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Regression Results

The Problem: Optimizing over Architectures The Arc Kernel

o We can build a kernel with these properties for each possibly irrelevant input dimension Method Original data Log outputs

* Example: optimizing hyperparameters of a neural net. v by embedding our points into a Euclidean space. Specifically, we use the embedding Separate Linear | 0.8124+0.045 0.737 £ 0.049
e Can include architecture-independent hyperparame- | Separate GP 0.546 £ 0.038  0.446 = 0.041
ters: epochs, batch-size, number of layers, etc. gi(z) = { 0, O.]T N N if 51'(@.: talse Separate Arc ¢P|  0.535+0.030  0.440 + 0.031
e Can also include architecture-dependent hyperpa- B wjsin T Pi—,» €08 7Tpiuz-—zlz-]T otherwise. Linear 0.876 £ 0.043  0.834 £ 0.047
rameters: learning rates, weight decays, dropout prob- Where w; € R and p; € [0,1]. GP 0.481 4+ 0.031  0.401 4 0.028
abilities, etc. Arc GP 0.421 +£0.033 0.335 + 0.028

Normalized Mean Squared Error on MNIST Bayesian optimization data

e The number of architecture-dependent hyperparame-

ters changes with different architectures. g(1, true, 1)
e Need to optimize over a varying number of hyperpa- Optlmlzatlon Results
/
rameters! M
e This is difficult for Bayesian optimization with Gaus- /;(1 false, -) e Optimize a densely connected neural network on several datasets.
S PrREEE because we need to define a kernel over Two-layer MLP —— e Use k-means features (Coates et. al, AISTATS 2011) for CIFAR-10
vectors of different sizes. . al, .

g(0, false, - ~1.0 w w 0.55 w w
. . oy o S5 _15 — ArcGP 0.50 — ArcGP |
Comparing Architectures in Conditional Spaces A demonstration of the embedding giving rise to the pseudo-metric. All points for which = 2'0 — Baseline §0_45; — Baseline||
09(x) = false are mapped onto a line varying only along ;. Points for which 0y(x) = S g
yins | | S s c0.40 ||

Formally, we aim to do inference about some function f with domain X'. X = Hle X true are map.ped to the surfa.ce of 2 semlcylmde.r, depeerlng on both z; .and. Ly This E 30 ®0.351 *

is a D-dimensional input space, where each individual dimension is bounded real, that e?;)eg:ldmi BIVES 4 colnstan’:cdlstance between pairs of points which have differing values 0 £0.30] :Eq\ﬁ e j

is, X; = |l;,u;] C R (with lower and upper bounds [; and u;, respectively). 0 ut the same values of 1. ;_3 > £0.25 BERER ﬁjﬂﬂgnln}p

We define functions 0;: X — {true, false}, for i € {1, ..., D}. d;(x) stipulates the The £ X ' S eddine of bo 5 | 5 -40 | o2 f
relevance of the ith feature z; to f(x) e figure above shows a visualization of the embedding of points (1, ds(x), z2) into -4.5, : o 1s 90 018555555540

R?. In this space, we have the Euclidean distance,
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magine trying to model the performance of a neural network having either one or two dilz, 2') = |lgi(z) = gilz)ll: \/i\/l ey s S — ¢ i B ArcGP |

nidden layers, with respect to the regularization parameters for each layer, 1 and x». Wi — cos(7p; u@'—li) if 0;(2) = 0i(2') = true, | Bl Baseline

f y represents the performance of a one layer-net with regularization parameters z; and
X9, then the value x9 doesn't matter, since there is no second layer to the network.
Below, we'll write an input triple as (1, do(2), o) and assume that §;(x) = true; that
is, the regularization parameter for the first layer is always relevant.

In this setting, we want a kernel £ to be dependent on which parameters are relevant,
and the values of relevant parameters for both points. For example, consider first-layer
parameters z; and xi:

e |[f we are comparing two points for which the same parameters are relevant, the value
of any unused parameters shouldn't matter,

b (o, false, ), (o, false, 1)) = ((, fale, %) (2 false, a1), Vi, af, %, a4

e [ he covariance between a point using both parameters and a point using only one

should again only depend on their shared parameters,
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]‘C(($1, falsea x2)7 (331, true) ;132)) — k((ajla false, 1‘2), (%’1, true, Lo ))7 \V/CCQ, Loy Loy Lo -

Experimental Setup

e We infer all GP parameters using MCMC with 100 steps of burn-in and 25 steps in
between each trial.

e We use a Matérn kernel using the pseudo-metric described above.

e Our experiments involved optimizing a neural network with 23 hyperparameters over
6 architectures corresponding to 0 to 5 hidden layers.

e [ he hyperparameters are:

— Learning rates.
— L2 norm constraints.

— Dropout rates.
—Number of hidden units in each layer.

e Baseline embeds irrelevant dimensions randomly, roughly corresponds to a uniform
prior over irrelevant dimensions.

=

S

Proportion of evaluations
©O O O O o o
= W

O
o

1 2 3 4 5
Number of layers

Architectures searched

e Comparison to more baselines.

Future Work

e Use separable kernel for each parameter group.

e Extension to general DAG structures and other machine learning models.



