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Abstract

We show that the Thompson Sampling algorithm achieves logarithmic ex-
pected regret for the Bernoulli multi-armed bandit problem. More pre-
cisely, for the two-armed bandit problem, the expected regret in time T is
O( lnT

∆ + 1
∆3 ). And, for the N -armed bandit problem, the expected regret

in time T is O(
[
(
∑N
i=2

1
∆2

i
)2
]

lnT ). Our bounds are optimal but for the

dependence on ∆i and the constant factors in big-Oh.

1 Introduction

Multi-armed bandit problems model the exploration/exploitation dilemma inherent in se-
quential decision problems. Many versions and generalizations of this problem have been
studied; in this short paper we will confine ourselves to Bernoulli bandits for the sake of
space and exposition. Among many algorithms available for bandit problems, some pop-
ular ones include Upper Confidence Bound (UCB) family of algorithms [6, 1], which have
good theoretical guarantees; and the algorithm by Gittins [3], which gives optimal strategy
under known priors and geometric time-discounted rewards. In one of the earliest works on
bandit problems, Thompson [10] proposed a natural Bayesian algorithm to minimize regret.
The basic idea is to play an arm with its probability of being the best arm. This algo-
rithm is known as Thompson Sampling (TS), and it’s a member of the family of randomized
probability matching algorithms.

TS has recently attracted considerable attention. Several studies [9, 2, 8] have empiri-
cally demonstrated the efficacy of TS. Scott [9] provides a detailed discussion of probability
matching techniques in various general settings along with favorable empirical comparisons
with other techniques. Chapelle and Li [2] demonstrate that empirically, TS achieves regret
comparable to the lower bound of [6] for the multi-armed bandit problem; and in applica-
tions such as display advertising and news article recommendation it is competitive to or
better than popular methods such as UCB. In their experiments, TS is also more robust to
delayed or batched feedback than the other existing methods.

It has been suggested [2] that despite being easy to implement and being competitive to
the state of the art methods, the reason TS is not very popular could be its lack of strong
theoretical analysis. Existing theoretical analyses [4, 7] provide weak guarantees, namely, a
bound of o(T ) on expected regret in time T . In this paper, for the first time, we provide a
logarithmic bound on expected regret in time T that is close to the lower bound of [6].

2 Thompson Sampling

In theN -armed Bernoulli bandit problem, each arm yields a reward of 0 or 1, with µ1, . . . , µN
being the respective probabilities of getting a reward of 1. W.l.o.g, assume that the first arm
is the optimal arm, i.e., µ1 = maxi µi; we will refer to the rest of the arms as suboptimal
arms. Set ∆i := µ1 − µi.
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At every time step t, one of the arms is selected to be played. Let Si(t), Fi(t) denote the
number of successes (reward = 1) and number of failures (reward = 0), respectively, observed
for arm i until time t, and let ki(t) = Si(t) + Fi(t) denote the number of times arm i has
been played so far.

Then, Thompson Sampling algorithm works as follows: At time step t, for each arm i,
generate θi(t) from beta distribution with parameters (Si(t) + 1, Fi(t) + 1). Play arm i∗(t),
where

i∗(t) = arg max
i
θi(t).

The expected regret of this algorithm in time T is given by

E[R(T )] = E[
∑T
t=1 µ1 − µi∗(t)] =

∑N
i=2 ∆iE[ki(T )].

3 Our result

In this article, we bound the finite time expected regret of Thompson Sampling.

Theorem 1. For two-armed Bernoulli bandit problem, Thompson Sampling algorithm has
expected regret of E[R(T )] ≤ 20

∆ lnT + 64
∆3 + 2∆

in time T , where ∆ = µ1 − µ2.

Theorem 2. For N -armed Bernoulli bandit problem, Thompson Sampling algorithm has
expected regret of

E[R(T )] =
[
125(

∑N
i=2

1
∆2

i
)2
]

lnT

in time T .

We remark that we have not attempted to optimize the constants in above theorems. Let
us contrast our bound with the previous work. Lai and Robbins [6] proved the following
lower bound on regret of any bandit algorithm:

E[R(T )] ≥
[∑N

i=2
∆i

D(µi||µ) + o(1)
]

lnT,

where D denotes the KL divergence. They also gave algorithms asymptotically achieving
this guarantee, though unfortunately their algorithms are not efficient. Auer et al. [1] gave
the UCB1 algorithm, which is efficient and achieves the following bound:

E[R(T )] ≤
[
8
∑N
i=2

1
∆i

]
lnT + (1 + π2/3)

(∑N
i=2 ∆i

)
.

For many settings of the parameters, this bound is not far from the optimal bound of Lai and
Robbins. Our bound closely matches the bound of Auer et al. for the two-arms setting. For
the N -arms setting, while our bound is slightly inferior to Auer et al. due to the appearance
of ∆4

i in the denominator instead of ∆i, it demonstrates that Thompson algorithm achieves
logarithmic regret even in the case of more than two arms.

Proof Techniques Here we give an informal description of the high-level ideas involved
in our analysis.

Let us first consider the special case of two arms which is simpler than the general N
arms case. Firstly, we note that it is sufficient to bound the regret in the time steps after
the second arm has been played L = 4(lnT )/∆2 times. The expected regret before this
event is bounded by 4(lnT )/∆ because only the plays of second arm produce an expected
regret of ∆, the regret is 0 when the first arm is played. Next, we observe that after the
second arm has been played L times, the following happens with high probability: the
empirical average reward of suboptimal arm is very close to its actual expected reward
µ2, and its beta distribution is tightly concentrated around µ2. This means that the first
arm would be played at time t if θ1(t) turns out to be greater than (roughly) µ2. This
observation allows us to model the number of steps between two consecutive plays of the
first arm as a geometric random variable with parameter close to Pr[θ1(t) ≥ µ2]. To be
more precise, given that there have been j plays of the first arm with s(j) successes and
f(j) = j − s(j) failures, we want to estimate the expected number of steps before the
first arm is played again (not including the step in which the first arm is played). This is
modeled by a geometric random variable X(j, s(j), µ2) with parameter Pr[θ1 ≥ µ2], where
θ1 has distribution Beta(s(j) + 1, j − s(j) + 1), and thus E[X(j, s(j), µ2)] = 1/Pr[θ1 ≥
µ2] − 1. To bound the overall expected number of steps between j and j + 1 play of first
arm, we need to take into account the distribution of the number of successes s(j). For
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large j, we use Chernoff-Hoeffding bounds to say that s(j)/j ≈ µ1 with high probability,
and moreover θ1 is concentrated around its mean, and thus we get a good estimate of
E[E[X(j, s(j), µ2)|s(j)]]. However, for small j we do not have such concentration, and it
requires a delicate computation to get a bound on E[E[X(j, s(j), µ2)|s(j)]]. The resulting
bound on expected number of steps between consecutive plays of first arm bounds the
expected number of plays of second arm to yield a good bound on the regret for the two-
arms setting.

Next, we consider the case of more than two arms (N > 2), i.e., the case of multiple
suboptimal arms. A natural approach to extend the analysis of single suboptimal arm case
to multiple suboptimal arms would be to bound the number of plays of each suboptimal arm
by the number of times it exceeds the first arm. This approach is taken in Auer et al. [1]
for analyzing UCB algorithm. A main difficulty in decomposing the multiple suboptimal
arms case in this manner is that we could be wrongly attributing all the plays other than
the plays of suboptimal arm being considered, to be the plays of the first arm, thus over-
counting the previous plays of the first arm. Auer et al. overcome this difficulty by showing
that for all possible number of previous plays of the first arm, the probability of playing a
suboptimal arm that has already been played large enough times at time t, is very small
(inverse polynomial in t). However, for Thompson Sampling, if the number of previous plays
of the first arm is small at time t, then the probability of a suboptimal arm i having a greater
θi(t) than θ1(t) can be as large as a constant, even if this suboptimal arm has already been
played O(lnT/∆2) times: for example, if the first arm has not been played at all, then θ1(t)
is a uniform random variable, and thus θ1(t) < θ2(t) with probability θ2(t) ≈ µ2. Thus, the
(distribution of the) number of previous plays of first arm needs to be carefully accounted
for, which requires a more involved analysis of the multiple suboptimal arms case.

The main ideas in our analysis of this case are as follows. At any step t, we divide the set
of suboptimal arms into two subsets: saturated and unsaturated. The set C(t) of saturated
arms at time t consists of arms a that have already been played a sufficient number (La =
4 lnT/∆2

a) of times, so that with high probability θa(t) is tightly concentrated around µa.
As earlier, we try to estimate the number of steps between two consecutive plays of the
first arm. After the jth play, the (j + 1)th play of the first arm will occur at the earliest
time t such that θ1(t) ≥ θi(t),∀i. The number of steps before θ1(t) is greater than θa(t) of
a saturated arm a can be analyzed using geometric random variable with parameter close
to Pr(θ1 ≥ µa) as earlier. However, even if θ1(t) is greater than the θa(t) of all saturated
arms a ∈ C(t), it may not get played due to play of an unsaturated arm i with a greater
θi(t). Call this event an “interruption” by unsaturated arms. We show that given that there
have been j plays of first arm with s(j) successes, the expected number of steps until the
(j + 1)th play can be upper bounded by the product of the expected value of a geometric
random variable similar to X(j, s(j), µa) defined earlier, and number of interruptions by the
unsaturated arms. Now, the total number of interruptions by unsaturated arms is bounded
by
∑
i Li. The actual number of interruptions in an interval is hard to analyze due to the

high variability in the parameters of the unsaturated arms. We derive our bound assuming
the worst case allocation of these

∑
i Li interruptions.

In this short article, we only present the proof for the two-arms setting, i.e. when N = 2.

4 Regret bound for the two-armed bandit problem

In this section, we present a proof of our result for two arms, while omitting many technical
details due to space considerations.

Let random variable j0 denote the number of plays of the first arm until 4 lnT/∆2 plays of
the second arm. Also, let random variable Yj measure the number of time steps between
the jth and (j + 1)th plays of first arm, and let s(j) be the number of successes in j plays.
Then, the expected number of plays of the second arm in time T is bounded by

E[k2(T )] ≤ 4 lnT
∆2 + E[

∑T
j=j0

Yj ]

Define X(j, s, y) as a geometric random variable denoting the number of steps before a
Beta(s + 1, j − s + 1) distributed random variable exceeds a threshold y for the first time.
The following lemma provides a handle on the expectation of X.

Lemma 1. For all integers j, s ≤ j, and for all y ∈ [0, 1],

E[X(j, s, y)] = 1
FB

j+1,y(s)
− 1,

3



where FBn,p denotes cdf of the Binomial distribution with parameters (n, p).

Proof. By well-known properties of geometric random variables and the definition of X we
have, E[X(j, s, y)] = 1

1−F beta
s+1,j−s+1(y)

− 1, where F betaα,β denotes cdf of the beta distribution

with parameters (α, β). (The additive −1 is there because we do not count the final step
where the Beta r.v. is greater than y.) The lemma then follows from the following known
relationship between cdf of Binomial and beta distributions:

F betaα,β (y) = 1− FBα+β−1,y(α− 1),

for all integers α, β.

Define E(T ) to be the event that θ2(t) ≤ µ2 + ∆
2 for all time t ∈ [1, T ] such that the second

arm has already been played at least 4(lnT )/∆2 times before time t. The following can
be proven using the above relation between the beta and Binomial distributions, and by
application of the Chernoff-Hoeffding bounds. We omit the proof.

Lemma 2. Pr(E(T ))) ≥ 1− 2
T .

Recall that Yj is defined as the number of steps before θ1(t) ≥ θ2(t) for the first time after
the jth play of the first arm. Now, under event E(T ), θ2(t) ≤ µ2 + ∆/2, for all time t
after 4(lnT )/∆2 plays of the second arm. Therefore, given that event E(T ) holds, and that
the number of successes in j trials of first arm is s(j), Yj for j ≥ j0 is dominated by the

geometric random variable X(j, s(j), µ2 + ∆
2 ). If the event E(T ) does not hold, we bound∑

j Yj by T .

E[

T∑
j=j0

Yj ] ≤ E[

T∑
j=j0

E[ Yj |j0, s(j), E(T ) ] ] +
2

T
· T

≤ E[

T∑
j=0

E[X(j, s(j), µ2 +
∆

2
) | s(j)]] + 2.

Lemma 3. Consider any y < µ1, and let ∆′ = µ1 − y. Also, let R = µ1(1−y)
y(1−µ1) , and let D

denote the KL-divergence between µ1 and y, i.e. D = y ln y
µ1

+ (1− y) ln 1−y
1−µ1

. Then,

E[ E[X(j, s(j), y) | s(j)] ] ≤


1 +

2

1− y
+
µ1

∆′
e−Dj j ≤ y

D ln R
2 ,

1 +
Ry

1− y
e−Dj +

µ1

∆′
e−Dj y

D ln R
2 ≤ j ≤

4 lnT
∆′2 ,

1

T
j ≥ 4 lnT

∆′2 ,

where the outer expectation is taken over s(j) distributed as Binomial(j, µ1).

Proof. Using Lemma 1, the expected value of X(j, s(j), y) for any given s(j),

E[X(j, s(j), y) | s(j)] =
1

FBj+1,y(s(j))
− 1.

For large j, i.e., j ≥ 4(lnT )/∆′2, we use Chernoff-Hoeffding bounds to argue that with high
probability, s(j) will be greater than µ1j−∆′j/2. And, for s(j) ≥ µ1j−∆′j/2 = yj+∆′j/2,
we can show that the probability FBj+1,y(s(j)) will be at least 1− 1

T 2 , again using Chernoff-

Hoeffding bounds. These observations allow us to derive that E[E[X(j, s(j), y)]] ≤ 1
T , for

j ≥ 4(lnT )/∆′2.

For small j, the argument is more delicate. In this case, s(j) could be small with a significant
probability. More precisely, s(j) could take a value s ≤ µ1j with binomial probability
fBj,µ1

(s). For such s, we use the lower bound FBj+1,y(s) ≥ (1 − y)FBj,y(s) ≥ (1 − y)fBj,y(s),

and then bound the ratio fBj,y(s)/fBj,µ1
(s) in terms of ∆′, R and KL-divergence D. For

s(j) = s ≥ dµ1je, we use the observation that since dµ1je is greater than or equal to the
median of Binomial(j, µ1) [5], we have FBj,y(s) ≥ 1/2 . After some algebraic manipulations,
we get the result of the lemma.
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Using Lemma 3 for y = µ2 + ∆/2, and ∆′ = ∆/2, we can bound the expected number of
plays of the second arm as:

E[k2(T )] =
4 lnT

∆2
+ E[

T∑
j=j0

Yj ] ≤
4 lnT

∆2
+

T∑
j=1

E[ E[X(j, s(j), µ2 +
∆

2
) | s(j)] ] + 2

≤ 4 lnT

∆2
+

4 lnT

∆′2
+

2

(1− y)
· y
D

ln
R

2
+
µ1 + 1

∆′
· 1

(1− e−D)
+ 2

≤ 20 lnT

∆2
+

64

∆4
+ 2.

This gives a regret bound of ( 20 lnT
∆ + 64

∆3 + 2∆) in case of N = 2.

Conclusion In this short article, we demonstrated that theoretical guarantees close to
other state of the art methods, like UCB, can be obtained for Thompson Sampling. Our
technique allows various extensions such as analysis of Thompson Sampling for bandits
more general than Bernoulli bandits, delayed and batched feedbacks, prior mismatch and
posterior reshaping; these extensions will be treated in future work.
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