
Raiders of the Lost Architecture:
Kernels for Bayesian Optimization
in Conditional Parameter Spaces

Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, Michael Osborne

The Problem: Optimizing over Architectures

• Example: optimizing hyperparameters of a neural net.

• Can include architecture-independent hyperparame-
ters: epochs, batch-size, number of layers, etc.

• Can also include architecture-dependent hyperpa-
rameters: learning rates, weight decays, dropout prob-
abilities, etc.

• The number of architecture-dependent hyperparame-
ters changes with different architectures.

• Need to optimize over a varying number of hyperpa-
rameters!

• This is difficult for Bayesian optimization with Gaus-
sian processes because we need to define a kernel over
vectors of different sizes.

One-layer MLP

Two-layer MLP

Comparing Architectures in Conditional Spaces

Formally, we aim to do inference about some function f with domain X . X =
∏D

i=1Xi
is a D-dimensional input space, where each individual dimension is bounded real, that
is, Xi = [li, ui] ⊂ R (with lower and upper bounds li and ui, respectively).
We define functions δi : X → {true, false}, for i ∈ {1, . . . , D}. δi(x) stipulates the
relevance of the ith feature xi to f (x).

Example

Imagine trying to model the performance of a neural network having either one or two
hidden layers, with respect to the regularization parameters for each layer, x1 and x2.
If y represents the performance of a one layer-net with regularization parameters x1 and
x2, then the value x2 doesn’t matter, since there is no second layer to the network.
Below, we’ll write an input triple as (x1, δ2(x), x2) and assume that δ1(x) = true; that
is, the regularization parameter for the first layer is always relevant.
In this setting, we want a kernel k to be dependent on which parameters are relevant,
and the values of relevant parameters for both points. For example, consider first-layer
parameters x1 and x′1:

• If we are comparing two points for which the same parameters are relevant, the value
of any unused parameters shouldn’t matter,

k
(
(x1, false, x2), (x

′
1, false, x′2)

)
= k
(
(x1, false, x′′2), (x

′
1, false, x′′′2)

)
, ∀x2, x′2, x′′2, x′′′2 ;

• The covariance between a point using both parameters and a point using only one
should again only depend on their shared parameters,

k
(
(x1, false, x2), (x

′
1, true, x′2)

)
= k
(
(x1, false, x′′2), (x

′
1, true, x′′′2)

)
, ∀x2, x′2, x′′2, x′′′2 .

The Arc Kernel

We can build a kernel with these properties for each possibly irrelevant input dimension
i by embedding our points into a Euclidean space. Specifically, we use the embedding

gi(x) =

{
[0, 0]T if δi(x) = false
ωi[sin πρi

xi
ui−li, cosπρi

xi
ui−li]

T otherwise.

Where ωi ∈ R+ and ρi ∈ [0, 1].

g(0, true, u)
g(0, true, l)

g(0, false, ·)
ρπ

ω
g(1, false, ·)

g(1, true, l)

x1

x1

x2

A demonstration of the embedding giving rise to the pseudo-metric. All points for which
δ2(x) = false are mapped onto a line varying only along x1. Points for which δ2(x) =
true are mapped to the surface of a semicylinder, depending on both x1 and x2. This
embedding gives a constant distance between pairs of points which have differing values
of δ but the same values of x1.

The figure above shows a visualization of the embedding of points (x1, δ2(x), x2) into
R3. In this space, we have the Euclidean distance,

di(x, x
′) = ||gi(x)− gi(x′)||2 =

0 if δi(x) = δi(x

′) = false
ωi if δi(x) 6= δi(x

′)

ωi
√
2
√
1− cos(πρi

xi−x′i
ui−li) if δi(x) = δi(x

′) = true.

Experimental Setup

• We infer all GP parameters using MCMC with 100 steps of burn-in and 25 steps in
between each trial.

• We use a Matérn kernel using the pseudo-metric described above.

• Our experiments involved optimizing a neural network with 23 hyperparameters over
6 architectures corresponding to 0 to 5 hidden layers.

• The hyperparameters are:

– Learning rates.

– L2 norm constraints.

–Dropout rates.

–Number of hidden units in each layer.

• Baseline embeds irrelevant dimensions randomly, roughly corresponds to a uniform
prior over irrelevant dimensions.

Regression Results

Method Original data Log outputs
Separate Linear 0.812± 0.045 0.737± 0.049
Separate gp 0.546± 0.038 0.446± 0.041
Separate Arc gp 0.535± 0.030 0.440± 0.031
Linear 0.876± 0.043 0.834± 0.047
gp 0.481± 0.031 0.401± 0.028
Arc gp 0.421± 0.033 0.335± 0.028

Normalized Mean Squared Error on MNIST Bayesian optimization data

Optimization Results

• Optimize a densely connected neural network on several datasets.

• Use k-means features (Coates et. al, AISTATS 2011) for CIFAR-10.

0 5 10 15 20
Number of models trained

−4.5
−4.0
−3.5
−3.0
−2.5
−2.0

−1.5
−1.0

Lo
g-

cl
as

si
fic

at
io

n
er

ro
r Arc GP

Baseline

10 15 20 25 30 35 40
Number of models trained

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Cl
as
si
fic

at
io
n
er
ro
r

Arc GP
Baseline

MNIST CIFAR-10

0 1 2 3 4 5
Number of layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
tio

n
of
 e
va

lu
at
io
ns Arc GP

Baseline

Architectures searched

FutureWork

• Comparison to more baselines.

• Use separable kernel for each parameter group.

• Extension to general DAG structures and other machine learning models.

