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Abstract

In this contribution, we argue that algorithms derived from the Bayesian modelling
of the multiarmed bandit problem are also optimal when evaluated using the fre-
quentist cumulated regret as a measure of performance. We first show that the
classical Gittins argument can be applied to convert the finite-horizon Bayesian
multiarmed bandit problem into an MDP planning task that is numerically solv-
able for moderate horizons. The corresponding strategy is shown in simulations to
outperform its competitors, including approaches, such as the recently proposed
KL-UCB algorithm, that are known to be asymptotically optimal in the sense of
reaching the lower bound of Lai and Robbins for the regret. Motivated by this
observation, we propose a crude approximation of the optimal Bayesian decision
rule in the form of a simple index policy using, for each arm, a suitably chosen
quantile of the posterior distribution of the mean. For Bernoulli rewards, this al-
gorithm is shown to be asymptotically optimal and turns out to show interesting
connections with several recently proposed refinements of the UCB algorithm.

1 Two points of view on the multiarmed bandit problem

In the parametric stochastic multiarmed bandit model, an agent faces K independent arms which
depend on unknown parameters 61, ...,0x. The draw of arm j results in a reward that is read
from the i.i.d sequence (Yj)ien With mean p1;. The agent sequentially draws the arms and his
aim is to find a strategy I;, where I, is the arm chosen after ¢ rounds, based on previous rewards
(Xs =Y, 1, ,)s<t., that maximizes the expected rewards until time n, Eg [Z?zl X], or equivalently
minimizes the cumulated regret :
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where u* = max;—i..x p; is the mean of the optimal arm. For the sake of simplicity, we focus in
the sequel on bandits with Bernoulli rewards for which p;(0;) = 6; and denote by 6* the parameter
associated to p*. Many ’frequentist’ algorithms have been developed for this setting. UCB (see [1])
and more recently KL-UCB (see [3] or [11]) are examples of index policies : at each round an index
is computed for each arm and the arm with highest index is chosen. The common idea of these
algorithms is to use an upper-confidence bound for the empirical mean of rewards received from
each arm, in order to balance exploration and exploitation.

In [8], Lai & Robbins show that every strategy draws infinitely often any suboptimal arm j such that
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where K L stands for the Kullback-Leibler divergence and N,,(j) the number of pulls of arm j
before time n. An algorithm such that limsup,,_, .. Eg[N,,(j)]/ log(n) < (KL(B(6;),B(6*)))~"




is therefore asymptotically optimal. So a good regret bound, or equivalently a bound on the average
draws of a suboptimal arm, gives us the optimality of an algorithm in this frequentist setting.

The Bayesian formulation Now we adopt a Bayesian point of view and put a prior distribution
on the parameter § = (61, ..., 0k ). The new probabilistic model is :

e §; ~ m; and the 7; are independent
o Vj the (Y] ) are i.i.d conditionally to 6; with Bernoulli distribution B(6;)
o ifi# j,Vt,t',Y;, and Y; 4 are independent

In the frequentist definition (1) of the regret, the expectation is that of the frequentist model, given the
fixed parameter 6. In the Bayesian setting, we want to maximize E [> ;" ; X;], where the expectation
is relative to the above probabilistic model. As shown by Gittins, Bayesian optimal policies are index
policies, that is a special class of policies where at each round an index is computed for each arm,
and the arm with highest index is chosen.

Bayesian algorithms : Bayesian or frequentist optimality ? Let II; = (7}, ..., 7% ) be the cur-

rent posterior on the arms after ¢ rounds of game. Iy = (71, ..., mx ), the initial prior distribution. If

at round ¢ one chooses (I; = j) and then observe X, = Yj ;11 the Bayesian update for arm j is :
1

7T§+ x f(Xit1; Gj)7r§

whereas for i # j, miT! = 7. A Bayesian algorithm is an algorithm that uses states IT; to deter-
mine action ;. Here we present two Bayesian algorithms. The first, described in Section 2, returns
the solution to the Bayesian finite-horizon bandit problem, this means a strategy that maximizes
E >}, X:] among all strategies for the Bayesian model above. But we also investigate its perfor-
mance in terms of regret in the frequentist setting. The second, Bayes-UCB, described in Section 3
is a new index policy, with indices inspired by Bayesian ideas since they are posterior distribution
quantiles. We show that this Bayesian-motivated algorithm is optimal in the frequentist setting and

more strikingly that it is very similar to KL-UCB.

2 Solving the Bayesian problem in the Bernoulli case : the FHG algorithm

In his landmark paper [5], Gittins gives a Bayesian resolution of the multiarmed bandit problem in
the special case of Bernoulli rewards. But his solution, an index policy based on dynamic allocation
indices, holds for an infinite game with discounted reward. Unlike Gittins, we solve the MDP
modelling of our problem for a finite horizon n, which leads us to a Bayesian-optimal solution of
the finite-horizon bandit problem. This involves the definition of a new finite-horizon Gittins index
(FHG index), and the associated index policy is the finite-horizon Gittins algorithm (FH-Gittins).

The MDP formulation for Bernoulli bandits In the Bayesian model above, we choose §; ~
Beta(a, b), a conjugate prior to the Bernoulli likelihood. The game until the end of round ¢ is
summarized by the matrix S; € Mg 2 where S;(j, 1) (resp.S;(4,2)) denotes the number of ones
(resp. of zeros) observed from the draws of arm j until time ¢. Because of the simple Bayesian
update with this prior, 7% is a Beta distribution with parameter S;(j, 1) + a and S;(j,2) + b, with
mean (S;(j,1) +a)/(S(4,1) + S(4,2) + a + b) and therefore (E; ;, € M - being an elementary
matrix with a single one at (j, k)) :

S(j,1) +a
SG ) +8G,2) +a+b

Equation (2) shows us that each draw of an arm gives us a transition (S, It) ~» (Sty1, X¢11) ina
Markov Decision Process (MDP) with states S € M g »(N) and actions 1, ..., K.

P(Siy1 =S+ E;1|S: = S, Iy = j) = E[X¢a|S: = S, I; = j] = 2

Solving the planning problem for this MDP for a finite horizon n is equivalent to finding
a Bayesian-optimal strategy for horizon n. Even if the action and state spaces (included in
Mk 2({0,...,n})) are finite, they are too big for a direct resolution using dynamic programming.
We use for our finite problem the main idea of Gittins : a reduction of the dimension, by focusing
on each arm separately.



Finite-horizon Gittins index : solving a calibration problem Consider the one arm situation
where you can alternatively play the arm and get the associated reward or not play and get a fix
reward A. In this auxiliary problem, called B, A represents to cost of playing. Intuitively, at a given
time of this finite-horizon game, and given past observation ((s1, s2) : ones and zeros obtained from
the arm) the higher X his, the less one should be willing to take the risk of playing. The critical
value of \ for which one would still play, even at the cost ), is the finite-horizon Gittins index,
denoted v(t, (s1,s2)). This index can be interpreted as the highest price worth paying for playing
the arm. The associated index policy can be proven to be optimal by adapting a proof by Weber for
the infinite-discounted case (see for example [6] or [4]).

Implementation of the FHG algorithm Practical computation of index v(¢, (s1, s2)) involves
repeated resolutions of the B problem using dynamic programming (each resolution is achieved in
O((n — t)?) operations). As the critical value of )\ appears as the first zero of a convex function, the
number of problems to solve can be reduced. Alternative computational methods are discussed in
the recent paper [9]. For moderate values of K and n where these computations can be performed,
numerical experiments (see Section 4 below) show that the FHG algorithm regularly outperforms its
competitors, when using the frequentist cumulated regret as the measure of performance.

FHG index versus UCB index The Gittins index can also be interpreted as an upper confidence
bound, as it can be shown that v(t, s1,$3) > #Jﬁwb’ the right term being the mean of the
posterior. The FHG index however incorporate the knowledge of the horizon n to progressively
reduce exploration. In UCB for instance, the index is defined as /i; x,(;) + (log(t)/(2N,(5)))*/2,
where Ny(j) = S¢(j,1) + Si(4,2), and thus increases whenever arm j is not played (i.e. N¢(j) =
Ni11(j)). In contrast, the FHG index v(t, S(4,1),S:(j,2)) decreases with time, becoming more
greedy as the remaining time decreases. Perhaps more importantly, the FHG index adapts itself to
the estimated value of the mean reward, which makes it efficient also in situations where UCB is
clearly sub-optimal (with mean rewards close to O or 1).

3 A simplified Bayesian algorithm: Bayes-UCB

Practically FHG seems very good for a given frequentist problem, although we have only proven its
Bayesian optimality yet and have not analysed its frequentist regret. We focus here on a much sim-
pler algorithm, Bayes-UCB, inspired by the Bayesian model, but for which we exhibit a frequentist
regret bound for the Bernoulli case. The idea of exploiting a posterior distribution on the arm is not
new, for example ideas presented by Thompson, forerunner of clinical trials, in [12] suggest to draw
an arm according to samples from the posterior distribution. The Bayesian Learning Automaton
advocated by Granmo in [7] uses this idea, but in a two-armed setting and no regret analysis is pro-
posed. Here we won’t use samples but quantiles, which will lead to a Bayesian-inspired index policy.
The use of quantile is not new either, since it appears in Interval Estimation methods mentionned in
[10] for example, but only fixed quantiles are used, and again there is no regret analysis.

Recall that I is the initial prior on 6 and II; the current posterior. Bayes-UCB is the index policy
associated to the index ¢;(t) = (1 — 1/(tlog(n)®)) — quantile of distribution 7%. For the Bernoulli

case with Beta(1, 1) (uniform) prior :

1
q;(t) = (1 - “Og(n)c) — quantile of the distribution Beta(S:(j) + 1, N:(j) — S:(j) + 1)

Bounding the quantile Since the Bayes-UCB algorithm for Bernoulli uses beta-quantile, we want
to bound them as tightly as possible to have a good estimation of the Bayesian-based index g;(¢).
The following connection between Beta and Binomial distributions is useful : a Beta(a, b) (with a,b
integers) can be seen as the a-th order statistic among a + b — 1 uniform random variables, so

P(X > z) =P(lessthana — 1 r.v. are < ) = P(Sgqp-1,0 < a—1)
where S, , denotes a binomial distribution with parameters n and x. Bounding the beta quantiles
boils down to controlling the binomial tail, which can be done with a Sanov inequality:
1

eanL(B(%),B(x)) < P(S'ILT > ]{3) < eanL(B(%),B(x))
n+1 - T -



This leads to a tight bound for beta quantiles and, as a result, for ¢;(¢). Denoting d(x,y) =
KL (B(z),B(y)), we have 4, (t) < ¢;(t) < u;(t) with :

B Si(4) log(t) + clog(log(n))
ult) = fig%{d<1vt<j>’x>§ N.() }
o 5,0) log (ot ) + clog(log(n))
wo = e (o) = oo

Interestingly, the upper bound w;(¢) is exactly the index used in the KL-UCB algorithm, whereas
@;(t) corresponds to a biased version of KL-UCB, where, additionally, ¢ is replaced by ¢/(N;(t) +
2) in the logarithmic term. This latter alternative form of the exploration bonus, which appears
naturally in this Bayesian-inspired setting, has been suggested before in the literature. For example
the MOSS algorithm [2] is inspired by UCB and uses n/(K N¢(j)) instead of ¢ in the exploration
term. Similarly in [3], the KL-UCB+ version, using ¢/N;(j) instead of ¢ is found to be practically
more efficient. For Bayes-UCB, we were able to bound the regret as follows, thus showing that the
algorithm is asymptotically optimal.

Theorem 1 Let € > 0. For the Bayes-UCB algorithm with parameter ¢ > 5, the number of draws
of a sub-optimal arm j is such that :

' (1+e)
ENa(D] < o7 (B(6;), B(6))

log(n) + o, (log(n))

4 Experiments and conclusions

Numerical experiments have been carried out in a frequentist setting : for a fixed parameter 6 and
an horizon n, N bandit games with Bernoulli rewards are repeated for a given strategy. Some of
these simulations (not shown here) illustrate the behaviour of our two algorithms : for instance
empirical distribution of the number of draws of the optimal arm or of the regret confirms that FH-
Gittins is more risky than its frequentist counterparts and that KL-UCB and Bayes-UCB play in a
very similar way whatever 6 is. But the main purpose of our numerical experiments is to compare
the performance in terms of cumulated regret of our two algorithms with those of UCB and KL-
UCB. These are presented on Figure 1, where the regret is averaged over N = 5000 simulations for
two different two-armed bandit problems with horizon n = 500. In the 0.45/0.55 (right) situation,
where UCB and KL-UCB behave quite similarly, FH-Gittins already outperforms KL-UCB, but the
difference is even more significant in the 0.1/0.2 (left) situation, where UCB is (provably) worse
than KL-UCB. In these two settings, Bayes-UCB also improves over KL-UCB but its performances
are less striking than those of the FH-Gittins algorithm.
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Figure 1: Cumulated regret for the two armed-bandit problem 0.1/0.2 (left) and 0.45/0.55 (right)

Although frequentist and Bayesian bandits are based on two different probabilistic frameworks, us-
ing Bayesian ideas leads to efficient algorithms for solving the frequentist multiarmed bandit prob-
lem. Gittins algorithm displays impressive performance but is only implementable for moderate
values of the horizon. In contrast, Bayes-UCB is easy to implement and can be proven to be asymp-
totically optimal. Although we have focussed here on the case of Bernoulli rewards, these ideas can
be extended to other cases such as Gaussian or, more generally, exponential family rewards.
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