
An Efficient Approach for Assessing
Parameter Importance in Bayesian Optimization

Frank Hutter
Freiburg University

fh@informatik.uni-freiburg.de

Holger H. Hoos and Kevin Leyton-Brown
University of British Columbia
{hoos,kevinlb}@cs.ubc.ca

Abstract

We describe a method for quantifying the importance of a blackbox function’s
input parameters and their interactions, based on function evaluations obtained by
running a Bayesian optimization procedure. We focus on high-dimensional func-
tions with mixed discrete/continuous as well as conditional inputs, and therefore
employ random forest models. We derive the first exact and efficient approach
for computing efficient marginal predictions over subsets of inputs in random
forests, enabling an exact quantification of parameter importance in the functional
ANOVA framework. We demonstrate these techniques by assessing the importance
of parameters in several recent applications of Bayesian optimization.

1 Introduction
Bayesian optimization has achieved considerable success on application problems such as determining
good hyperparameter settings of machine learning methods [4, 18, 21, 2] and configuring solvers
for hard combinatorial problems [16, 13]. Much less work has been done to develop methods for
providing scientists with answers to questions like the following: “How important is each of the
parameters, and how do their values affect performance? Which parameter interactions matter? How
do the answers to these questions depend on the data set under consideration?” Because answers to
such questions can drive new scientific discoveries, recent Bayesian optimization workshops have
identified the need for more work on methods that do not only optimize a given blackbox function
but also provide some information about its characteristics. Recent work on Bayesian optimization
has targeted the case where most parameters are truly unimportant [7, 22], and several application
studies have yielded evidence that some parameters indeed tend to be much more important than
others [3, 14, 8]. Identifying such important parameters becomes particularly necessary for highly
parameterized algorithms, such as deep belief networks (32 parameters [4]); combinatorial solvers
(up to 76 parameters [13]), complex vision architectures (238 parameters [5]); and combined model
selection and hyperparameter optimization (e.g., 768 parameters in Auto-WEKA [21]).

To assess the importance of input parameters to a blackbox function f : Θ1 × · · · ×Θn → R, in this
work, we investigate the classic technique of functional analysis of variance (functional ANOVA) [19,
12, 17, 11]: we fit a model f̂ to f and partition f̂ ’s varianceV into additive componentsVU associated
with each subset of input parameters U ⊆ {1, . . . , n}. In order to do this tractably, we must be
able to efficiently compute marginalizations of f̂ over arbitrary parameter subsets U ⊆ {1, . . . , n}.
This has been shown to be possible for Gaussian process models f̂ with certain kernels [see, e.g.,
17]. However, our problem domain of Bayesian optimization of highly parameterized algorithms
is characterized by high-dimensional discrete/continuous data, conditional parameters, many data
points, non-Gaussian noise, and non-stationarity, for which we and others have found random forest
models to be more appropriate [20, 9, 13]. Because to date, efficient marginalizations had not been
available for random forests, researchers had to revert to sampling-based techniques to compute
approximate functional ANOVA decompositions [9]. Here, we provide the first efficient and exact
method for computing marginal predictions and deriving functional ANOVA sensitivity indices for
random forests. We demonstrate their use by studying the parameter spaces of several algorithms.

1

2 Notation and Definitions
Let f be a function with n input parameters with domains Θ1, . . . ,Θn. We use positive integers to
denote the parameters, and N to refer to the set {1, . . . , n} of all parameters. The parameter space is
Θ = Θ1×· · ·×Θn. A parameter configuration is a vector θ = 〈θ1, . . . , θn〉 with θi ∈ Θi. A partial
instantiation of a subset U = {u1, . . . , um} ⊆ N of A’s parameters is a vector θU = 〈θu1 , . . . , θum〉
with θui ∈ Θui . The extension set X(θU) of θU of a partial parameter instantiation θU is the set of
parameter configurations that are consistent with it. More formally, let θU = 〈θu1

, . . . , θum
〉 be a

partial instantiation of the parameters U = {u1, . . . , um} ⊆ N ; X(θU) is then the set of parameter
configurations θN |U = 〈θ′1, . . . , θ′n〉 such that ∀j(j = uk ⇒ θ′j = θuk

).

Definition 1 (Marginal). Let f : Θ → R be a blackbox function, U ⊆ N , and T = N \ U . The
marginal aU (θU) of f over T is then defined as

aU (θU) = E[f(θN |U) | θN |U ∈ X(θU)] =

∫
f(θN |U) · p(θT) dθT .

Since we aim for marginals representing the input space evenly, we use the uniform distribution
p(θT) for any T .

3 Functional ANOVA
Analysis of variance (ANOVA) partitions the observed variation of a response value into components
due to each of several factors. Functional ANOVA decomposes the variance of a function f : Θ→ R
across its domain into additive components that only depend on subsets of its parameters N :

f(θ) =
∑
U⊆N

fU (θU). (1)

The components fU (θU) are defined as follows:

fU (θU) =

{∫
f(θ) · p(θ) dθ if U = ∅;

aU (θU)−
∑

W(U fW (θW) otherwise.
(2)

The constant f∅ is the mean of f across its domain. The unary functions f{j}(θ{j}) are called main
effects and capture the effect of varying parameter j, averaging across all instantiations of all other
parameters. The functions fU (θU) for |U | > 1 capture exactly the interaction effects between all
variables in U (excluding all lower-order main and interaction effects of W (U).

By definition, the variance of f across its domain Θ is

V =

∫
(f(θ)− f∅)2 · p(θ) dθ. (3)

Assuming a uniform prior, functional ANOVA decomposes this variance into contributions by all
subsets of variables [see, e.g., 11, for a derivation]:

V =
∑
U⊂N

VU , where VU =

∫
fU (θU)2 · p(ΘU) dθU . (4)

The importance of all main and interaction effects fU can thus be quantified by the fraction of
variance they explain: FU = VU/V. Key to computing these so-called sensitivity indices is access
to the marginals aU (θU). In our setting, f is an expensive blackbox function, so there is generally no
hope of evaluating it across its entire domain in order to compute aU (θU). However, if we have a
predictive model f̂ that fits f well on average across the parameter space, the difference between the
true marginals aU (θU) and the predicted marginals âU (θU) under f̂ will also be low, and so will the
difference between sensitivity indices based on f and f̂ . We show that for regression tree models f̂
we can compute marginal predictions âU (θU) and sensitivity indices exactly and efficiently.

4 Efficient Marginals and Functional ANOVA Indices in Random Forests
The simplest way to study the importance of a parameter θi is to investigate its impact in the context
of a fixed instantiation of all other parameters. However, this only yields local information on θi’s

2

importance; we are interested in its global impact across various instantiations of the other parameters.
We can obtain this global information by studying the marginal predictions â{i}(θi) for θi ∈ Θi.

We now show that when using random forest models f̂ , marginal predictions âU (θU) can be computed
in linear time for arbitrary subsets of parameters U ⊆ N . Random forests [6] are ensembles of
regression trees. Each regression tree partitions the input space through sequences of branching
decisions that lead to each of its leaves. We denote the partitioning as P and observe that each
equivalence class Pi ∈ P is associated with a leaf of the regression tree and with a constant ci. Let
Θ

(i)
j ⊂ Θj denote the subset of domain values of parameter j that is consistent with the branching

decisions leading to the leaf associated with Pi. Then, for trees with axis-aligned splits, Pi is the
Cartesian product Pi = Θ

(i)
1 × · · · × Θ

(i)
n . The predictor f̂ : Θ → R encoded by the regression

tree is f̂(θ) =
∑

Pi∈P I(θ ∈ Pi) · ci, where I(x) is the indicator function. A random forest simply
predicts the average over the predictions obtained from its component regression trees.

Our approach for computing marginal predictions âU (θU) of a random forest works in two phases: a
preprocessing phase that has to be carried out only once and a prediction phase that is carried out
once per requested marginal prediction. Both phases require only linear time given a random forest
as input. (Constructing the random forest is a separate problem, but is also cheap: quadratic in the
number of data points T in the worst case, and proportional to T log2 T in the more realistic best case
of balanced trees [15].)

The key idea behind our algorithm is to exploit the fact that each of the regression trees in a given
forest defines a partitioning P of the configuration space Θ, with piecewise constant predictions ci in
each Pi ∈ P , and that the problem of computing sums over an arbitrary number of configurations
thus reduces to the problem of identifying the ratio of configurations that fall into each partition. The
random forest prediction then simply averages the individual tree predictions.

In the full version of this paper, we derive the following result:

Theorem 2. Given a random forest F withB trees of up to L leaves that defines a predictor f̂ : Θ→
R for a configuration space with n parameters and maximal categorical domain size D, the time and
space complexity of computing a single marginal prediction of F is O(B ·L ·max{D+n, n logD}).
Additional marginal predictions cost additional space O(1) and time O(B · L · n logD).

Finally, plugging these marginal computations into the functional ANOVA framework and performing
simple dynamic programming to compute fU (θU) via Equation 2 yields the following result:

Theorem 3. Given a configuration space Θ consisting of n categorical1 parameters of maxi-
mal domain size D and a regression tree T with L leaves that defines a predictor f̂ : Θ →
R, it is possible to exactly compute the sensitivity indices FU of all subsets U of Θ’s pa-
rameters N of arity up to K, with space complexity O(L · D + L · n) and time complexity

O
(
L ·D +

∑K
k=1

(
n
k

)
·Dk(L · n log d+ 2k)

)
.

We compute sensitivity indices for each of the trees in a random forest and return means and variances
over the trees’ sensitivity indices to express our model uncertainty in regions of sparse data.

5 Empirical Evaluation
We start with a simple 3-dimensional hyperparameter space, for which ground truth data is available
for a 288-point grid of the three hyperparameters (κ, τ0, and S) of an online variational Bayes
algorithm for Latent Dirichlet Allocation (Online LDA [10]). This data was made available as part
of a previous study applying Bayesian optimization to this algorithm’s hyperparameters [18]. For
each of the grid points, perplexity and runtime of the LDA algorithm are available. We used only
half the data points (sampled uniformly at random) to construct random forests models and plot
their marginal predictions in Figure 1, comparing to the true marginals at the grid points. It is clear
that parameter S is most important for perplexity, and our functional ANOVA analysis can quantify

1For continuous parameters j with Θj = [lj , uj], we have to sum over all intervals of [lj , uj]

defined by the split points in
⋃

Pi∈P{minΘ
(i)
j ,maxΘ

(i)
j }. The number of such intervals can in

principle grow as large as the number of leaves, leading to an increased worst-case time complexity
O
(
L ·D +

∑K
k=1

(
n
k

)
· Lk(L · n log d+ 2k)

)
.

3

Parameter κ Parameter τ0 Parameter S

A
vg

.p
er

pl
ex

.

0.5 0.6 0.7 0.8 0.9 1

1500

2000

2500

3000

10
0

10
1

10
2

10
3

1500

2000

2500

3000

10
0

10
1

10
2

10
3

10
4

1500

2000

2500

3000

(a) Main effects for perplexity

Parameter κ Parameter τ0 Parameter S

A
vg

.r
un

tim
e

0.5 0.6 0.7 0.8 0.9 1

4

6

8

10
0

10
1

10
2

10
3

4

6

8

10
0

10
1

10
2

10
3

10
4

4

6

8

(b) Main effects for runtime

Figure 1: Main effects for Online LDA’s perplexity and runtime. Each plot shows the marginals
of one hyperparameter (identified by the column header); the y-axis in each plot shows marginals
(across all instantiations of the other two hyperparameters) when varying that single parameter across
the x-axis. The dashed black line and grey-shaded area indicate predicted marginal means ± two
standard deviations, the blue circles indicate true marginals (computable only with ground truth).

this: 65% of the variance of perplexity is due to S and another 18% is due to an interaction effect
between S and κ (not shown due to space constraints). Hyperparameter κ most influences runtime
(causing 54% of its variation), followed by S (causing 21% of its variation). We note that when the
function evaluations are available, this quantitative analysis takes milliseconds and the visualizations
(enabled by marginal predictions) can provide valuable intuitions to the algorithm designer even in
low-dimensional hyperparameter spaces.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

50

100

150

P
re

d
ic

te
d
 m

a
rg

in
a
l
ru

n
ti
m

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

60

70

P
re

d
ic

te
d

 m
a

rg
in

a
l
ru

n
ti
m

e

Figure 2: Main effect of SPEAR’s variable selection
heuristic (with 20 possible values) for two different
instance distributions. Left: BMC; right: SWV.

We also applied our variance decomposition
methods to assess parameter importance of seven
highly parametric state-of-the-art solvers for 10
prominent combinatorial problem benchmarks
from propositional satisfiability (SAT), mixed inte-
ger programming (MIP) and answer set program-
ming (ASP), covering applications in formal veri-
fication, industrial process optimization, computa-
tional sustainability, and database query optimiza-
tion. For all these benchmarks, most variation was

due to a few parameters. Indeed, main effects explained a substantial fraction of overall performance
variation (20–88%), and likewise did pairwise interaction effects (up to 45%). One particularly
interesting case was the performance of the SAT solver SPEAR [1] on SAT-encoded formal verification
instances. Here, 87% of the variance was explained by only one out of SPEAR’s 26 parameters (namely,
its variable selection heuristic). Figure 2 (left) shows that several standard activity heuristics (labelled
0,2,3,4,5,6,7) performed well for this dataset, whereas other ad-hoc heuristics performed poorly.
In contrast, for SPEAR’s performance on software verification (SWV) instances (see Figure 2, right
side), a simple heuristic (labelled 16) initially expected to perform poorly turned out to be very
effective. Before seeing these results, SPEAR’s developer did not have any intuition about which
variable selection heuristic would work well for SWV. Our automatically-derived result helped him
realize that a special property of the SWV SAT encoding creates instances suited perfectly for the
simple heuristic. This example illustrates how this analysis approach can help algorithm designers
(or more abstractly, users with a blackbox function) gain new insights.

The full version of this paper contains many more experiments, including an application to assess
which of the 768 parameters of the recent Auto-WEKA framework [21] were important on 21 datasets.
Not surprisingly, model class was the most important parameter, followed by (in various orders) the
base classifier to use inside a meta-classifier, feature search and feature evaluation methods.

6 Conclusion
We introduced an efficient approach for assessing the importance of the inputs to a blackbox function
and applied it to quantify the effect of several algorithms’ parameters. Our key technical advance is
the derivation of the first exact and efficient algorithm for computing marginal predictions over input
dimensions in random forests, thus enabling the practical use of the functional ANOVA framework.

The methods introduced here offer a principled, scientific way for algorithm designers and users to
gain deeper insights into the way in which design choices controlled by parameters affect the overall
performance of a given algorithm. In future work, we plan to extend our approach to detect dominated
parameter values. We also plan to exploit our efficiently derived sensitivity indices inside of Bayesian
optimization algorithms, e.g., to focus optimization in the space of the most important parameters or
to speed up the subsidiary high-dimensional optimization to select promising configurations.

4

References
[1] D. Babić and F. Hutter. Spear theorem prover. Solver description, SAT competition, 2007.

[2] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. In Proc. of ICML-13,
2013.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR, 13:281–305, 2012.

[4] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for Hyper-Parameter Optimization. In Proc. of
NIPS-11, 2011.

[5] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In Proc. of ICML-12, 2013.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[7] B. Chen, R.M. Castro, and A. Krause. Joint optimization and variable selection of high-dimensional
Gaussian processes. In Proc. of ICML-12, 2012.

[8] C. Fawcett and H.H. Hoos. Analysing differences between algorithm configurations through ablation. In
Proc. of MIC’13, 2013.

[9] R.B. Gramacy, M. Taddy, and S.M. Wild. Variable selection and sensitivity analysis using dynamic trees,
with an application to computer code performance tuning. Ann. Appl. Stat., 7(1):51–80, 2013.

[10] M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet allocation. In Proc. of
NIPS-10, 2010.

[11] G. Hooker. Generalized functional ANOVA diagnostics for high dimensional functions of dependent
variables. Journal of Computational and Graphical Statistics, 16(3), 2007.

[12] J. Z. Huang. Projection estimation in multiple regression with application to functional anova models. The
Annals of Statistics, 26(1):242–272, 1998.

[13] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In Proc. of LION-5, 2011.

[14] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Identifying key algorithm parameters and instance features
using forward selection. In Proc. of LION-7, 2013.

[15] F. Hutter, L. Xu, H.H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction: Methods and evaluation.
AIJ, 2013. To appear; preprint available on arXiv: CoRR abs/1211.0906.

[16] F. Hutter. Automated configuration of algorithms for solving hard computational problems. PhD thesis,
Univ. of British Columbia, Dept. of Computer Science, Vancouver, Canada, October 2009.

[17] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black box functions.
Journal of Global Optimization, 13:455–492, 1998.

[18] J. Snoek, H. Larochelle, and R.P. Adams. Practical Bayesian optimization of machine learning algorithms.
In Proc. of NIPS-12, 2012.

[19] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and
Computational Experiment, 1(4):407–414, 1993.

[20] M. A. Taddy, R. B. Gramacy, and N. G. Polson. Dynamic trees for learning and design. Journal of the
American Statistical Association, 106(493):109–123, 2011.

[21] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In Proc. of KDD-13, 2013.

[22] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization in high dimensions
via random embeddings. In Proc. of IJCAI-13, 2013.

5

