinc; model,M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
R← ExecuteRuns(R, ~Θnew[1], 1)1
return [R,θinc]2

Procedure 9.10: Intensify(~Θnew, θinc,M, R) in SPO 0.3
After performing runs for the new parameter configurations and for the incumbent, SPO updates its
incumbent. The maximal number of runs to perform with a configuration, maxR, is a parameter of
configurators using this procedure; in all our experiments, we set it to 2 000. Side effect: changes SPO’s
global parameters r and Θhist

Input : Sequence of parameter configurations to evaluate, ~Θnew; incumbent configuration, θinc; model,
M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
for i = 1, . . . , length(~Θnew) do1

R← ExecuteRuns(R, ~Θnew[i], r)2

R← ExecuteRuns(R, θinc, r/2)3
Θseen ←

⋃n
i=1{R[i].θ}4

θinc ← random element of argminθ∈Θseen
(ĉ(θ))5

if θinc ∈ Θhist then r ← min(2 · r,maxR)6
Θhist ← Θhist ∪ {θinc}7
return [R,θinc]8

algorithm can achieve within a given time budget. In particular, it has been applied to optimize
the solution quality of CMA-ES (Hansen and Ostermeier, 1996; Hansen and Kern, 2004),
a prominent gradient-free global optimization algorithm for continuous functions (Bartz-
Beielstein et al., 2008). We thus used CMA-ES for the experimental comparison of SKO and
SPO. (For details on CMA-ES, see Section 3.2.3.)

9.6.1 Experimental Setup
We empirically compared SKO and SPO on the four CMA-ES configuration scenarios in set
BLACKBOXOPT defined in Section 3.5.1: CMAES-SPHERE, CMAES-ACKLEY, CMAES-GRIEWANGK,
and CMAES-RASTRIGIN. Briefly, in these scenarios the aim is to minimize the mean solution
cost across a set of CMA-ES runs on the respective function being used, where the solution
cost in one run is the minimal function value CMA-ES found in the run. Each CMA-ES run
is allowed a fixed number of function evaluations. For the experiments in this chapter, we
fixed the budget available for configuration to 200 runs of the target algorithm, CMA-ES.

We chose this low limit of 200 target algorithm runs because the original SKO implemen-
tation was very slow: even limited to as few as 200 target algorithm runs, each SKO run took
about one hour.6 Most of SKO’s time was spent in the numerical optimization of that EIC.

6SKO was run on a 3GHz Pentium 4 with 4 GB RAM running Windows XP Professional, Service Pack 3. We
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Procedure 9.11: Intensify(~Θnew, θinc,M, R) in SPO 0.4
After performing runs for the new parameter configurations and for the incumbent, SPO updates its
incumbent. The maximal number of runs to perform with a configuration, maxR, is a parameter of
configurators using this procedure; in all our experiments, we set it to 2 000. Side effect: changes SPO’s
global parameters r and Θhist

Input : Sequence of parameter configurations to evaluate, ~Θnew; incumbent configuration, θinc; model,
M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
for i = 1, . . . , length(~Θnew) do1

R← ExecuteRuns(R, ~Θnew[i], r)2

R← ExecuteRuns(R, θinc, r −N(θinc))3
Θseen ←

⋃n
i=1{R[i].θ}4

θinc ← random element of argminθ∈Θseen
(ĉ(θ))5

if θinc ∈ Θhist then r ← min(r + 1,maxR)6
Θhist ← Θhist ∪ {θinc}7
return [R,θinc]8

Some SKO runs actually failed due to problems in this numerical optimization. We repeated
those runs until they completed. (Repetitions were non-deterministic due to measurement
noise in the objective function.)

We reimplemented SPO 0.3 and 0.4 (discussed in more detail in Section 10.3.1) and verified
that performance of SPO 0.4 matched that of the original SPO 0.4 implementation (Bartz-
Beielstein et al., 2008). The SPO runs were substantially faster than those of SKO; they took
about 2 minutes per repetition, 85% of which was spent running the target algorithm.

9.6.2 Experimental Results
Our first set of experiments for comparing SKO and SPO used original, untransformed
CMA-ES solution quality as the objective function to be minimized. In order to remove one
confounding factor from the study, we modified SPO to use SKO’s 44-point initial design. In
Figure 9.4, we show the performance of SKO and three different SPO variants: SPO 0.3 and
SPO 0.4 as discussed in Section 9.5, and, for reference, SPO+, which we introduce in the next
chapter. Here, the only difference between these methods is in their intensification mechanism
(in the next chapter, we also change additional components in SPO+). On the Sphere function,
the LHD already contained very good parameter configurations, and the challenge was mostly
to select the best of these as its incumbent. From the figure, we observe that SPO largely
succeeded in doing this, while SKO did not. On the Ackley function, SKO’s performance
was quite good, except for a brief interval of very poor performance after about 195 runs of
the target algorithm. On the Griewangk and Rastrigin functions, the variation of performance

report wall clock time on an otherwise idle system. (We did not use Unix machines for these experiments since
SKO only compiled for Windows.) In order to ascertain that the target algorithm has exactly the same behaviour it
does for other configuration procedures (which run under Unix), we gathered the results of the target algorithm
runs SKO requested by means of a wrapper script that connected to the same type of machine the SPO experiments
were carried out on, performed the requested run of the target algorithm there and returned the result of the run.
This incurred very little overhead.
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Figure 9.4: Comparison of SKO and three variants of SPO for optimizing CMA-ES. We plot
the performance pk of each method (mean solution quality CMA-ES achieved in 100 test
runs on each of the 4 test functions using the method’s chosen parameter configurations) as
a function of the number of algorithm runs, k, it was allowed to perform; these values are
averaged across 25 runs of each method. All models were based on SKO’s initial design and
original untransformed data.

across multiple runs of CMA-ES was very high. Correspondingly, all approaches showed
large variation in the quality of parameter configurations selected over time. (Intuitively, the
configurator detects a new region, which seems promising based on a few runs of the target
algorithm. Then, after additional target algorithm runs, that region is discovered to be worse
than initially thought. During the period it takes to discover the true, poor nature of the region,
the search returns a poor incumbent.)

Secondly, we experimented with log transformations as described in Section 9.4. As
discussed there, in the case of SKO a log transform of the noisy data leads to a fit of the
geometric instead of the arithmetic mean. Despite this fact, the log transformation improved
SKO performance quite substantially. Figure 9.5 shows that for the SPO variants a log
transformation—in this case of cost statistics—did not improve performance as much. We
attribute this to the fact that the quality of the model is less important in SPO than in SKO.
While SPO “only” uses the model in order to make decisions about the next parameter
configuration to evaluate, SKO also uses it in order to select its incumbent. After the log
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Figure 9.5: Comparison of SKO and three variants of SPO for optimizing CMA-ES, with
log-transformations. We plot the performance pk of each method (mean solution quality
CMA-ES achieved in 100 test runs on each of the 4 test functions using the method’s chosen
parameter configurations) as a function of the number of algorithm runs, k, it was allowed to
perform; these values are averaged across 25 runs of each method. All models were based on
SKO’s initial design.

transformation SKO and SPO+ performed comparably.

9.7 Chapter Summary
In this chapter, we introduced a general framework for Sequential Model-Based Optimization
(SMBO) that we will use throughout this part of the thesis. We described and experimentally
compared two existing instantiations of this general framework from the literature, Sequential
Kriging Optimization (SKO) by Huang et al. (2006) and Sequential Parameter Optimization
(SPO) by Bartz-Beielstein et al. (2005).

In this comparison, SPO performed much more robustly “out-of-the-box”, whereas SKO
became very competitive when using a log transformation of the response values.
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Chapter 10

Improvements I:
An Experimental Investigation of
SPO Components

There is no higher or lower knowledge, but one only, flowing out of
experimentation.
—Leonardo da Vinci, Italian inventor and artist

In this chapter1, we investigate the sequential parameter optimization (SPO, see Section 9.5)
framework in more depth. Three main reasons motivated us to follow this path—rather than
that of the alternative sequential kriging optimization (SKO, also described in Section 9.5)—in
order to build effective model-based algorithm configuration procedures. Firstly, our main
interest is in complex scenarios, in which the predictive model might not actually perform very
well. In such scenarios, we believe it is important to employ an explicit intensification criterion
(as, e.g., implemented by SPO) instead of relying on the model alone to select incumbents.
Secondly, SPO has the advantage of being able to optimize a variety of user-defined objective
functions, while the standard Gaussian process model underlying SKO can only fit the mean of
the data. In practice, users might be more interested in statistics other than mean performance,
such as the best out of ten algorithm runs. SPO supports such a criterion and also allows
for many other options. Finally, the SKO implementation we used was simply too slow
to be applied to the algorithm configuration scenarios we are interested in, some of which
require the execution of tens of thousands of target algorithm runs. (Recall from Section 9.6.1
that SKO’s complexity is cubic in that number of algorithm runs, nruns, and that it already
required an hour for nruns = 200.) In the next chapter, we will again consider models similar
to those used by SKO but will employ approximation techniques in order to reduce their time
complexity.

In what follows, we thoroughly investigate the components of SPO. First, we investigate
the quality of the initial predictive models, depending on (1) the initial design and (2) whether
or not we use a log transformation. Then, we study components of the sequential optimization

1This chapter is based on published joint work with Holger Hoos, Kevin Leyton-Brown, Kevin Murphy, and
Thomas Bartz-Beielstein (Hutter et al., 2009e,a).
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process: (3) the intensification mechanism and (4) various expected improvement criteria
(EIC). Based on this study of components, we introduce a novel variant of SPO—dubbed
SPO+—which differs from SPO in its use of a log transformation and, most importantly, in its
intensification mechanism. We demonstrate that on the type of simple configuration scenario
SPO+ is applicable for—optimizing numerical algorithm parameters on a single problem
instance—it is competitive with state-of-the-art algorithm configuration procedures (including
BasicILS and FocusedILS). Finally, we bound the computational overhead due to learning the
model and optimizing EIC, leading to another new version of SPO—dubbed SPO∗—which
finds good parameter configurations substantially faster than SPO+.

10.1 Experimental Setup
In this chapter we use the BLACKBOXOPT set of configuration scenarios. In particular, we
continue to use the four CMA-ES configuration scenarios considered in the previous chapter.
We also study configuration scenario SAPS-QWH, in which the objective is to minimize median
SAPS runtime (measured in local search steps) on a single problem instance (see Section
3.5.1 for details). We chose this configuration scenario to facilitate a direct comparison of the
performance achieved by the algorithm configuration procedures considered here and in the
work previously described in Section 5.4.

10.2 Model Quality
It is not obvious that a model-based algorithm configuration procedure needs models that
accurately predict target algorithm performance across all parameter configurations, including
very bad ones. Nevertheless, all else being equal, models with good overall accuracy can
generally be expected to be helpful to such methods, and are furthermore essential to more
general tasks such as performance robustness analysis. In this section, we investigate the effect
of two key model-design choices on the accuracy of the GP models used by SPO: whether
or not we use a transformation of cost statistics, and how we select the configurations in the
initial design. First, we describe our measures of model quality.

10.2.1 Measures of Model Quality
Straightforward candidates for quantitative model performance measures include root mean
squared error (RMSE) of the predictions, log-likelihood of the observed data under the
predictive distribution, and the Pearson correlation coefficient between predictions and the
actual response. However, none of these well reflects the context in which we use model
predictions. In particular, we solely use predictive distributions of a parameter configuration’s
cost measure—we never use predictions for performance in single runs. We use the model for
two main purposes: (1) predicting which out of two parameter configurations will have better
mean performance, and (2) selecting the next parameter configuration(s) to evaluate based on
an expected improvement criterion (EIC). We capture performance in task (1) by computing
the quality of predictive ranks, defined as follows.

147



Definition 11 (Spearman correlation coefficient). Let x and y be two vectors of the same
length, n. Let r and s be the corresponding vectors of ranks, where ties lead to average ranks.
Then, the Spearman correlation coefficient between vectors x and y is the Pearson correlation
coefficient ρ between vectors r and s:

ρ =
n(
∑n

i=1 risi)− (
∑n

i=1 ri)(
∑n

i=1 si)√
n(
∑n

i=1 ri)− (
∑n

i=1 ri)
2
√
n(
∑n

i=1 si)− (
∑n

i=1 si)
2
. (10.1)

Definition 12 (Quality of predictive ranks). The quality of predictive ranks of a modelM on
a test set of parameter configurations {θ1, . . . ,θn} is the Spearman correlation coefficient
between validation costs cvalid(θ1), . . . , cvalid(θn) and model predictions ĉ(θ1), . . . , ĉ(θn).

The quality of predictive ranks lies in the interval [−1, 1], with 1 indicating perfect
correlation of the predicted and the true ranks, 0 indicating no correlation and −1 perfect
anti-correlation.

The second purpose for which we use models is to compute an expected improvement
criterion (EIC) to select new parameter configurations. Optimally, we would like to select
configurations of the highest possible quality. Thus, we assess performance in this task by
the correlation coefficient of ranks between EIC and test set performance on a set of test
configurations. This quantity depends both on the EIC used and on the model.

Definition 13 (EIC quality). The EIC quality of a combination of modelM and an EIC on a
set of parameter configurations {θ1, . . . ,θn} is the Spearman correlation coefficient between
validation costs cvalid(θ1), . . . , cvalid(θn) and expected improvements, EI(θ1), . . . , EI(θn).

In order to also quantify overall model quality, we use the standard measure of root mean
squared error.

Definition 14 (RMSE). The root mean squared error (RMSE) of a model M on a set of
parameter configurations {θ1, . . . ,θn} is the square root of average squared prediction error√

1
n

∑n
i=1[cvalid(θi)− ĉ(θi)]2.

We use these quantitative measures throughout this part of the thesis to evaluate model
quality. In order to compute them, we require a set of parameter configurations {θ1, . . . ,θn}
and their test set performance, whose computation is expensive and does not happen during
the configuration process, but rather offline for validation purposes. Note, however, that for
each set of parameter configurations, we only need to compute this test performance once
and can then use it to evaluate arbitrary models. We used two different sets: Random, a set of
100 parameter configurations sampled uniformly at random from the parameter configuration
space; and Good, a set of well-performing parameter configurations. We determined this
second set of configurations with a subsidiary algorithm configuration procedure, P , that
performed well on the respective configuration scenario. We specify the procedure P used and
its budget on a case-by-case basis. In each case, we executed 25 runs of P , keeping track of
the set C of all configurations it ever labeled as incumbents during the configuration process.
We selected set Good as a random subset of C of size 100, or, when C contained less than 100
configurations, used Good=C. We compute our quantitative measures on set Good since we
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are primarily interested in distinguishing excellent parameter configurations from merely good
ones.

10.2.2 Transforming Performance Data
We first qualitatively study model performance along the lines of the approach used by Jones
et al. (1998) and then employ our quantitative measures. Jones et al. suggested the use of
model validation techniques to ensure that the models are sufficiently accurate in order to
guide the search for the global optimum. They employed leave-one-out cross-validation. That
is, given a training set with n data points, they learned n models, each of them on subsets
of n − 1 data points. Each model was then used to predict the response value for the data
point not used to train that model. We apply a similar 10-fold cross-validation technique: we
learn 10 models, each of them on 90% of the training data, and used each model to predict the
response values for the 10% of the data not used to train that model.

Here, we use this approach to study whether the log transformation of cost statistics we
used for SPO in the previous chapter did indeed yield more accurate models than could
be obtained by using the original, untransformed cost statistics. We show diagnostic plots
for a single model for configuration scenario CMAES-SPHERE and summarize data across
many models built on independent training data and other configuration scenarios with our
quantitative measures. All models in this section are learned on 500 training data points. Each
such point represents target algorithm performance for d = 250 parameter configurations
determined with a random Latin hypercube, performing r = 2 repetitions each. Here, we
focus on models fitted to data from this initial design (instead of data gathered throughout the
sequential optimization process) in order to study model performance in isolation, without
taking into account interactions between the model and the sequential optimization process.

Figure 10.1 shows the diagnostic plots of Jones et al. (1998) for scenario CMAES-SPHERE,
for DACE models trained on untransformed and log-transformed cost statistics. The first type
of diagnostic plot (Figures 10.1(a) and 10.1(b)) simply shows actual response vs predicted
response. We also plot standard deviations of the predictions for the model trained on log
statistics; we omit these for the model trained on untransformed statistics since the predictive
distribution of this model is a Gaussian distribution in untransformed space (which cannot be
plotted properly on the log-log axis since mean minus standard deviation is often negative).
We notice that the model trained on log statistics clearly fitted the data better, especially in the
sparsely-populated region with very good parameter configurations.

The second type of diagnostic plot (Figures 10.1(c) and 10.1(d)) shows the standardized
residual error for each data point i. This is the error of the mean prediction at the data point,
µi − oi, normalized by the predicted standard deviation at i, σi. Optimally, these residual
errors would be close to Gaussian-distributed. If this were the case, around 97% of them
should lie within the interval [−3, 3]. Almost all data points indeed lie in this interval. For
both models we see trends for data points with larger response values: for the model trained
on the untransformed data, uncertainty estimates get too low, whereas for the model trained
on log-transformed data they get too high.

Finally, the third type of plot (Figures 10.1(e) and 10.1(f)) assesses how closely the
distribution of these standardized residuals matches a Gaussian distribution. The closer the
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Figure 10.1: Diagnostic plots of Jones et al. (1998) for scenario CMAES-SPHERE. The left
column fits a DACE model to the original, untransformed cost statistics, the right column fits a
DACE model to log-transformed cost statistics. These plots can be generated online (at runtime
of the configuration procedure, without extra target algorithm runs) using cross-validation.
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points in this quantile-quantile plot are to the diagonal, the better the match. Here, the
standardized residuals for the model trained on log statistics were quite close to Gaussian-
distributed. For the model trained on untransformed data, the fit was quite poor with too much
of the distribution’s mass close to zero.

In Figure 10.2, we evaluate the quality of the same two models for predicting the cost
(mean response across many algorithm runs) of our validation sets of configurations, Good
and Random. Since we estimate the true costs of these configurations in an offline evaluation,
we refer to these plots as offline diagnostic plots as opposed to the (online) diagnostic plots
suggested by Jones et al. (1998). The results are quite similar to those in Figure 10.1, with
the important distinction that the offline plots contain many more data points with low mean
response. This is of course due to the fact that in our offline evaluation we not only evaluate
model quality on randomly sampled configurations (test set Random, plotted in red) but also
on a set of good parameter configurations (test set Good, plotted in green). In this case, test set
Good was gathered with the SPO+ configuration procedure (which we introduce in Section
10.3) with a budget of 1 000 target algorithms. We used the same procedure to create the
respective test sets Good for the other CMA-ES scenarios we consider in this section; for
SAPS-QWH, we allowed a budget of 20 000 target algorithms for this process.

The fit in the first row of figures is slightly better in the offline evaluation, which can be
explained by the reduced noise. Test set costs are mean solution costs over 100 repetitions
of CMA-ES, whose variance is a factor of

√
100 = 10 lower than for single responses. For

the model fit on untransformed data (see Figure 10.2(d)), the plot of standardized residual
errors is very similar to the online crossvalidation plot, with the exception of an outlier
for the parameter configuration with the largest mean response. For the model fit on log-
transformed data, however, the many configurations with low mean response reveals a new
pattern: uncertainty estimates degrade for good parameter configurations (see Figure 10.2(d)).
In fact, in order to avoid a degenerate plot, we had to omit two data points with true mean
response < 10−6 and standardized residual error of around 500 and 2200, respectively.

The third type of plot also looks quite similar to the one for the online cross-validation
plots. For the model trained on untransformed data (Figure 10.2(e)), the outlier is the main
difference. For the model trained on log-transformed data (Figure 10.2(f)), the many good
parameter configurations—for which predictive uncertainty was worse—led to a distribution
of standardized residual error much more different from a Gaussian.

We now study quantitative model performance. While the figures above are an important
tool to aid our qualitative understanding of model performance, model performance often
differs substantially across independent repetitions of the same procedure with different
training data, as well as across domains. We capture this in our quantitative measures. First,
we give our quantitative measures for the data shown in Figure 10.2. Here, the quality of
predictive ranks was much better for the model trained on log-transformed cost statistics:
0.68 vs 0.39 for the model trained on the original data. Likewise, the EIC quality (here,
E[I2], described in Section 10.3.2) was higher: 0.72 vs 0.24. Finally, RMSE was also much
better (lower) when training on log-transformed cost statistics: 1.26 vs 589. In Figure
10.3, we show boxplots of these performance measures for 25 independent repetitions for
each of the configuration scenarios considered in this chapter. This figure shows that the
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(f) Quantile-quantile plot, log

Figure 10.2: Offline diagnostic plots for scenario CMAES-SPHERE. The left column fits a DACE
model to the original, untransformed cost statistics, the right column fits a DACE model to
log-transformed cost statistics. These plots require knowledge of the true mean response
values for each test configuration—which need to be computed offline. Not shown: two data
points with true mean response < 10−6 and standardized residual error around 500 and 2200,
respectively.
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Figure 10.3: Comparison of models based on log-transformed and original data. We plot
boxplots across 25 repetitions with different training but identical test data.

log transformation consistently improved both the quality of predictive ranks and the EIC
quality across the five configuration scenarios. It also decreased RMSE (by many orders of
magnitude) for four scenarios, but increased it for scenario CMAES-GRIEWANGK.

10.2.3 Choosing the Initial Design
In the previous section, we used an initial design of d = 250 data points with r = 2 repetitions
each. The effects of d and r were studied before by Bartz-Beielstein and Preuss (2006), and
we thus fixed these variables in this study.2 Specifically, we used r = 2 and d = 250, such
that when methods were allowed 1 000 runs of the target algorithm, half of them were chosen

2However, we note that the first author of that study has—in personal communication—expressed that he still
considers it unclear how to best choose the initial design size.
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Figure 10.4: Comparison of models based on different initial designs. We show boxplots
across 25 repetitions with different training but identical test data. In each plot, “IHS” denotes
iterated hypercube sampling, “Ra” denotes randomly sampled design points, “RL” denotes a
random LHD, and “SPO” denotes the LHD SPO uses.

by the initial design.
Here, we study the effect of the method for choosing which 250 parameter configurations

to include in the initial design, considering four methods: (1) a uniform random sample
from the region of interest; (2) a random Latin hypercube design (LHD); (3) the LHD used
in SPO; and (4) a more complex LHD based on iterated distributed hypercube sampling
(IHS) (Beachkofski and Grandhi, 2002).

We summarize the results of this analysis in Figure 10.4. From this figure, we see that
all initial designs led to similar performance. The only striking difference was for scenario
SAPS-QWH, where the pure random initialization strategy sometimes resulted in very poor
models. For the other scenarios, even pure random initialization resulted in models of
comparable performance. Note that this does not contradict results from the literature; for
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example, Santner et al. (2003) state on page 149: “It has not been demonstrated that LHDs
are superior to any designs other than simple random sampling (and they are only superior to
simple random sampling in some cases).” Breaking the tie by conceptual simplicity, we thus
use simple random LHDs in the remainder of this thesis.

10.3 Sequential Experimental Design
Having studied the initial design, we now turn our attention to the sequential search for
performance-optimizing parameters. Since log transformations consistently led to improved
performance and random LHDs yielded comparable performance to more complex designs,
we fixed these two design choices.

10.3.1 Intensification Mechanism
In order to achieve good results when optimizing parameters based on a noisy cost statistic
(such as runtime or solution quality achieved by a randomized algorithm), it is important to
perform a sufficient number of runs for the parameter configurations considered. However,
runs of a given target algorithm on interesting problem instances are typically computationally
expensive. Thus, we face Question 5 discussed in Chapter 4: how should we trade off the
number of configurations evaluated against the number of runs used in these evaluations?

Realizing the importance of this tradeoff, SPO implements an intensification mechanism:
a procedure for gradually increasing the number of runs performed for each parameter config-
uration. In particular, SPO increases the number of runs to be performed for each subsequent
parameter configuration whenever the incumbent θinc selected in an iteration was already the
incumbent in a previous iteration. SPO 0.3 (Bartz-Beielstein et al., 2005; Bartz-Beielstein,
2006; Bartz-Beielstein and Preuss, 2006) doubles the number of runs for subsequent function
evaluations whenever this happens, SPO 0.4 only increments the number of runs by one each
time. (We gave pseudocode for this in Section 9.5.5; see Procedures 9.10 and 9.11 on pages
142 and 143.) Both versions perform additional runs for the current incumbent, θinc, to make
sure it gets as many function evaluations as new parameter configurations. 3

While the intensification mechanisms of SPO 0.3 and SPO 0.4 work in most cases, we
have encountered runs of SPO in high-noise scenarios in which there is a large number of
parameter configurations with a few runs and “lucky” function evaluations, making these
configurations likely to become incumbents. In those runs, a new incumbent was picked
in almost every iteration, because the previous incumbent had been found to be poor after
performing additional runs on it. This situation continued throughout the entire algorithm
configuration trajectory, leading to a final choice of parameter configurations that had only
been evaluated using very few (“lucky”) runs and that performed poorly subsequently.

This observation motivated us to introduce a different intensification mechanism that
3Another approach for allocating an appropriate number of function evaluations to each parameter configuration

is optimal computational budget allocation (OCBA) by Chen et al. (2000). Lasarczyk (2007) implemented OCBA
as an explicit intensification method to improve SPO’s selection procedure, especially in high-noise scenarios, but
that implementation is not available yet. (It will be available in the next release of SPO, and it would be interesting
to experiment with it then.)
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Procedure 10.1: Intensify(~Θnew, θinc,M, R) in SPO+

Recall that N(θ) denotes the number of algorithm runs which have been performed for θ, i.e., the length of
Rθ . The maximal number of runs to perform with a configuration, maxR, is a parameter of configurators
using this procedure; in all our experiments, we set it to 2 000.

Input : Sequence of parameter configurations to evaluate, ~Θnew, here with one element; incumbent
configuration, θinc; model,M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
for i = 1, . . . , length(~Θnew) do1

θ ← ~Θnew[i]2
r ← 13
R← ExecuteRuns(R, θ, 1)4
numBonus← 15
if N(θ) > N(θinc) then6

R← ExecuteRuns(R, θinc, 1)7
numBonus← 08

while true do9
if ĉ(θ) > ĉ(θinc) then10

// ===== Reject challenger, perform bonus runs for θinc
R← ExecuteRuns(R, θinc, min(numBonus,maxR−N(θinc)))11
break12

if N(θ) ≥ N(θinc) then13

// ===== Challenger becomes incumbent
θinc ← θ14
break15

if total budget for configuration exhausted then16
return [θinc,R]17

r ← min(r · 2, N(θinc)−N(θ))18
R← ExecuteRuns(R, θ, r)19
numBonus← numBonus +r20

return [R,θinc]21

guarantees increasing confidence in the performance of the parameter configurations we select
as incumbents. In particular, inspired by the mechanism used in FocusedILS (Hutter et al.,
2007b), we maintain the invariant that we never choose an incumbent unless it is the parameter
configuration with the most function evaluations. Promising parameter configurations receive
additional function evaluations until they either cease to appear promising or receive enough
function evaluations to become the new incumbent. We provide pseudocode for this new
intensification mechanism in Procedure 10.1.

In detail, our new intensification mechanism works as follows. In the first iteration, the
incumbent is chosen exactly as in SPO, because at this point, all parameter configurations
receive the same number of function evaluations. From then on, in each iteration we select
a set of parameter configurations and compare them to the incumbent θinc. Denote the
number of runs that have so far been executed with parameter configuration θ as N(θ),
and the corresponding empirical performance as ĉN (θ). For each selected configuration θ,
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Procedure 10.2: SelectNewParameterConfigurations(M,θinc,R) in SPO+

Recall that p and m are parameters of SPO+. We used m = 1 and p = 5 in our experiments.
Input : Model,M; incumbent configuration, θinc; sequence of target algorithm runs, R
Output: Sequence of parameter configurations to evaluate, here with one element, [θnew]

// ===== Select p previously-used parameter configurations
Θseen ←

⋃
{R[1].θ, . . . ,R[n].θ}1

~Θnew ← p elements θ ∈ Θseen, drawn with probability ∝ 1/ĉ(θ) and without repetitions2

// ===== Select m parameter configurations with expected improvement
Θrand ← set of 10 000 elements drawn uniformly at random from Θ3
for θ ∈ Θrand do4

[µθ, σ
2
θ]← Predict(M, θ)5

EI(θ)← Compute expected improvement criterion E[I2(θ)] given µθ and σ2
θ6

Append to ~Θnew all θ ∈ Θrand, sorted by decreasing EI(θ)7
~Θnew ← ~Θnew[1, . . . , p+m]8

return ~Θnew9

we iteratively perform runs until N(θ) ≥ N(θinc) and/or ĉN (θ) > ĉN (θinc).4 Whenever
we reach a point where N(θ) ≥ N(θinc) and ĉN (θ) ≤ ĉN (θinc), we select θ as the new
incumbent. On the other hand, if we ever observe ĉN (θ) > ĉN (θinc), we reject θ. Note that
this criterion for rejection is very aggressive. Indeed, rejection frequently occurs after a single
run, at a point where a statistical test would not be able to conclude that θ is worse than θinc.
Upon rejecting a configuration θ, we also perform as many additional runs for θinc as were
just performed for evaluating θ. This ensures that we use a comparable number of runs for
intensification as for exploration of new parameter configurations.

The parameter configurations we evaluate against θinc at each iteration include one new
parameter configuration selected based on an expected improvement criterion (here E[I2],
see Section 10.3.2). They also include p previously-evaluated parameter configurations θ1:p,
where p is an algorithm parameter and in this work always set to 5. This set is constructed
by selecting p previously-evaluated configurations θ with probability proportional to 1/ĉ(θ),
without replacement. Procedure 10.2 provides pseudocode for this selection of parameter
configurations. This is called by the general SMBO framework, and the resulting parameter
configurations are evaluated against θinc in Procedure 10.1.

This mechanism of re-evaluating previous configurations guarantees that at each step there
will be a positive probability of revisiting a potentially-optimal parameter configuration after
it has been rejected. It allows us to be aggressive in rejecting new candidates, since we can
always revisit promising ones. Note that if the other SPO variants (0.3 and 0.4) discover
the true optimal parameter configuration but observe one or more very “unlucky” runs on
it, they will not revisit that configuration again. This occurs because for visited parameter
configurations with poor empirical performance across their performed runs the noise-free
Gaussian process model attributes a high mean and zero uncertainty. Thus no expected
improvement criterion will pick it again in later iterations.

4We batch runs to reduce overhead, starting with a single new run for each θ and doubling the number of new
runs iteratively up to a maximum of N(θinc)−N(θ) runs.
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Figure 10.5: Comparison of the intensification mechanisms in SPO 0.3, SPO 0.4, and SPO+.
We show boxplots of performance p1 000 (mean solution quality CMA-ES achieved in 100
test runs using the procedure’s chosen parameter configurations) achieved in the 25 runs of
each tuner for each test case.

Sphere Ackley Griewangk Rastrigin
SPO 0.3 vs SPO 0.4 0.07 0.015 0.95 1
SPO 0.3 vs SPO+ 0.20 0.020 0.00006 0.0005
SPO 0.4 vs SPO+ 0.56 0.97 0.00009 0.0014

Table 10.1: p-values for pairwise comparison of different intensification mechanisms for
optimizing CMA-ES performance on a number of instances. These p-values correspond to
the data in Figure 10.5.

We denote as SPO+ the variant of SPO that uses a random LHD, log-transformed cost
statistics, expected improvement criterion E[I2], and the new intensification criterion just
described. We compared SPO 0.3, SPO 0.4, and SPO+—all based on a random LHD and
log-transformed data—for our CMA-ES configuration scenarios and summarize the results in
Figure 10.5 and Table 10.1. For configuration scenario CMAES-ACKLEY, SPO 0.4 performed
best on average, but only insignificantly better than SPO+, one of whose runs performed
quite poorly. For scenario CMAES-SPHERE, on average SPO+ performed insignificantly better
than the other SPO variants, with better median performance and no poor outliers among its
25 runs. For the other two configuration scenarios, SPO+ performed both significantly and
substantially better than either SPO 0.3 or SPO 0.4, finding parameter configurations that led
to CMA-ES performance orders of magnitude better than those obtained from SPO 0.3.

More importantly, as can be seen in Figure 10.6, over the course of the optimization process,
SPO+ showed much less variation in the quality of the incumbent parameter configuration
than did the other SPO variants. This was the case even for scenario CMAES-ACKLEY, where
SPO+ did not perform best on average at the very end of its trajectory, and can also be seen
for CMAES-GRIEWANGK and CMAES-RASTRIGIN functions, where SPO+ clearly produced the
best results.

In Hutter et al. (2009a), we performed a more in-depth evaluation of these results. There,
we found that the poor performance of some of the parameter configurations found by SPO
variants 0.3 and 0.4 was due to a small percentage of target runs with extremely poor perfor-
mance. The solution cost distributions of CMA-ES were often multimodal, with orders of
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Figure 10.6: Comparison of the intensification mechanisms in SPO 0.3, SPO 0.4, and SPO+.
We show performance pk (mean solution quality CMA-ES achieved in 100 test runs using the
procedure’s chosen parameter configurations) as a function of the number of target algorithm
runs, k, the method is allowed. We plot means of pk across 25 repetitions of each algorithm
configuration procedure.

Sphere Ackley Griewangk Rastrigin
E[I] vs E[I2] 0.29 0.55 0.016 0.90
E[I] vs E[Iexp] 0.63 0.25 0.11 0.030
E[I2] vs E[Iexp] 0.54 0.32 0.77 0.38

Table 10.2: p-values for pairwise comparison of different expected improvement criteria for
optimizing CMA-ES performance on a number of instances. These p-values correspond to the
data in Figure 10.7.

magnitude differences between the qualities of modes. Intuitively, in such noisy domains,
SPO+’s mechanism of only changing incumbents when enough evidence is gathered for the
new candidate is particularly important.
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Figure 10.7: Comparison of three expected improvement criteria in SPO+. We show boxplots
of performance p1000 (mean solution quality CMA-ES achieved in 100 test runs using SPO+’s
chosen parameter configurations) achieved in the 25 runs of each tuner for each test case.

10.3.2 Expected Improvement Criterion
In sequential model-based optimization, parameter configurations to be investigated are
selected based on an expected improvement criterion (EIC). This aims to address the explo-
ration/exploitation tradeoff faced when deciding whether to learn more about new, unknown
parts of the parameter space, or to intensify the search locally in the best known region. We
briefly summarize two common versions of the EIC, and then describe a novel variation that
we also investigated.

The classic expected improvement criterion (see, e.g., Jones et al., 1998) is defined
as follows. Given a deterministic function f and the minimal value fmin seen so far, the
improvement at a new parameter configuration θ is defined as

I(θ) := max{0, fmin − f(θ)}. (10.2)

Of course, this quantity cannot be computed, since f(θ) is unknown. We therefore compute
the expected improvement, E[I(θ)]. To do so, we require a probabilistic model of f , in our
case the Gaussian process model. Let µθ = E[f(θ)] be the mean and σ2

θ be the variance
predicted by our model, and define u = fmin−µθ

σθ
. Then one can show that E[I(θ)] has the

following closed-form expression:

E[I(θ)] = σθ · [u · Φ(u) + ϕ(u)], (10.3)

where ϕ and Φ denote the probability density function and cumulative distribution function of
a standard normal distribution, respectively.

A generalized expected improvement criterion was introduced by Schonlau et al. (1998),
who considered the quantity

Ig(θ) := max{0, [fmin − f(θ)]g} (10.4)

for g ∈ {0, 1, 2, 3, . . .}, with larger g encouraging more exploration. The value g = 1
corresponds to the classic EIC. SPO uses g = 2, which takes into account the uncertainty in
our estimate of I(θ) since E[I2(θ)] = (E[I(θ)])2 + Var(I(θ)) and can be computed by the
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closed-form formula

E[I2(θ)] = σ2
θ · [(u2 + 1) · Φ(u) + u · ϕ(u)]. (10.5)

One issue that seems to have been overlooked in previous work is the interaction between
log transformations of the data and the EIC. When we use a log transformation, we do so in
order to increase predictive accuracy, yet our loss function continues to be defined in terms of
the untransformed data (e.g., actual runtimes). Hence we should optimize the criterion

Iexp(θ) := max{0, fmin − eh(θ)}, (10.6)

where h(·) predicts log performance and fmin is the untransformed best known function value.
Let v := ln(fmin)−µθ

σθ
. Then, we have the following closed-form expression:

E[Iexp(θ)] = fminΦ(v)− e
1
2
σ2
θ+µθ · Φ(v − σθ). (10.7)

This closed-form expression can be derived as follows. Let X denote a random variable
distributed according to a Gaussian distribution N (µ, σ2). Then,

E[max(0, fmin − exp(X))]

=

∫ ∞
−∞

max(0, fmin − exp(x))p(x)dx

=

∫ ln(fmin)

−∞
(fmin − exp(x))

1

σ
ϕ(
x− µ
σ

)dx

= fminΦ(
ln(fmin)− µ

σ
)−

∫ ln(fmin)−µ
σ

−∞
exp[xσ + µ]

1√
2π

exp

[
−1

2
x2

]
dx

= fminΦ(
ln(fmin)− µ

σ
)−

∫ ln(fmin)−µ
σ

−∞
exp[

1

2
σ2 + µ]

1√
2π

exp

[
−1

2
(x− σ)2

]
dx

= fminΦ(
ln(fmin)− µ

σ
)− exp[

1

2
σ2 + µ]Φ(

ln(fmin)− µ
σ

− σ).

In Figure 10.7 and Table 10.2, we experimentally compare variants of SPO+ using each
of these three EI criteria on the four CMA-ES configuration scenarios, based (as before) on a
random LHD and log-transformed data. Overall, the differences are small. On average, E[I2]
yielded the best results for test case CMAES-sphere and our new criterion E[Iexp] performed
best in the remaining cases. Though not visually obvious from the boxplots, two of the 12
pairwise differences were statistically significant as judged by a Max-Wilcoxon test.

10.3.3 Overall Evaluation
In Sections 10.3.1 and 10.3.2, we fixed the design choices of using log transformations and
initial designs based on random LHDs. Now, we revisit these choices: using our new SPO+

intensification criterion and expected improvement criterion E[I2], we studied how much the

161



Procedure SAPS median runtime [search steps]
SAPS default from Hutter et al. (2002) 85.5 · 103

CALIBRA(100) from Hutter et al. (2007b) 10.7 · 103 ± 1.1 · 103

BasicILS(100) from Hutter et al. (2007b) 10.9 · 103 ± 0.6 · 103

FocusedILS from Hutter et al. (2007b) 10.6 · 103 ± 0.5 · 103

SPO 0.3 18.3 · 103 ± 13.7 · 103

SPO 0.4 10.4 · 103 ± 0.7 · 103

SPO+ 10.0 · 103 ± 0.4 · 103

Table 10.3: Performance comparison of various configuration procedures for optimizing SAPS

on instance QWH. We report mean ± standard deviation of performance p20 000 (median search
steps SAPS required on QWH in 1 000 test runs using the parameter configurations the method
chose after 20 000 algorithm runs), across 25 runs of each method. Based on a Mann-Whitney
U test, SPO+ performed significantly better than CALIBRA, BasicILS, FocusedILS, and
SPO 0.3 with p-values 0.015, 0.0002, 0.0009, and 4 · 10−9, respectively; the p-value for a
comparison against SPO 0.4 was 0.06.
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Figure 10.8: Comparison of SPO variants (all based on a random LHD and log-transformed
data) for minimizing SAPS median runtime on instance QWH. We plot the performance pk of
each method (median search steps SAPS required on instance QWH in 1 000 test runs using
the parameter configurations the method chose after k algorithm runs), as a function of the
number of algorithm runs, k, it was allowed to perform. These values are averaged across 25
runs of each method.

final performance of SPO+ changed when not using a log transform and when using different
methods to create the initial design. Not surprisingly, no initial design led to significantly
better final performance than any of the others. The result for the log transform was more
surprising: although we saw in Section 10.2 that the log transform consistently improved
predictive model performance, based on a Mann-Whitney U test it turned out to significantly
improve final algorithm configuration performance only for CMA-ES-sphere.

Finally, using the single configuration scenario SAPS-QWH, we compared the performance
of SPO 0.3, 0.4, and SPO+ (all based on random LHDs and using log-transformed data) to the
algorithm configuration procedures studied by Hutter et al. (2007b). We summarize the results
in Table 10.3. SPO 0.3 performed worse than those methods, SPO 0.4 performed comparably,

162



and SPO+ outperformed all methods with the exception of SPO 0.4 significantly albeit only
by a small margin. Figure 10.8 illustrates the difference between SPO 0.3, SPO 0.4, and
SPO+ for this SAPS benchmark. Similar to what we observed for CMA-ES (Figure 10.6),
SPO 0.3 and 0.4 changed their incumbents very frequently, with SPO 0.4 showing more
robust behaviour than SPO 0.3, and SPO+ in turn much more robust behaviour than SPO 0.4.

10.4 Reducing Overheads: SPO∗ and RANDOM∗

In this and in the previous chapter, we measured the budget allocated to a configuration
procedure as the number of target algorithms it is allowed to execute. This is the standard
measure in blackbox function optimization. It is meaningful if all target algorithm runs
take the same amount of time and clearly dominate any computational costs incurred by
the configuration procedure. However, these conditions do not apply for the automated
configuration of algorithms, where (1) some target algorithm runs can be much faster than
others, and (2) in some configuration scenarios target algorithm runs are fast compared to the
overhead’s of the configuration procedure.

In fact, the experiment of running SPO+ on SAPS-QWH described in Section 10.3.3 required
about 10 CPU hours to perform its allowed 20 000 target algorithms runs. Only about
10 minutes of this time was spent actually running SAPS, for an average runtime of 30
milliseconds per target algorithm run. (Poor parameter configurations led to much larger
runtimes, but in scenario SAPS-QWH, runs were cut off after one second.) Thus, in that case the
configuration procedure’s overhead was a factor of 60.

As discussed in Section 3.6.4, there are two types of overhead: implementation-specific
overhead that could be reduced with better-engineered code, and overhead due to the computa-
tional complexity of building models and optimizing EIC. We do not count the first type of
overhead since it could be substantially reduced in a straightforward manner. The second type
of overhead is more fundamental and primarily occurs in model-based optimization, which is
computationally more expensive than the model-free approaches discussed in Part III of this
thesis. We thus do count that overhead.

We now discuss a modification of SPO+ to limit that computational overhead. For this
purpose, we modify the general SMBO framework to keep track of the overhead time spent
learning the model, tmodel, and optimizing EIC, teic—see Algorithm Framework 10.3. The
new mechanism for selecting configurations is detailed in Procedure 10.4. Note that this
procedure interleaves random configurations with configurations selected by optimizing EIC.
Since each iteration is now time-bounded rather than bounded by the number of configurations,
we eliminate the previous bound on parameter configurations, m (compare Procedure 9.8 on
page 140). In Procedure 10.5, we introduce a modified intensification procedure that executes
runs of the target algorithm for at least time toverhead = tmodel + tei. Specifically, the outer
for-loop now runs until the time spent executing the target algorithm in this iteration exceeds
toverhead, but at least for p+ 2 iterations—the p old configurations, one EIC configuration and
one random configuration. Due to the extra random configurations evaluated in each iteration,
we no longer rely on the Latin hypercube design for initialization. Instead, we initialize the
model based on a single run using the algorithm’s default configuration. These changes result
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Algorithm Framework 10.3: Sequential Model-Based Optimization With a Time
Budget.

Input : Target algorithm A
Output: Incumbent parameter configuration θinc
[R, θinc]← Initialize()1

M← ∅2

repeat3

[M,θinc, tmodel]← FitModel(M, R, θinc)4

[~Θnew, tei]← SelectNewConfigurations(M, θinc, R)5

[R,θinc]← Intensify(~Θnew, θinc,M, R, tmodel + tei)6

until total time budget for configuration exhausted7

return θinc8

Procedure 10.4: SelectNewParameterConfigurations(M,θinc,R) in SPO∗

p is a parameter of configurators using this method; we set it to p = 5 in SPO∗.
Input : Model,M; incumbent configuration, θinc; sequence of target algorithm runs, R
Output: Sequence of parameter configurations to evaluate, ~Θnew

// ===== Select p previously-used parameter configurations
Θseen ←

⋃
{R[1].θ, . . . ,R[n].θ}1

~Θnew ← p elements θ ∈ Θseen, drawn with probability ∝ 1/ĉ(θ) and without repetitions2

// ===== Select parameter configurations with expected improvement
Θrand ← set of 10 000 elements drawn uniformly at random from Θ3
for θ ∈ Θrand do4

[µθ, σ
2
θ]← Predict(M, θ)5

EI(θ)← Compute EIC E[Iexp(θ)] (see Section 10.3.2) given µθ and σ2
θ6

Let tei denote the total time spent computing expected improvement7

Let ~Θei be a list of all θ ∈ Θrand, sorted by decreasing EI(θ)8

// ===== Interleave configurations with high EI, and random configurations
for i = 1, . . . , 10 000 do9

Append ~Θei[i] to ~Θnew10

Draw a parameter configuration θ uniformly at random from Θ and append it to ~Θnew11

return [~Θnew, tei]12

in a procedure we call SPO∗. One final difference between SPO+ and SPO∗ is the expected
improvement criterion (EIC) used. While in SPO+, we use the same EIC previous SPO
variants use, E[I2], in SPO∗, we use our new EIC E[Iexp(θ)] (see Section 10.3.2). This did
not lead to significant differences in our experiments, but E[Iexp(θ)] is theoretically better
justified for the log transformations we use.

In Figure 10.9, we show that in configuration scenario SAPS-QWH this new version, SPO∗,
finds good configurations substantially faster than SPO+. We show the performance of
SPO+ (exactly as used in Section 10.3.3: with an LHD of 500 points and 2 repetitions each),
and two versions of SPO∗: our normal variant discussed above (using a single run of the
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Procedure 10.5: Intensify(~Θnew, θinc,M, R, p, toverhead) in SPO∗

p is a parameter of configurators using this method; we set it to p = 5 in SPO∗.
Recall that N(θ) denotes the number of algorithm runs which have been performed for θ, i.e., the length of
Rθ . The maximal number of runs to perform with a configuration, maxR, is a parameter of configurators
using this procedure; in all our experiments, we set it to 2 000.

Input : Sequence of parameter configurations to evaluate, ~Θnew; incumbent configuration, θinc; model,
M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
for i = 1, . . . , length(~Θnew) do1

if i ≥ p+ 2 and time spent in this call to this procedure exceeds toverhead then2
break3

θ ← ~Θnew[i]4
r ← 15
R← ExecuteRuns(R, θ, 1)6
numBonus← 17
if N(θ) > N(θinc) then8

R← ExecuteRuns(R, θinc, 1)9
numBonus← 010

while true do11
if ĉ(θ) > ĉ(θinc) then12

// ===== Reject challenger, perform bonus runs for θinc
R← ExecuteRuns(R, θinc, min(numBonus,maxR−N(θinc)))13
break14

if N(θ) ≥ N(θinc) then15

// ===== Challenger becomes incumbent
θinc ← θ16
break17

if total time budget for configuration exhausted then18
return [θinc,R]19

r ← min(r · 2, N(θinc)−N(θ))20
R← ExecuteRuns(R, θ, r)21
numBonus← numBonus +r22

return [R,θinc]23

default for initialization), and a variant using the same LHD as SPO+. Comparing the two
configuration procedures with the same LHD, after the runs for the initial design are finished,
SPO∗ performed better than SPO+, leading to significantly improved performance (judged
by a Mann Whitney U test). Without the overhead time of the initial design, our regular SPO∗

version started finding good configurations much faster. After one hour, it was, however, only
insignificantly better than the SPO∗ version which used the larger LHD.

Interestingly, the new intensification criterion in SPO∗ did not only help to improve the
model-based optimization approach, it also transformed pure random search into a competitive
configuration procedure. Specifically, we studied a configuration procedure—dubbed RAN-
DOM∗—that only differed from SPO∗ in Procedures FitModel and SelectNewConfigurations:
the former procedure is empty in RANDOM∗ and the latter returns a list of 10 000 parameter
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Figure 10.9: Comparison of SPO+ and SPO∗. We carried out 25 runs of each configurator
and show performance pt (median number of SAPS search steps using the procedure’s chosen
parameter configurations). ‘SPO∗(SPO+ LHD)’ denotes a version of SPO∗ that uses the
same LHD as the SPO+ variant shown (500 · 2 data points). Subplot (a): pt as a function of
the time, t, the method is allowed for configuration (mean over 25 runs). Subplot (b): boxplot
of performance values p3600 achieved in the 25 runs.

configurations chosen uniformly at random. This very simple configuration procedure turned
out to yield somewhat better performance than SPO∗ on scenario SAPS-QWH, albeit not
significantly better (we give detailed experimental results in the next chapter, in Table 11.1
on page 190). Our conclusion is therefore that the performance improvements we observed
are largely due to our better intensification criteria as opposed to the model underlying the
various SPO variants. In the next chapter, we will study whether this underlying model can be
improved to construct a more effective configuration procedure.

10.5 Chapter Summary
In this chapter we evaluated and improved important components of the sequential parameter
optimization (SPO) framework. In our evaluation of the initial model, we found that log
transformations of the empirical cost statistics substantially improved predictive quality,
while various methods for constructing the initial design only led to insignificantly different
results. We evaluated two components of the sequential experimental design, introducing
a new expected improvement criterion (EIC) to deal with log transformations, and a new
intensification mechanism. Though theoretically more principled, our new EIC did not
consistently improve performance in practice. In contrast, our new intensification mechanism
substantially improved robustness and led us to a new configuration procedure, SPO+ (which
also uses a log-transformation of cost statistics). On configuration scenario SAPS-QWH, SPO+

was competitive with state-of-the-art configuration procedures. In particular, it significantly—
but not substantially—outperformed FOCUSEDILS, PARAMILS, and CALIBRA.
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Finally, we bounded SPO+’s computational overhead to arrive at configuration procedure
SPO∗ which found good configurations much faster than SPO+. SPO∗ interleaves randomly-
sampled parameter configurations with the ones selected based on the response surface model
and employs a further-improved intensification mechanism. Using only randomly-sampled
configurations with this new intensification criterion led us to a new variant of RANDOM-
SEARCH—dubbed RANDOM∗—that turned out to perform competitively with SPO∗. Thus, we
concluded that our performance improvements were largely due to the improved intensification
criteria, and not to the usefulness of the model per se. In the next chapter, we will study
whether better models can improve this performance.
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Chapter 11

Improvements II:
Different Models

Prediction is very difficult, especially about the future.
—Niels Bohr, Danish atomic physicist

In this chapter, we study the use of alternative response surface models in the sequential model-
based optimization (SMBO) framework. While the SPO variants we studied in the previous
chapters employ a “vanilla” noise-free Gaussian process (GP) model, called the DACE model,
we use a modified version of random forests (RFs) and the existing projected process (PP)
approximation of Gaussian processes (GPs). We study the performance of these and the
DACE model, analyzing model performance both qualitatively and quantitatively. Since the
configuration procedures we discuss in this chapter are still limited to optimizing continuous
algorithm parameters for single problem instances, we study the seven SINGLEINSTCONT

configuration scenarios defined in Section 3.5.2, in which the objective is to minimize SAPS

runtime on single instances.
For these configuration scenarios, in which the objective is to tune numerical parameters on

single instances, we demonstrate that both RF and approximate GP models yield substantially
better predictions than the DACE model, and take orders of magnitude less time to do so. We
introduce novel configuration procedures based on our new models and demonstrate that the
version based on approximate GP models significantly outperforms SPO∗ and RANDOM∗

(both defined in Section 10.4 on page 163). It also clearly outperforms FOCUSEDILS, which
is handicapped in this continuous optimization task by searching a restricted discretized
subspace.

11.1 Random Forests
Random forests (Breiman, 2001) are a flexible tool for regression and classification. We chose
to study them (in addition to Gaussian process models) since we are interested in building
models for algorithms with categorical parameters. Random forest (RF) models are well
known to handle such data well. For the time being, however, we only consider continuous
inputs, deferring categorical variables to the next chapter. Here, we describe the standard RF
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model framework for regression and also introduce some novel elements. We largely follow
the presentation of Hastie et al. (2009).

11.1.1 Regression Trees
Regression trees are simple tree-based predictors of continuous response variables. They
partition the input space (in our case, the parameter configuration space), Θ, into disjoint
regions R1, . . . , RM and use a simple model—such as a constant—for prediction in each
region. Here, we use a constant cm in region Rm. This leads to the following prediction for an
input point θ ∈ Θ:

µ̂(θ) =
M∑
m=1

cmδ(θ ∈ Rm),

where δ is the Kronecker delta function. Note that since the regions Rm partition the input
space, this sum will always only have one nonzero element.

We denote the set of training data points asD = {(θi, oi)}ni=1, and the subset of data points
in region Rm as Dm. Under the standard squared error loss function

∑n
i=1 (oi − µ̂(θi))

2, the
optimal choice of constant cm in region Rm is the sample mean of the data points that fall
into the region,

cm =
1

|Dm|
∑
θi∈Rm

oi. (11.1)

Finding the optimal regression tree (i.e., the optimal partition of input space) is typically
computationally infeasible. Thus, we resort to a greedy recursive tree construction mechanism.
This process starts at the root of the tree with all available data 〈(θ1, o1), . . . , (θn, on)〉. At
each node, we consider binary partitionings of the node’s data along a split variable j and split
points s: data point θi is put into region R1(j, s) if θi,j < s and into region R2(j, s) otherwise,
where θi,j denotes the value of the j-th element of input θi. At each node, split variable j and
split point s are chosen to minimize some loss function l(j, s), in our case the sum of squared
differences to the regions’ means,

l(j, s) =

 ∑
θi∈R1(j,s)

(oi − c1)2 +
∑

θi∈R2(j,s)

(oi − c2)2

 , (11.2)

where c1 and c2 are chosen according to Equation (11.1) as the sample mean in regions
R1(j, s) and R2(j, s), respectively.

Starting with the complete training data at the root, the tree building mechanism finds
the best split at each node and partitions the data points into the two resulting regions of the
node’s two children. It then recursively applies the same process to the children. The process
terminates if no more splits are possible (all training data points in a node share the same θ
values) or if there are fewer than nmin data points left in a node, where nmin is an algorithm
parameter that aims to prevent over-fitting. There also exist methods for pruning regression
trees by removing useless branches (which we do not use). For these, we refer the interested
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Procedure 11.1: Fit Random Forest(D, B, perc, nmin)
Input : Data D = {(θi, oi)}ni=1 (where each θi has d elements); number of trees, B;

percentage of variables to consider at each split, perc; minimal size for split, nmin

Output : A random forest (set of trees), {T1, . . . , TB}
for b = 1, . . . , B do1

(a) Draw a bootstrap sample s of n elements from {1, . . . , n}, with repetitions, and let2
Db = {(θs(i), os(i))}ni=1

(b) Grow a regression tree Tb to data Db, by recursively splitting nodes as long as they3
contain at least nmin data points:
begin4

Draw random subset, V ⊆ {1, . . . , d}, of cardinality max(1, bperc · dc)5
Select split variable/point combination (j, s) with j ∈ V to min. Eq. (11.2)6
Split node into 2 child nodes with data R1(j, s) and R2(j, s), respectively7
At each leaf node m with associated region Rm, store the response values Om of the8
training data points in that region, Om = {os(i)|θs(i) ∈ Rm}

end9

RF← {T1, . . . , TB}10
return RF11

reader to the book by Hastie et al. (2009).
In order to predict the response value at a new input, θi, we propagate θ down the tree,

that is, at each node with split variable j and split point s, we continue to the left child node if
θi,j < s and to the right child node otherwise. The prediction for θi is the constant cm in the
leaf this process leads to.

11.1.2 Standard Random Forest Framework
If grown to sufficient depths, regression trees are very flexible predictors. They are able to cap-
ture very complex interactions and thus typically have low bias. However, this great flexibility
also leads to large variance: small changes in the data can lead to a dramatically different
tree. One common technique to reduce variance of low-bias predictors is bagging (Hastie
et al., 2009). This stands for bootstrap aggregation and works by fitting multiple so-called
base learners to B random bootstrap samples of the data. The predictions of these B learners
are then combined to form an overall prediction.

Procedure 11.1, adapted from Hastie et al. (2009), shows how bagging is used to build
a random forest. Note that there are two tuning parameters: the percentage of variables to
consider at each split point, perc, and the parameter determining when to stop splitting a node,
nmin. The number of trees is of a slightly different nature: the more trees, the better the
prediction, but the more costly the procedure. Breiman (2001) suggests to use small random
subsets, V , of variables for classification. However, for regression he states—confirming our
own experience—that V should be much larger. Throughout, we use the default percentage of
perc = 5/6. Later on in this chapter (in Section 11.4.2), we compare versions with two values
of nmin, 1 and 10, and eventually choose nmin = 10.

Prediction for a new input θ in the standard random forest framework is trivial: predict
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the response for θ with each tree and average the predictions.

11.1.3 Uncertainty Estimates Across Trees
We introduce a simple method for quantifying predictive uncertainty in random forests. Even
though straightforward, we are not aware of any previous publication of this idea.1

Intuitively, if the individual tree predictions y1, . . . , yB tend to agree for a new data point,
we are more certain about the prediction than if they disagree vastly. Following this intuition,
we compute the uncertainty estimate for a new data point θ as the empirical variance of the
individual tree predictions (y1, . . . , yB).

Our implementation of random forests also chooses split points in a non-standard way
in order to improve uncertainty estimates. We still select a split point that minimizes the
loss in Equation (11.2). However, note that if this loss is minimized by splitting on variable
j between the values of θkj and θlj , then we are still free to choose the exact split value
anywhere in the interval (θkj ,θlj) (assuming without loss of generality that θkj < θlj). In
typical implementations, the split value is chosen as the midpoint between θkj and θlj . Here,
instead, we draw it uniformly at random from the interval (θkj ,θlj). In the limit of an infinite
number of trees, this leads to a linear interpolation of the training data instead of a partition
into regions of constant prediction—see Figure 11.1(b) for an example. Furthermore, it causes
variance to vary smoothly and grow further away from data points.

11.1.4 Transformations of the Response Variable
Transformations often help to improve the model fit. We have already shown an example
for this in Section 10.2.2. However, in Section 9.4 we have also shown an example where
computing a cost statistic (the arithmetic mean) after a (log-)transformation effectively changes
the cost statistic (in that case to the geometric mean). Random forests allow us to use
transformations of the response variable without incurring this problem.

There are several ways in which we can integrate transformations of the response variable
into random forests. Firstly, when we wish to model a cost based on a statistic, τ , and use a
response transformation, t(·), we can make predictions for a region Rm as either

cm = τ̂({t(oi)|θi ∈ Rm}), (11.3)

or
cm = t(τ̂({oi|θi ∈ Rm})). (11.4)

The traditional approach of applying a transformation outside of the learner leads to the first
alternative, which is prone to exactly the same problem we discussed above: this transformation
implicitly changes the cost statistic being modelled (e.g., from arithmetic to geometric mean).
Here, we apply the second approach, which is not prone to this problem. Optimally, we
would like to also substitute Equation (11.1) by Equation (11.4) to reflect this modified

1Meinshausen (2006) recently introduced quantile regression trees to predict quantiles of the predictive
distribution for single responses. Our goal is slightly different: we are interested in an uncertainty of the mean
response (or another user-defined cost statistic) at an input.
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Algorithm 11.2: Prediction with Random Forest(RF, θ, t)
Input : Random Forest RF={T1, . . . , TB}; parameter configuration, θ; transformation t
Output : Predicted mean µ and variance σ2 of cost measure c(θ).
for b = 1, . . . , B do1

Let Rm be the region of Tb containing θ, with stored set of response values Om2
yb ← t(τ̂({oi|t(oi) ∈ Om}))3

µ← 1
B

∑B
b=1 yb4

σ2 ← 1
B−1

∑B
b=1(yb − µ)25

return [µ, σ2]6

criterion throughout the tree construction process. However, in order to use existing methods
to efficiently compute the loss function l(j, s) (see Equation (11.2)) in amortized O(1) time,
we computed the transformed response outside the learner and used the standard tree building
procedure as described above, just as one would do in the traditional approach. Only at
prediction time, we applied Equation (11.4) to form the prediction ob of each tree Tb. (In
future work, it would be interesting to study whether performance improves if Equation (11.1)
is replaced by (11.4) throughout, and whether this can be achieved computationally efficiently.)
We compute empirical mean and variance across the individual tree predictions; since in our
case the predictions are log-transformed, the Gaussian distribution defined by this mean and
variance corresponds to a log-Normal distribution in untransformed space. This is a much
better choice than, for example, a Gaussian in untransformed space: log-Normal distributions
have positive support and a wide spread, much like typical runtime distributions of randomized
algorithms.

Procedure 11.2 gives pseudocode for prediction in our version of RFs. We use standard
RF training as outlined in Procedure 11.1, with input data D = {(θi, t(oi))}ni=1, with t being
log10.

11.2 Qualitative Comparison of Models
The models we discussed so far—based on standard Gaussian stochastic processes (GPs), noise-
free GPs, and random forests—all have advantages and disadvantages. Here, we qualitatively
compare model predictions and how the models integrate into the SMBO approach.

11.2.1 Qualitative Model Quality
Like GP models, our version of random forests (RFs) can be used to model noise-free and
noisy functions. Figure 11.1 shows that our standard RF model yields meaningful predictions
and uncertainty estimates for noisy functions—in particular, for the 1-d Levy function we
already used for illustrations in Section 9.1. If we know that observations are noise-free it is
desirable to yield perfect predictions on the training data. For example, the DACE model (a
noise-free GP model) has this property: for previously-seen data points its predictive mean
equals the true function value and the predictive variance is zero. While our standard RF
model does not have this property, we can easily achieve it by skipping the bootstrap sampling

172



0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

parameter x

re
s
p
o
n
s
e
 y

 

 

RF mean prediction

RF mean +/− 2*stddev

True function

Function evaluations

EI (scaled)

(a) RF fit to noisy data
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(b) RF fit to noise-free data

Figure 11.1: Step 1 of SMBO based on RF models. For the noisy data in (a), we use our
standard RF models. For the noise-free data in (b), we skip the bootstrap step to perfectly
reproduce the training data. Note that in the noise-free case expected improvement is exactly
zero at previously-observed data points.

step—using the complete training data to build each tree—and splitting nodes until no more
splits are possible (nmin = 1). Figure 11.1(b) illustrates this “noise-free” RF fit for our
noise-free 1-d function. Note that for data points outside the training set each tree can still
yield different predictions. This is due to the remaining randomness in the random selection
of split variables and split points.

Proportional Noise

In algorithm configuration, the observation noise is rarely additive Gaussian. For example,
algorithm runtime—the quantity we are primarily interested in minimizing—is strictly positive.
Good approximations of its distribution can often be achieved with exponential distributions
or generalizations thereof, such as the Weibull distribution (Hoos, 1999a). Here, we study how
well GPs and RFs can fit data under such observation noise.

Figure 11.2 shows the drawback of a standard GP model for such non-stationary noise:
its uncertainty estimates are too low in the high-noise region and too high in the low noise
region.2 In contrast, the RF (see Figure 11.2(b)) adapts to the data and yields better uncertainty
estimates. For brevity, here and in the following we omit the fairly uninteresting plots for
the DACE model. They were all qualitatively similar to Figure 9.2(b): its mean predictions
perfectly tracked the sample average at the training data, and its predictive variance was low

2Non-stationary GP models could in principle be used instead. In particular, also in need of approximate GP
models, we experimented with sparse online Gaussian processes (Csat and Opper, 2003) and sparse pseudo-input
Gaussian processes (Snelson and Ghahramani, 2006). However, the former one was orders of magnitude slower
than the standard implementation we ended up using (Rasmussen and Williams, 2006), and the latter was tied to a
particular kernel function that we could not extend to categorical parameters (discussed in the next chapter).
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(a) Standard GP fit
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(b) RF fit

Figure 11.2: Standard GP and RF model fits for proportional noise. For a true function value
y, observations were drawn from an exponential distribution with mean y.
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(a) Standard GP fit
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(b) RF fit

Figure 11.3: Standard GP and RF model fits in log space for proportional noise. The data is
identical to that shown in Figure11.2 (but plotted on a logarithmic y-axis).

throughout (zero at the training data points).
A log transformation renders proportional noise stationary. As we show in Figure 11.3,

such a transformation strongly improves the uncertainty estimates of the GP model. Note,
however, that its mean predictions are somewhat below the true function. This is because
when fit to log-transformed data, the standard GP model tracks the geometric mean of the
observations instead of the arithmetic mean (see Section 9.4).
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(a) Standard GP fit on log-transformed raw data
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(b) RF fit in log domain

Figure 11.4: Standard GP and RF fits to log-transformed data where noise in this example is
non-stationary and multiplicative. This is the same data as in Figure 9.3 on page 135. The
standard GP model fits the mean of the logs, i.e., the geometric mean. The RF model fits the
true function in log space.

Non-Stationary Proportional Noise

As long as the noise (of the log-transformed response) is stationary fitting the geometric mean
is not necessarily a problem. This is because for stationary noise, the minima of the geometric
mean and the arithmetic mean coincide (in fact, all comparisons between the geometric means
at two data points will yield the same result as a comparison of the corresponding arithmetic
means).

However, if the noise is proportional and non-stationary (even after the log transform),
SMBO based on a standard GP model fitted to log-transformed response values will fail to
minimize the arithmetic mean. Figure 11.4 demonstrates that the GP model has two problems.
First, fitting geometric instead of arithmetic mean, it predicts the function’s minimum to be at
the far left. Second, having to choose one global noise variance, it is much too confident in
its predictions in the high-noise region on the left. In contrast, the RF avoids both of these
problems: it tracks the true function and has higher uncertainty in high-noise regions.

11.2.2 Potential Failure Modes of SMBO Using Various Models
All of the models we introduced—standard GPs, noise-free GPs fit on cost statistics, and
RFs—have potential qualitative failure modes. Here, we demonstrate these failure modes on
our simple 1-d function.
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(a) Standard GP fit, step 2
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(b) Standard GP fit, step 100

Figure 11.5: One failure mode of SMBO based on the standard GP model. Even for simple
additive noise (same as in Figure 9.2(a)), the sequential optimization approach keeps revisiting
the same small area. We show steps 2 and 100 of the sequential procedure. All queried points
lie between 0.63 and 0.635; the optimum lies at 0.64.

Potential Failure Mode of SMBO based on Standard Gaussian Process

In Figure 11.5, we show a failure mode of SMBO based on a standard GP model. Observe
that even in this simple case of additive Gaussian noise, the sequential optimization keeps
revisiting the same point (the same very small region) over and over again, for at least
100 sequential steps. The problem here is that the GP model barely changes when adding
additional observations for this point. Since the model does not change much it makes similar
recommendations in the next step, and so on. Note that in this case, the search stagnates
starting in step one of the procedure! The effect is even worse for proportional noise models,
such as in Figure 11.2(a). There, the search stagnates as well, but at a worse point: due to the
non-stationary noise the predicted minimum is further away from the true minimum.

Potential Failure Mode of SMBO based on the DACE Model

Fits of a noise-free GP model, such as the DACE model, to noisy data can be extremely
sensitive; we demonstrate this in Figure 11.6. Since the DACE model cannot attribute the
discrepancy in the cost statistics of two nearby data points to noise, it is forced to reduce its
length scale λ (compare Section 9.2) in order to perfectly interpolate the cost statistics for
all training data. However, note that despite the extremely sensitive model the sequential
optimization process can still continue. In this case, the model still captures the overall trend
in the data (with very large local fluctuations). Correspondingly, the expected improvement
function yields meaningful values and—in contrast to the standard GP model—keeps exploring
the space.
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(a) Noise-free GP fit, step 4
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(b) Noise-free GP fit, step 7

Figure 11.6: Failure model of SMBO based on DACE model. We show additional sequential
optimization steps based on the DACE model (a noise-free GP model) for the same noise
model as in Figure 9.2. In step 4, the length scale starts getting quite short, and by step 7 (and
thereafter) it is extremely short. The sequential optimization process can still continue, albeit
with an extremely noise model.

Potential Failure Mode of SMBO based on Random Forest

Finally, random forests have potential failure modes, too. For example, Figure 11.7 demon-
strates a problem for the simple additive noise model. Figure 11.7(a) shows the progress of
SMBO based on a random forest model at step 50. Note that the search has not explored many
regions far away from the initial design points.3 Figure 11.7(b) provides more detail for the
area with two spikes in expected improvement. In both cases, the spike occurs in areas with
low predictive mean and comparably high variance. These coincide with regions that contain
many training data points, some of which have very low response values. It thus seems that
SMBO based on the RF model tends to have problems with exploring new, previously-unseen
areas, at least in one-dimensional optimization. This effect is more subtle than the previously-
discussed failure modes. It might also be less pronounced in higher dimensions due to the
random selection of split variables, as well as for the categorical inputs we consider in the next
chapter.

11.3 Scaling To Many Data Points
For target algorithms whose runtime distributions have high variance, algorithm configuration
procedures often need to execute thousands or tenthousands of target algorithm runs in order
to reliable estimate a good parameter configuration. The time complexity of different models

3Thanks to Eric Brochu, who has first found a similar failure mode in his independent experiments using
random forests and discussed it with the author of this thesis.
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(a) SMBO based on RF fit, step 50
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Figure 11.7: One potential failure mode of SMBO based on RF models. The search prefers
regions with many data points.

scales differently with the resulting large amount of data. This scaling behaviour is especially
important in the context of models within SMBO: in each iteration, we need to fit a model to
inform the selection of the next configuration(s).4

11.3.1 Computational Complexity of Random Forests
The computational cost for fitting a random forest is quite manageable. At a single node with
n data points, it takes time O(v · n log n) to identify the best combination of split variable
and point (where v = max(1, bperc · dc) denotes the number of split variables considered).
This is because for each continuous split variable j, we can sort the n values θ1j , . . . ,θnj
and only consider up to n− 1 possible split points between different values. For the squared
error loss function we use, the computation of l(j, s) (see Equation 11.2 on page 169) can
be performed in amortized O(1) time for each of j’s split points s, such that the total time
required for determining the best split point of a single continuous variable is O(n log n).
The complexity of building a regression tree depends on how balanced it is. In the worst
case, one data point is split off at a time, leading to a tree of depth n − 1 and a complexity
of O(v ·

∑n
i=1(n − i) log (n− i)), which is O(v · n2 log n). In the best case—a balanced

tree—we have the recurrence relation T (n) = v ·n log n+2 ·T (n/2), leading to a complexity

4One can of course update the previous iteration’s model with the new data points acquired since the last
model fit. However, it is not clear that this will lead to improvements. While updating a GP model with fixed
hyper-parameters can be implemented very efficiently, the optimal hyper-parameters can change dramatically
when new training data becomes available, such that simply updating the model without re-optimizing the hyper-
parameters can lead to suboptimal models. Likewise, one could locally update random forests with new training
data, only occasionally re-learning the overall structure. Indeed, we experimented with this method, but preliminary
experiments suggested that the resulting models used new, very informative, training data less effectively than
models learned from scratch in each iteration.
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of O(v · n log2 n). In our experience, trees are certainly not perfectly balanced but much
closer to this best case than to the worst case. For example, 10000 data points typically led to
tree depths between 25 and 30 (for reference, log2(10000) ≈ 13.3). Building B trees simply
takes B times as long as building a single tree. Thus, assuming perfectly balanced trees, the
complexity of learning a random forest is O(B ·m · n log2 n).

Prediction with random forests is quite cheap. One merely needs to propagate new query
points θ down each tree. At each node with split variable j and split point s, one only needs to
compare θj to s, an O(1) operation. In the worst case of depth n− 1, this takes O(n) per tree,
in the best (balanced) case O(log n). Thus, in the best case, the complexity for prediction at a
new data point is O(B log n).

11.3.2 Approximate Gaussian Processes
As described in Section 9.2, fitting a standard Gaussian process can be time-consuming.
A gradient optimizer is used to determine hyper-parameters, and in each of h steps of the
hyper-parameter optimization we need to invert a n by n matrix, leading to a computational
complexity of O(h · n3). Various approximations exist to reduce this complexity (see, e.g.,
Quinonero-Candela et al., 2007). Here, we use the projected process (PP) approximation. We
only give the final equations for predictive mean and variance; for a derivation, see the book
by Rasmussen and Williams (2006). The PP approximation to GPs uses a subset of p of the
n training data points, the so-called active set. Let v be a vector holding the indices of these
p data points. Let k(·, ·) denote the GP covariance function and let Kpp denote the p by p
matrix with Kpp(i, j) = k(θv(i),θv(j)). Similarly, let Kpn denote the p by n matrix with
Kpn(i, j) = k(θv(i),θj); finally, letKnp denote the transpose ofKpn. We then have

p(on+1|θn+1,θ1:n, o1:n) = N (on+1|µn+1,Varn+1), (11.5)

where

µn+1 = k∗
T(σ2Kpp +KpnKnp)−1Kpn o1:n (11.6)

Varn+1 = k∗∗ − k∗TK−1
ppk∗ + σ2k∗

T(σ2Kpp +KpnKnp)−1k∗, (11.7)

and k∗ and k∗∗ are as defined in Section 9.2.
These equations assume a kernel with fixed hyper-parameters. We perform hyper-

parameter optimization using a set of p data points randomly sampled without repetitions from
the n input data points. We then sample an independent set of p data points for the subsequent
projected process approximation; in both cases, if p > n, we only use n data points.

This approximation can greatly reduce the computational complexity. The hyper-parameter
optimization based on p data points takes timeO(h ·p3). In addition, there is a one-time cost of
O(p2 ·n) for the projected process equations. Thus, the complexity for fitting the approximate
GP model is O([h · p+ n] · p2). The complexity for predictions with this PP approximation is
O(p) for the mean and O(p2) for the variance of the predictive distribution (Rasmussen and
Williams, 2006).
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Figure 11.8: [Scaling of RF and approximate GP model with the number of training data
points, n, for scenario SAPS-QCP-Q075. We useB = 10 trees and an active set of size p = 100.
We built models for 8, 16, 32, . . . , 4 096, and 8 192 training data points. For each size, we
performed 10 repetitions and plot mean and standard deviations. To improve readability, the
x-values of the random forest are slightly shifted to the right.

11.3.3 Experiments for Scaling Behaviour
Having discussed the theoretical time complexity of fitting RF and approximate GP models,
we now study their empirical scaling behaviour in the number of data points, both in terms of
computational time and in terms of model quality. We also study their scaling behaviour as
we grow model complexity: the number of trees in random forests and the size of the active
set in approximate GP models. In our RF models, here we use nmin = 10. As in Section
10.2, we measure model quality as the quality of predictive ranks on a set of good parameter
configurations for the respective configuration scenarios. (For a discussion of that performance
measure, see Section 10.2.1.) The sets of good parameter configurations we used here were
determined as described in Section 10.2.1, using the SPO∗ procedure with a time budget of
five hours per run.

For our study of scaling performance with the number of training data points, we used
RF models with a fixed number of 10 trees and approximate GP models with 100 data points
in the active set. Both types of models were trained using log-transformed data. Figure
11.8 shows their scaling behaviour for configuration scenario SAPS-QCP-Q075 when using
up to 8 192 data points for training. For the RF models both time complexity and predictive
quality improved with more training data points. In contrast, for the approximate GP models,
both time complexity and performance were not affected much by the number of training
data points. For the time complexity, this matches our expectation. Recall that the projected
process approximation takes time O([h · p+ n] · p2), where h is the number of steps in the
hyper-parameter optimization and p is the size of the active set. Here, we used p = 100
and h was typically around 30, such that h · p was only a factor of 3 below the largest n we
considered. We hypothesize that predictive quality did not increase with larger n because we
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(c) SAPS-QCP-Q095
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(d) SAPS-SWGCP-MED
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(e) SAPS-SWGCP-Q075
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(f) SAPS-SWGCP-Q095

Figure 11.9: Predictive quality of ranks for RF and approximate GP models with a growing
number of training data points, n.

used a constant number of data points in the hyper-parameter optimization.
We now study the same kind of data for our six other configuration scenarios. The time

complexity plots look very similar to Figure 11.8(a) for the other scenarios, and we omit
them for brevity. The plots for model performance are more interesting. In Figure 11.9, we
show that the approximate GP models yielded better performance for SAPS-QWH and the QCP
scenarios, while the RF models performed better for the SWGCP scenarios. In all scenarios,
the RF models improved with more data points; this was less clear for the approximate GP
models.

Now, we study a different type of scaling behaviour: for a fixed-size data set, how do
RF and approximate GP models scale when we increase the number of trees and the size
of the active set, respectively? In Figure 11.10, we plot predictive performance against
computational complexity of the various methods. The performance of RF models improved
substantially up to about 64 trees and started to flatten out afterwards. For the approximate
GP model, as expected, time complexity increased with the size of the active set. However,
unexpectedly, its predictive performance became somewhat worse in the example shown. We
hypothesize that this is caused by ill-conditioning or problems in the numerical optimization
of hyper-parameters.

For the other configuration scenarios, shown in Figure 11.11, results were similar. Overall,
we can see that the RF models were very robust: more trees always improved performance at
the price of increased computational cost. In contrast, a larger active set sometimes improved
the approximate GP models and sometimes worsened it. Since small active sets yielded overall
good performance of the approximate GP models at a fairly low computational cost, we fixed
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Figure 11.10: Scaling of RF models (with # trees) and of approximate GP models (with
size of active set) for configuration scenario SAPS-QCP-Q075. We plot the performance
(quality of predictive ranks for test set Good) versus the time the method required. For
the projected process, we allowed active set sizes of 32, 64, 128, . . . , 1024, and for RFs we
allowed 1, 2, 4, . . . , 1024 trees.

the size of the active set to p = 100 for all experiments in the rest of this thesis. Likewise, we
fixed the number of trees in RF models to B = 10 for the rest of the thesis.

11.4 Model Quality
In this section, we compare the quality of approximate GP, RF, and DACE models for our
seven configuration scenarios. As training data for each model, we employed 1 001 data points:
single runtimes of SAPS for its default and for 1 000 randomly-sampled configurations. Some
of these runs timed out after κmax = 5 seconds and—according to the penalized average
runtime (PAR) criterion with penalty constant 10—were counted as having taken 50 seconds
(see Section 3.4 for a discussion of PAR). We thus learned models that directly predict PAR. As
before, to judge qualitative model performance we used two sets of parameter configurations:
Random, a set of 100 randomly-sampled configurations, and Good, the same set of 100 “good”
configurations already used in Section 11.3.3.

11.4.1 Diagnostic Plots
First, we qualitatively assess model performance for one configuration scenario, SAPS-QCP-Q075.
Figure 11.12 shows diagnostic plots for our three types of models, both trained on untrans-
formed and log-transformed runtime data.

For the DACE model (in the first row of figures), we notice a qualitatively-similar trend
as already observed in Section 10.2.2: the log transformation greatly improves model per-
formance. This is reflected in our quantitative measures: the quality of predictive ranks on
test set Good (points shown in green in Figure 11.12) was −0.07 (untransformed) vs 0.28
(log-transformed), and the EIC quality was 0.43 vs 0.62.

For the approximate GP model (second row of Figure 11.12), the log transform also im-
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Figure 11.11: Scaling of RF models (with # trees) and of approximate GP models (with size
of active set), for other configuration scenarios.

proved performance and especially improved predictions for the best parameter configurations.
Quantitatively, quality of predictive ranks was 0.28 (untransformed) vs 0.64 (log-transformed),
and EIC quality was 0.75 vs 0.78. Also note that the approximate GP led to very small
uncertainty estimates.

Finally, for the RF model (third row in Figure 11.12), the difference between the log
and nonlog models appeared least pronounced. This was confirmed by our first quantitative
measure: the predictive quality of ranks was 0.62 (untransformed) vs 0.63 (log-transformed).
However, the uncertainty estimates for the version using untransformed data appeared not to
be informative, leading to poor EIC quality: −0.34 (untransformed) vs 0.16 (log-transformed).

11.4.2 Overall Model Performance
While these quantitative plots highlight interesting characteristics of the various models, it is
important to study performance across multiple runs and across different domains to capture
noise effects and differences between scenarios.

In Figure 11.12, we compare four types of models: the approximate GP model, the DACE
model, and RF models with nmin = 10 and nmin = 1. Overall, the DACE model led to
poor rank predictions and RMSE, but to quite competitive EIC quality. Model learning took
about 1.5 orders of magnitude longer than for the approximate GP model and two orders of
magnitude longer than for the RF model with nmin = 10.

In terms of rank predictions, the approximate GP model performed much better than
the RF model for some scenarios but worse for others. However, in terms of EIC quality, it
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(a) DACE model, untransformed data
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(b) DACE model, log-transformed data
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(c) Approximate GP, untransformed data
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(d) Approximate GP, log-transformed data
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(e) Random forest, untransformed data
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(f) Random forest, log-transformed data

Figure 11.12: Predicted vs actual test set cost for approximate GP, RF, and DACE model, on
scenario SAPS-QCP-Q075. Left column: untransformed data; right column: log-transformed
data. Test sets: Good shown in green, Random shown in red.
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Figure 11.13: Comparison of models. We performed 25 runs for each model with different
training but identical test data and show boxplots for the respective quantities across the 25
runs. In each plot, “G” denotes an approximate GP model “D” denotes the DACE model, “10”
denotes a RF model with nmin = 10 and “1” a RF model with nmin = 1.
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Figure 11.14: Comparison of models built on original and log-transformed data. We performed
25 runs for each model with different training but identical test data and show boxplots for our
performance measures across the 25 runs. In each plot, “n” and “l” denote approximate GP
models trained on the original and log-transformed data, respectively; “Rn” and “Rl” denote
RF models with nmin = 10 trained on the original and log-transformed data, respectively.

performed clearly best on six of the scenarios, and amongst the best for the last one. It also
tended to have the lowest RMSE of all models.

Finally, comparing the two versions of RF models, the version with nmin = 10 performed
slightly better overall. In terms of predictive quality of ranks, as well as in terms RMSE, this
version tended to perform better for the QCP scenarios, whereas the version with nmin = 1
tended to perform better for the SWGCP scenarios. However, the version with nmin = 10
tended to yield higher EIC quality and was also consistently faster. As a consequence, we
fixed nmin = 10 for the experiments in the remainder of this thesis.

11.4.3 Log Transformation for approximate GPs and Random Forests
As a final part of our study of model quality, we quantitatively compared the performance of
models based on untransformed and log-transformed data. For the DACE model, we already
showed the benefits of the log-transformation in Section 10.2.2; thus, we omit it here.

The data shown in Figure 11.12 suggested that RF and approximate GP models trained on
untransformed data were competitive at predicting ranks, but that EIC based on these models
did not correlate well with performance. Figure 11.12 is based on a single run for scenario
SAPS-QCP-Q075. As Figure 11.14 shows that run was quite representative for that scenario:
across 25 independent runs, the log transformation did not lead to consistent improvements in
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predicting ranks, but it did improve the quality of EIC for both the RF and the approximate
GP model. For the approximate GP model, behaviour was qualitatively similar for most
other configuration scenarios: the log transformation strongly increased the EIC quality and
tended to increase the quality of predictive ranks. In contrast, for the RF model, the log
transform only substantially improved the EIC quality for one other configuration scenario:
SAPS-QCP-MED. For the other scenarios, the log transform only mildly improved EIC quality
and in one scenario (SAPS-SWGCP-Q095) actually worsened it.

In summary, the log transform clearly improved the approximate GP model and somewhat
improved the RF model. Thus, in the rest of this thesis, we focus on models trained on
log-transformed response values.

11.5 Sequential Optimization Process
Our main interest in this thesis is on algorithm configuration, not on models or their perfor-
mance. Thus, the ultimate question in this chapter is whether our new models improve the
sequential model-based optimization (SMBO) approach to algorithm configuration. We first
introduce configuration procedures based on the new models and then demonstrate that they
significantly improve upon SPO∗.

11.5.1 Configuration Procedures based on Different Models
SMBO approaches based on the models we introduced in this chapter have rather different
properties than the previously-discussed SPO variants based on a DACE model fitted to
empirical cost statistics. In particular, the DACE model (a noise-free GP model) can be used to
fit almost arbitrary (user-defined) statistics of a configuration’s cost distribution, such as mean
plus variance. This is in principle also possible with our version of random forests, which
computes user-defined cost statistics at its leaves. However, we would not expect it to work
well since the tree construction implicitly optimizes for mean predictions. (Approximate) GP
models are even less flexible: they always fit the mean function assuming Gaussian observation
noise. Furthermore, the DACE predictions for previously-observed parameter configurations
θ always have zero uncertainty, even if only a single run has been performed for θ. In
contrast, our approximate GP and RF models handle observation noise better and—unlike the
DACE model—yield nonzero uncertainty estimates for previously-observed configurations.
Intuitively, this can have a major impact on SMBO.

To underline this distinction, we give a new name to configuration procedures using
models other than the noise-free DACE model: ACTIVECONFIGURATOR. This is in reference
to algorithm configuration, as well as to the machine learning technique active learning—
which queries the data points deemed most useful to improve the model fit. We abbreviate
ACTIVECONFIGURATOR based on RF and approximate GP models as AC(RF) and AC(GP),
respectively.

ACTIVECONFIGURATOR uses the same components as SPO∗ except that it is based on a
different model and sets the number of previously-used configurations, p, to zero. In Section
10.3.1, we motivated this latter mechanism by the fact that SMBO based on the DACE model
attributes EIC zero to all previously-selected configurations and thus prohibits their further use.
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This problem does not occur anymore for our new models, and an experimental evaluation of
AC(RF) with and without this mechanism did not show any significant differences. Thus, we
dropped the mechanism to simplify ACTIVECONFIGURATOR.

11.5.2 Experimental Evaluation of Configuration Procedures
We now experimentally compare our various configuration procedures: SPO∗, AC(RF),
AC(GP), and, for reference, RANDOM∗ and FOCUSEDILS. In this evaluation, we used the
seven SINGLEINSTCONT configuration scenarios considered throughout this chapter. Note
that in these scenarios we optimize continuous SAPS parameters; FOCUSEDILS is the only
procedure in this comparison restricted to a discretized subspace (using the same discretization
as we used in Chapters 5 and 7). We performed 25 runs of each configuration procedure
for each scenario and evaluated test performances ptest,t (for SAPS-QWH: median number of
SAPS search steps; for the other scenarios: SAPS penalized average runtime) for various time
budgets for configuration, t.

In Figure 11.15, we show mean test performance ptest,t for all configuration procedures
and scenarios. First, we note that SPO∗, AC(RF), AC(GP), and RANDOM∗ all yielded very
competitive performance. In particular, in all SINGLEINSTCONT configuration scenarios, all
of them yielded lower mean test performance than FOCUSEDILS. (This is not surprising since
FOCUSEDILS is restricted to a discretized subspace which may not include the optimal config-
urations. Thus, here we give FOCUSEDILS performance only for reference; in Section 12.3.4,
we repeat this comparison when all configurators are restricted to the same discrete configura-
tion space.) Another trend in the data shown in Figure 11.15 is that ACTIVECONFIGURATOR

based on approximate GP models was often slower at finding good parameter configurations,
but, given enough time (between 100 and 1 000 seconds), typically performed best. Finally,
for some configuration scenarios, RANDOM∗ found good configurations somewhat slower
than the other configurators. However, by the end of the search process, the differences were
small (except for scenario SAPS-QCP-Q095).

In Table 11.1 and Figure 11.16, we summarize test performance at then end of the search
process across the 25 runs. Figure 11.16 provides boxplots, while Table 11.1 lists means
and standard deviations across the 25 runs, as well as the result of pairwise significance
tests. Overall, AC(GP) clearly yielded the best configurations for the time budget of half an
hour; it significantly outperformed both SPO∗ and FOCUSEDILS in all 7 SINGLEINSTCONT
scenarios, RANDOM∗ in 3 and AC(RF) in 2 scenarios, and yielded the best mean performance
in all but one scenario. AC(RF) was second best, significantly outperforming FOCUSEDILS in
all 7 scenarios, SPO∗ in 3 scenarios, and RANDOM∗ in one. As we already noted in Section
10.4, SPO∗ did not perform better than RANDOM∗ and was even significantly worse in one
scenario. We conclude that the use of our improved new models, random forests and especially
approximate GPs, led to significant performance improvements of SMBO.

11.6 Chapter Summary
In this chapter, we studied the use of alternative models in the sequential model-based
optimization (SMBO) framework. First, we introduced a novel variant of random forests (RFs)
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Figure 11.15: Comparison of configurators for SINGLEINSTCONT scenarios, over time. We
performed 25 runs of the configurators and computed their test performance ptest,t at time
steps t = 10, 20, 40, . . . , 1280, 1800 seconds; we plot mean ptest,t across the 25 runs. We
omitted scenario SAPS-SWGCP-MED, the plot for which qualitatively resembles the one for
SAPS-SWGCP-Q075.
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Scenario SPO∗ AC(RF) AC(GP) RANDOM∗ FocusedILS
SAPS-QWH [·103] 10.2± 0.57 9.73± 0.45 9.45± 0.33 9.87± 0.41 10.6± 0.49

SAPS-QCP-MED [·10−2] 4.31± 0.20 4.27± 0.18 4.18± 0.16 4.23± 0.15 5.13± 0.40
SAPS-QCP-Q075 0.19± 0.02 0.18± 0.01 0.17± 0.01 0.19± 0.01 0.24± 0.02
SAPS-QCP-Q095 2.20± 1.17 1.88± 0.97 1.64± 0.87 2.63± 1.24 2.87± 3.20
SAPS-SWGCP-MED 0.18± 0.03 0.17± 0.02 0.16± 0.02 0.17± 0.02 0.27± 0.12
SAPS-SWGCP-Q075 0.24± 0.04 0.24± 0.10 0.22± 0.04 0.22± 0.03 0.35± 0.08
SAPS-SWGCP-Q095 0.26± 0.05 0.22± 0.03 0.24± 0.06 0.27± 0.11 0.38± 0.16

Scenario Pairs of configurators with statistically-significant performance differences
SAPS-QWH SPO∗/RF, SPO∗/GP, SPO∗/Foc, RF/GP, RF/Foc, GP/R∗, GP/Foc, R∗/Foc

SAPS-QCP-MED SPO∗/GP, SPO∗/Foc, RF/Foc, GP/Foc, R∗/Foc
SAPS-QCP-Q075 SPO∗/GP, SPO∗/Foc, RF/GP, RF/Foc, GP/R∗, GP/Foc, R∗/Foc
SAPS-QCP-Q095 SPO∗/GP, RF/R∗, RF/Foc, GP/R∗, GP/Foc
SAPS-SWGCP-MED SPO∗/RF, SPO∗/GP, SPO∗/Foc, RF/Foc, GP/R∗, GP/Foc, R∗/Foc
SAPS-SWGCP-Q075 SPO∗/GP, SPO∗/R∗, SPO∗/Foc, RF/Foc, GP/Foc, R∗/Foc
SAPS-SWGCP-Q095 SPO∗/RF, SPO∗/GP, SPO∗/Foc, RF/Foc, GP/Foc, R∗/Foc

Table 11.1: Quantitative comparison of configurators for SINGLEINSTCONT scenarios. We
performed 25 runs of the configurators and computed their test performance ptest,t for a
configuration time of t = 1 800s. Here, we give mean ± standard deviation across the 25 runs.
We also performed pairwise Mann Whitney U tests to compare the configurators’ performances
across the 25 runs each, and list significantly-different pairs; we abbreviate AC(RF) as RF,
AC(GP) as GP, RANDOM∗ as R∗, and FOCUSEDILS as Foc. Figure 11.16 visualizes this data.
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Figure 11.16: Boxplot comparison of configuration procedures for SINGLEINSTCONT scenar-
ios. “S” stands for SPO∗, “A” for AC(RF), “G” for AC(GP), “R” for RANDOM∗, and “F” for
FocusedILS. We show boxplots for the data presented in Table 11.1.

that provides uncertainty estimates, and described an existing approximation of Gaussian
process (GP) models. We compared these models and the DACE model (the noise-free GP
model used in the SPO variants discussed in the previous chapters), demonstrating that the RF
model can deal much better with non-standard observation noise, such as proportional and
non-stationary noise.

We studied the theoretical and empirical scaling behaviour of RF and approximate GP
models. Both types of models easily scaled to predictions with many thousands of data points.
RF models consistently improved when based on more data points, while the approximate GP
models only improved in some scenarios.

For a set of 1 000 training data points, compared to the DACE model used in the SPO
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variants discussed in previous chapters, learning RF and approximate GP models was two
and 1.5 orders of magnitude faster, respectively. These models also clearly outperformed the
DACE model in terms of predicting ranks of configurations and in terms of prediction error.
In terms of correlation between the expected improvement criterion based on the model and
true quality of a configuration, the approximate GP model dominated the DACE model, while
the RF model performed worse in some cases.

Finally, we introduced algorithm configuration procedures based on our new models,
dubbed ACTIVECONFIGURATOR and abbreviated AC: AC(GP) when based on approximate
GP models and AC(RF) when based on RF models. We demonstrated that AC(GP) significantly
and sometimes substantially outperformed SPO∗ and RANDOM∗ on all seven SINGLEINST-

CONT scenarios. AC(RF) was second in that comparison. Thus, while—based on the rather
poorly-performing DACE model—SPO∗ did not outperform RANDOM∗, the use of better
models did lead to significant improvements.

For these continuous parameter optimization tasks, all configuration procedures studied
here outperformed FOCUSEDILS, which was restricted to searching a discretized subspace. In
the next chapter, we will revisit this comparison when all configurators work in exactly the
same discrete configuration space.
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Chapter 12

Extensions I: Categorical Variables
The only real valuable thing is intuition.
—Albert Einstein, German American theoretical physicist

All existing sequential model-based optimization (SMBO) methods of which we are aware
are limited to the optimization of numerical parameters. In this chapter, we extend the scope
of SMBO to include the optimization of categorical parameters. In particular, we extend
our response surface models to handle categorical inputs and introduce a simple local search
mechanism to optimize expected improvement across the settings of categorical parameters.
We demonstrate that the resulting SMBO configurators outperform FOCUSEDILS for the
configuration of algorithms with categorical parameters on single instances.

For the experiments in this chapter, we used our SINGLEINSTCAT scenarios (described in
Section 3.5.3), in which the objective is to optimize the 26 discretized parameters of SPEAR on
single SAT instances. We also used a discretized version of our SINGLEINSTCONT scenarios
(described in Section 3.5.2), in which the objective is to optimize the 4 discretized parameters
of SAPS on single SAT instances.

12.1 Models for Partly Categorical Inputs
In the previous chapter, we discussed models for training data D = {(θi, oi)}ni=1, with
each θi ∈ Rd. Now, we generalize this notion, allowing each dimension of θi to be either
continuous or categorical.

12.1.1 Categorical Inputs in Random Forests
Random forests handle categorical input variables very naturally. Recall from Section 11.1.1
that when splitting the training data {(θi, oi)}ni=1 at a node on a continuous variable, we select a
split point s, partitioning {(θi, oi)}ni=1 into the two sets {(θi, oi)|θi,j < s} and {(θi, oi)|θi,j ≥
s}, where θi,j denotes the value of the j-th parameter of parameter configuration θi. Similarly,
when splitting on a categorical variable j with k possible values u1, . . . , uk, we select the
best of the 2k − 2 binary partitionings of {u1, . . . , uk} which leave neither of the sets empty.
For the squared error loss function used in Section 11.1.1, there exists an efficient procedure
for doing so: for each value ul, compute score sl = mean({oi|θi,j = ul}), sort (u1, . . . , uk)
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by those scores, and only consider the k binary partitions with consecutive scores in each
set. With this procedure, determining the optimal partitioning takes time O(n + k · log k).
Since the number of values present for each variable is upper-bounded by the number of
data points, this is an O(n · log n) procedure, just like finding the optimal split point for a
continuous variable. Often, k << n, in which case learning for categorical inputs is actually
faster than for continuous inputs. For prediction, at each split on a categorical variable, we
need to perform a member query for a set with up to k/2 values. This can be implemented in
time O(log k) as compared to the single O(1) comparison to the split point for continuous
variables.

In order to improve uncertainty estimates, we made a nonstandard implementation choice
in our implementation of random forest models. This concerns splits on a categorical variable
j at a node p where not all of j’s possible values are present in the subset of the training data
at p. An example is a case where j can take on values A, B, or C, but only values A and
B are present in the training data at node p. One standard solution for this case is to create
a ternary partitioning. Partition R1, containing all data points θi with θi,j = A would be
associated with the subtree rooted at p’s left child, R2, containing all training data points θi
with θi,j = B with the subtree rooted at p’s right child, and the remaining region R3 with
node p. The prediction for test data points θi with θi,j = C that are propagated to node p
would be p’s constant, cp. In contrast, in our implementation, we assign each value that is
not present in the training data available at a node n to one of n’s children, chosen uniformly
at random. This does not typically change the mean prediction much but better reflects our
uncertainty. Consider an example. Say, the first split in all trees is on categorical variable j,
which can take on k values. However, in the training data only k − 1 values are present. What
is the prediction for a test data point with the k-th value? In the standard implementation, it is
the mean of all responses in the training set, with perfect agreement across the trees and thus
zero uncertainty. In contrast, in our implementation, predictions typically differ across the
trees, expressing our uncertainty about inputs with the unseen value. Our implementation also
has a convenient side effect: the leaves of each tree completely partition the space, and we
need not worry about special cases concerning regions associated with inner nodes.

12.1.2 A Weighted Hamming Distance Kernel for Categorical Inputs in
Gaussian Processes

As discussed in Section 9.2, to apply Gaussian process regression, first we need to select a
parameterized kernel function Kλ : Θ ×Θ → R+, specifying the similarity between two
parameter configurations. This remains true if some or all parameters are categorical. In
Section 9.2, we used the standard weighted squared distance kernel function for numerical
parameters:

Kλ(θi,θj) = exp

[
d∑
l=1

(−λl · (θi,l − θj,l)2)

]
,
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where λ1, . . . , λd are the kernel parameters. For categorical variables, instead of (weighted)
squared difference, we simply use (weighted) Hamming distance:

Kλ(θi,θj) = exp

[
d∑
l=1

(−λl · δ(θi,l 6= θj,l))

]
, (12.1)

where δ is the Kronecker delta function.
In order to show that this kernel function is valid, we use the facts that any constant is

a valid kernel function, and that the space of kernel functions is closed under addition and
multiplication. We also use the fact that a kernel function k(x, z) is valid if we can find an
embedding φ such that k(x, z) = φ(x)T · φ(z) (Shawe-Taylor and Cristianini, 2004). Though
straightforward, we are not aware of any prior use of this kernel or proof that it is indeed
valid.1

For elements x, z ∈ Θi of a finite domain Θi, we first show that the weighted Hamming
distance kernel function

k(x, z) = exp [−λδ(x 6= z)] (12.2)

is valid. (Note that the domain Θi of any categorical parameter θi is indeed finite.) Refer to
the finitely many elements of Θi as a1, . . . , am. First, we define m-dimensional vectors v and
w with vi := (x = ai) and wi := (z = ai). We then define a kernel function k1(x, z) for
x, z ∈ Θi as the dot-product of embeddings φ(x) and φ(z) in an m-dimensional space:

k1(x, z) = vT ·w =

m∑
i=1

vi · wi = δ(x = z).

To bring this in the form of Equation 12.2, we add the constant kernel function

k2(x, z) = c =
exp(−λ)

1− exp(−λ)
,

and then multiply by the constant kernel function

k3(x, z) = 1/(1 + c) = 1− exp(−λ).

This yields the combined kernel function

k(x, z) = (k1(x, z) + k2(x, z)) · k3(x, z)

=

{
1 if x = z
exp(−λ) otherwise

= exp [−λδ(x 6= z)] .

Multiplying together d separate kernels of the form in Equation 12.2 (one kernel per
parameter) yields a kernel of the general form in Equation 12.1.

1Couto (2005) gives a recursive kernel function for categorical data that is related since it is also based on a
Hamming distance.

194



For a combination of continuous parameters Pcont and categorical parameters Pcat, we
apply the combined kernel

K(θi,θj) = exp

 ∑
l∈Pcont

(−λl · (θi,l − θj,l)2) +
∑
l∈Pcat

(−λl · δ(θi,l 6= θj,l))

 .
Again, this kernel function is valid since the space of kernel functions is closed under multipli-
cation.

All other equations in Gaussian process models, as well as in the projected process
approximation, remain exactly the same under this alternative kernel. The only remaining
question, to be studied in the next section, is how well (approximate) GP models with this
kernel work in practice.

12.2 Model Quality
In this section, we compare the model quality of RF and approximate GP models for predicting
the runtime of algorithms with categorical parameters. Throughout this chapter, we use two
types of configuration scenarios. First, we use the SINGLEINSTCONT scenarios already used
in the previous chapter, but now with discretized parameters. This allows a direct comparison
of models—and also configurators—working with the original numerical parameters and
with a discretized version. Secondly, we use the SINGLEINSTCAT scenarios which deal with
the configuration of SPEAR and thus involve many more parameters, many of which are
categorical (the remaining numerical parameters were discretized exactly as in Part III of this
thesis; see Section 6.3.1 for details on this discretization). For more details on these sets of
configuration scenarios, see Sections 3.5.2 and 3.5.3.

As training data for each model, we employed 1 001 data points: single runtimes of the
target algorithm (SAPS in the SINGLEINSTCONT scenarios, SPEAR in the SINGLEINSTCAT
scenarios) for its default as well as configurations from a random Latin hypercube design
(LHD) with 1 000 design points. For discretized parameter configuration spaces, we used
random LHDs as follows. We created a random LHD with interval [0, 1] in each dimension,
and for a parameter j with possible discrete values u1, . . . , uk, we selected value ui (with
i = 1, . . . , k − 1) for LHD points θi with θi,j ∈ [ i−1

k , ik ), and value uk for points with
θi,j ∈ [k−1

k , 1]. As before, according to our penalized average runtime (PAR) criterion
(see Section 3.4), runs that timed out after κmax = 5 seconds were counted as 50 seconds.
Also as before, to assess qualitative model performance, we used two sets of parameter
configurations: Random, a set of 100 randomly-sampled configurations, and Good, a set
of 100 “good” configurations determined using FOCUSEDILS (with a time budget of five
hours) as described in Section 10.2.1. Both Random and Good are subsets of the discretized
parameter configuration space; in order to enable a direct comparison of model quality on the
same test sets, we also use these sets to evaluate models learned using the continuous space.
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12.2.1 Effect of Discretization on Model Quality
For the SINGLEINSTCONT configuration scenarios, we can use training data gathered with
the original, continuous, target algorithm parameters or with discretized parameters. Here, we
compare the quality these two types of training data yield, both for RF and approximate GP
models.

The results of this comparison, given in Figure 12.1, show some interesting trends. Perfor-
mance of the GP models deteriorated when trained using discretized parameter configurations:
for all of our three measures of quality (see Section 10.2.1), performance decreased for most
configuration scenarios. In contrast, the RF models tended to improve when trained on dis-
cretized parameter settings: for all three measures of model quality, performance improved
in most configuration scenarios, sometimes quite substantially (see, e.g., EIC quality for
the SWGCP scenarios in Figure 12.1(b)). Runtimes for constructing the RF models were
marginally smaller for the discretized data since the number of values considered for each
discretized parameter was k = 7, much smaller than the number of data points, n = 1 000.

Overall, for the discretized version of the SINGLEINSTCONT scenarios, RF models tended
to yield better predictions than approximate GP models. This is in contrast to continuous
inputs, for which approximate GP models tended to perform better (see Section 11.4.2). In
particular, for the discretized versions of the SWGCP scenarios, RF models performed better
than approximate GPs with respect to all model performance measures. For the other scenarios,
there was no clear winner. The difference of our results for numerical and categorical inputs is
not surprising since RF models are well known to handle categorical inputs well.

12.2.2 Predictive Performance for Many Categorical Parameters
In Figure 12.2, we compare RF and approximate GP models for runtime predictions in the
SINGLEINSTCAT scenarios, all of which deal with optimizing the 26 parameters of SPEAR

(10 of which were categorical to start with, and 16 of which were numerical and discretized
as described in Section 6.3.1). For most of these configuration scenarios, there was no clear
winner. Consider, for example, scenario SPEAR-SWV-MED: here, the RF model yielded much
better rank predictions and lower RMSE, but the GP model led to much better correlation of
EIC and test performance. The only case for which one model (the RF) performed substantially
better with respect to all three model performance measures is scenario SPEAR-IBM-MED. We
will show later (in Section 12.3.4) that for this scenario, as well as for some of the SWGCP
scenarios (for which RF models performed better than approximate GP models), configuration
procedures based on RF models indeed yielded the best results.

12.3 Sequential Optimization Process
We demonstrated in the last section that our RF models could handle categorical variables
better than approximate GP models. Now, we study the use of these methods within the SMBO
framework, enabling model-based configuration of algorithms with categorical parameters.
First, however, we describe how we optimize expected improvement in the presence of
categorical parameters.

196



P Pd R Rd

0

0.2

0.4

0.6

0.8

QCP−med
P Pd R Rd

0.3

0.4

0.5

0.6

0.7

QCP−q075
P Pd R Rd

0.4

0.6

0.8

QCP−q095
P Pd R Rd

−0.2

0

0.2

0.4

0.6

0.8

QWH
P Pd R Rd

0

0.2

0.4

0.6

SWGCP−med
P Pd R Rd

0

0.2

0.4

0.6

SWGCP−q075
P Pd R Rd

−0.2

0

0.2

0.4

0.6

SWGCP−q095

(a) Quality of predictive ranks (high is good, 1 is optimal)

P Pd R Rd

0

0.2

0.4

0.6

QCP−med
P Pd R Rd

0.2

0.4

0.6

0.8

QCP−q075
P Pd R Rd

0.4

0.6

0.8

QCP−q095
P Pd R Rd

0

0.2

0.4

0.6

0.8

QWH
P Pd R Rd

0

0.2

0.4

0.6

0.8

SWGCP−med
P Pd R Rd

0

0.2

0.4

0.6

0.8

SWGCP−q075
P Pd R Rd

0

0.2

0.4

0.6

0.8

SWGCP−q095

(b) EIC quality (high is good, 1 is optimal)

P Pd R Rd

0.15

0.2

0.25

QCP−med
P Pd R Rd

0.2

0.25

0.3

0.35

QCP−q075
P Pd R Rd

0.3

0.4

0.5

0.6

QCP−q095
P Pd R Rd

0

0.2

0.4

QWH
P Pd R Rd

0.6

0.8

1

SWGCP−med
P Pd R Rd

0.6

0.7

0.8

0.9

1

SWGCP−q075
P Pd R Rd

0.6

0.7

0.8

0.9

1

SWGCP−q095

(c) Root mean squared error (RMSE; low is good, 0 is optimal)

P Pd R Rd

1

1.5

2

2.5

3

QCP−med
P Pd R Rd

1

1.5

2

2.5

3

QCP−q075
P Pd R Rd

2

4

6

QCP−q095
P Pd R Rd

0

1

2

QWH
P Pd R Rd

2

4

6

SWGCP−med
P Pd R Rd

1

2

3

SWGCP−q075
P Pd R Rd

1

2

3

4

SWGCP−q095

(d) CPU time (in seconds)

Figure 12.1: Comparison of approximate GP and RF models for SINGLEINSTCONT scenarios
with discretized parameters. We performed 25 runs for each model with different training but
identical test data and show boxplots for the respective quantities across the 25 runs. In each
plot, “P” and “Pd” denotes the approximate GP model trained on continuous and discretized
data, respectively. Likewise, “R” and “Rd” denote the RF model trained on continuous and
discretized data.
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Figure 12.2: Comparison of approximate GP (‘PP’) and RF models for SINGLEINSTCAT
scenarios. We performed 25 runs for each model with different training but identical test data
and show boxplots for the respective quantities across the 25 runs.
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12.3.1 Optimization of Expected Improvement for Categorical Parameters
The SMBO methods we introduced (SPO+, SPO∗, and ACTIVECONFIGURATOR) all opti-
mized expected improvement by simply drawing 10 000 configurations θ uniformly at random
from Θ and sorting them with respect to expected improvement. For very large parameter
configuration spaces with only few good configurations, this cannot be expected to scale
well. While this is true for continuous and categorical configuration spaces alike, we have
not encountered large enough continuous configuration spaces for the problem to manifest
itself. (In experiments we omit due to their preliminary nature, we compared three methods for
optimizing expected improvement inR17: random sampling, DIRECT (Jones et al., 1993), and
CMA-ES (Hansen and Ostermeier, 1996). DIRECT and CMA-ES did not consistently find
configurations with higher EIC than random sampling, and, even in cases where they did, the
performance of the resulting configurator did not change significantly.) However, in discrete
parameter configuration spaces as large as those we consider here (e.g., |Θ| = 1.38 · 1037 in
CPLEX), we can expect random sampling to perform poorly.

We thus introduce a simple local search strategy to optimize expected improvement in
discrete parameter configuration spaces. Like PARAMILS, this method performs a local
search in parameter configuration space based on a one-exchange neighbourhood, but here
the objective function is deterministic: the expected improvement criterion (EIC) E[Iexp(θ)]
(see Section 10.3.2). Note that it is not crucial to find the configuration with optimal EIC—
finding a good local optimum quickly is typically sufficient in practice. More importantly,
we need to keep the computational cost for EIC optimization low in order to enable SMBO
to execute many iterations within the given time budget (where an SMBO iteration is one
cycle through model fitting, selecting new configurations, and performing new runs in the
intensification procedure). In order to compute EIC for a parameter configuration θ, we only
require model predictions µθ and σ2

θ, which are computationally quite cheap. However, with
tens of thousands of evaluations of EIC, the cumulative computational cost can be substantial.
For this reason, we only perform a few local searches from different starting points to optimize
EIC. Better mechanisms (such as, e.g., iterated local search) could doubtlessly be devised.

Procedure 12.1 details our new mechanism for selecting promising parameter configura-
tions. We perform one local search starting at a random configuration, as well as ten local
searches starting at previously-seen configurations with high EIC. To increase robustness of the
EIC optimization, we still add 10 000 random configurations and then sort all configurations
by EIC. Finally, we interleave random configurations in the list of promising configurations to
be evaluated. In the subsequent intensification procedure (unchanged from SPO∗’s Procedure
10.5 on page 165), we evaluate parameter configurations from that list for at least as much
time as we spent learning the model and optimizing EIC. That procedure is guaranteed to
evaluate at least one of the interleaved random configurations in each SMBO iteration.

12.3.2 Convergence of ACTIVECONFIGURATOR for Categorical Parameters
For finite parameter configuration spaces, Θ, we can prove a similar convergence result for
ACTIVECONFIGURATOR as for FOCUSEDILS, re-using one Lemma devised for that proof
(Lemma 9 on page 83), and replicating another one (Lemma 7) with minor changes (basically
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Procedure 12.1: SelectNewParameterConfigurations(M,θinc,R) in ACTIVECONFIGURATOR for
discrete configuration spaces
numls is a parameter of ACTIVECONFIGURATOR for discrete configuration spaces; we set it to numls=10
in all our experiments

Input : Model,M; incumbent configuration, θinc; sequence of target algorithm runs, R
Output: Sequence of parameter configurations to evaluate, ~Θnew

// ===== Select configuration with LS starting at random θ
Select θ ∈ Θ uniformly at random1
θlo ← local optimum found by best-improvement local search in parameter configuration space, Θ,2
starting from θ and optimizing E[Iexp(θ)] (see Section 10.3.2)
Θls ← {θlo}3

// ===== Select configurations with LS starting at configurations θ with high E[Iexp(θ)]
Θseen ←

⋃n
i=1{R[i].θ}4

Θstart ← numls configurations θ ∈ Θseen with highest E[Iexp(θ)]5
for θ ∈ Θstart do6

θlo ← local optimum found by best-improvement local search in parameter configuration space, Θ,7
starting from θ and optimizing E[Iexp(θ)]
Θls ← Θls ∪ {θlo}8

// ===== Select configurations at random, and sort all configurations by EI
Θrand ← set of 10 000 elements drawn uniformly at random from Θ9

Let ~Θei be a list of all θ ∈ Θls ∪Θrand, sorted by decreasing E[Iexp(θ)]10

// ===== Interleave configurations with high EI and (new) random configurations
for i = 1, . . . , length(~Θei) do11

Append ~Θei[i] to ~Θnew12

Draw a parameter configuration θ uniformly at random from Θ and append it to ~Θnew13

Let tei denote the total time spent in the current call of this procedure14

return [~Θnew, tei]15

replacing ILS iterations with SMBO iterations).

Lemma 15 (Unbounded number of evaluations). Let N(J,θ) denote the number of runs AC-
TIVECONFIGURATOR has performed with parameter configuration θ at the end of SMBO itera-
tion J . Then, for any constantK and configuration θ ∈ Θ (with finite Θ), limJ→∞ P [N(J,θ)
≥K] = 1.

Proof. In each SMBO iteration, ACTIVECONFIGURATOR evaluates at least one random con-
figuration (performing at least one new run for it), and with a probability of p = 1/|Θ|, this is
configuration θ. Hence, the number of runs performed with θ is lower-bounded by a binomial
random variable B(k; J, p). Then, for any constant k < K we obtain limJ→∞ B(k; J, p) =
limJ→∞

(
J
k

)
pk(1− p)J−k = 0. Thus, limJ→∞ P [N(J,θ) ≥K] = 1.

Theorem 16 (Convergence of ACTIVECONFIGURATOR). When ACTIVECONFIGURATOR

optimizes a cost measure c based on a consistent estimator ĉN and a finite configuration space
Θ, the probability that it finds the true optimal parameter configuration θ∗ ∈ Θ approaches
one as the number of SMBO goes to infinity.
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Proof. According to Lemma 15, N(θ) grows unboundedly for each θ ∈ Θ. For each θ1, θ2,
as N(θ1) and N(θ2) go to infinity, Lemma 9 states that in a pairwise comparison, the truly
better configuration will be preferred. Thus eventually, ACTIVECONFIGURATOR visits all
finitely many parameter configurations and prefers the best one over all others with probability
arbitrarily close to one.

We note that the same convergence result also holds for RANDOM∗ (a random search
with the same intensification mechanism as ACTIVECONFIGURATOR, introduced in Section
11.5.1). We will thus rely on empirical results to distinguish the approaches (see Section
12.3.4).

12.3.3 Quantifying the Loss Due to Discretization
In order to apply some configuration procedures, such as PARAMILS and ACTIVECON-
FIGURATOR for categorical parameters, to optimize algorithms with (partially) numerical
parameters, these numerical parameters need to be discretized. Such a discretization clearly
comes at an opportunity cost since the search is restricted to a subspace that might not
contain the optimal configuration. In principle, this opportunity cost could be arbitrarily large;
in practice it depends on many factors, such as the nature of the parameter response, the
granularity of the discretization, and the quality of the selected discrete parameter values.
In order to estimate the magnitude of losses incurred by the discretization we used most
prominently, we evaluated it for our SINGLEINSTCONT scenarios.

We report results for RANDOM∗ searching the continuous SAPS configuration space and
the discretized subspace (recall from Section 3.2.1 that in this discretization we used seven
values for each of the four parameters; this is the same discretization used throughout Part
III of this thesis). Table 12.1 and Figure 12.3 compare the performance of the configurations
found at the end of the search process. In six of seven cases restricting the search to a discrete
subspace led to significant performance losses compared to search in the continuous space;
the average performance loss was as large as 35% in the case of SAPS-SWGCP. This clearly
demonstrates that for algorithms with few continuous parameters a search in the continuous
space can yield much better results than in a discretized subspace.

Next, we studied the impact of discretization on our ACTIVECONFIGURATOR variants,
quantifying their loss incurred by restricting the search to a discrete subspace instead of the orig-
inal continuous space. Figure 12.4 shows the results. For both RF and approximate GP models,
restricting the search space to discrete parameters clearly worsened performance. However, we
note that this change had a larger impact when using GP models. In particular, for continuous
optimization AC(GP) outperformed AC(RF) in scenarios SAPS-QWH, SAPS-QCP-Q095, and
SAPS-SWGCP-Q095 (see also Section 11.5.2). In contrast, for discrete optimization, AC(RF)
performed as good as AC(GP), and even better in the case of SAPS-SWGCP-Q095. We attribute
this to the better adaptation of RF models to categorical inputs as described in Section 12.2.1.

Even though the discretization of parameters led to the quite substantial opportunity costs
described in this section, we employed it in the remainder of this thesis in order to allow a
direct comparison of our SMBO methods to PARAMILS. In future work, we plan to extend
ACTIVECONFIGURATOR with a mechanism for mixed continuous/discrete optimization of
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Scenario Continuous Discretized p-value
SAPS-QWH [·103] 9.93± 0.44 10.54± 0.36 1.1 · 10−4

SAPS-QCP-MED [·10−2] 4.21± 0.18 4.96± 0.25 3.6 · 10−8

SAPS-QCP-Q075 0.19± 0.01 0.23± 0.02 3.7 · 10−7

SAPS-QCP-Q095 2.62± 1.36 2.27± 0.63 0.86
SAPS-SWGCP-MED 0.17± 0.02 0.23± 0.01 2.0 · 10−6

SAPS-SWGCP-Q075 0.22± 0.02 0.29± 0.01 3.1 · 10−8

SAPS-SWGCP-Q095 0.26± 0.06 0.32± 0.05 8.7 · 10−5

Table 12.1: Quantification of loss due to discretization for SINGLEINSTCONT scenarios. We
performed 25 runs of RANDOM∗ using the continuous and discretization SAPS configuration
spaces and computed their test performance ptest,t (PAR over N = 1 000 test runs using the
methods’ final incumbents θinc(t)) for a configuration time of t = 1 800s. Here, we give
mean ± standard deviation across the 25 runs and a p-value for a Mann Whitney U test for
differences between the performances. Figure 12.3 visualizes this data.
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Figure 12.3: Quantification of loss due to discretizing parameters, for RANDOM∗ on the
SINGLEINSTCONT scenarios. We ran RANDOM∗ for optimizing the original, continuous,
SAPS parameters (“Cont”) and for optimizing its discretized parameters (“Disc”). We per-
formed 25 runs of the configurators and show boxplots of their test performance ptest,t for a
time budget of t = 1 800 seconds.
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Figure 12.4: Quantification of Loss Due to Discretizing Parameters in SMBO. We ran configu-
rators AC(RF) (“R”) and AC(GP) (“G”) on the SINGLEINSTCONT scenarios with the original
continuous SAPS parameters, as well as AC(RF) (“Rd”) and AC(GP) (“Gd”) using discretized
SAPS parameters. We performed 25 runs of the configurators and show boxplots of their test
performance ptest,t for a time budget of t = 1 800 seconds.
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Scenario AC(RF) AC(GP) RANDOM∗ FocusedILS significant
SAPS-QWH [·104] 1.04± 0.04 1.05± 0.04 1.05± 0.05 1.06± 0.05 –

SAPS-QCP-MED [·10−2] 4.78± 0.13 4.90± 0.27 4.92± 0.20 5.15± 0.41 1/3, 1/4, 2/4
SAPS-QCP-Q075 0.22± 0.01 0.22± 0.01 0.23± 0.01 0.24± 0.02 2/4
SAPS-QCP-Q095 2.37± 1.01 2.17± 0.91 2.20± 0.82 2.93± 3.15 –
SAPS-SWGCP-MED 0.22± 0.00 0.22± 0.01 0.23± 0.01 0.27± 0.12 1/4, 2/4
SAPS-SWGCP-Q075 0.29± 0.02 0.30± 0.05 0.29± 0.01 0.35± 0.08 1/4, 2/4, 3/4
SAPS-SWGCP-Q095 0.36± 0.14 0.35± 0.10 0.32± 0.03 0.40± 0.19 3/4

SPEAR-SWV-MED 0.61± 0.01 0.61± 0.01 0.62± 0.01 0.62± 0.01 1/2, 1/3, 1/4
SPEAR-SWV-Q075 0.60± 0.11 0.79± 0.66 0.63± 0.09 0.78± 0.50 1/3, 1/4, 2/4
SPEAR-SWV-Q095 0.87± 0.08 0.87± 0.05 0.88± 0.07 1.00± 0.28 1/2, 1/3, 1/4
SPEAR-IBM-Q025 0.63± 0.01 0.64± 0.01 0.64± 0.01 0.65± 0.01 1/2, 1/3, 1/4, 3/4
SPEAR-IBM-MED 3.35± 0.59 3.53± 0.75 3.64± 0.93 9.97± 8.88 1/3, 1/4, 2/4, 3/4

Table 12.2: Quantitative comparison of configurators for SINGLEINSTCAT and discretized
SINGLEINSTCONT scenarios. We performed 25 runs of the configurators and computed
their test performance ptest,t (PAR over N = 1 000 test instances using the methods’ final
incumbents θinc(t)) for a configuration time of t = 1 800s. Here, we give mean ± standard
deviation across the 25 runs. Column “significant” lists the pairs of configurators for which
a Mann Whitney U test judged the performance difference to be significant with confidence
level 0.05; ‘1’ stands for AC(RF), ‘2’ for AC(GP), ‘3’ for RANDOMSEARCH, and ‘4’ for
FOCUSEDILS. Figure 12.7 visualizes this data.

EIC and thereby enable it to optimize mixed continuous/discrete parameters without the need
for a discretization.

12.3.4 Experimental Evaluation of Configuration Procedures
We now experimentally compare configuration procedures for the configuration of algorithms
with categorical parameters: AC(RF), AC(GP), and, for reference, RANDOM∗ and PARAM-
ILS. For this evaluation, we used the seven SINGLEINSTCONT scenarios with discretized
SAPS parameters and the five SINGLEINSTCAT scenarios considered throughout this chapter.
We performed 25 runs of each configuration procedure for each scenario and evaluated test
performance (SAPS and SPEAR penalized average runtime) for various time budgets.

We present the results of this comparison in Figures 12.5 and 12.6 (plotting mean test
performance for varying time budgets), and Figure 12.7 and Table 12.2 (comparing test
performances at the end of the trajectory). Overall, AC(RF) performed best in this comparison,
followed by AC(GP) and RANDOM∗ (about tied), and then FOCUSEDILS.

For the SINGLEINSTCONT configuration scenarios (see Figure 12.5), in all of which the
target algorithm, SAPS, has only 4 parameters, AC(RF) and RANDOM∗ performed comparably,
each of them being fastest to find good configurations for some scenarios. Some of the 25
FOCUSEDILS yielded rather poor performance, causing poor mean performance for short
time budgets. This was especially the case for the SWGCP configuration scenarios (see right
column of Figure 12.5) and SAPS-QWH (see Figure 12.6(a)). As shown in Figure 12.7(a),
some FOCUSEDILS runs also yielded poor performance at the end of the search process
(after t = 1 800 seconds), and in 5 of the 7 SINGLEINSTCONT scenarios, FOCUSEDILS was
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Figure 12.5: Comparison of configurators for SINGLEINSTCONT scenarios (except SAPS-QWH)
with discretized parameters. We performed 25 runs of the configurators and computed their
test performance ptest,t at times t = 10, 20, 40, . . . , 1280, 1800. We plot mean ptest,t across
the 25 runs.
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Figure 12.6: Comparison of configurators for SAPS-QWH with discretized parameters and
SINGLEINSTCAT scenarios. We performed 25 runs of the configurators and computed their
test performance ptest,t at times t = 10, 20, 40, . . . , 1280, 1800. We plot mean ptest,t across
the 25 runs.
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Figure 12.7: Boxplot comparison of configuration procedures for setting categorical parameters
for single instances. ‘A’ stands for AC(RF), ‘G’ for AC(GP), ‘R’ for RANDOM∗, and ‘F’ for
FocusedILS. We show boxplots for the data presented in Table 12.2.

statistically significantly worse than at least one of the other methods. The only statistically
significant difference between the three other methods was that AC(RF) performed better than
RANDOM∗ for scenario SAPS-QCP-MED.

For the SINGLEINSTCAT configuration scenarios (see Figure 12.6), in all of which the tar-
get algorithm, SPEAR, has 26 parameters, we note some different trends. First of all, for these
scenarios, the local-search-based method FOCUSEDILS found good configurations fastest in 3
of the 5 configuration scenarios, SPEAR-SWV-MED, SPEAR-IBM-Q025, and SPEAR-IBM-MED (see
Figures 12.6(b), 12.6(c), and 12.6(e)). However, after 100 seconds the other methods caught
up and tended to perform better. Indeed, at the end of the search process, AC(RF) yielded
significantly better mean performance than FOCUSEDILS for all of the five SINGLEINSTCAT
scenarios. Performance differences were rather substantial for some configuration scenarios,
most notably SPEAR-IBM (where some FOCUSEDILS runs yielded parameter configurations
with very poor performance, timing out in a large fraction of runs). Notably, even though
AC(RF) only performed significantly better than RANDOM∗ for 1 of the 7 SAPS configuration
scenarios, it performed significantly better for all the 7 SPEAR configuration scenarios (al-
though the performance differences were small). This clearly demonstrates that random search
does not search higher-dimensional configuration spaces as effectively as SMBO methods
guided by a good model. However, at the same time, if there are many very good parameter
configurations (as seems to be the case for SPEAR in these scenarios), then a simple random
search with a strong good intensification strategy can yield good configurations. The intensifi-
cation mechanism used in ACTIVECONFIGURATOR and RANDOM∗ (unchanged from SPO∗’s
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Procedure 10.5) appears to be superior to that of FOCUSEDILS, which would explain the
significant and sometimes substantial advantage of these methods.

12.4 Chapter Summary
In this chapter, we extended the scope of sequential model-based optimization (SMBO) to
the configuration of algorithms with categorical parameters. First, we extended our random
forest (RF) and approximate Gaussian process (GP) models to handle categorical inputs. The
quality of approximate GP models deteriorated somewhat when trained on categorical inputs,
whereas the quality of the RF models improved. Hence, in contrast to what we observed in
the previous chapter for continuous inputs, on average, RF models now yielded higher model
quality.

Next, we introduced configuration procedures that optimize categorical parameters using
these models. In order to optimize the expected improvement criterion (EIC) across a dis-
crete parameter configuration space, these procedures—variants of ACTIVECONFIGURATOR

(AC)—apply a local search in parameter configuration space. We also proved that for finite
configuration spaces, AC converges to the optimal configuration (based on any type of model).
In our experimental results for the configuration of discretized parameters of SAPS and SPEAR

on single problem instances, AC based on RF models performed best, followed by AC based
on GP models and RANDOM∗ (about tied with AC(GP)).

All methods performed clearly better than FOCUSEDILS. This is especially significant
since—in contrast to previous chapters—all methods in this comparison search the same
discretized configuration space.
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Chapter 13

Extensions II: Multiple Instances
A man should look for what is, and not for what he thinks should be.
—Albert Einstein, German American theoretical physicist

The sequential model-based optimization (SMBO) methods we have introduced so far
only deal with the optimization of algorithm parameters for single problem instances. In this
chapter, we remove that restriction, extending SMBO to handle general algorithm configuration
problems defined across sets of problem instances.

There are multiple ways in which we could extend SMBO to multiple instances. One
possible straightforward extension is along the same lines as BASICILS in Chapter 5: simply
perform runs on the same N instances (or, to be more precise, the same N 〈instance, seed〉
pairs) to evaluate each configuration. However, as we showed in our empirical analysis in
Chapter 4 and in the evaluation of BASICILS against FOCUSEDILS in Chapter 5, there exists
no single best fixed N . Instead, it is more effective to discard poor configurations quickly
and evaluate the best configurations using additional runs, as we did in FOCUSEDILS or in
the intensification mechanisms of the SMBO variants introduced in the previous chapters.
However, once we use different instances for the evaluation of different configurations, we
face the question of how to integrate that information into our models.

A second possible way of extending SMBO to multiple instances is to simply build
models ignoring the information about which instance was used in which algorithm run. This
approach treats the additional inter-instance variance as additional (extraneous) noise. Even
if the model ignores the existence of different problem instances, the comparison between
parameter configurations can still apply a blocking scheme that does take into account which
instances (and seeds) each configuration has been run on. As we will see in Section 13.6.2,
this approach can lead to effective algorithm configuration procedures.

A final possibility is to explicitly integrate information about the used instances into our
response surface models. If we have access to a vector of features xi describing each training
problem instance πi ∈ Π, we can learn a joint model that predicts algorithm runtime for
combinations of parameter configurations and instance features, and then aggregates these
predictions to yield a predictive distribution for the cost measure to be optimized. Many
different types of instance features can be used. One simple feature that can always be
computed is the runtime of an algorithm (e.g., the algorithm we are optimizing, with some
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fixed parameter configuration, such as the default) for the problem instance. If it too expensive
to run the target algorithm for each instance, an alternative trivial feature is the index i of an
instance in an ordered set of training instances. Finally, for the main problems we study in
this thesis—propositional satisfiability (SAT) and mixed integer programming (MIP)—there
exist collections of features that have been show to correlate with instance hardness and can
be computed in time polynomial in the problem size.

In this chapter, we study the quality of models and configuration procedures, based on
these different sets of instance features. We first review the SAT and MIP features we use and
then introduce a simple extension of our random forest (RF) models to handle the prediction
of cost measures defined across multiple instances. We compare model quality based on the
different feature sets, introduce a new intensification mechanism that blocks on instances and
random number seeds, and evaluate configuration procedures based on this new mechanism
and the different instance sets.

13.1 Instance Features
Existing work on empirical hardness models (Leyton-Brown et al., 2002; Nudelman et al.,
2004; Hutter et al., 2006; Xu et al., 2007a; Leyton-Brown et al., 2009) convincingly demon-
strated that it is possible to predict algorithm runtime based on features of the problem
instance to be solved. In particular, that work has shown that—based on a vector of polytime-
computable instance features—it is possible to gain relatively accurate predictions of the
runtime of algorithms for solving SAT instances and MIP-encoded instances of the winner
determination problem in combinatorial auctions. These predictions have been exploited to
construct portfolio-based algorithm selection mechanisms (Leyton-Brown et al., 2003a,b; Xu
et al., 2007b, 2008). In particular, the portfolio-based algorithm selection approach SATzilla—
based on such predictions—has repeatedly won multiple categories of the bi-annual SAT
competition, demonstrating the maturity of the approach.

In the context of algorithm configuration, instance features can incorporate any kind of
information that is available for all training instances. In algorithm configuration, the aim
is to find the best-performing configuration for the training set, without any knowledge of
the test set. At test time, this fixed configuration is then evaluated on previously-unseen test
instances. Thus, we never require access to features of test instances—the same configuration
is used for any test instance. Thus, in contrast to per-instance approaches, such as SATzilla,
in our setting it suffices to have features for the training instances; in particular, we do
not require an executable procedure that computes features for a given problem instance.
Indeed, instance features could, for example, be the result of an extensive offline analysis of
instances. Correspondingly, we treat features for the training instances as a (potentially empty)
user-defined input to model-based algorithm configuration procedures.

13.1.1 SAT
For SAT instances in the form of CNF formulae, we used the features that have been con-
structed for the 2009 version of SATzilla (Xu et al., 2009). Figure 13.1 lists these 126 features.
84 of these features were originally introduced by Nudelman et al. (2004), and the others
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were added by Xu et al. (2008, 2009). In the final 2009 version of SATzilla, not all these
features were considered because some of them can be computationally expensive. Note that
in per-instance approaches, this computational expense needs to be limited since it counts
as part of the (“target algorithm”) runtime for solving an instance. In contrast, in algorithm
configuration instance features can be computed offline for a set of training instances, once
and for all. Thus, we employed the full feature set, relying on the random forest model to
select the best features. Here, we report experiments for the QCP and SWGCP instance sets
(see Section 3.3). For these, the feature computation took 30 seconds on average (without LP
features: 9.4 seconds), with a maximum of 241 seconds (without LP features: 172 seconds).

13.1.2 MIP
We constructed our MIP features by adapting and extending a set of existing features for
instances of the winner determination problem (WDP) in combinatorial auctions. These
features were introduced by Leyton-Brown et al. (2002). For our experiments with MIP-
encoded WDP instances, we could have used these original WDP features as is. However,
in order to be able to handle general MIP instances (such as the benchmark sets CLS, MJA,
MIK, and QP in our CPLEX configuration scenarios, see Section 3.3.2), we generalized these
features for general representations of MIP instances. In particular, we use functions provided
by the commercial MIP solver CPLEX in order to compute these features. This enables us to
compute features for any problem CPLEX can read and side-steps the necessity for parsing
MIP instances with a separate piece of feature computation code (which is not simple due to
various standards for representing MIP instances).

We computed our features using CPLEX 10.1.1, which uses the rather general representa-
tion of MIP instances discussed in Section 3.1.2 and replicated here for convenience:

minimize 1/2 · xT ·Q · x+ cT · x
subject to A · x ./ b

aT
i · x+ xT ·Q′i · x ≤ ri for i = 1, . . . , q

li ≤ xi ≤ ui for i = 1, . . . , n

xi is integer for i in a subset of {1, . . . , n}. (13.1)

The instance features we computed concern mostly the linear constraint matrix,A.
In Figure 13.2, we list the instance features we compute. Features 1–2, 4–23, and 25–27

are straightforward generalizations of the WDP features by Leyton-Brown et al. (2002) to
the general case of MIP (each WDP bid bi has a MIP variable xi associated with it, and the
price of the bid is the linear coefficient of xi in the objective function, ci). We omitted five of
the original WDP features that did not prominently appear in the subsets of most predictive
features in the analysis carried out by Leyton-Brown et al. (2009); these five features were the
“node eccentricity statistics”, the “average minimum path length”, and the “ratio of clustering
coefficient and average minimum path length”. We also added a number of additional features.
Feature 3 counts the number of nonzero elements of A, a measure for problem size in a
sparse problem encoding. Feature 24 is the objective function value achieved with an LP
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Problem Size Features:

1.–2. Number of variables and clauses in original
formula: denoted v and c, respectively

3.–4. Number of variables and clauses after sim-
plification with SATelite: denoted v’ and c’,
respectively

5.–6. Reduction of variables and clauses by simpli-
fication: (v-v’)/v’ and (c-c’)/c’

7. Ratio of variables to clauses: v’/c’

Variable-Clause Graph Features:

8.–12. Variable node degree statistics: mean, varia-
tion coefficient, min, max, and entropy

13.–17. Clause node degree statistics: mean, variation
coefficient, min, max, and entropy

Variable Graph Features:

18–21. Node degree statistics: mean, variation coef-
ficient, min, and max

22.–26. Diameter: mean, variation coefficient, min,
max, and entropy

27.–31. Clustering Coefficient: mean, variation coeffi-
cient, min, max, and entropy

Clause Graph Features:

32–36. Node degree statistics: mean, variation coef-
ficient, min, max, and entropy

Balance Features:

37.–41. Ratio of positive to negative literals in each
clause: mean, variation coefficient, min, max,
and entropy

42.–46. Ratio of positive to negative occurrences of
each variable: mean, variation coefficient, min,
max, and entropy

47.–49. Fraction of unary, binary, and ternary clauses

Proximity to Horn Formula:

50. Fraction of Horn clauses

51.–55. Number of occurrences in a Horn clause for
each variable: mean, variation coefficient, min,
max, and entropy

DPLL Probing Features:

56.–60. Number of unit propagations: computed at
depths 1, 4, 16, 64 and 256

61.–62. Search space size estimate: mean depth to
contradiction, estimate of the log of number
of nodes

LP-Based Features:

63.–66. Integer slack vector: mean, variation coeffi-
cient, min, and max

67. Ratio of integer variables in LP solution

68. Objective function value of LP solution

Local Search Probing Features, based on 2 seconds
of running each of SAPS and GSAT:

69.–78. Number of steps to the best local minimum
in a run: mean, median, variation coefficient,
10th and 90th percentiles

79.–82. Average improvement to best in a run: mean
and coefficient of variation of improvement per
step to best solution

83.–86. Fraction of improvement due to first local
minimum: mean and variation coefficient

87.–90. Coefficient of variation of the number of un-
satisfied clauses in each local minimum: mean
and variation coefficient

Clause Learning Features (based on 2 seconds of run-
ning Zchaff rand):

91.–99. Number of learned clauses: mean, variation
coefficient, min, max, 10%, 25%, 50%, 75%,
and 90% quantiles

100.–108. Length of learned clauses: mean, variation co-
efficient, min, max, 10%, 25%, 50%, 75%, and
90% quantiles

Survey Propagation Features

109.–117. Confidence of survey propagation: For
each variable, compute the higher of
P (true)/P (false) or P (false)/P (true).
Then compute statistics across variables:
mean, variation coefficient, min, max, 10%,
25%, 50%, 75%, and 90% quantiles

118.–126. Unconstrained variables: For each variable,
compute P (unconstrained). Then compute
statistics across variables: mean, variation co-
efficient, min, max, 10%, 25%, 50%, 75%, and
90% quantiles

Figure 13.1: 11 groups of SAT features; these were introduced by Nudelman et al. (2004) and Xu
et al. (2008, 2009).
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Problem Size Features:

1.–2. Number of variables and constraints: denoted
n and m, respectively

3. Number of nonzero entries in the linear con-
straint matrix, A

Variable-Constraint Graph Features:

4–7. Variable node degree statistics: mean, max,
min, and stddev

8–11. Constraint node degree statistics: mean, max,
min, and stddev

Variable Graph (VG) Features:

12–17. Node degree statistics: max, min, stddev, 25%
and 75% quantiles

18–19. Clustering Coefficient: mean and stddev

20. Edge Density: number of edges in the VG di-
vided by the number of edges in a complete
graph having the same number of nodes

LP-Based Features:

21–23. Integer slack vector: mean, max, L2 norm

24. Objective function value of LP solution

Objective Function Features:

25. Standard deviation of normalized coefficients:
{ci/m}ni=1

26. Standard deviation of {ci/ni}ni=1, where ni de-
notes the number of nonzero entries in column
i of A

27. Standard deviation of {ci/
√
ni}ni=1

Linear Constraint Matrix Features:

28.–29. Distribution of normalized constraint matrix en-
tries, Ai,j/bi: mean and stddev (only of ele-
ments where bi 6= 0)

30.–31. Variation coefficient of normalized absolute
nonzero entries per row: mean and stddev

Variable Type Features:

32.–33. Support size of discrete variables: mean and
stddev

34. Percent unbounded discrete variables
35. Percent continuous variables

General Problem Type Features:

36. Problem type: categorical feature attributed by
CPLEX (LP, MILP, FIXEDMILP, QP, MIQP,
FIXEDMIQP, MIQP, QCP, or MIQCP)

37. Number of quadratic constraints
38. Number of nonzero entries in matrix of

quadratic coefficients of objective function,Q
39. Number of variables with nonzero entries inQ

Figure 13.2: Eight groups of features for the mixed integer programming problem.

relaxation; this feature is most likely only useful when problem instances within a distribution
have comparable objective function values.

Our linear constraint matrix features (28–31) capture information about the coefficients of
the linear constraint matrix,A. For features 28–29, we compute the normalized coefficients,
A′i,j = Ai,j/bi (defined only for rows with bi 6= 0) and use mean and standard deviation of
{A′i,j |bi 6= 0} (set to 0 if that set it empty). Features 30-31 capture how much coefficients vary
within each linear constraint. We compute the variation coefficient v of the nonzero absolute
entries of each row ofA and use its mean and standard deviation across rows.

Our variable type features (32–35) include the range of discrete variables (always 2 for
the binary WDP variables), the ratio of continuous variables, as well as the ratio of unbounded
discrete variables.

Finally, our general problem type features (36–39) include a categorical problem type
defined by CPLEX and three features concerning quadratic constraints and quadratic terms in
the objective function. The computation of these 39 features for instances in benchmark set
Regions100 took 4.4 seconds on average, with a maximum of 8.2 seconds.
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13.1.3 Generic Features
Even in cases where no features exist for distinguishing the training instances, we can construct
generic features. One straightforward and often rather characteristic feature for instance π is
the performance of a given algorithm on π. If multiple algorithms are available, we can gather
the performance of these algorithms on all training instances. In order to study a generic
feature that can always be computed, here we use the performance of the target algorithm’s
default configuration as an instance feature. In cases where this data is not available and is too
expensive to gather, we can use a trivial feature for instance πi: its integer-valued index i. We
encode this generally-available feature as a categorical variable with domain 1, . . . , |Π|. As
we demonstrate in Section 13.4.1, using these generic features can strongly improve model
quality compared to using no features at all.

13.1.4 Principal Component Analysis (PCA) to Speed Up Learning
When a large number of instance features is available, learning a random forest (RF) model
can be slow. While RF models are known to perform implicit feature selection (Hastie et al.,
2009), learning time scales linearly in the sum of number of parameters and features. (This is
at least the case in our implementation, where we select a constant fraction of variables for
each split. If we were to select a constant number instead, learning time would effectively be
independent of the number of parameters and features.)

To shorten the time required for model learning, we reduce the number of features by
applying principal component analysis (PCA, see, e.g., Hastie et al., 2009). PCA identifies
so-called principal components, orthogonal directions in which the data—here, the matrix
(x1 · · ·x|Π|) of features for all training instances—has maximal variance. Projecting the data
into the space spanned by the first k principal components is an effective way to preserve
much of the variance while reducing dimensionality. The number of principal components to
use, k, is an algorithm parameter that affects model quality and the time complexity of model
building (linear in k). In Section 13.4.2, we evaluate various choices of k.

Instead of applying PCA, we could have used feature selection methods (Guyon and
Elisseeff, 2003), such as forward selection as done in SATzilla (Nudelman et al., 2004; Xu
et al., 2008). While PCA only takes into account the variation in the features, such feature
selection methods also take into account the response variable (here: runtime). Their drawback,
however, is computational efficiency: PCA only requires the construction of a single RF model,
while forward selection would need to construct a RF model to evaluate each considered
subset of features. (Note that in linear regression models, such as used in SATzilla, this can
be sped up by using rank-1 updates; that is not the case for RF models.) In future work, it
appears promising to apply computationally more expensive feature selection steps in regular
intervals throughout the algorithm configuration process.
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13.2 Modelling Cost Measures Defined Across Multiple
Instances

So far, in this thesis we have only discussed models that are trained using pairs (θi, oi) of
parameter configurations and their performance in single algorithm runs. Now, we extend these
inputs to the model building procedure to include instance features. Let xi denote the column
vector of features for training instance πi ∈ Π. Our training data is then {(θi,xi, oi)}ni=1.
Combining parameter values, θi, and instance features, xi, into one input vector yields the
pairs of training data {([θT

i x
T
i ]

T, oi)}ni=1. Denoting the number of parameters as d and the
number of instance features as e, the dimensionality of each training data point is d+ e.

Given these d+ e-dimensional training data points, we aim to construct models that take
as input only a parameter configuration θ (a column vector of length d) and predict its cost
measure, c(θ), across multiple instances.

13.2.1 Gaussian Processes: Existing Work for Predicting Marginal
Performance Across Instances

One particular cost measure of interest is expected performance across instances and multiple
runs of a randomized algorithm. This cost measure was previously studied by Williams
et al. (2000) in the context of Gaussian process regression. In particular, they considered
the problem of minimizing a (noise-free) blackbox function f with d + e inputs, where d
inputs are control variablesXC and the remaining e inputs are uncontrollable environmental
variablesXE . The objective in their work was to find the setting xC of control variablesXC

minimizing the marginal

c(xC) =
∑

xE∈XE

w(xE) · f(xC ,xE)

across settings xE of the environmental variablesXE , wherew(·) is a weighting function with∑
xE∈XE

w(xE) = 1. The environmental variables in this problem formulation correspond
exactly to instance features in our case. Williams et al. fitted a noise-free GP model to the
d + e inputs, assuming a so-called uninformative prior distribution for the variance of the
Gaussian stochastic process (instead of optimizing this variance as a hyper-parameter, as we
did when using GP models in the previous chapters). This led to predictions of f(xC ,xE)
that follow a Student t distribution. Exploiting the fact that linear combinations of Student
t-distributed random variables are still Student t-distributed, Williams et al. (2000) showed that
the marginal predictions of this noise-free GP model for c(xC) are also Student t-distributed.
They then used a standard expected improvement criterion (adapted to Student t instead of
Gaussian distributions) to decide which setting of the control variables to select next. They also
introduced a mechanism for actively deciding which instantiation of environmental variables
to use next, which is possible since these environmental variables can be controlled at the time
of optimization. We discuss this further in Section 14.3.3.

In principle, this approach can be applied out-of-the-box for optimizing algorithm param-
eters to minimize mean performance across instances, such as, for example, our penalized
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average runtime (PAR) criterion (see Section 3.4). However, note that the marginalization step
is incompatible with transformations of the data. In particular, when using a log transformation
on the original data, we face the issue of fitting the geometric mean we previously discussed
in Sections 9.4 and 11.2.1. Recall that in the case of single problem instances, this problem
did not manifest itself in our empirical evaluation. We attributed this to the fact that for many
noise distributions the minima of geometric and arithmetic means coincide. However, in the
presence of multiple problem instances of potentially widely-varying hardness this cannot be
expected to be the case. For example, it might be possible to speed up an algorithm by two or-
ders of magnitude for “easy” problem instances, leading to one order of magnitude slowdown
for “hard” instances. Assuming roughly equal proportions of such easy and hard instances,
such a modification would be judged beneficial under a geometric mean optimization objective
but not when trying to optimize arithmetic mean. One may wonder whether this problem
could be avoided by applying an inverse transformation before the marginalization across
instances. This is not possible for a log transformation, because the exponential transformation
required in this context is not linear. This means that the resulting predictions would no
longer be Student-t-distributed, and thus we could no longer use a closed-form formula for
predictions. For these reasons, it is an open question whether the approach of Williams et al.
(2000) can be usefully applied to optimize mean algorithm runtime across multiple instances.
For categorical parameters, ACTIVECONFIGURATOR based on RF models also showed more
promise than ACTIVECONFIGURATOR based on GP models (see Section 12.3.4). Thus, here
we concentrate on these RF models, leaving the application of Williams et al.’s approach to
algorithm configuration to future work.1

13.2.2 Random Forests: Prediction of Cost Measures Across Multiple
Instances

We extended our random forest (RF) model framework to predict cost measures defined across
multiple instances. The model construction mechanism described in Section 11.1 (Procedure
11.1 on page 170) also works in the presence of instance features. The training data is now
{([θT

i x
T
i ]

T, oi)}ni=1 instead of just {(θi, oi)}ni=1, with d-dimensional parameter configurations
θi and e-dimensional instance feature vectors xi. At each split point during tree construction,
we now have a choice between d+ e split variables (d algorithm parameters and e instance
features). Note that when applying PCA as described in Section 13.1.4, we do so once, offline,
resulting in k instance features (the original features projected onto the principal components),
and we set e = k.

Prediction in RF models as defined in Procedure 11.2 on page 172 can then be used to
predict the performance of a given 〈configuration, instance〉 combination. One could use
this approach to predict cost measures across multiple instances, π1, . . . , πn: first predict
performance µ̂1, . . . , µ̂n for a single parameter configuration θ and instances π1, . . . , πn, and
then compute sample statistic τ̂(µ̂1, . . . , µ̂n) to arrive at a prediction µ̂(θ) of θ’s cost measure,
c(θ).

1We contacted Brian Williams, who generously agreed to provide the implementation of the approach used in
their paper. However, since this implementation has not been made available to the public and was written nine
years ago, tracking it down takes some time.
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However, note that such an approach does not yield straightforward uncertainty estimates.
In particular, if we were to predict means and variances separately for each of the instances,
then it is unclear how to combine them. Rather, we should predict a joint distribution across
these instances and then compute the measure we are optimizing from this joint distribution.
When the cost measure we are optimizing is an expected value, this amounts to marginalizing
out (computing the mean across) instances as done by Williams et al. (2000) (see previous
section).

Procedure 13.1 implements such an approach in the RF model framework, mapping
parameter configurations θi to predicted cost statistics µ̂(θ) and uncertainty estimates σ̂(θ).
For each tree, Tb, and each instance, πi, first, it identifies the tree’s regions that [θT

i x
T
i ]

T

falls in. Then, it computes the sample statistic of the sets of response values associated with
the regions for all instances, thereby computing a tree prediction µ̂b of the cost measure,
c(θi). The uncertainty in this prediction is then computed as the empirical variance across
tree predictions. Note that in Procedure 13.1, the sample statistic τ̂ is now computed on a
set of weighted response values in order to avoid overcounting data from leaves with many
response values. In our experiments for multiple instances, we only used the penalized average
runtime as a cost statistic. In that case, the sample statistic on weighted data, τ̂({(oi, wi)}ni=1),
simplifies to 1/(

∑n
i=1wi) ·

∑n
i=1wi ·oi. Performance metrics based on other sample statistics,

such as, quantiles, can also be generalized to work on weighted data.
We also experimented with, but ultimately decided to discard, modifications of the standard

mechanism for constructing RF models. These modifications were motivated by scenarios in
which hardness varies strongly across instances but varies little across parameter configurations.
In such scenarios, the standard mechanism mostly (or, in the extreme case, only) selects splits
on instance features since they are most predictive of response values. Although the resulting
model can capture performance differences across instances well, if it does not split on
parameter values it predicts the same cost for each parameter configuration (and is thus
useless for selecting promising configurations). To avoid this effect, we experimented with a
mechanism for probabilistically forcing splits on parameter values, with the probability for
forced splits on parameters increasing for deeper levels of the tree. This mechanism improved
performance for some scenarios but worsened it for others. In particular, when forcing
increasingly many splits on parameter values, model quality became more and more similar
to that of models not using any features (which sometimes perform very well). However,
since this mechanism did not consistently improve performance, we dropped it to increase our
methods’s conceptual simplicity.

13.3 Experimental Setup
In this chapter, to study model quality and performance of our SMBO configuration procedures
we employ the five BROAD configuration scenarios (defined in Section 3.5.4) we already used
in Chapters 5 and 7; their use allows a direct comparison to the results reported there. For
model evaluation, we also use three of our COMPLEX configuration scenarios (described in
Section 3.5.7).

For the SAPS-QCP and SPEAR-QCP scenarios, when computing problem instance features
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Procedure 13.1: Prediction with Random Forest for Multiple Instances(RF, θ, t, Π)
Input : Random Forest RF={T1, . . . , TB}; parameter configuration, θ; transformation t;

training set of instances, Π
Output : Predicted mean µ and variance σ2 of cost measure c(θ)
for b = 1, . . . , B do1
Q ← ∅2
for all πi ∈ Π do3

Let Rm be the region of Tb containing [θT
i x

T
i ]

T, with stored set of response values Om4
Q ← Q∪ {〈oi, 1/|Om|〉 | t(oi) ∈ Om}5

yb ← t(τ̂(Q)), where τ̂ now works on a set of weighted responses 〈oi, wi〉6

µ← 1
B ·
∑B

b=1 yb7

σ2 ← 1
B−1 ·

∑B
b=1(yb − µ)28

return [µ, σ2]9

we noticed that some instances could already be solved by applying the polynomial-time
preprocessor SATelite (Eén and Biere, 2005). Since the feature computation code we used
started by applying this preprocessor, it did not yield meaningful features for such trivial
instances. We thus removed these instances from the respective training sets (we removed
45/1000 instances for SAPS-QCP, and 24/1000 instances for SPEAR-QCP). We did not modify
the test sets, ensuring that reported test performances remained directly comparable to those
obtained with PARAMILS.

13.4 Model Quality
To study the quality of our RF models based on various sets of instance features, for each of
our five BROAD configuration scenarios, we employed 10 001 data points. These were single
runtimes of the respective target algorithm (CPLEX, SPEAR, or SAPS) for its default and for
10 000 randomly-sampled configurations. For each of these configurations, we sampled a
problem instance uniformly at random from the set of training instances. (Here, we used a
larger training set than in previous experiments with single-instance modelling problems since,
intuitively, the learning task is harder due to the additional inter-instance variation.)

As in previous chapters, we used two sets of test configurations to evaluate model predic-
tions: Random, a set of 100 randomly-sampled configuration, and Good, a set of 100 “good”
configurations determined with a subsidiary configuration procedure (here FOCUSEDILS
with a time budget of five hours) as described in Section 10.2.1. As throughout, we used our
standard parameters for the RF model (B = 10, nmin = 10, perc=5/6).

13.4.1 Evaluation of Different Sets of Instance Features
We now study the quality of our RF models based on various sets of instance features:

1. the empty set (no features)

2. the 126 SAT or 39 MIP features described in Sections 13.1.1 and 13.1.2 (using the full

217



−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

log
10

(true mean response)

lo
g

1
0
(p

re
d
ic

te
d
 m

e
a
n
 r

e
sp

o
n
se

)

(a) No instance features

0.6 0.8 1 1.2 1.4 1.6

0.6

0.8

1

1.2

1.4

1.6

log
10

(true mean response)

lo
g

1
0
(p

re
d
ic

te
d
 m

e
a
n
 r

e
sp

o
n
se

)

(b) 126 SAT features

0 0.5 1 1.5

0

0.5

1

1.5

log
10

(true mean response)

lo
g

1
0
(p

re
d
ic

te
d
 m

e
a
n
 r

e
sp

o
n
se

)

(c) Single feature: runtime of default
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(d) Single feature: instance index

Figure 13.3: RF model quality based on different features, for scenario SAPS-QCP. We plot
predicted mean ± stddev vs actual cost for test sets Good (shown in green) and Random
(shown in red).

set, without applying PCA)

3. the generic feature “runtime of the default configuration” described in Section 13.1.3,
and

4. the generic instance index feature described in Section 13.1.3.

In Figures 13.3 and 13.4, we qualitatively compare model quality based on these four sets
of features, for the two configuration scenarios in which instance features were most and least
useful. For configuration scenario SAPS-QCP (see Figure 13.3), instance features dramatically
improved model quality. The 126 SAT features yielded the best performance, but the two
single generic features already substantially improved model quality compared to not using
any features at all.

In contrast, for configuration scenario SAPS-SWGCP (see Figure 13.4), models that com-
pletely ignored the existence of different instances performed very well, and in particular
much better than models based on the 126 SAT features. Both of the generic single features
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(c) Single feature: runtime of default

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

log
10

(true mean response)

lo
g

1
0
(p

re
d
ic

te
d
 m

e
a
n
 r

e
sp

o
n
se

)

(d) Single feature: instance index

Figure 13.4: RF model quality based on different features, for scenario SAPS-SWGCP We plot
predicted mean ± stddev vs actual cost for test sets Good (shown in green) and Random
(shown in red).

led to performance comparable to that without features. This result is counter-intuitive since
we typically would expect that RF models ought to filter out and only use features that help to
improve performance. We thus emphasize that the results reported here are preliminary and
can likely be improved considerably. There are several possible explanations for this example
of poor model performance when using SAT features. First, it has previously been observed
that instance features, such as the ones we used, are not very predictive for the type of SWGCP
instances used in this case (Xu et al., 2007a). Second, we employ very short cutoff times of
5 seconds per run, in combination with our penalized average runtime criterion (counting
timed-out runs as 50 seconds). As we show in Figure 13.7(b) on page 225, about a third
of the runs timed out, creating a very unbalanced training set. Our model predictions for
combinations of parameter configurations and instances (shown in Figure 13.7(d) on page
225) captured this partition into poor and good parameter configurations, but missed the more
subtle differences that distinguished the cost measures of good and very good configurations.
In future work, we plan to study the causes for this poor performance in more detail.
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Figure 13.5: RF model quality based on different sets of instance features. We performed
25 runs for each model with different training but identical test data and show boxplots for
the respective quantities across the 25 runs. In each plot, ‘f’ denotes the 126 SAT / 39 MIP
features ‘r’ the generic default runtime feature, ‘fr’ the union of ‘f’ and ‘r’, ‘i’ the generic
index feature, and ‘n’ no features at all.

220



In Figure 13.5, we quantify the performance of our four feature sets (and one additional
one) across multiple runs on all five BROAD configuration scenarios. The additional set of
features we considered here is the union of the 126 SAT / 39 MIP features and the runtime
of the default. As we show in Figure 13.5, adding the default runtime feature did not change
performance much as compared to the 126 SAT / 39 MIP features alone (the most visible
effects were that in the case of CPLEX-REGIONS100, it improved performance with respect to
two measures of model quality, and for SPEAR-SWGCP, it worsened EIC quality). Otherwise,
it did not change performance much. Differences in the quality of predictive ranks and in
RMSE are most striking for the two scenarios we detailed in Figures 13.3 and 13.4, SAPS-QCP
and SAPS-SWGCP. For the former, features improved model quality substantially, whereas
for the latter using the 126 SAT features substantially worsened performance (again, we
emphasize that this latter result is counterintuitive and preliminary, and that we plan to study
its causes in future work). Surprisingly, the single generic default runtime feature yielded very
high-quality models. In particular, only models based on this feature alone performed well on
both of SAPS-QCP and SAPS-SWGCP. It also yielded rather good performance for the remaining
scenarios, making it the overall most robust choice. Finally, also note the differences in the
time required to learn models: the versions using many features were consistently slower than
the versions using just one feature or none at all. For CPLEX-REGIONS100 we optimize d = 63
parameters, such that using e = 39 MIP features only caused a slowdown of a factor about 1.5.
However, using the e = 126 SAT features caused slowdown factors around 3 for the SPEAR

scenarios (d = 26) and 5 for the SAPS scenarios (d = 4).

13.4.2 Evaluation of PCA to Speed Up Learning
Next, we studied the performance of applying PCA to reduce this time complexity. As we
show in Figure 13.6(d), using only a few principal components of the 126 SAT/39 MIP features
speeds up the model learning substantially (to the point where the time required is basically the
same as without features). Figure 13.6 also shows that as we use more principal components,
typically there is a gradual change of model quality, from being comparable to the featureless
model to being comparable to the model with all 126 SAT / 39 MIP features. Clearly, the best
number of principal components depends on the configuration scenario. For the experiments
in the remainder of this chapter we chose to use 7 principal components, which yielded good
average performance.

13.5 Prediction of Matrix of Runtimes
Finally, we evaluated how well our RF models can predict runtimes for combinations of
parameter configurations and instance features. While our current approach for algorithm
configuration only requires predictions of cost measures defined across instance features, such
predictions can be very useful in future work on actively deciding which problem instance
to use for a run (see Section 14.3.3), as well as for instance-based selection of algorithm
parameters (see Section 14.3.5). They can also be used to transform our expensive offline
empirical analysis approaches from Chapter 4 into computationally-cheap online analysis
approaches using predicted instead of true runtimes (see Section 14.3.1).
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Figure 13.6: RF model quality based on different number of principal components of 126
SAT/39 MIP features. We performed 25 runs of models with no features (‘n’), 2, 7, and 20
principal components, and with the original set of features without PCA (‘orig’). We show
boxplots across those 25 runs for each of our performance measures.
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In this section, we used the full 126 SAT and 39 MIP features introduced in Sections
13.1.1 and 13.1.2, without applying PCA. The reason we did not use PCA here is that some
benchmark sets (in particular, benchmark sets BMC and SWV) contain a large fraction of
instances for which most of our SAT features are not defined. More specifically, over 50%
of the instances in set SWV could be solved by applying the polynomial-time preprocessor
SATelite (Eén and Biere, 2005) (note that we already pointed out this large fraction of trivial
SWV instances in our empirical analysis in Section 4.2). For such instances, the feature
computation code we use only yielded meaningful values for the original number of variables
and clauses (before preprocessing); all other features have default values (0 for some features,
-512 for others). One option would be to simply discard these trivial instances (as we indeed
did for the small fraction of QCP instances in the remainder of this chapter). However, since
we wanted to predict runtimes for all instances π ∈ Π and trusted in the ability of random
forest models to filter out meaningless features, we simply used the features as outputted by
the feature computation code (including the values 0 and -512). We did not apply PCA to this
data since we feared this might make it harder to detect meaningless features.

For the evaluation of model quality in this section, we used the same type of data underlying
our empirical analysis in Chapter 4: a M × P matrix containing the runtime of M = 1 000
randomly-sampled parameter configurations on a set of P = 2 000 problem instances. We
trained RF models on runtimes of 10 000 randomly-sampled combinations of the first M/2
configurations and P/2 instances, and tested predictions on the second half of configurations
and instances, thus testing generalization performance to both previously-unseen instances
and configurations. Since the goal of this experiment was not to predict cost measures
across instances, but to predict runtimes on single instances, we used our original RF model
prediction, outlined in Procedure 11.2 on page 172 (instead of Procedure 13.1, which predicts
cost statistics µ̂(θ) across instances).

In Table 13.1, we list quantitative results for the BROAD configuration scenarios and three
COMPLEX configuration scenarios with larger cutoff times per run. For each scenario, we
provide results for three experiments:

1. Prediction for unseen configurations on training instances, in column “Πtrain, Θtest”.
This is important in algorithm configuration to evaluate how promising new configura-
tions are; all model quality plots in the rest of the thesis are of this form.

2. Prediction for training configurations on unseen test instances, in column “Πtest,
Θtrain”. This is important in the context of selecting on a per-instance basis which of
a set of given parameter configurations will perform best on a previously-unseen test
instance.

3. Prediction for unseen configurations on unseen instances, in column “Πtest, Θtest”.
This most general case is important for per-instance algorithm configuration, where
we perform a search through a (potentially large configuration space) to identify the
configuration that is most promising for a previously-unseen test instance. (Note that
such a search can be carried out very quickly; we routinely perform exactly such a
search in every of the thousands of iterations of our SMBO procedures, taking on the
order of seconds.)
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Scenario |Πtrain| κmax time [CPU s] Πtrain, Θtest Πtest, Θtrain Πtest, Θtest

SAPS-QCP 1 000 5 26.7 0.41 / 0.95 0.43 / 0.95 0.44 / 0.95
SAPS-SWGCP 1 000 5 31.2 0.98 / 0.60 0.98 / 0.60 0.98 / 0.59
SPEAR-QCP 1 000 5 31.7 0.51 / 0.93 0.57 / 0.91 0.58 / 0.91
SPEAR-SWGCP 1 000 5 38.8 0.91 / 0.72 1.02 / 0.61 1.05 / 0.58

CPLEX-REGIONS100 1 000 5 21.0 0.60 / 0.52 0.54 / 0.61 0.61 / 0.50
SPEAR-SWV 50 300 20.3 0.54 / 0.97 0.56 / 0.95 0.57 / 0.95
SPEAR-IBM 50 300 15.6 0.38 / 0.96 0.94 / 0.82 0.94 / 0.82
CPLEX-ORLIB 70 300 20.3 0.61 / 0.94 0.82 / 0.88 0.89 / 0.86

Table 13.1: Model quality for predictions of 〈configuration, instance〉 combinations. We
trained on 10 000 randomly-sampled combinations of parameter configurations θ ∈ Θtrain

and π ∈ Πtrain. We report test performance for three different combinations of instances
and parameter configurations, corresponding to the three experiments listed in the text. We
computed root mean squared error (RMSE) and Spearman correlation coefficient, ρ, between
the predicted and actual runtimes of the respective test set, and for each combination report
results in the form RMSE/ρ. For each configuration scenarios, we also list the captime, κmax,
as well as the time required to build the RF model.

The two sets of configuration scenarios listed in Table 13.1 differ in important aspects.
Firstly, the BROAD configuration scenarios contained larger training instance sets, Πtrain, than
the COMPLEX scenarios. In particular, for the BROAD scenarios they contained 1 000 instances
each, whereas in the case of the COMPLEX scenarios they only contained 50 instances for
SPEAR-SWV and SPEAR-IBM, and 70 for CPLEX-ORLIB, half of the P instances we had runtime
data available for (the other half was used as test set, Πtest). Secondly, these three COM-

PLEX scenarios employed a much larger captime (κmax = 300s) than the BROAD scenarios
(κmax = 5s).

Consequently, generalization performance differed between the two sets of configuration
scenarios. Recall that in either case, we trained on 10 000 randomly-sampled 〈parameter
configuration, instance〉 combinations. For the BROAD scenarios, where these 10 000 samples
were spread across 1 000 training instances, this resulted in good generalization to previously-
unseen test instances, that is, the difference between experiments 1 and 3 from above was rather
small (compare columns 5 and 7 of Table 13.1). In contrast, for the COMPLEX configuration
scenarios, where the 10 000 training data points were only spread over much fewer instances
(50, 50, and 70), generalization to previously-unseen instances was sometimes much worse
than “just” generalization to unseen configurations. (compare columns 5 and 7 of Table 13.1).
However, model predictions on previously-seen instances (the task important in the context of
algorithm configuration), were very good for the COMPLEX scenarios, with rank correlation
coefficients between predicted and actual runtime in the high 90% range. We attribute this
strong performance to the larger cutoff times used: the data is richer than for the BROAD

scenarios, in which every run is cut off after five seconds. The difference between experiments
2 and 3 from above was rather small for all configuration scenarios (compare columns 6 and 7
of Table 13.1), that is, generalization to unseen parameter configurations generally worked
well.

In Figures 13.7 and 13.8, we provide plots for each of the configuration scenarios listed
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Figure 13.7: Predictions of runtime matrix, for BROAD configuration scenarios, compared to
the true matrix of runtimes. We show data for configurations and instances withheld during
training.
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in Table 13.1, in which we compare the true matrix of runtimes to the predicted matrix. For
this visualization, we sorted the rows of both true and predicted matrix by the true penalized
average runtime of the respective configuration; we also sorted the columns of either matrix
by the respective instance’s true average hardness (PAR across runs of all configurations on
the instance). For the five BROAD scenarios, in Figure 13.7, we only show the matrix for the
M/2 unseen test configurations and the P/2 unseen test instances. For the three COMPLEX
scenarios, in Figure 13.8, we show plots for that setting as well as predictions on unseen test
configurations for the training instances.

We discuss the predictive quality for two of the BROAD scenarios in detail. For configura-
tion scenario SAPS-QCP, model predictions were excellent: the true and predicted matrices in
Figures 13.7(a) and 13.7(c) are very similar. The model perfectly predicted the fact that about
5% of the previously-unseen parameter configurations performed very poorly, except for the
about 5% easiest instances (also previously-unseen). The model also predicted interactions
of parameter configurations and instance features very well; this is visible by the correct
prediction of some horizontal stripes (for example around parameter configuration 300, in the
sorted list). The RF model we evaluate here is the model which corresponds to the one used
for the predictions in Figure 13.3(b); not surprisingly, the very good predictions for individual
instances here transferred to very good predictions of the cost measure across instances. For
scenario SAPS-SWGCP (see Figures 13.7(b) and 13.7(d)), the model correctly predicted that
about a third of the configurations yielded very poor performance, but missed more subtle
differences for the good parameter configurations and in instance hardness. The model we
evaluate here corresponds to the model in Figure 13.3(b), which also performed poorly for
predictions across instances. We hypothesize that this poor performance is at least in part due
to the large fraction of very poor parameter configurations: if instance features are used in
the predictive model, the poor performance in each training run using such a configuration
θ and an instance π will in part be attributed to instance π and thereby cause predictions to
deteriorate. We plan to study the causes for the poor performance in this case in future work
in more detail.

We summarize results for the remaining three BROAD scenarios. For scenario SPEAR-QCP

(see Figures 13.7(f) and 13.7(i)), the model accurately identified a small portion of very
hard instances, but largely missed the fact that some parameter configurations performed
much better than others. For scenario SPEAR-SWGCP, the model captured the fact that relative
rankings of configurations were rather unstable across problem instances. In particular,
it correctly predicted that configurations 1–230 (sorted by PAR) behaved differently than
configurations 231–430 (and that configurations past 430 behaved poorly throughout). It also
correctly predicted many horizontal and vertical stripes (indicators of the instability of relative
rankings), but missed the fact that instances 700–880 were very hard for configurations 231–
430. For scenario CPLEX-REGIONS100 (see Figures 13.7(g) and 13.7(j)), the model captured
the performance differences across parameter configurations, but missed the differences in
instance hardness. We hypothesize that this might be due to the fact that the instances in
the Regions100 benchmark set are very homogeneous (they have very similar numbers
of variables and constraints, see Section 3.3.2), and detecting any differences between them
might be hard; splits on instance features might thus be wasteful of the data. In future work,
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we hope to improve model quality for this case.
Finally, we discuss predictive quality for the three COMPLEX scenarios, shown in Figure

13.8. For configuration scenario SPEAR-SWV, note that, although over 50% of the instances
could be solved by a polynomial-time preprocessor (SATelite, see our discussion at the begin-
ning of this section), there were still rather substantial performance differences for solving
them, which, in fact, were predicted correctly by the model. Predictive performance was
already relatively good for the hardest case (generalization to previously-unseen instances and
previously-unseen configuration), see the top two rows of Figure 13.8 and column 7 (“Πtest,
Θtest”) of Table 13.1. This performance substantially improved further for predictions on
previous-seen instances, the case that is important in the context of algorithm configuration
(see the bottom two rows of Figure 13.8 and column 5 (“Πtrain, Θtest”) of Table 13.1). For
that case, the true and predicted runtime matrices were almost identical: compare Figures
13.8(g) and 13.8(j) (for SPEAR-SWV); 13.8(h) and 13.8(k) (for SPEAR-IBM); and Figures 13.8(i)
and 13.8(l) (for CPLEX-ORLIB). In particular, in the case of CPLEX-ORLIB, note that the com-
plex interactions between parameter configurations and instances were predicted extremely
well, especially the prominent vertical stripes (indicating that an instance was very easy for
some configurations but hard for others, whereas other instances were similarly-hard for all
configurations).

Overall, these results are very promising. They suggest the possibility of exploiting model
predictions of instance hardness in algorithm configuration procedures, and of predicting on a
per-instance basis which parameter configurations are likely to perform well, lines of research
we plan to follow in the future (see Sections 14.3.3 and 14.3.5). However, we also note that
predictions were rather poor in some cases.

13.6 Sequential Optimization Process
We now study SMBO configuration procedures for configuration scenarios with multiple
instances. We first introduce a new intensification mechanism that implements a blocked
comparison, then evaluate SMBO procedures based on the instance features discussed in this
chapter, and then compare SMBO to FOCUSEDILS and RANDOM∗.

13.6.1 Blocking on Instances and Seeds
When we compare empirical cost statistics, ĉN (θ1) and ĉN (θ2), of two parameter configura-
tions, θ1 and θ2, defined across multiple instances, intuitively, the variance in this comparison
is lower if we use the same N instances (and seeds) to compute both empirical estimates,
ĉN (θ1) and ĉN (θ2). We discussed the advantages of such a blocking scheme in Section 3.6.1
and used it in our empirical analysis of algorithm configuration scenario (see Section 4.2) as
well as in FOCUSEDILS (see Section 5.3). We now define a new intensification mechanism
in the SMBO framework that implements such a blocking mechanism. We then demonstrate
that for configuration scenarios with multiple instances this new mechanism performs better
than our previously-best intensification mechanism (the one we used in SPO∗, ACTIVECON-
FIGURATOR, and RANDOM∗ throughout the previous chapters), defined in Procedure 10.5 on
page 165.
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Figure 13.8: Predictions of runtime matrix, for the three COMPLEX scenarios with κmax = 300.
We show true and predicted data for configurations and instances withheld during training (top
two rows); and for configurations withheld during training but instances used during training
(bottom two rows).
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Procedure 13.2: Intensify(θnew, θinc, R) with Blocking in ACTIVECONFIGURATOR

for Multiple Instances
maxR is a parameter of configurators using this procedure, set to 2 000 in all our
experiments

Input : Sequence of parameter configurations to evaluate, ~Θnew, here with one element; incumbent
configuration, θinc; model,M; sequence of target algorithm runs, R

Output: Sequence of target algorithm runs, R; incumbent configuration, θinc
Linc ← {(π, s)|∃i.R[i] = (θinc, π, s, ·, ·)}1
if |Linc| < maxR then2

Select π ∈ Π and seed s ∈ S uniformly at random3
R← ExecuteRun(R, θinc, π, s)4

N ← 15
while true do6

Lnew ← {(π, s)|∃i.R[i] = (θnew, π, s, ·, ·)}7
L← random subset of Linc \ Lnew of size min(N, |Linc \ Lnew|)8
for (π, s) ∈ L in randomized order do9

R← ExecuteRun(R, θnew, π, s)10

Lnew ← {(π, s)|∃i.R[i] = (θnew, π, s, ·, ·)}11
Rinc ← {R[i]|R[i] = (θinc, π, s, ·, ·)}12
Rnew ← {R[i]|R[i] = (θnew, π, s, ·, ·) and (θinc, π, s, ·, ·) ∈ Rinc}13
if ĉ(θinc, Rinc) < ĉ(θnew, Rnew) then return [θinc, R]14
else if Linc ⊆ Lnew then return [θnew, R]15
else N ← 2 ·N16

Procedure 13.2 defines this new intensification mechanism. Briefly, whenever a new
configuration, θnew, is compared to the incumbent configuration, θinc, we first perform an
additional run for the incumbent, using a randomly-selected 〈instance, seed〉 combination, and
then perform a sequence of runs using θnew. For that sequence of runs, we select 〈instance,
seed〉 combinations at random from those that have been used for the incumbent. (Note
that since we now take control of instances and seeds used in each run, we need to redefine
the procedure to execute runs; see Procedure 13.3.) We always compare θinc and θnew
based on the 〈instance, seed〉 combinations they both have been run for. This mechanism
is similar to the one implemented in FOCUSEDILS (see Procedure betterFoc on page 82).
The main difference is that instead of using a fixed ordering of instances and seeds, every
comparison in this new procedure is based on a different randomly-selected subset of instances
and seeds. It thereby avoids issues arising from unfortunate fixed orderings of instances and
seeds, which we did indeed encounter with FOCUSEDILS (see our discussion of an extreme
example in Section 8.1.2). In Section 13.6.2, we demonstrate that—based on this improved
intensification mechanism—even random search can substantially outperform FOCUSED-
ILS on some configuration scenarios, clearly arguing for the strength of the intensification
mechanism.
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Figure 13.9: Evaluation of RANDOM∗ based on intensification Procedures 13.2 (blocking) and
10.5 (no blocking), on 3 BROAD configuration scenarios (multiple instances, left column) and
3 SINGLEINSTCAT scenarios (single instances, right column). We performed 25 runs of each
procedure and show mean ptest,t across the 25 runs for a varying time budget.
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Procedure 13.3: ExecuteRuns(R, θ, π, s) with Multiple Instances
Input : Sequence of target algorithm runs, R; parameter configuration, θ; problem instance, π; seed, s
Output: (Extended) sequence of target algorithm runs, R
Execute A(θ) with seed s and captime κmax on instance π, store response in o1
Append (θ, π, s, κ, o) to R2
return R3

13.6.2 Experimental Evaluation of SMBO Configuration Procedures
We first experimentally evaluated our new intensification procedure. In this evaluation, we
used configuration procedure RANDOM∗, based on our previous intensification mechanism,
Procedure 10.5 on page 165 (with does not use any blocking) and our new Procedure 13.2. We
chose RANDOM∗ in order to study the intensification procedure in isolation. (In ACTIVECON-
FIGURATOR, the different data we gather using different intensification procedures would also
affect the model and could thereby have an additional, indirect, effect on performance.) Figure
13.9 shows the results with the two intensification procedures. For configuration scenarios
with multiple instances (left column), blocking tended to help, whereas not blocking (and
rather using all available runs to estimate each configuration’s performance) tended to be better
for single-instance scenarios. For the two remaining scenarios from either set, (not shown),
neither of the intensification procedures was substantially better than the other.

Now, we compare four variants of ACTIVECONFIGURATOR (AC) that only differ in the
type of instance features they use. All these AC variants are based on RF models and use our
new intensification mechanism. We studied AC variants based on the four sets of features
discussed in Section 13.4.1, plus PCA: (1) the empty set (no features) (2) the first seven
principal components of the 126 SAT/39 MIP features described in Sections 13.1.1 and 13.1.2;
(3) the generic feature “runtime of the default configuration” described in Section 13.1.3;
and (4) the generic instance index described in Section 13.1.3. Apart from this difference in
features, all variants were identical.

Figures 13.10 and 13.11 show the results of this comparison. Notably, for most scenarios,
AC performed quite similarly based on the different types of models; this can be explained
by the random configurations AC interleaves regardless of model quality and the common
intensification procedure. For SAPS-SWGCP, AC using no features at all was fastest to find good
configurations (see Figure 13.10(b) but also note that at the end of its trajectory the featureless
variant of AC yielded marginally worse performance than other variants). The good initial
performance of this variant is not surprising since, as discussed in Section 13.4.1, featureless
models yielded the best performance for SAPS-SWGCP (see Figure 13.4 on page 219). What is
more surprising is the good performance of the featureless variant for SPEAR-QCP; even though
initial model quality without features was very poor for this scenario (see Figure 13.5 on page
220), this variant led to the best performance at the end of the trajectory (see Figure 13.11).
We hypothesize that differences between the performance in sequential optimization we see
here and the quality of the models discussed in Section 13.4 is due to the qualitatively different
training data that models are based on. While in Section 13.4, parameter configurations and
instances were sampled uniformly at random, here the sequential optimization gathered much
more runs of well-performing parameter configurations and selecting instances (and seeds) by
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Figure 13.10: Performance of AC(RF) variants based on different sets of features. We
performed 25 runs of the configurators and show mean ptest,t across the 25 runs for a varying
time budget, t.
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Figure 13.11: Final performance of AC(RF) variants based on different sets of features. We
performed 25 runs of the configurators and show boxplots of their test performance ptest,t
for a time budget of t = 18 000 seconds. Based on a Mann Whitney U test (see Section
3.6.2), all pairwise performance differences for scenario CPLEX-REGIONS100 were significant.
The only other significant difference was between using no features and the index feature for
SPEAR-QCP.

a blocking scheme. In the future, thus, we plan to study the quality of models learned from the
data gathered in the sequential optimization process.

By far the clearest distinction between the different models is for scenario CPLEX-REGIONS100,
the most complex configuration scenario. As we will see later in this section, random search
alone did not find very good configurations for this scenario, such that AC variants based
on poor models would also yield poor results. For this scenario, the default runtime feature
yielded best performance, followed by the first seven principal components of the 39 MIP
features, the index feature, and no features at all; all pairwise differences were statistically
significant. These results correlate well with EIC quality for that configuration scenario (see
Figure 13.5 on page 220), but not with the quality of predictive ranks or RMSE. The other AC
variant that showed consistently robust performance was the one based on the seven principle
components of the 126 SAT / 39 MIP features.

Finally, we compared that latter version of ACTIVECONFIGURATOR (AC) against RAN-
DOM∗ and FOCUSEDILS. We show the results of this comparison in Figures 13.12 and 13.13,
and summarize them in Table 13.2. ACTIVECONFIGURATOR significantly outperformed both
RANDOM∗ and FOCUSEDILS in two scenarios and was never significantly worse. FOCUSED-
ILS was significantly worse than RANDOM∗ for scenario SPEAR-SWGCP—this may be due to
the improved intensification mechanism used in the latter. Importantly, CPLEX-REGIONS100,
the configuration scenario with the largest parameter configuration space, clearly required an
informed search approach: for this scenario, the more informed configurators, FOCUSEDILS
and ACTIVECONFIGURATOR performed substantially better than RANDOM∗.

13.6.3 Chapter Summary
In this chapter, we extended sequential model-based optimization (SMBO) methods to handle
general configuration scenarios with multiple instances. We evaluated models based on
different sets of instance features: no features, a generic feature based on the runtime of the
algorithm default on the instance, a generic index feature, and sets of SAT / MIP features
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Figure 13.12: Performance of ACTIVECONFIGURATOR, RANDOM∗ and FOCUSEDILS for
BROAD configuration scenarios. We performed 25 runs of the configurators and show boxplots
of their test performance ptest,t for a varying time budget, t.
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Figure 13.13: Performance of ACTIVECONFIGURATOR, RANDOM∗ and FOCUSEDILS for
BROAD configuration scenarios. We performed 25 runs of the configurators and show boxplots
of their test performance ptest,t for a time budget of t = 18 000 seconds.

Scenario AC(RF) RANDOM∗ FocusedILS significant
SAPS-SWGCP 0.32± 0.06 0.30± 0.05 0.31± 0.04 –
SAPS-QCP 4.63± 0.25 4.84± 0.23 4.88± 0.38 1/2, 1/3

SPEAR-SWGCP 7.96± 0.94 7.52± 0.80 8.37± 0.93 2/3
SPEAR-QCP 1.15± 0.12 1.14± 0.15 1.24± 0.22 1/3

CPLEX-REGIONS100 0.34± 0.03 0.66± 0.10 0.34± 0.03 1/2, 2/3

Table 13.2: Quantitative comparison of configurators for BROAD scenarios. We performed 25
runs of the configurators and computed their test performance ptest,t (PAR overN = 1 000 test
instances using the methods’ final incumbents θinc(t)) for a configuration time of t = 18 000s.
We give mean ± standard deviation across the 25 runs. Column “significant” lists the pairs
of configurators for which a Mann Whitney U test judged the performance difference to be
significant with confidence level 0.05; ‘1’ stands for AC(RF), ‘2’ for RANDOMSEARCH, and
‘3’ for FOCUSEDILS. Figure 13.13 visualizes this data.

taken and extended from the literature. In terms of model quality, the generic runtime feature
performed surprisingly well. This feature and the first seven principal components of the SAT
/ MIP features yielded the most robust performance across configuration scenarios.

We also evaluated the quality of predictions for combinations of parameter configurations
and instances. Here, we found promising results for predicting the runtime of previously-
unseen configurations on training instances, for predicting the runtime of training configu-
rations on unseen test instances, and for predicting the runtime of unseen configurations on
unseen test instances. In some cases, especially for configuration scenarios with large cutoff
times, we achieved very good predictions, reaching rank correlations between predicted and
actual runtimes of around 0.95. Overall, these results are very promising for future work on
modelling instance hardness and on per-instance approaches.

Finally, we evaluated variants of ACTIVECONFIGURATOR (AC) based on different sets of
features. We found that for most of the BROAD configuration scenarios, the choice of features
was not very important and attributed this to the robustness of the AC framework. For the
most complex BROAD configuration scenario, CPLEX-REGIONS100, AC based on the default
runtime feature performed best, closely followed by a variant based on the 39 MIP features.
Comparing that latter variant to FOCUSEDILS and RANDOM∗, we found that for each of the
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five configuration scenarios it yielded state-of-the-art performance, significantly outperforming
FOCUSEDILS in two configuration scenarios and, alongside FOCUSEDILS, clearly outper-
forming RANDOM∗ for the most complex BROAD configuration scenario, CPLEX-REGIONS100.
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Part V

Conclusion

—in which we put our contributions into perspective and
offer advice to the practitioner
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Chapter 14

Conclusion
I believe that if you show people the problems and you show them the
solutions they will be moved to act.
—Bill Gates, American industrialist

In this thesis, we discussed the problem of automated algorithm configuration: given an
algorithm, a set of parameters for the algorithm, and a set of input data, find parameter values
under which the algorithm achieves the best possible performance on the input data.

In Part I, we motivated and formally defined the problem (Chapter 1), and discussed
related work (Chapter 2).

In Part II, we introduced seven sets of configuration scenarios, centered around state-of-the-
art algorithms for solving the propositional satisfiability (SAT) problem and the mixed integer
programming (MIP) problem (Chapter 3) and introduced an empirical analysis approach for
studying these configuration scenarios (Chapter 4).

In Part III, we introduced our model-free PARAMILS framework for algorithm configu-
ration (Chapters 5 and 7), and discussed a variety of “real-life” applications of PARAMILS
(Chapters 6 and 8). Most notably, in our case study for configuring the tree search SAT solver
SPEAR for large industrial software verification and bounded model checking instances, we
achieved average speedups in mean runtime of a factor above 500 for software verification
and of 4.5 for bounded model checking, thereby substantially advancing the state of the art
(Chapter 6). Furthermore, we automatically optimized 63 parameters of CPLEX, the most
widely-used commercial optimization tool in industry and academia. Here, we achieved sub-
stantial speedups over the well-engineered CPLEX default settings, in some domains exceeding
a factor of ten (Section 8.1).

In Part IV, we studied an alternative framework for algorithm configuration, Sequential
Model-Based Optimization (SMBO). Previous to our work, SMBO methods have been limited
to the optimization of numerical parameters. Within this scope, we evaluated two existing
SMBO methods, SKO and SPO (Chapter 9), studied and improved the components of SPO
(Chapter 10), and finally gained further significant improvements by using alternative response
surface models in our novel ACTIVECONFIGURATOR framework (Chapter 11). Then, we
extended the scope of SMBO to include the important case of categorical parameters (Chapter
12) and multiple instances (Chapter 13), both vital in general algorithm configuration.
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We conclude this thesis by giving advice to practitioners, discussing our findings about the
dimensions of algorithm configuration, laying out future work, and providing a longer-term
outlook.

14.1 General Advice for Practitioners
We now give some general advice to practitioners who would like to apply automated algorithm
configuration procedures, such as those we introduced in this thesis, for their problems.

14.1.1 Necessary Ingredients To Apply Algorithm Configuration
In order to apply an automated algorithm configuration procedure, a practitioner must supply
the following ingredients.

A parameterized algorithm A It must be possible to set A’s configurable parameters exter-
nally, e.g., in a command line call. Often, a search for hard-coded parameters hidden in the
algorithm’s source code can lead to a large number of additional parameters to be exposed.

Domains for the parameters Algorithm configurators need to know the allowed domains Θi

for each parameter θi. Depending on the configurator, it may be possible to include additional
knowledge about dependencies between parameters, such as the conditional parameters
supported by PARAMILS. Some configurators, such as PARAMILS as well as ACTIVECON-
FIGURATOR for mixed numerical/categorical problems, require a discretization of numerical
parameters to a finite domain. Depending on the type of parameter, a uniform spacing of
values or some other spacing, such as uniform on a log scale, is typically reasonable.

A set of problem instances The more homogeneous the problem set of interest, the better
we can expect any algorithm configuration procedure to perform on it. While it is possible to
configure an algorithm for good performance on rather heterogeneous instance sets (e.g., on
industrial SAT instances, as we did with SPEAR as reported in Section 6.3.2), the results for a
homogeneous subset of interest can be expected to improve when we configure on instances
from that subset (see Section 6.3.3). Whenever possible, the set of instances should be split
into disjoint training and test sets in order to safeguard against over-tuning. When configuring
on a small and/or heterogeneous benchmark set, configuration procedures might not find
configurations that perform well on an independent test set.

An objective function While we optimized median performance in our first study on algo-
rithm configuration (Hutter et al., 2007b), we have since found cases where optimizing median
performance led to parameter configurations with good median but poor overall performance.
In these cases, optimizing for mean performance yielded more robust parameter configurations.
However, when optimizing mean performance one has to define the cost for unsuccessful
runs. In this thesis, we have penalized such runs by our penalized average runtime (PAR)
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criterion, which counts timeouts at time κmax as a ·κmax with a constant a ≥ 1; we set a = 10
throughout this thesis. How to deal with unsuccessful runs in a more principled manner is an
open research question.

A cutoff time for unsuccessful runs The smaller the maximal cutoff time, κmax, for each
run of the target algorithm is chosen, the more quickly any configuration procedure will
be able to explore the configuration space. However, choosing too small a cutoff risks the
failure mode we experienced with our CPLEX-QP scenario (see Section 8.1.2). Recall that
there, choosing κmax = 300 seconds as a timeout yielded a parameter configuration that was
very good when judged with that cutoff time, but performed poorly for longer cutoffs. In all
of our other experiments, parameter configurations performing well with low cutoff times
(often as low as κmax = 5 seconds) turned out to scale well to harder problem instances.
In many configuration scenarios, in fact, we noticed that our automatically-found parameter
configurations showed much better scaling behaviour than the default configuration. We
attribute this trend to our use of (penalized) mean runtime as a configuration objective.1 In our
problem formulation, κmax is a user-defined quantity, and how to set it in a principled way
is an open problem. We plan to develop approaches for tackling this problem in the future
(see Section 14.3.3). In the meantime, we advise to use similar captimes κmax as one would
employ in manual algorithm design: high enough that good performance with cutoff time
κmax gives the algorithm designer confidence that performance will scale to their problem
size of interest, and low enough for experiments to finish in a reasonable timeframe.

Computational resources The amount of (computational) time required for automated
algorithm configuration clearly depends on the target application. If the target algorithm only
has few parameters and takes seconds to solve instances from a homogeneous benchmark
set of interest, in our experience a single half-hour configuration run can often suffice to
yield good results and a time budget of five hours is rather conservative (see, e.g., the case
of SAPS-SWGCP in Figure 13.10(b) on page 232). In contrast, if many parameters are being
optimized, different configurations perform well on different subsets of instances, or only
results with a large cutoff time can reliably indicate performance on the instances of interest,
then the time requirements of automated algorithm configuration grow. In our experiments
with FOCUSEDILS, we also regularly perform multiple parallel configuration runs and pick
the one with best training performance in order to deal with variance across configuration runs.
We expect that the need for (and potential of) doing so is smaller for more robust configurators.

1The mean is often dominated by the hardest instances in a distribution. In manual tuning, algorithm developers
typically pay more attention to easier instances, simply because repeated profiling on hard instances takes too long.
In contrast, a “patient” automatic configurator can achieve better results because it avoids this bias.
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14.1.2 Which Configuration Procedure to Apply When?
In this thesis, we discussed various types of algorithm configuration problems and configura-
tion procedures. Here, we summarize which existing configurator can be expected to perform
best for which type of configuration problem. We provide some general recommendations but
note that the best available algorithm configuration procedures will almost certainly change
over the next few years.

We discuss types of configuration scenarios in order of increasing complexity.

Optimization of Numerical Parameters of Deterministic Algorithms for Single
Instances

We did not specifically target the conceptually simplest case: optimizing the performance
of a deterministic algorithm on a single problem instance. For algorithms with continuous
parameters, this problem can be addressed by the wide range of existing algorithms for
(deterministic) blackbox function optimization. On the model-based side, the most prominent
approaches are variants of the efficient global optimization (EGO) algorithm (Jones et al.,
1998), which we discussed in Section 9.1. On the model-free side, there exist many different
approaches, a good sample of which were compared in the 2009 GECCO workshop on
blackbox optimization benchmarking.2 In this comparison, CMA-ES (Hansen and Ostermeier,
1996; Hansen and Kern, 2004), which we describe in Section 3.2.3, yielded overall best
performance; this was also the outcome of the session on real-parameter optimization at the
2005 IEEE Congress on Evolutionary Computation.3

Deterministic algorithms with categorical parameters could be configured on single
instances by using BASICILS(1) or ACTIVECONFIGURATOR with noise-free models and the
parameter maxR set to 1 (see Section 5.2 for BASICILS and Section 11.5.1 for ACTIVECON-
FIGURATOR). We have, however, not yet performed any experiments for this case.

Optimization of Numerical Parameters of Randomized Algorithms for Single Instances

For this type of problem, we studied a variety of model-based approaches: sequential kriging
optimization (SKO), sequential parameter optimization (SPO) and variants thereof, RAN-
DOM∗, and ACTIVECONFIGURATOR. Out of these methods, our experiments suggest that
ACTIVECONFIGURATOR based on approximate Gaussian process (GP) models yields the best
results. In particular, in Section 9.6.2, we saw that SPO was more robust “out-of-the-box” than
SKO. We studied various versions of SPO: SPO+ was much more robust than the previous
variants SPO 0.3 and SPO 0.4 (Section 10.3.1), and SPO∗ had lower computational overhead
than SPO+ (Section 10.4). The simple approach RANDOM∗ performed similarly to SPO∗ (see
Section 10.4), but in Section 11.5.2, we demonstrated that ACTIVECONFIGURATOR—based
on its better models—significantly outperformed SPO∗ and RANDOM∗.

It is of course possible to discretize the continuous domains and apply PARAMILS.
However, as we showed in Section 12.3.3, the discretization of parameters can severely restrict

2http://www.isgec.org/gecco-2009/workshops.html
3http://www.lri.fr/∼hansen/cec2005.html
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the search space, handicapping any method that relies on user-defined discretizations.
Some model-free methods that partook in the aforementioned 2009 GECCO workshop on

blackbox optimization benchmarking also apply for stochastic optimization. However, the
stochastic optimization benchmarks in that workshop only evaluated the true quality of the
best configuration a method ever evaluated, instead of an incumbent returned by the method.
(The reasoning for this evaluation was that the problem of determining the best incumbent
to return was perceived to be easier than the problem of finding good parameter settings in
the first place.) In our applications, the determination of the incumbent was certainly not
straightforward (see, e.g., the sensitivity of SKO and, in some case, SPO). It is thus unclear
how these methods would compare to ours; we plan to study this in the future.

Optimization of Categorical Algorithm Parameters for Single Instances

The list of possible configuration procedures for categorical parameters is shorter: variants
of RANDOMSEARCH, PARAMILS, and ACTIVECONFIGURATOR(AC). In our experiments
in Section 12.3.4, AC based on a random forest model performed best, closely followed
by AC based on an approximate Gaussian process model. RANDOM∗ was worse, but still
outperformed FOCUSEDILS; we attribute this at least in part to the new—and apparently
superior—intensification mechanism shared by AC and RANDOM∗.

Optimization of Categorical Algorithm Parameters for Multiple Instances

Finally, for configuration scenarios in which we optimize algorithm performance across a set
of problem instances, we considered variants of RANDOMSEARCH, PARAMILS, and AC-
TIVECONFIGURATOR (based on random forests, AC(RF)). On our BROAD set of configuration
scenarios, we showed that BASICILS outperformed RANDOMSEARCH (see Section 5.2.2)
and that FOCUSEDILS outperformed BASICILS (see Section 5.3.3). Later, in Section 13.6.2,
we showed that RANDOM∗ was surprisingly efficient even for target algorithms with many
parameters, such as SPEAR(with 26 parameters), and significantly outperformed FOCUSEDILS
in two of the five BROAD scenarios On average, AC(RF) performed best for these scenarios,
in turn outperforming RANDOM∗ in two of the scenarios. As configuration scenarios get
more challenging (in terms of search space size and sparsity of good configurations), there
appears to be a need for more informed search methods: both FOCUSEDILS and AC(RF)
clearly outperformed RANDOM∗ for the most complex BROAD scenario, CPLEX-REGIONS100
(see Section 13.6.2).

Other Cases

For the optimization of numerical algorithm parameters for multiple instances, two of our
methods apply directly: AC(RF) and RANDOM∗. We could also discretize parameters and use
FOCUSEDILS. We have not carried out experiments in this domain yet, but would expect the
discretization to cause a performance loss comparable to the one we found in our experiments
for the single-instance case (see Section 12.3.3).

Likewise, for the optimization of mixed categorical/numerical parameters, we can either
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apply RANDOM∗ or discretize parameters and then apply FOCUSEDILS or ACTIVECONFIG-
URATOR. RANDOM∗ showed excellent performance in many configuration tasks (see, e.g.,
Section 13.6.2), but did not scale to the most complex one, the configuration of CPLEX. That
case required more informed methods, such as FOCUSEDILS or ACTIVECONFIGURATOR. In
the future, we plan to integrate direct support for mixed categorical/numerical parameters into
our configuration procedures (see Section 14.3.2).

14.2 Dimensions of Algorithm Configuration
In Section 1.2.2, we identified three dimensions of algorithm configuration: (1) the sequential
search strategy being used; (2) which instances to use and how many runs to perform for each
of them; and (3) how to choose the cutoff time, after which unsuccessful algorithm runs are
terminated.

14.2.1 Sequential Search Strategy: Model-free or Model-based?
We introduced two frameworks for algorithm configuration: a model-free approach based
on iterated local search (Part III of this thesis) and a model-based approach that employs
random forest (RF) or Gaussian process (GP) response surface models (Part IV of this thesis).
Each of these two families of approaches has benefits and drawbacks. We discuss these in the
following sections.

Advantages of Model-Free Approaches

Conceptual Simplicity Our model-free iterated local search approach is clearly simpler
to understand and to implement than our sequential model-based optimization (SMBO)
framework. In particular, the SMBO framework requires the construction of a response surface
model. The construction of such a model is more complicated than it might appear at first
sight. Firstly, the modelling mechanism must scale to tens of thousands of training data points.
Secondly, parameter configuration space, Θ, is often high-dimensional (63-dimensional in
the case of CPLEX) and good models need to be able to distinguish between important and
unimportant parameters. Thirdly, often these parameters are mixed numerical/categorical,
rendering most standard regression methods inapplicable. A final complication in learning
these response surface models is that the time spent doing so is part of the overall time budget
for configuration, and that we require a new model in each of the thousands of SMBO iterations
we often perform. Thus, model construction has to be very efficient (in our experiments, it
typically takes on the order of seconds). A second non-trivial step in SMBO is the optimization
of the expected improvement criterion (EIC) in each SMBO iteration. Just like in the algorithm
configuration problem, this optimization takes place in parameter configuration space. Any
(typically model-free) optimization procedure applied for this task could also be used for the
original algorithm configuration problem (with the difference that—unlike evaluations of a
configuration’s cost—EIC evaluations are cheap). Thus, the model-free framework is clearly
conceptually simpler.
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Robustness During the development of our model-based configuration procedures we have
observed pathological behaviour much more frequently than in the development of PARAM-
ILS. We observed one example of such pathological behaviour when we used SKO without
a log transformation in Section 9.6.2. We attributed these problems to the fact that SKO
computes its incumbent based on its model. In our experiments with our own models, we
repeatedly observed that—due to overconfident or simply poor model predictions—this did not
yield a robust configuration procedure. For that reason, throughout our work on model-based
algorithm configuration we have relied on separate intensification procedures to determine
reliable incumbents. Another prominent problem we observed are the failure modes of SMBO
we discussed in Section 11.2.2. In practice, it appears that these failure modes are largely
alleviated by interleaving random parameter configurations. Thus, while “pure” model-based
techniques are often very sensitive, they appear to be robust in combination with a good
intensification mechanism and interleaved random target algorithm runs.

We have also observed that FOCUSEDILS’s performance is not very robust across repeated
runs. We believe that this is at least in part due to unfortunate orderings in its 〈instance, seed〉
lists. Each FOCUSEDILS run prominently uses the first few instances in its list; if those are
not very representative of the whole instance set performance typically suffers.

Invariants with Respect to Transformations of the Cost Statistic In our model-free iterated
local search framework, we solely compare parameter configurations with respect to the
(user-defined) cost statistic, making the framework invariant to monotone transformations of
that statistic. In particular, PARAMILS (and all variants of RANDOMSEARCH) are invariant
to any transformation that, for all N , θ1, and θ2, preserves the relative rankings of empirical
cost statistics ĉN (θ1) and ĉN (θ2). This is not the case for model-based approaches, since
transformations also affect the response surface model.

Conditional Parameters In our model-free search framework, it is straightforward to sup-
port conditional parameters, that is, parameters that are only relevant depending on the setting
of other, higher-level parameters. In particular, in PARAMILS, we simply adapted the neigh-
bourhood relation to exclude parameter configurations that only differ in parameters that are
inconsequential given the settings of the other parameters.

For most types of response surface models, it is not straightforward to exploit knowledge
about conditional parameters. In principle, it seems possible to construct kernel functions for
Gaussian process models that take conditional parameter dependencies into account. Likewise,
in random forests, one can restrict allowable splits at a node to those guaranteed to be relevant
given the values of split variables higher up in the tree. Finally, in order to exploit conditional
parameters, the optimization of the expected improvement criterion (EIC) would also have
to be adapted (e.g., by adapting the neighbourhood in the local search for EIC optimization
similarly as we did in PARAMILS). However, we have not implemented any of these methods
in the model-based framework since they are much less straightforward than in the model-free
case.

For SPEAR and CPLEX, which have some conditional parameters, this limitation of
the model-based framework did not seem to negatively affect performance. However, in
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the SATENSTEIN framework most of the parameters are conditional. We thus expect that
configurators exploiting these conditional parameter dependencies will perform better. For
this reason, we have not yet experimented with SATENSTEIN in our model-based framework.

Advantages of Model-Based Approaches

Our main motivation for pursuing model-based approaches was that response surface models
provide a host of information that is not available when using model-free search. In particular,
response surface models can be used to interpolate performance between parameter configura-
tions, and to extrapolate to previously-unseen regions of the configuration space. They can
also predict instance hardness and the probability of solving an instance as a function of the
captime; these predictions can be used in future, more sophisticated, algorithm configuration
procedures (see Section 14.3.3). They can also be used to quantify the importance of each
parameter, interactions between parameters, and interactions between parameters and instance
features (see Section 14.3.4). Finally, these models can also be used to determine whether
different configurations can be expected to perform well on different instances (see Section
14.3.5).

Note that, even without these more sophisticated components, ACTIVECONFIGURATOR

already achieved the best performance for various types of configuration scenarios, in particular,
the SINGLEINSTCONT scenarios (Section 11.5.2), the SINGLEINSTCAT scenarios (Section
12.3.4), and, on average, the BROAD scenarios (Section 13.6.2). Thus, we believe that there is
much promise in developing these model-based approaches further. Overall, we expect that
hybrids between model-free and model-based approaches can be constructed that combine the
strengths of either approach (see Section 14.3.2).

14.2.2 Which Instances to Use and How Many Runs to Perform?
The second dimension of algorithm configuration contains two parts: (1) which problem
instances should we use and (2) how many runs should we use for each of them to evaluate a
parameter configuration? We address these subquestions in turn.

Blocking on Instances and Seeds

When we compare two parameter configurations θ1 and θ2 based on N runs of each of A(θ1)
and A(θ2), intuitively, the variance in this comparison is lower if we use the same N instances
(and seeds) for the two configurations. However, if we have available the result of N ′ > N
runs for one of the configurations, then it is unclear whether it is better to use this additional
information to improve the estimate for that configuration or to only use the matching N runs
to enable a blocked comparison.

As we showed in Section 13.6.1, in 3 of the 5 BROAD configuration scenarios (in which we
optimize performance across a set of instances), an intensification procedure based on blocking
performed better than one without. In contrast, in 3 of the 5 SINGLEINSTCAT configuration
scenarios (in which we only optimize performance for a single instance), it was better not
to use the blocking scheme. (In the remaining scenarios both intensification procedures
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performed similarly). These results suggest that blocking on 〈instance, seed〉 combinations
helps in the presence of multiple (rather different) instances. In contrast, for single instances
the variance reduction due to blocking on seeds was smaller than the additional variance due
to not using all N ′ > N available runs. However, a more comprehensive study is needed to
conclusively demonstrate these points.

Which Instances To Use

We showed in Chapter 4 that in some configuration scenarios certain instances are not informa-
tive for comparing parameter configurations. In particular, very hard problem instances that,
within the captime, cannot be solved by any considered parameter configuration, only slow
down the search. In Chapter 6, we manually removed very hard training instances in order to
speed up the configuration process. We have not yet implemented a mechanism for automating
this step but discuss the possibility in Section 14.3.3. In fact, we plan to implement a much
more general procedure that still allows the use of very hard instances for the evaluation of
some very good configurations predicted to stand a good chance at solving them.

FOCUSEDILS (see Section 5.3) uses a fixed ordering of instances (and associated seeds).
This ordering differs across its runs, resulting in a large variance across runs. We described one
extreme case of this problem for configuration scenario CPLEX-MIK in Section 8.1.2. There,
one FOCUSEDILS run selected a parameter configuration that ended up not solving any test
instance within 300 seconds, whereas nine other independent FOCUSEDILS runs yielded
parameter configurations with average test set runtimes of below 2 seconds. More generally,
we also observed that FOCUSEDILS’s performance varied more than that of BASICILS. We
exploited this variance by performing k FOCUSEDILS runs and using the configuration found
in the run with best training performance. However, this causes a k-fold overhead, which we
would like to avoid.

Further evidence that the fixed order of instances used in FOCUSEDILS is suboptimal
comes from our experiments in Section 13.6.2. There, the simple procedure RANDOM∗ (based
on intensification Procedure 10.5, which uses a different random subset of instances for each
comparison) performed better than FOCUSEDILS in 2 of 5 scenarios. Only for configuration
scenario CPLEX-REGIONS100, which is hardest in terms of size of configuration space while
featuring a very homogeneous instance set, FOCUSEDILS performed clearly better than
RANDOM∗.

Adapting the Number of Runs

We demonstrated in Chapter 4 that there exists no single best fixed choice of the number
of runs to perform for the evaluation of each parameter configuration considered. We also
showed that FOCUSEDILS, which adapts the number of runs, N(θ), for the evaluation
of each configuration, θ, often outperforms BASICILS, which uses a fixed N for each
configuration (see Section 5.3). For this reason, in our model-based framework we only
constructed intensification procedures that adaptively selected the number of runs to perform
for each configuration. In our experiments for the configuration of algorithms with categorical
parameters for single problem instances (see Chapter 12), ACTIVECONFIGURATOR and even
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RANDOM∗ performed better than FOCUSEDILS. We attribute this in part to their new and
improved intensification procedure (Procedure 10.5); we plan to integrate that procedure into
PARAMILS in the near future.

14.2.3 Which Captime To Use?
We showed in Chapter 4 that there exists no optimal fixed captime for all configuration sce-
narios. From Chapter 7, it is also clear that adaptive capping helps to speed up a range of
configuration procedures. This speedup was most pronounced in configuration scenarios with
a large spread in the quality of configurations. In the best case, capping can reduce the time
spent for evaluating the worst configurations to the time needed for the best configurations.
Consequently, the speedups due to adaptive capping were most pronounced for those configu-
ration procedures performing many runs on poor configurations, RANDOMSEARCH(N) and
BASICILS(N).

14.3 Future Work
We have answered a variety of important questions about algorithm configuration, but, obvi-
ously, many open questions remain. Indeed, algorithm configuration is a rich and fruitful field
of study that offers more opportunities for future work than could be handled by one person
or even a single research group. We thus hope that other researchers will join in the effort to
push existing analysis, techniques, and applications even further.

14.3.1 Configuration Scenarios and Their Analysis
Young areas of research require standard benchmarks to ensure constant progress is being
made. We plan to collect existing benchmarks, make them publicly available, extend them,
and study them with our empirical analysis techniques.

Constructing a Suite of Standard Benchmarks for Algorithm Configuration

The configuration scenarios we used throughout this thesis can be used as a core for a future
suite of standard benchmarks for algorithm configuration. These seven sets of configuration
scenarios, introduced in Chapter 3, differ in many important characteristics, such as the prob-
lems being solved, the number of target algorithm parameters, the type (numerical/categorical)
of parameters, and the homogeneity of instance sets. We would like to create a benchmark suite
in which we systematically vary these and other characteristics. We also plan to include new,
interesting, configuration scenarios from other application domains, as well as configuration
scenarios used in other lines of work on algorithm configuration (see, e.g., Birattari, 2004).

One issue in the development of algorithm configuration procedures is that typical runs on
interesting configuration scenarios are computationally expensive since they require tens of
thousands of target algorithm runs on instances of hard computational problems. We plan to
employ predictive models of runtime, such as those introduced in Chapter 13 and visualized in
Section 13.5, to construct surrogate configuration scenarios, in which we optimize predicted
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algorithm performance instead of actual performance. In the surrogate version of a given
configuration scenario, we would simply replace each call of the target algorithm (with a
specified combination of parameter configuration, instance, and seed) by a sample from the
predictive distribution of the model (for the requested combination of parameter configuration
and instance, using the seed to draw the sample). We expect that the use of such surrogate
configuration scenarios will facilitate the development of configuration procedures since it
(1) substantially reduces the runtime necessary for each configuration run and (2) provides
“ground truth” data to evaluate performance of the configurator. Surrogate scenarios that more
closely resemble the underlying actual configuration scenarios can be expected to be more
realistic, and we would thus like to improve model quality further. Of course, if a configurator
was to be developed chiefly using surrogate configuration scenarios, its performance would
need to be verified on a suite of actual configuration scenarios.

Empirical Analysis of Configuration Scenarios

Algorithm configuration is a complex problem and we expect that many more insights can
be be gained by extending the empirical analysis we provided in Chapter 4. In particular, we
plan to quantify the qualitative measures we introduced in that chapter. Once quantified, such
measures can be used to characterize configuration scenarios and to study which types of
configuration procedures work well for which types of configuration scenarios (and, eventually,
why they work well).

We also plan to apply our predictive models to gather a matrix of predicted runtimes and
apply our analysis techniques on that matrix. Since predictive models can be built online
(during the runtime of a configurator) without the need for any additional runs of the target
algorithm, this promises to yield an approximate online version of our offline empirical
analysis tools. Approximations of quantitative versions of our measures can then be used
during algorithm configuration to make online decisions about which configuration procedures
to use.

14.3.2 Search Strategy
In this thesis, we have focused on model-free techniques based on iterated local search
and model-based techniques based on Gaussian process and random forest models. Other
approaches and combinations of methods could be applied beneficially for algorithm configu-
ration.

Empirical Evaluation of Different Configuration Procedures

In this thesis, we have compared our new configuration procedures to some existing ones,
namely the CALIBRA system (see Section 5.4), Sequential Kriging Optimization (SKO,
see Chapter 9), and Sequential Parameter Optimization (SPO, see Chapters 9 and 10). We
have not compared it to other configuration procedures since, to our best knowledge, no
other procedures exist that can handle the very complex configuration scenarios we studied
(optimizing target algorithms with many categorical parameters, such as CPLEX). However,
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for algorithms with less parameters, or with continuous parameters, other procedures do exist.
In particular, we would like to compare the methods studied in this thesis to racing algorithms,
such as F-Race (Birattari et al., 2002; Birattari, 2004) and iterated F-Race (Balaprakash
et al., 2007). For optimizing target algorithms with only numerical parameters, we would
also like to compare to prominent model-free blackbox optimization approaches, such as
CMA-ES (Hansen and Ostermeier, 1996; Hansen and Kern, 2004).

Mixed Categorical/Numerical Optimization

In practice, most algorithms with categorical parameters also have some numerical parameters.
Throughout this thesis, in such cases we discretized numerical parameters, thereby restricting
the search space to potentially exclude the optimal configuration. In the case of SAPS, we
showed in Section 12.3.3 that the loss incurred by such a discretization was rather substantial
(greater than the performance differences due to using different configuration procedures).

In future work, we would like to extend our model-free and model-based methods to the
optimization of mixed categorical/numerical parameters to remove the need for a discretization.
In the model-free case, one may consider hybrids of continuous optimization algorithms, such
as CMA-ES, for optimizing the numerical parameters, and local search for optimizing the
discrete parameters. In the model-based case, our random forest and approximate Gaussian
process models can already handle mixed numerical/categorical inputs. What is missing
in the current version of ACTIVECONFIGURATOR is a method for optimizing the expected
improvement criterion (EIC) in mixed categorical/numerical configuration spaces. For this
subproblem, we could apply a similar method as just discussed for the model-free case.

Hybrids of Model-free and Model-based Search

We believe that there is significant room for combining aspects of the methods studied
here with concepts from related work in algorithm configuration and related problems. In
particular, we believe it would be fruitful to integrate statistical testing methods—as used,
e.g., in F-Race—into PARAMILS or ACTIVECONFIGURATOR. Such statistical tests could, for
example, be applied in the intensification procedure to decide how many runs should be used
to evaluate each configuration. An effective intensification mechanism would quickly discard
poor configurations and yield good performance if the process used for selecting promising
configurations to be evaluated returns good configurations at least every now and then. Given
such an intensification mechanism, we could easily hybridize model-free and model-based
approaches, taking advantage of their respective strengths.

Automatic Self-Configuration

We have already performed an experiment for the automatic self-configuration of PARAMILS
(see Section 8.2). That experiment, while automatically yielding a parameter configuration
comparable to the one identified manually, did not result in large performance improvements.
In the case of ACTIVECONFIGURATOR or hybrid versions of algorithms, we would expect
this to change. ACTIVECONFIGURATOR has a large number of parameters, for many of which
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we simply used a default based on preliminary experiments. Optimizing these parameters
on a set of interesting configuration scenarios is hard since each single configuration run
already requires substantial time. In this context, we could use the surrogate configuration
scenarios discussed in Section 14.3.1 to substantially reduce the time required for each
configuration run. We plan to apply this approach in the future and expect that, especially
when optimizing performance for a homogeneous set of configuration scenarios, significant
performance improvements are possible.

14.3.3 Adaptive Approaches for Selecting Captime and Instances
Our predictive models of runtime can be applied to construct more sophisticated methods for
adaptively selecting the instances and captimes to use in each run of the target algorithm.

Adaptive Capping in the Model-based Framework

So far, we have not applied adaptive capping in the model-based framework even though it is
straightforward to implement the adaptive capping mechanism introduced in Chapter 7. In
fact, compared to the PARAMILS framework this is easier in our model-based framework
since there—as in RANDOMSEARCH—all pairwise comparisons of parameter configurations
involve the incumbent; thus, the trajectory-preserving and aggressive capping variants we
introduce for PARAMILS in Section 7.2 are identical in the model-based framework.

The part that is not straightforward is to build models for training data that includes
unsuccessful runs terminated before cutoff time κmax. We plan to apply methods from the
survival analysis literature to build models for regression under such partly right-censored
data. In particular, we are experimenting with an adaptation of our random forest model along
the lines of work by Segal (1988). We are also experimenting with Gaussian process models
under censoring (Ertin, 2007) and with more generic methods to handle censored data in
regression models (Schmee and Hahn, 1979). The capability of dealing with partially censored
data also opens up the possibility to initialize the model based on a large number of runs with
a low captime.

Active Selection of Problem Instances

As discussed in Section 4.3, a mechanism to detect very hard instances and reduce the time
spent with them could be a useful component of both model-free and model-based procedures.
In particular, in our case study for configuring SPEAR on benchmark set BMC (see Section
6.3.3), we manually eliminated too hard instances from the training set in order to speed up
FOCUSEDILS; we would like to eliminate the need for such manual steps.

Predictive models of algorithm runtime for 〈parameter configuration, instance〉 combina-
tions can, in principle, be used for this purpose. One could simply predict a matrix of runtimes
as we did in Section 13.5 and avoid instances predicted to be hard for every configuration.
However, when using this information in a heuristic mechanism for instance selection, we
would need to take care not to bias the search away from configurations that perform well on
instances (wrongly) predicted to be uniformly hard.
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We also plan to experiment with an existing approach for selecting the most informative
instance for each run. In Section 13.2.1, we reviewed work by Williams et al. (2000), in which
they used Gaussian process models to optimize a function across the setting of environmental
variables—in our case, problem instances. In that work, they also suggested an approach for
actively selecting the most informative problem instance for each run. Applied to algorithm
configuration, their mechanism would first choose a parameter configuration to evaluate and
then select the problem instance which, on expectation (over the predicted distribution of
runtime), most reduces the predictive variance for that chosen configuration. We plan to
implement this approach in our RF model framework and extend it with a criterion that takes
into account the expected time for runs on each problem instance. We could then, e.g., select
the instance promising the highest information gain per time spent.

It might also be possible to apply a similar criterion to select the next parameter configura-
tion, thereby replacing the expected improvement criterion (EIC). The problem with EIC is
robustness: it can fail miserably if runs for the configuration with maximal EIC score basically
do not change the model (see Section 11.2.2). Including an “expected change of model” term
in the EIC might help avoid this problem.

Active Selection of Captime

In some scenarios, it is important to terminate unsuccessful runs before the maximal captime
κmax is over. Our current techniques always use the maximal captime κmax unless unsuc-
cessful runs with a lower captime κ ≤ κmax would already render the current configuration
provably worse than the incumbent (based on the N runs used in the comparison). In our
current implementation, every run for the incumbent uses the full captime, κmax. With too
large (user-defined) maximal captimes (e.g., κmax =∞), this approach can yield poor results.
In the extreme, if κmax is set to∞ and the first target algorithm run (using the default) takes
longer than the total time budget, then the procedure simply returns that default, even if every
single other configuration is clearly better. This simple example demonstrates the need to
terminate some runs before the maximal captime, κmax, is over. One heuristic approach could
be to internally set κ′max differently from the problem definition’s κmax, and increase κ′max
over time.

Alternatively, an approach similar to that described in the previous section could be used
to actively select the captime for each run. In such an approach, one would select the captime
that yields the highest expected information gain, normalized by the expected time spent. This
could be combined with the selection of instances (to select the most promising 〈instance,
captime〉 combination to use for evaluating a given configuration), or even with the selection
of both the next configuration and the instance to be used. Models that explicitly integrate
information about which runs were terminated unsuccessfully might also be able to extrapolate
performance beyond the internally-used maximal captime, κ′max.

14.3.4 Scientific Studies of Target Algorithm Performance
Response surface models can not only be used to determine promising configurations in
a sequential optimization framework. Another important aspect of predictive models of
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algorithm performance, is to provide feedback to the algorithm designer. For example, they
can be used to determine how much algorithm response depends on the setting of single
parameters, and to which degree parameters interact (Jones et al., 1998; Santner et al., 2003;
Bartz-Beielstein, 2006).

Compared to typical response surface models, we added the additional dimension of
instance features; this increased the potential of scientific studies of algorithm performance.
Assuming that the response surface model fits the data well (which can be verified by simple
cross-validation), we can use a joint model of instance features and parameter values to
detect interactions between parameters and features. The automated determination of such
interactions can suggest and aid scientific studies of what makes a problem hard and which
approaches make a hard problem easy. We thus hope that the use of advanced response surface
models will lead to insights into algorithms and eventually to algorithm improvements. It
would be fruitful to provide general tools to support this type of analysis.

14.3.5 Per-Instance Approaches
In this thesis, we have concentrated on finding a single fixed configuration with overall good
performance across a set or distribution of instances. This type of algorithm configuration is
relevant in many real-world applications of algorithm configuration, in which all instances
to be solved typically come from a single problem domain (e.g., our application to industrial
verification problems in Chapter 6).

In some applications, however, instances originate from a variety of sources and have
rather different characteristics. In particular, the best parameter configuration for one instance
might perform poorly for another, such that there is potential in using a different configuration
for each instance. The decision about which configuration to use for a new problem instance
needs to be comparably cheap since it is part of the time for solving the instance. In this
context, the polytime-computable instance features we discussed in Sections 13.1.1 and 13.1.2
can be used.

There are at least two different possibilities for the instance-based selection of parameter
configurations. The first approach works as follows. In an offline stage, carry out a large
number of target algorithm runs on many instances; this step gathers data for learning a
model that predicts algorithm performance for combinations of parameter configurations
and instances. Then, given a previously-unseen problem instance, compute the instance’s
features (a polytime operation), and determine a parameter configuration with low predicted
runtime for that instance. In large configuration spaces, Θ, we cannot afford to evaluate model
predictions for every θ ∈ Θ, but rather have to apply a search through Θ. This is very similar
to our optimization of the expected improvement criterion (see Section 12.3.1). Hence, while
at first glance it seems rather infeasible to perform an optimization in parameter configuration
space for each single instance to be solved, in practice this optimization step (for which we do
not require optimality) can be performed efficiently. Based on the good performance of some
of our models (see, e.g., Figure 13.8(d) on page 228), we believe there is much promise in this
approach and plan to pursue it further in the future.

The second approach works as follows. In an offline stage, cluster the training instances
into k clusters with respect to their features, and employ some automated algorithm config-
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uration procedure to find a good parameter configuration for each of the k instance clusters.
This process outputs k parameter configurations, which can be seen as k algorithms. Thus,
the portfolio-based algorithm selection scheme of SATzilla (Xu et al., 2008) directly applies.
At its core, this scheme is based on a separate predictive model of runtime for each of the k
candidate algorithms. Given a new, previously-unseen, problem instance, this approach would
then select the candidate algorithm predicted to perform best on the instance.

We have already applied an early version of the first approach for automatically setting
two of SAPS’s continuous parameters, as well as the single parameter of the WalkSAT variant
Novelty+, on a per-instance basis (Hutter et al., 2006). For a mix of random and structured
instances that required very different settings of the Novelty+ parameter, we achieved a
speedup factor of 10 over the best fixed configuration. However, in that work, the learning
problem was rather easy (2 continuous parameters for SAPS, 1 for Novelty+), we only
considered few possible parameter configurations (30 for SAPS, 6 for Novelty+), and we had
access to a large training data set (1 000 algorithm runs for each parameter configuration).
Having scaled up the models to handle problems with many categorical parameters, we now
plan to revisit this problem for more strongly parameterized algorithms. We are actively
working on both this and the second approach to instance-based algorithm configuration;
which of the two will perform better (and under which circumstances) is yet an open question.

14.4 Outlook
As stated earlier, there are more opportunities for research than one person or even a single
group can handle alone. In the computer science department of the University of British
Columbia, we have started an initiative involving 2 professors, 3 PhD students and 2 MSc
students working on algorithm configuration and per-instance algorithm selection. This group
is partially funded by the MITACS project “Automated Design of Heuristic Algorithms from
Components” (PI Dr. Hoos, co-PI Dr. Leyton-Brown), which was largely conceived as a result
of the work reported in this thesis. The author of this thesis will remain in this group for a
postdoctoral fellowship, following many of the lines of future research identified above.

In the coming years, we expect the area of algorithm configuration to mature further.
Currently mostly a collection of configuration procedures (each of which is independently de-
veloped and evaluated), we hope that algorithm configuration will grow into a more established
area of research with standard benchmarks, reference implementations, standard interfaces and
problem descriptions, as well as readily-available collections of experimental data. We plan
to join forces with other groups to construct a comprehensive benchmark suite for algorithm
configuration (see Section 14.3.1) and compare existing configuration procedures (see Section
14.3.2). We are also working towards simplifying the application of algorithm configuration
procedures as much as possible to enable practitioners to easily use them “out-of-the-box”. In
particular, work in our group has already commenced on a new web-based interface that will
enable researchers and practitioners to easily employ algorithm configuration procedures for
their purposes. This interface will enable the use of PARAMILS and ACTIVECONFIGURATOR,
as well as a variety of other configuration and general optimization procedures, such as F-Race
and CMA-ES. We are also reaching out to researchers in a variety of fields to popularize
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the use of algorithm configuration by demonstrating that it can help to quickly construct
algorithms that challenge the state-of-the-art in the respective field of study.

In the medium term, we firmly believe that automated algorithm configuration methods,
such as those introduced in this thesis, will play an increasingly prominent role in the de-
velopment of high-performance algorithms and their applications, and will be widely used
in academia and industry. As we have demonstrated in this thesis, automated configuration
procedures often require only a fraction of the time human experts need to establish good
parameter settings, while at the same yielding much better results. Especially in an industrial
context, where human expert time is costly, this combination of reduced development times
and improved performance is likely to attract the attention of decision makers. In the context
of the MITACS project mentioned above, we are closely collaborating with an industrial
partner, Actenum Corporations4, a company that focuses on industrial decision support and
scheduling. Actenum already routinely applies our PARAMILS framework to reduce algo-
rithm development times and improve algorithm performance. In an academic context, several
research groups are also already using PARAMILS, and once the interface to apply algorithm
configuration has been simplified and other configuration procedures have been integrated, we
expect interest to grow substantially.

In the long term, we see automated algorithm configuration procedures as an important
part of the emerging field of meta-algorithmics, the study of algorithms that execute and
reason about other algorithms. Other examples of meta-algorithmic approaches are algorithm
portfolios, per-instance algorithm selection techniques, reactive search algorithms, algorithm
synthesis, and work in genetic programming that evolves programs. We believe that much
progress could be derived from a unified view of the problems faced in these different areas of
research. We also advocate joint initiatives integrating existing expertise from various areas,
such as machine learning, statistics, artificial intelligence, constraint programming, computer
science, operations research, and evolutionary algorithms. Finally, we believe that response
surface models, such as those we constructed in the context of algorithm configuration, can be
used in a variety of meta-algorithmic contexts. In particular, per-instance algorithm selection
techniques, such as SATzilla (Xu et al., 2008), and dynamic algorithm portfolios (Gagliolo
and Schmidhuber, 2006) already use similar predictive models, but do not yet reason about the
setting of algorithm parameters. It is also possible to integrate features into these models that
are acquired during algorithm runtime. Such models can then be used to change algorithms or
parameter configurations in an online setting, while solving a new problem instance. Thus, we
firmly believe that the study of response surface models in a meta-algorithmic context is a rich
and fruitful research area with many interesting questions remaining to be explored.

4http://www.actenum.com/
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algorithm configuration framework. Journal of Artificial Intelligence Research. Accepted
for publication.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2009d). Tradeoffs in the empirical evaluation
of competing algorithm designs. Technical report, University of British Columbia,
Department of Computer Science.

262



Hutter, F., Hoos, H. H., Leyton-Brown, K., and Murphy, K. P. (2009e). An experimental
investigation of model-based parameter optimisation: SPO and beyond. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2009), pages 271–278.

Hutter, F., Hoos, H. H., and Stützle, T. (2005). Efficient stochastic local search for MPE
solving. In Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI’05), pages 169–174.
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