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Abstract

Many controlled systems operate over a range of external conditions. In this work,
we focus on the problem of learning a globally optimal policy to adapt a system’s
controller based on the value of these external conditions in order to maximize
expected performance, even when the system output and policy score functions
have local optima. In addition, we are concerned with systems for which it is
expensive to run experiments, restricting the number that can be run during train-
ing. We formally define the problem setup and the notion of an optimal control
policy. We consider myopic search methods using metrics based on the expected
improvement in an objective, and propose two such algorithms. We present re-
sults comparing these algorithms with various other approaches and discuss the
inherent tradeoffs in the proposed algorithms. Finally, we use these methods to
train both simulated and physical snake robots to automatically adapt to chang-
ing terrain, and demonstrate improved performance on test courses with changing
environments.

During typical operation of many robotic and industrial systems, the environment can change signifi-
cantly. For example, a locomoting humanoid robot may move over gently up-sloped terrain, traverse
a slightly bumpy horizontal area, and move downhill through many large obstacles. Assume there is
a parameterized controller which can be tuned to perform well in each of these environments. Obvi-
ously, a static set of parameters for this controller would be a suboptimal method for controlling the
system in multiple environments, as one would expect the controller parameters for uphill motion to
be different than those for downhill. Although the robot’s performance may be nonlinear with many
local maxima, one would expect some continuity — similar control parameters should lead to similar
performance, and similar environments should engender similar optimal control parameters. In this
work, we seek to intelligently generate control policies that adapt to changes in the environment by
selecting the best controller parameters for a given environment (Fig. 1).

Unfortunately, for some systems there is no known analytic expression or approximation for per-
formance, and it is infeasible to test every possible controller in every possible environment. In
particular, we focus on systems for which evaluation of a single controller/environment pair may
take significant effort, and therefore we must minimize the necessary number of these evaluations.
The choice of experiments (parameters at which to evaluate the system) can significantly affect the
quality of a generated policy. The goal of experiment selection is to select parameters at which to
evaluate in a manner that enables generation of globally optimal policies.

Effective policy generation is made possible by the assumption of continuous system output with
respect to the controller parameters and the environment, allowing us to infer reasonable values for
an unsampled parameter based on nearby sampled values. One of the keys to this work is the idea of
using a surrogate function to represent a function which is expensive to evaluate, and basing search
methods on this cheap model. These ideas have been extensively explored in the global optimization
community [1, 2], often relying on stochastic processes to create a surrogate function [3, 4, 5]. Given
a surrogate, the goal of expensive global optimization is to choose subsequent true function evalua-
tions to minimize the number of total evaluations while maximizing global performance (avoiding
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Figure 1: We are interested in problems for which the optimal control parameter changes significantly depend-
ing on the environmental conditions. Ideally similar environment/control combinations lead to similar system
output; we therefore assume this function is continuous, although these methods can still operate with some
discontinuities. Here we show an example f for one dimensional environment and control spaces. The resulting
policy tends to be piecewise continuous; it is shown below the function and its performance is projected to the
left. Good policies can be estimated from a low-cost model of the true expensive system output, requiring only
a handful of carefully chosen points. An optimal policy is illustrated in (a), presenting the best control parame-
ter for every environment parameter. Note that the policy shown in (b), which also maps to a control parameter
that maximizes f at z. = 1, results in a significantly lower overall score because of its poorer choices in other
regions of the environment space.

local maxima). In cases where the function evaluations are costly (hours to days), computational
requirements are not a significant issue; careful choice of the sample is more important.

A number of heuristics and statistical methods have been derived to use information from the sur-
rogate function to choose this sample location ([2] provides a survey of many existing methods).
These metrics include the upper confidence bound of the predicted function [6, 7], the probability
of improvement [8, 9], and the expected improvement [10, 11]. This last quantity has been shown
to effectively trade off exploration of the parameter space and exploitation of the known good areas
without requiring algorithm parameters to be carefully tuned.

However, none of these methods are directly applicable to the addition of environment parame-
ters. In contrast, our algorithms explicitly account for these parameters through a metric based on
myopic expected improvement, and evaluated on a learned surrogate function. Perhaps the most
relevant related work is that done in the field of robust controller selection [12, 13]; this work also
explicitly breaks the parameter space into control and environment subspaces, but seeks to find a
robust controller, rather than an adaptive controller.

To formalize this problem, we define the notions of a control policy v: X. — X. and the score
S(y) of that policy. A control policy is a mapping from the environment parameter space X, to the
control parameter space X.; its score is the expected performance of that policy over X.:

S(y) = /X (@) (e, y(xe)) dee )

Here w is an optional probability distribution over environments, and f: X, X X. — R is the system
output. The optimal policy v* is defined as argmax S(vy). These ideas are illustrated in Fig. 1(a);
~* is shown projected onto the control-environment plane, and S(v*) is visualized on the system
output-environment plane; Fig. 1(b) shows a suboptimal policy.

The goal of this work is to find the highest scoring policy  after a number of system output evalua-
tions. In other words, the quantity of interest is not a single point, but a mapping from environment
to control parameters. We break this problem into two subproblems:

1. Policy Generation: Given n evaluations of f, choose the best estimate for ~*.

2. Experiment Selection: Choose the sequence of points X = {z',z?,...2"}, 2" € X x
X, where the choice of z**1 is informed by {f(z?) | < k}, which maximizes the score
of the policy produced by the chosen policy generation algorithm.
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Figure 2: (a) A surrogate for f; the color represents the confidence (dark = high, light = low). (b) The
value of a potential experiment using expected improvement. The expected improvement metric biases point
selection towards environments with high values of f. (¢) The value of a potential experiment using expected
improvement over the best predicted system output value for that environment. This reduces this bias toward
easy environments and more directly optimizes the policy score. (d) The estimated policy score improvement
as a result of sampling each point. This selection criterion is computationally intensive, but results in better
performance than (c).

Proposed Methods

One of the difficulties in solving this problem lies in the fact that the true objective function we
are maximizing during policy generation is S. Unfortunately, as evaluating the score of a single
policy involves an integral of evaluations of the expensive f, it is impossible to calculate S(+y) for
any single policy , let alone apply a standard optimization technique to S. Inspired by the success
of the expected improvement metric for single-environment problems, the methods proposed in this
work attempt to provide a tractable optimization method which maximizes a statistical quantity
related to the score function: approximate expectation of improvement above the current predicted
policy score.

We use Gaussian processes ([14]) as a nonlinear function approximation method that generates a
predictive distribution p,(y) at each z € X, x X,; techniques for the selection of the kernel and
hyperparameters of such a function via likelihood maximization is detailed in [15]. By using this
surrogate f to model f, we can address the policy generation and experiment selection subproblems.
Policy generation involves selecting the policy which maximizes our best estimate of the score, as
given by our surrogate function. Although more efficient approximations could be applied, in low

dimensional spaces 4* can be estimated via a dense sampling of the (relatively) cheap surrogate f.

One method we propose for experiment selection adapts the basic idea of expected improvement to
the explicit separation of the environment and control spaces. Instead of measuring improvement at
a test point over the best evaluation of f so far, we restrict this notion to consider the improvement
over the maximum predicted value of f for the same environment as the test point. This reduces the
draw towards “easy” environments, giving the unbiased expected improvement (UEI) (Fig. 2(c)):

UEI(z) = w(z.) / (v — 2, )ps(y) dy, where 3%, = max (f(ze,.)) @

y;&ce r.€X,

Although UEI begins to approximate improvement of the true policy score function, it only consid-
ers improvement at one environment parameter. To measure the true expected improvement of the
policy score at a point x, the expectation must be computed over the predictive distribution p,(y),
where each potential y involves regression of a new surrogate fy conditioned on the addition of this
potential sampled value. This second proposed method produces better results, but requires addi-
tional computation (an expensive numeric integral) that may be impractical for some applications;
it is termed the expected policy score improvement, or EPSI (Fig. 2(d)):

Ep81(a) = [ pulo) [ wle)max (£ (o) - Floer” @).0) drdy O
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Figure 3: (a), (b): Comparison of algorithms on analytic test functions. Each line represents the mean of 20
trials, the shaded regions indicate 41 standard error, and the dotted black line represents the best possible policy
for that function. (¢): The physical experimental setup: system performance is a measure of locomotive energy
efficiency for a physical snake robot climbing up an incline. Higher amplitudes work well for flat ground, but
smaller amplitudes allow the robot to climb steeper inclines without slipping backwards. (d): Performance of
policies generated from points selected randomly versus using EPSI for the physical experiment trial.

Experimental Results and Concluding Remarks

To evaluate the performance of the two proposed algorithms we first used analytic test functions
in leiu of a physical system, which allowed the completion of enough tests to enable one to draw
reasonable conclusions. As standard search methods do not directly apply to this problem, for a
baseline we compared both against the expected improvement global search algorithm EGO [11]
applied directly to f, as well as random point selection. A summary of the results of these meth-
ods is shown in Fig. 3(a) and (b). Unsurprisingly, standard global optimization methods directly
optimizing f initially have good performance, but the policy score tends to stagnate quickly. This
is because these methods are optimizing f rather than S (Fig. 2(b)), and hence the resulting policy
is very weak in “difficult” environments (ones with low values of f). As expected, random point
selection also performs suboptimally, showing that it is important to carefully select experiments.

Unbiased expected improvement and expected policy score improvement both perform a better
global search; interestingly the latter outperforms the former only slightly, indicating that UEI pro-
vides a much simpler and quicker method which produces similarly high quality results. The final
choice between these methods involves several factors, and is largely application dependent. We
note that while not strictly algorithm parameters, implementation decisions can have significant ef-
fects on performance of these algorithms. Experiments comparing the effects of sampling density
and numeric integral resolution were also run; these results can be found in [16].

Although a complete analysis could not be run on physical systems due to the expensive nature
of evaluating f and the resulting inability to compute a true policy score, we set up a range of
environmental conditions in a “test course”, and then used the above algorithms to generate policies
which were scored on this test course. These policies map environment parameters (slope) into a
2-D gait parameter control space (see [17]). Results of evaluation of the policies generated during
testing are shown in Fig. 3(d). Again, expected policy score improvement caused superior policies
to be generated; differences can be noted even after only 10 samples of the space (the first 5 of which
are the randomly generated initial sampling).

Although demonstrated here on snake robots, this framework is applicable to a rich set of problems.
Locomoting systems, industrial processes, and prescription drugs all operate in changing environ-
mental conditions, are expensive to test, and could benefit from optimal adaptive control policies.
We have described two potential approaches for this experiment selection, both inspired by the sta-
tistical notion of expected improvement. One approach provides a fast, efficient computation that
performs reasonably well, while the other is more complex and computationally intensive, but pro-
duces better results overall. We have also proposed a simple method for policy generation, given the
experiments chosen by such an algorithm. We have demonstrated the efficacy of these algorithms,
and presented a summary of results on analytic test functions as well as on a physical snake robot
system. As a follow on to the work presented here, we are interested in relaxing the assumption
that any environment/control combination can be tested during training, as well as investigating
optimality bounds and completeness proofs for these algorithms.
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