Implementations of Algorithms for Hyper-Parameter

Optimization
James Bergstra Rémi Bardenet
The Rowland Institute Laboratoire de Recherche en Informatique
Harvard University Université Paris-Sud
bergstral@rowland.harvard.edu bardenet@lri.fr
Yoshua Bengio Balazs Kégl
Dépt. d’Informatique et Recherche Opérationelle Linear Accelerator Laboratory
Université de Montréal Université Paris-Sud, CNRS
yoshua.bengio@umontreal.ca balazs.kegl@gmail.com
Abstract

Several recent advances to the state of the art in image classification benchmarks
have come from better configurations of existing techniques rather than novel ap-
proaches to feature learning. Traditionally, hyper-parameter optimization has been
the job of humans because they can be very efficient in regimes where only a few
trials are possible. Presently, computer clusters and GPU processors make it pos-
sible to run more trials and we show that algorithmic approaches can find better
results. Recently, [1] showed that two sequential model-based optimization algo-
rithms could outperform domain experts in the tuning of Deep Belief Networks
(DBNSs). This abstract serves as a companion to [1], introducing hyperopt, the
software that was used to run those experiments. hyperoptis a reusable en-
gine for hyper-parameter optimization, and a platform for research in distributed
asychronous hyper-parameter optimization algorithms.

1 Introduction

Models such as deep belief networks (DBNs [2]), stacked denoising autoencoders [3], convolu-
tional networks [4], as well as classifiers based on sophisticated feature extraction techniques such
as mcRBMs [5] can have dozens of hyper-parameters depending on how many potential hyper-
parameters the experimenter chooses to leave fixed to an a priori reasonable default. The difficulty of
tuning these models makes published results difficult to reproduce, and turns the application of these
methods into something more akin to an art than a science. At the NIPS 2011 conference, [!] intro-
duced two algorithms for hyper-parameter optimization, and showed that they were effective at op-
timizing DBN architectures. This abstract serves as a companion to [1] and introduces hyperopt,
a free open-source platform (BSD license) for asynchronous distributed hyper-parameter optimiza-
tion.! The hyperopt package provides reusable implementations of the algorithms in [1], and an
extensible platform for future work in hyper-parameter optimization algorithms.

[1] show that moderately parallelized implementations of sequential model-based optimization
(SMBO) algorithms can be effective in high-dimensional spaces (up to 32 dimensions). They intro-
duce two algorithms: GP, based on Gaussian process regression; GM, based on a graphical model
derived from the search space. GM and GP are evaluated on the tasks of neural network and DBN
hyper-parameter optimization. Some of the results from [1] are summarized in Figure 1 and Table 1.
The GM and GP algorithms both outperform manual and random search on the datasets studied.
On the tasks of convex shape classification and digit recognition in the MNIST rotated background

" hyperopt web page: http://www.github.com/jaberg/hyperopt

http://www.github.com/jaberg/hyperopt

26

24f] convex MRBI
»; 2l] GM 14131030 % 44.55 £0.44%
e] GP 16.70 £0.32% 47.08 + 0.44%
;% 18 ——— | Manual 18.63+0.34% 47.39 +£0.44%
@ Random 18.97+0.34 % 46.22 +0.44%

16} —]

4 10 20 20 20 50

Table 1: The test set classification error of
] o the best model found by each search algo-
Figure 1. GP optimizing neural network rjthm on each problem. Each search algo-
hyper-parameters on the Boston Housing rjthm was allowed up to 200 trials. The man-
regression task. Shown: best minimum a1 searches used 82 trials for convex and 27

fpund so far every 5 iterations, against a]s “MNIST rotated background images”
time. Red = GP, Blue = Random. Shaded (MRBI).

areas = one-sigma error bars.

Time

images dataset (both introduced in [6]) the DBN model optimized by the GM algorithm achieves
the best scores to our knowlege.

The GP and GM algorithms are quite general, not DBN-specific. They apply to a broad range of con-
figuration problems involving fixed or variable numbers of parameters that each might be discrete,
ordinal, or continuous. This paper describes how the hyperopt software package allows them to
be used in new optimization problems, and how to try new optimization strategies on problems such
as DBN configuation..

2 Sequential Model-based Global Optimization

The GM and GP algorithms presented in [I] fit into the framework of Sequential Model-Based
Global Optimization (SMBO). SMBO algorithms have been used in many applications where eval-
uation of the fitness function is expensive [7, 8]. In an application where the true fitness function
f & — Ris costly to evaluate, model-based algorithms approximate f with a surrogate that is
cheaper to evaluate. Typically the inner loop in an SMBO algorithm is the numerical optimization of
this surrogate, or some transformation of the surrogate. The point z* that maximizes the surrogate
(or its transformation) becomes the proposal for where the true function f should be evaluated. This
active-learning-like algorithm template is summarized in Figure 2.

SMBO(f, My, T, S)
1 H <+ 0,
2 Fort < 1to T,
3 Generate candidate z* by optimizing criterion S on model M;_1,
4 Evaluate f(x*), > Expensive step
5 H <+ HU (z*, f(z¥)),
6 Fit a new model M; to H.
7 return H

Figure 2: The pseudo-code of a generic Sequential Model-Based Optimization algorithm.

SMBO algorithms are differentiated in how they approximate f, and in the criterion that they op-
timize to get z*. [1] looked at two SMBO algorithms for optimizing hyper-parameters: one based
on Gaussian Process regression (GP) for modeling P(y = f(z)|z) and one based on a simple
non-parametric graphical model (GM) of the joint distribution P(z,y = f(x)). Both algorithms
optimized the criterion of expected improvement (EI) in some surrogate to identify the proposal z*
in the SMBO template.

2.1 Parallelizing Sequential Optimization

SMBO algorithms are fundamentally sequential rather than parallel. However, when there is enough
data to warrant a complex algorithm (requiring automatic configuration) it also typically takes a
lot of CPU time (tens or hundreds of minutes) to use all of that data in testing that algorithm.

Researchers in machine learning are accustomed to using a compute cluster to optimize hyper-
parameters because they can parallelize those calculations. It is of little practical use to use a se-
quential algorithm that cannot outperform a cluster in terms of quality of solution as a function of
wall time. We need the optimization algorithm to parellelize the evaluations on line 4 of Figure 2.

hyperopt parallelizes sequential optimization by running the evaluations of line 4 asynchronously,
and updating the database of results (7{) asynchronously as those evaluation jobs complete. While
the evaluation of the t'" proposal is in progress, it is marked temporarily as having a constant,
disappointing score (the constant liar approach, [9]). A disapponting score prevents subsequent
proposals ¢ + 7 from exploring nearby locations redundantly.

2.2 Major Implementation Components

Our implementation of asynchronous SMBO employs a client-server architecture. The server is a
standard MongoDB. MongoDB is used both to track the state of the experiment H and as a message
board for more general inter-process communication between the clients. The clients are Python
programs implemented in the hyperopt package. Two scripts are used to conduct a distributed
asynchronous optimization: mongo—worker and mongo-search.

mongo-worker - worker loop
Called from the command-line with options to connect to a particular mongo server, it polls
the server for a new candidate h in H and evaluates it.

mongo-search - server loop
Called from the command-line with options to connect to a particular mongo server, it polls
the server and inserts a new candidate into { whenever the existing ones have all been taken
by worker clients.

The mongo-worker script polls the mongo server and atomically fetches an un-started candidate
h from ‘H, which is a JSON (JavaScript Object Notation) document. It uses a field in & to identify the
python function f that is to be used to evaluate the candidate. It extracts the candidate configuration
subdocument (C). It constructs a control object via which the evaluation function can communicate
with mongo and other processes (R). Finally it executes a sub-process that calls f(C, R). When f
returns, the subprocess marks £ as being complete (or failed with an error). The mongo-worker
script is meant to be launched using existing cluster dispatching software such as Torque, PBS, or
SGE. A single experiment can draw on mongo—worker scripts running on multiple networks and
clusters, the bandwidth requirement for communication between mongo—-worker and mongo can
be very low.

The mongo-search script requires command-line arguments specifying (a) the optimization al-
gorithm and (b) the evaluation function. The script polls the mongo server and when there are zero
new candidates in H it appeals to a plug-in (indicated by the command-line arguments) to suggest a
new candidate. The plug-in makes a suggestion based on the state, the configuration, and the evalu-
ation result of each h € H. The state of each h is either “new”, “running”, “finished successfully”,
or “finished in error”. The mongo-search script inserts that candidate into 4, where it will be
picked up by an idle mongo-worker. The mongo-worker and mongo-search script are
independent clients from the operating system’s perspective: either one can be killed and restarted
without disrupting the other. mongo—-searchsaves its state to the MongoDB if it is killed with
CTRL-C, so that it can be resumed later.

2.3 Using hyperopt to optimize a new function

To optimize a new function with hyperopt, implement the evaluation function f as a Bandit
subclass. In hyperopt, a Bandit carries two pieces of information:

e acallable function (corresponding to f in Figure 2)

e a prior over the configuration argument to f (see Figure 3).

The callable function is simply a class method or static method of your bandit subclass. The prior
over configuration arguments can be specified with the stochastic expression language defined within

rdict (
"preprocessing", one_of (
rdict (
"kil’ld", "raw"),
rdict (
"kil’ld", "an",
"energy", uniform(low=0.5, high=1.0))),
"dataset_name", "MNIST",
"seed", one_of(5, 6, 7, 8),
"batchsize", one_of (1, 20, 100),
"lr", lognormal (mu=log(.01l), sigma=3),
"lr_anneal_start", ceil_lognormal (mu=log(1000), sigma=2),
"12_penalty", one_of (0, lognormal (mu=log(l.0e-6), sigma=3)),
"n_hid", ceil_lognormal (mu=log(512), sigma=3, round=16))

Figure 3: Specification of a search space using random dictionaries (rdict), random choices
(one_of), and random numbers (uniform, lognormal, ceil_lognormal). Optimization algo-
rithms in hyperopt inspect this data structure to draw random samples, infer posteriors, and define
kernel functions in the configuration space.

hyperopt (see Figure 3 for an example). This language is makes it easy to express broad, simple
priors. it is possible to write a more complicated prior distributions over the configuration space by
writing a stochastic Theano program.? Both of these methods provide a graphical description of the
configuration space to an optimization algorithm.

The structure of the configuration description can have an impact on search algorithms. For example,
Figure 3 uses a nested random variable to define the energy of the ZCA preprocessing option. We
could express exactly the same prior if preprocessing were defined as one_of ("raw", "zca")
and "energy" were promoted to a top-level configuration field. However, these two expressions
of the prior would lead to different kernels in the GP optimization algorithm. In the former case
energy would not enter into the distance between trials with “raw” preprocessing. In the latter case,
it would. It is our hope that a single description of a configuration space suffices to get the best
performance from all optimization algorithms.

2.4 Optimization Algorithms

hyperopt provides three optimization algorithms: random search, the GM algorithm from [1],
and the GP algorithm from [1]. More algorithms are planned by the authors, and contributions from
other researchers are welcome.

Optimization algorithms should inherit from the BanditAlgo (or TheanoBanditAlgo) base
classes. Those classes have a virtual method suggest (or theano_suggest that derived classes
must implement. The details of how those functions should be implemented are provided in the code
and documentation online. Essentially those functions accept the current state of 7 as an argument
and return some number of promising candidates * for mongo-search to insert in the database.

2.5 Other notable resources
hyperopt also includes:

e mongo-show - a script for rapid visualization of the state of an experiment. It can dis-
play a scatterplot of scores against time, or against the various hyper-parameters of the
configuration space. It serves additionally as a starting point for custom visualization code.

e search - a script for serial-mode evaluation that works without MongoDB.

e Simple inexpensive bandits for testing optimization algorithms.

2 Stochastic Theano programs implemented with MonteTheano: http://www.github.com/
jaberg/MonteTheano

http://www.github.com/jaberg/MonteTheano
http://www.github.com/jaberg/MonteTheano

3

Conclusion

Bayesian optimization and sequential model-based optimization represent promising approaches to
hyper-parameter optimization. This paper has introduced hyperopt, an open source package for
distributed hyper-parameter optimization. It implements the algorithms of [1], and provides exten-
sible platform for future work. For more information, please follow the development of hyperopt
online at http://www.github.com/jaberg/hyperopt.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NIPS
24.2011.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation,
18:1527-1554, 2006.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P. A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. Machine Learning
Research, 11:3371-3408, 2010.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haftner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, November 1998.

M. Ranzato and G. E. Hinton. Modeling pixel means and covariance using factorized third-order Boltz-
mann machines. In CVPR 2010. IEEE Press, 2010.

H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep archi-
tectures on problems with many factors of variation. In ICML 2007, pages 473-480, 2007.

F. Hutter. Automated Configuration of Algorithms for Solving Hard Computational Problems. PhD thesis,
University of British Columbia, 2009.

F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm
configuration. In LION-5, 2011. Extended version as UBC Tech report TR-2010-10.

D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize optimization. In Y. Tenne,
C. Goh, L. Hiot, and Y. Ong, editors, Computational Intelligence in Expensive Optimization Problems,
volume 2 of Adaptation, Learning, and Optimization, pages 131-162. Springer Berlin Heidelberg.

http://www.github.com/jaberg/hyperopt

	Introduction
	Sequential Model-based Global Optimization
	Parallelizing Sequential Optimization
	Major Implementation Components
	Using hyperopt to optimize a new function
	Optimization Algorithms
	Other notable resources

	Conclusion

