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Abstract

The multi-armed bandit problem is a popular model for studying exploration/exploitation
trade-off in sequential decision problems. Many algorithms are now available for this well-studied
problem. One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This
algorithm, referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is
to choose an arm to play according to its probability of being the best arm. Thompson Sampling
algorithm has experimentally been shown to be close to optimal. In addition, it is efficient to
implement and exhibits several desirable properties such as small regret for delayed feedback.
However, theoretical understanding of this algorithm was quite limited. In this paper, for the
first time, we show that Thompson Sampling algorithm achieves logarithmic expected regret for
the stochastic multi-armed bandit problem. More precisely, for the two-armed stochastic bandit
problem, the expected regret in time T is O( lnT

∆ + 1
∆3 ). And, for the N -armed stochastic bandit

problem, the expected regret in time T is O(
[
(
∑N

i=2
1

∆2
i
)2
]

lnT ). Our bounds are optimal but

for the dependence on ∆i and the constant factors in big-Oh.

0



1 Introduction

Multi-armed bandit (MAB) problem models the exploration/exploitation trade-off inherent in se-
quential decision problems. One of the early motivations for studying MAB problem was clinical
trials: suppose that we have N different treatments of unknown efficacy for a certain disease.
Patients arrive sequentially, and we must decide on a treatment to administer for each arriving
patient. To make this decision, we could learn from how various treatments fared for the previous
patients. After a sufficient number of trials, we may have a reasonable idea of which treatment is
most effective, and from then on, we could administer that treatment for all the patients. How-
ever, initially, when there is no or very little information available, we need to explore and try
each treatment sufficient number of times. We wish to do this exploration in such a way that we
can find the best treatment and start exploiting it as soon as possible. The MAB problem is to
decide how to choose the treatment for the next patient, given the outcomes of the treatments so
far. Today, multi-armed bandit problem has a diverse set of applications some of which will be
mentioned shortly.

Many versions and generalizations of the multi-armed bandit problem have been studied in
the literature; in this paper we will consider a basic and well-studied version of this problem,
referred to as stochastic multi-armed bandit problem. Among many algorithms available for the
stochastic bandit problem, some popular ones include Upper Confidence Bound (UCB) family of
algorithms (e.g., [7, 1]), which have good theoretical guarantees; and the algorithm by Gittins [3],
which gives optimal strategy under known priors and geometric time-discounted rewards. In one
of the earliest works on stochastic bandit problems, Thompson [11] proposed a natural randomized
Bayesian algorithm to minimize regret. The basic idea is to play an arm with its probability of
being the best arm. This algorithm is known as Thompson Sampling (TS), and it is a member of
the family of randomized probability matching algorithms.

Recently, TS has attracted considerable attention. Several studies [5, 10, 2, 9] have empiri-
cally demonstrated the efficacy of Thompson Sampling: Scott [10] provides a detailed discussion of
probability matching techniques in many general settings along with favorable empirical compar-
isons with other techniques. Chapelle and Li [2] demonstrate that empirically TS achieves regret
comparable to the lower bound of [7]; and in applications like display advertising and news article
recommendation, it is competitive to or better than popular methods such as UCB. In their exper-
iments, TS is also more robust to delayed or batched feedback (in the above clinical trial example,
delayed feedback would mean that the result of a treatment may become available after some time
delay, but we are required to make immediate decisions for patients arriving in the mean time)
than the other methods. A possible explanation may be that TS is a randomized algorithm and so
it is unlikely to get trapped in an early bad decision during the delay. Microsoft’s adPredictor [4]
for CTR prediction of search ads on Bing also uses the idea of Thompson Sampling.

It has been suggested [2] that despite being easy to implement and being competitive to the
state of the art methods, the reason TS is not very popular in literature could be its lack of strong
theoretical analysis. Existing theoretical analyses [5, 8] provide weak guarantees, namely, a bound
of o(T ) on expected regret in time T . Also, these existing works provide only asymptotic bounds,
and do not bound the finite-time expected regret. In this paper, for the first time, we provide a
logarithmic bound on expected regret of TS algorithm in time T that is close to the lower bound
of [7]. Further, we show that TS achieves logarithmic regret uniformly over time, rather than only
asymptotically. Before stating our results, we describe the MAB problem and the TS algorithm
formally.
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1.1 The multi-armed bandit problem

We consider the stochastic multi-armed bandit (MAB) problem: We are given a slot machine with
N arms; at each time step t = 1, 2, 3, . . ., one of the N arms must be chosen to be played. Each arm
i, when played, yields a random real-valued reward according to some fixed (unknown) distribution
with support in [0, 1]. The random reward obtained from playing an arm repeatedly are i.i.d. and
independent of the plays of the other arms. The reward is observed immediately after playing the
arm.

An algorithm for the MAB problem must decide which arm to play at each time step t, based
on the outcomes of the previous t− 1 plays. Let µi denote the (unknown) expected reward for arm
i. A popular goal is to maximize the expected total reward in time T , i.e., E[

∑T
t=1 µi(t)], where

i(t) is the arm played in step t, and the expectation is over the random choices of i(t) made by the
algorithm. It is more convenient to work with the equivalent measure of expected total regret : the
amount we lose because of not playing optimal arm in each step. To formally define regret, let us
introduce some notation. Let µ∗ := maxi µi, and ∆i := µ∗ − µi. Also, let ki(t) denote the number
of times arm i has been played up to step t− 1. Then the expected total regret in time T is given
by

E[R(T )] = E[
T∑
t=1

(µ∗ − µi(t))] =
∑
i

∆i · E[ki(T )].

Other performance measures include PAC-style guarantees; we do not consider those measures here.

1.2 Thompson Sampling

In the most general setting, Thompson Sampling can be described as a natural Bayesian algorithm
that plays an arm according to its probability of being the best arm. For simplicity of discussion,
we first provide the details of this algorithm for the Bernoulli bandit problem, i.e. when the rewards
are either 0 or 1, and for arm i the probability of success (reward =1) is µi. This description of
Thompson Sampling follows closely that of Chapelle and Li [2]. Next, we propose a simple new
extension of this algorithm to general reward distributions with support [0, 1], which will allow us
to seamlessly extend our analysis for Bernoulli bandits to general stochastic bandit problem.

The algorithm for Bernoulli bandits maintains Bayesian priors on the Bernoulli means µi’s.
Beta distribution turns out to be a very convenient choice of priors for Bernoulli rewards. Let us
briefly recall that beta distributions form a family of continuous probability distributions on the
interval (0, 1). The pdf of Beta(α, β), the beta distribution with parameters α > 0, β > 0, is given

by f(x;α, β) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1. The mean of Beta(α, β) is α/(α + β); and as is apparent

from the pdf, higher the α, β, tighter is the concentration of Beta(α, β) around the mean. Beta
distribution is useful for Bernoulli rewards because if the prior is a beta distribution, then so is the
posterior.

Initially, the algorithm assumes arm i to have prior Beta(1, 1) on µi, which is natural because
Beta(1, 1) is the uniform distribution on (0, 1). At time t, having observed Si(t) successes (reward
= 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of arm i, the algorithm assumes
a Beta(Si(t) + 1, Fi(t) + 1) prior on µi. Note that the beta distribution with parameters Si(t) +
1, Fi(t) + 1 is the posterior distribution of µi after observing Si(t) successes (with probability µi of
success) and Fi(t) failures (with probability 1 − µi of failure). The algorithm then samples from
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this posterior distribution of the µi’s, and plays an arm according to the probability of its mean
being the largest.

We summarize the Thompson Sampling algorithm below.

Algorithm 1 Thompson Sampling for Bernoulli bandits

1: Si = 0, Fi = 0.
2: for t = 1, 2, . . . , do
3: For each arm i = 1, . . . , N , generate θi(t) from the beta distribution with parameters (Si +

1, Fi + 1).
4: Play arm i(t) := arg maxi θi(t) and observe reward r.
5: if r = 1, then Si = Si + 1, else Fi = Fi + 1.
6: end for

For general stochastic bandits, the rewards for arm i are generated from a distribution with
support [0, 1] and mean µi. Let r̃t ∈ [0, 1] denote the reward observed at time t. We modify the
Thompson Sampling algorithm to perform a Bernoulli trial with probability with success probability
r̃t after observing the reward at time t. The variables {Si(t), Fi(t)} now denote the number of
successes and failures in these Bernoulli trials. The remaining algorithm is essentially the same as
for Bernoulli bandits. Below is a precise description of the generalized algorithm.

Algorithm 2 Thompson Sampling for general stochastic bandits

1: Si = 0, Fi = 0.
2: for t = 1, 2, . . . , do
3: For each arm i = 1, . . . , N , generate θi(t) from the beta distribution with parameters (Si +

1, Fi + 1).
4: Play arm i(t) := arg maxi θi(t) and observe reward r̃.
5: Perform a Bernoulli trial with success probability r̃ and observe output r.
6: if r = 1, then Si = Si + 1, else Fi = Fi + 1.
7: end for

We observe that the probability of observing r = 1 on playing an arm i in the new generalized
algorithm is equal to the mean reward µi. Let fi denote the pdf of reward distribution for arm i.
Then, on playing arm i,

Pr(r = 1) =

∫ 1

0
r̃fi(r̃)dr̃ = µi.

Thus, the probability of observing r = 1 is same, and Si(t), Fi(t) evolve exactly in the same way as
in the case of Bernoulli bandits with mean µi. This allows us to replace, for analysis purpose, the
general stochastic bandits with Bernoulli bandits with the same means. We use this observation to
confine the proofs in this paper to the case of Bernoulli bandits only.

1.3 Our results

In this article, we bound the finite time expected regret of Thompson Sampling. From now on we
will assume that the first arm is the unique optimal arm, i.e., µ∗ = µ1 > arg maxi 6=1 µi. Assuming
that the first arm is an optimal arm is a matter of convenience for stating the results and for the
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analysis. The assumption of unique optimal arm is also without loss of generality, since adding
more arms with µi = µ∗ can only decrease the expected regret; details of this argument are provided
in Appendix A.

Theorem 1. For the two-armed stochastic bandit problem (N = 2), Thompson Sampling algorithm
has expected regret

E[R(T )] ≤ 32

∆
lnT +

48

∆3
+ 18∆

in time T , where ∆ = µ1 − µ2.

Theorem 2. For the N -armed stochastic bandit problem, Thompson Sampling algorithm has ex-
pected regret

E[R(T )] ≤

[
768(

N∑
i=2

1

∆2
i

)2 + 192(
N∑
i=2

1

∆2
i

) + 64(
N∑
i=2

1

∆i
)

]
lnT + 192

(
N∑
i=2

1

∆2
i

)
+ 52(N − 1)

in time T , where ∆i = µ1 − µi.

We remark that we have not attempted to optimize constants in the above theorems in the
interest of readability. Let us contrast our bounds with the previous work. Lai and Robbins [7]
proved the following lower bound on regret of any bandit algorithm:

E[R(T )] ≥

[
N∑
i=2

∆i

D(µi||µ)
+ o(1)

]
lnT,

where D denotes the KL divergence. They also gave algorithms asymptotically achieving this
guarantee, though unfortunately their algorithms are not efficient. Auer et al. [1] gave the UCB1
algorithm, which is efficient and achieves the following bound:

E[R(T )] ≤

[
8

N∑
i=2

1

∆i

]
lnT + (1 + π2/3)

(
N∑
i=2

∆i

)
.

For many settings of the parameters, the bound of Auer et al. is not far from the lower bound of
Lai and Robbins. Our bounds are optimal in terms of dependence on T , but inferior in terms of
the constant factors and dependence on ∆. We note that for the two-armed case our bound closely
matches the bound of Auer et al. For the N -armed setting, the exponent of ∆’s in our bound is
basically 4 compared to the exponent 1 for UCB1.

2 Proof Techniques

In this section, we give an informal description of the techniques involved in our analysis. We hope
that this will aid in reading the proofs, though this section is not essential for the sequel. We
assume that all arms are Bernoulli arms, and that the first arm is the unique optimal arm. As
explained in the previous sections, these assumptions are without loss of generality.
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Main technical difficulties. Thompson Sampling is a randomized algorithm which achieves
exploration by choosing to play the arm with best sampled mean, among those generated from
beta distributions around the respective empirical means. The beta distribution becomes more and
more concentrated around the empirical mean as the number of plays of an arm increases. This
randomized setting is unlike the algorithms in UCB family, which achieve exploration by adding
a deterministic, non-negative bias inversely proportional to the number of plays, to the observed
empirical means. Analysis of TS poses difficulties that seem to require new ideas.

For example, following general line of reasoning is used to analyze regret of UCB like algorithms
in two-arms setting [1]: once the second arm has been played sufficient number of times, its empirical
mean is tightly concentrated around its actual mean. If the first arm has been played sufficiently
large number of times by then, it will have an empirical mean close to its actual mean and larger
than that of the second arm. Otherwise, if it has been played small number of times, its non-negative
bias term will be large. Consequently, once the second arm has been played sufficient number of
times, it will be played with very small probability (inverse polynomial of time) regardless of the
number of times the first arm has been played so far.

However, for Thompson Sampling, if the number of previous plays of the first arm is small, then
the probability of playing the second arm could be as large as a constant even if it has already been
played large number of times. For instance, if the first arm has not been played at all, then θ1(t) is
a uniform random variable, and thus θ1(t) < θ2(t) with probability θ2(t) ≈ µ2. As a result, in our
analysis we need to carefully consider the distribution of the number of previous plays of the first
arm, in order to bound the probability of playing the second arm.

The observation just mentioned also points to a challenge in extending the analysis of TS
for two-armed bandit to the general N -armed bandit setting. One might consider analyzing the
regret in the N -armed case by considering only two arms at a time—the first arm and one of the
suboptimal arms. We could use the observation that the probability of playing a suboptimal arm is
bounded by the probability of it exceeding the first arm. However, this probability also depends on
the number of previous plays of the two arms, which in turn depend on the plays of the other arms.
Again, Auer et al.[1], in their analysis of UCB algorithm, overcome this difficulty by bounding this
probability for all possible numbers of previous plays of the first arm, and large enough plays of the
suboptimal arm. For Thompson Sampling, due to the observation made earlier, the (distribution
of the) number of previous plays of the first arm needs to be carefully accounted for, which in turn
requires considering all the arms at the same time, thereby leading to a more involved analysis.

Proof outline for two arms setting. Let us first consider the special case of two arms which
is simpler than the general N arms case. Firstly, we note that it is sufficient to bound the regret
incurred during the time steps after the second arm has been played L = 16(lnT )/∆2 times. The
expected regret before this event is bounded by 16(lnT )/∆ because only the plays of the second
arm produce an expected regret of ∆; regret is 0 when the first arm is played. Next, we observe
that after the second arm has been played L times, the following happens with high probability:
the empirical average reward of the second arm from each play is very close to its actual expected
reward µ2, and its beta distribution is tightly concentrated around µ2. This means that, thereafter,
the first arm would be played at time t if θ1(t) turns out to be greater than (roughly) µ2. This
observation allows us to model the number of steps between two consecutive plays of the first arm
as a geometric random variable with parameter close to Pr[θ1(t) > µ2]. To be more precise, given
that there have been j plays of the first arm with s(j) successes and f(j) = j − s(j) failures, we
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want to estimate the expected number of steps before the first arm is played again (not including
the steps in which the first arm is played). This is modeled by a geometric random variable
X(j, s(j), µ2) with parameter Pr[θ1 > µ2], where θ1 has distribution Beta(s(j) + 1, j − s(j) + 1),
and thus E[X(j, s(j), µ2)|s(j)] = 1/Pr[θ1 > µ2]−1. To bound the overall expected number of steps
between the jth and (j+ 1)th play of the first arm, we need to take into account the distribution of
the number of successes s(j). For large j, we use Chernoff–Hoeffding bounds to say that s(j)/j ≈ µ1

with high probability, and moreover θ1 is concentrated around its mean, and thus we get a good
estimate of E[E[X(j, s(j), µ2)|s(j)]]. However, for small j we do not have such concentration, and
it requires a delicate computation to get a bound on E[E[X(j, s(j), µ2)|s(j)]]. The resulting bound
on the expected number of steps between consecutive plays of the first arm bounds the expected
number of plays of the second arm, to yield a good bound on the regret for the two-arms setting.

Proof outline for N arms setting. At any step t, we divide the set of suboptimal arms into
two subsets: saturated and unsaturated. The set C(t) of saturated arms at time t consists of arms
a that have already been played a sufficient number (La = 16(lnT )/∆2

a) of times, so that with high
probability, θa(t) is tightly concentrated around µa. As earlier, we try to estimate the number of
steps between two consecutive plays of the first arm. After jth play, the (j + 1)th play of first arm
will occur at the earliest time t such that θ1(t) > θi(t), ∀i 6= 1. The number of steps before θ1(t) is
greater than θa(t) of all saturated arms a ∈ C(t) can be analyzed using a geometric random variable
with parameter close to Pr(θ1 ≥ maxa∈C(t) µa), as before. However, even if θ1(t) is greater than the
θa(t) of all saturated arms a ∈ C(t), it may not get played due to play of an unsaturated arm u with
a greater θu(t). Call this event an “interruption” by unsaturated arms. We show that if there have
been j plays of first arm with s(j) successes, the expected number of steps until the (j + 1)th play
can be upper bounded by the product of the expected value of a geometric random variable similar
to X(j, s(j),maxa µa) defined earlier, and the number of interruptions by the unsaturated arms.
Now, the total number of interruptions by unsaturated arms is bounded by

∑N
u=2 Lu (since an arm

u becomes saturated after Lu plays). The actual number of interruptions is hard to analyze due
to the high variability in the parameters of the unsaturated arms. We derive our bound assuming
the worst case allocation of these

∑
u Lu interruptions. This step in the analysis is the main source

of the high exponent of ∆ in our regret bound for the N -armed case compared to the two-armed
case.

3 Regret bound for the two-armed bandit problem

In this section, we present a proof of Theorem 1, our result for the two-armed bandit problem.
Recall our assumption that all arm have Bernoulli distribution on rewards, and that the first arm
is the unique optimal arm.

Let random variable j0 denote the number of plays of the first arm until L = 16(lnT )/∆2 plays
of the second arm. Also, let random variable Yj measure the number of time steps between the jth

and (j + 1)th plays of the first arm (not counting the steps in which the jth and (j + 1)th) plays
happened), and let s(j) denote the number of successes in the first j plays of the first arm. Then
the expected number of plays of the second arm in time T is bounded by

E[k2(T )] ≤ L+ E[
∑T−1

j=j0
Yj ].
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To understand the expectation of Yj , it will be useful to define another random variableX(j, s, y)
as follows. We perform the following experiment until it succeeds: check if a Beta(s+ 1, j − s+ 1)
distributed random variable exceeds a threshold y. For each experiment, we generate the beta-
distributed r.v. independently of the previous ones. Now define X(j, s, y) to be the number of
trials before the experiment succeeds. Thus, X(j, s, y) takes non-negative integer values, and is
a geometric random variable with parameter (success probability) 1 − F betas+1,j−s+1(y). Here F betaα,β

denotes the cdf of the beta distribution with parameters α, β.
We will relate Y and X shortly. The following lemma provides a handle on the expectation of

X.

Lemma 1. For all non-negative integers j, s ≤ j, and for all y ∈ [0, 1],

E[X(j, s, y)] =
1

FBj+1,y(s)
− 1,

where FBn,p denotes the cdf of the binomial distribution with parameters (n, p).

Proof. By the well-known formula for the expectation of a geometric random variable and the
definition of X we have, E[X(j, s, y)] = 1

1−F beta
s+1,j−s+1(y)

− 1 (The additive −1 is there because we

do not count the final step where the Beta r.v. is greater than y.) The lemma then follows from
Fact 1 in Appendix B.

In order to bound expected value of Y using expected value of X, we will condition on an event
E2(T ), which we define to hold iff θ2(t) ≤ µ2 + ∆

2 for all time t ∈ [1, T ] such that the second arm
has already been played at least L times before time t. The following lemma can be proven using
Fact 1 and the Chernoff–Hoeffding bounds.

Lemma 2. Pr(E2(T )) ≥ 1− 2
T .

Proof. Refer to Appendix C.1.

Recall that Yj was defined as the number of steps before θ1(t) > θ2(t) for the first time after
the jth play of the first arm. Now, under event E2(T ), θ2(t) ≤ µ2 + ∆/2, for all time t after L plays
of the second arm. Therefore, given that event E2(T ) holds, and that the number of successes in j
trials of first arm is s(j), Yj for j ≥ j0 is stochastically dominated by geometric random variable
X(j, s(j), µ2 + ∆

2 ). Also, it is bounded by T . If the event E2(T ) does not hold, we can bound
∑

j Yj
by the trivial upper bound of T . Using these observations,

E[

T−1∑
j=j0

Yj ] ≤ E[

T−1∑
j=j0

E[ Yj |j0, s(j), E2(T ) ] ] + Pr(E2(T )) · T

≤ E[
T−1∑
j=j0

min{E[X(j, s(j), µ2 +
∆

2
) | s(j)], T}] +

2

T
· T

≤ E[

T−1∑
j=0

min{E[X(j, s(j), µ2 +
∆

2
) | s(j)], T}] + 2.
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Lemma 3. Consider any positive y < µ1, and let ∆′ = µ1 − y. Also, let R = µ1(1−y)
y(1−µ1) > 1, and let

D denote the KL-divergence between µ1 and y, i.e. D = y ln y
µ1

+ (1− y) ln 1−y
1−µ1

. Then,

E [min{ E[X(j, s(j), y) | s(j)], T}] ≤


1 +

2

1− y
+
µ1

∆′
e−Dj j < y

D lnR,

1 +
Ry

1− y
e−Dj +

µ1

∆′
e−Dj y

D lnR ≤ j < 4 lnT
∆′2 ,

16

T
j ≥ 4 lnT

∆′2 ,

where the outer expectation is taken over s(j) distributed as Binomial(j, µ1).

Proof. Using Lemma 1, the expected value of X(j, s(j), y) for any given s(j),

E[X(j, s(j), y) | s(j)] =
1

FBj+1,y(s(j))
− 1.

Case of large j: First, we consider the case of large j, i.e. when j ≥ 4(lnT )/∆′2. Then, by
simple application of Chernoff–Hoeffding bounds (refer to Fact 3 and Lemma 5), we can derive that
for any s ≥ (y + ∆′

2 )j,

FBj+1,y(s) ≥ FBj+1,y(yj +
∆′j

2
) ≥ 1− e4∆′/2

e2j∆′2/4
≥ 1− e2∆′

T 2
≥ 1− 8

T 2
,

giving that for s ≥ y(j + ∆′

2 ), E[X(j + 1, s, y)] ≤ 1
(1− 8

T2 )
− 1.

Again using Chernoff–Hoeffding bounds, the probability that s(j) takes values smaller than
(y + ∆′

2 )j can be bounded as,

FBj,µ1
(yj +

∆′j

2
) = FBj,µ1

(µ1j −
∆′j

2
) ≤ e−2j∆′2

4 ≤ 1

T 2
<

8

T 2
.

For these values of s(j), we will use the upper bound of T . Thus,

E[min{E[X(j, s(j), y)|s(j)], T}] ≤ (1− 8/T 2) ·
(

1

(1− 8/T 2)
− 1

)
+

8

T 2
· T ≤ 16

T
.

Case of small j: For small j, the argument is more delicate. We use,

E[E[X(j, s(j), y)|s(j)]] = E[
1

FBj+1,y(s(j))
− 1] =

j∑
s=0

fBj,µ1
(s)

FBj+1,y(s)
− 1, (1)

where fBj,µ1
denotes pdf of the Binomial(j, µ1) distribution. We use the observation that for s ≥

dy(j + 1)e, FBj+1,y(s) ≥ 1/2. This is because the median of a Binomial(n, p) distribution is either
bnpc or dnpe [6]. Therefore,

j∑
s=dy(j+1)e

fBj,µ1
(s)

FBj+1,y(s)
≤ 2. (2)
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For small s, i.e., s ≤ byjc, we use FBj+1,y(s) = (1 − y)FBj,y(s) + yFj,y(s − 1) ≥ (1 − y)FBj,y(s) and

FBj,y(s) ≥ fBj,y(s), to get

byjc∑
s=0

fBj,µ1
(s)

FBj+1,y(s)
≤

byjc∑
s=0

1

(1− y)

fBj,µ1
(s)

fBj,y(s)

=

byjc∑
s=0

1

(1− y)

µs1(1− µ1)j−s

ys(1− y)j−s

=

byjc∑
s=0

1

(1− y)
Rs

(1− µ1)j

(1− y)j

=
1

(1− y)

(
Rbyjc+1 − 1

R− 1

)
(1− µ1)j

(1− y)j

≤ 1

(1− y)

R

R− 1

µyj1 (1− µ1)(j−yj)

yyj(1− y)j−yj

=
µ1

µ1 − y
e−Dj =

µ1

∆′
e−Dj . (3)

If byjc < dyje < dy(j + 1)e, then we need to additionally consider s = dyje. Note, however,
that in this case dyje ≤ yj + y. For s = dyje,

fBj,µ1
(s)

FBj+1,y(s)
≤ 1

(1− y)FBj,y(s)

≤ 2

1− y
. (4)

Alternatively, we can use the following bound for s = dyje,

fBj,µ1
(s)

FBj+1,y(s)
≤ 1

(1− y)

fBj,µ1
(s)

FBj,y(s)

≤ 1

(1− y)

fBj,µ1
(s)

fBj,y(s)

≤ 1

(1− y)
Rs
(

1− µ1

1− y

)j
≤ 1

(1− y)
Ryj+y

(
1− µ1

1− y

)j
(because s = dyje ≤ yj + y)

≤ Ry

(1− y)
e−Dj . (5)

Next, we substitute the bounds from (2)-(5) in Equation (1) to get the result in the lemma. In
this substitution, for s = dyje, we use the bound in Equation (4) when j < y

D lnR, and the bound
in Equation (5) when j ≥ y

D lnR.

9



Using Lemma 3 for y = µ2 + ∆/2, and ∆′ = ∆/2, we can bound the expected number of plays
of the second arm as:

E[k2(T )] = L+ E[
T−1∑
j=j0

Yj ]

≤ L+
T−1∑
j=0

E[min{E[X(j, s(j), µ2 +
∆

2
) | s(j)], T} ] + 2

≤ L+
4 lnT

∆′2
+

4(lnT )/∆′2−1∑
j=0

µ1

∆′
e−Dj +

( y
D

lnR
) 2

1− y
+

4(lnT )/∆′2−1∑
j= y

D
lnR

Rye−Dj

1− y
+

16

T
· T + 2

= L+
4 lnT

∆′2
+

4(lnT )/∆′2−1∑
j=0

µ1

∆′
e−Dj +

y

D
lnR · 2

(1− y)
+

4 ln ∆′2− y
D

lnR−1∑
j=0

1

1− y
e−Dj + 18

≤ L+
4 lnT

∆′2
+
y

D
lnR · 2

∆′
+
T−1∑
j=0

(µ1 + 1)

∆′
e−Dj + 18

(∗)
≤ L+

4 lnT

∆′2
+
D + 1

∆′D
· 2

∆′
+

2

∆′
2

(min{D, 1})
+ 18

(∗∗)
≤ L+

4 lnT

∆′2
+

2

∆′2
+

1

∆′4
+

4

∆′3
+ 18

= L+
16 lnT

∆2
+

8

∆2
+

16

∆4
+

32

∆3
+ 18

≤ 32 lnT

∆2
+

48

∆4
+ 18.

The step marked (∗) is obtained using following derivations.

y lnR = y ln
µ1(1− y)

y(1− µ1)
= y ln

µ1

y
+y ln

(1− y)

(1− µ1)
≤ µ1+

y

1− y
(D−y ln

y

µ1
) ≤ 1+

y

1− y
(D+µ1) ≤ D + 1

∆′
.

And, since D ≥ 0 (Gibbs’ inequality),∑
j≥0

e−Dj =
1

1− e−D
≤ max{ 2

D
,

e

e− 1
} ≤ 2

min{D, 1}
.

And, (∗∗) uses Pinsker’s inequality to obtain D ≥ 2∆′2.

This gives a regret bound of

E[R(T )] = E[∆ · k2(T )] ≤
(

32 lnT

∆
+

48

∆3
+ 18∆

)
.

4 Regret bound for the N-armed bandit problem

In this section, we prove Theorem 2, our result for the N -armed bandit problem. Again, we assume
that all arms have Bernoulli distribution on rewards, and that the first arm is the unique optimal
arm.
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Figure 1: Interval Ij

At every time step t, we divide the set of suboptimal arms into saturated and unsaturated
arms. We say that an arm i 6= 1 is in the saturated set C(t) at time t, if it has been played at
least Li := 16 lnT

∆2
i

times before time t. First, we will bound the regret due to playing saturated

suboptimal arms. For this we bound the number of time steps between two consecutive plays of
the first arm in which θi(t) of some saturated arm i exceeds θ1(t).

In the following, when we talk about an interval of time, we mean a set of contiguous time
steps. Let r.v. Ij denote the interval between (and excluding) the jth and (j + 1)th play of first
arm. We say that event M(t) holds at time t, if θ1(t) exceeds θi(t) of all the saturated arms, i.e.,

M(t) : θ1(t) > max
i∈C(t)

θi(t). (6)

Let r.v. γj denote the number of occurrences of event M(t) in interval Ij .

γj = |{t ∈ Ij : M(t) = 1}|. (7)

Let r.v. Ij(`) denote the sub-interval of Ij between the (`− 1)th and `th occurrence of event M(t)
in Ij (excluding the time steps at which the event M(t) occurs). Ij(1) denotes the sub-interval
before the first occurrence of event M(t) in Ij ; and Ij(γj + 1) denotes the sub-interval after the last
occurrence of event M(t) in Ij .

Figure 1 shows an example of interval Ij along with sub-intervals Ij(`); in this figure γj = 4.
Observe that since a saturated arm i can be played at step t only if θi(t) is greater than θ1(t),

saturated arms can only be played in the time steps belonging to intervals Ij(`), ` = 1, . . . , γj + 1.
(Notice, however, that it is possible that at a step t ∈ Ij(`) no saturated arm is played because
an unsaturated arm has the greatest θ(t).) Therefore, the number of plays of saturated arms in
interval Ij is at most

γj+1∑
`=1

|Ij(`)|.

Now, let V `,a
j denote the number of steps in Ij(`), for which a is the best saturated arm, i.e.

V `,a
j = |{t ∈ Ij(`) : µa = max

i∈C(t)
µi}|. (8)
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(resolve the ties for best saturated arm using an arbitrary, but fixed, ordering on arms). Note that

|Ij(`)| =
∑N

a=2 V
`,a
j . In Figure 1, we illustrate this notation by showing steps {V 4,a

j } for interval
Ij(4). In the example shown, we assume that µ1 > µ2 > · · · > µ6, and that the suboptimal arms
got added to the saturated set C(t) in order 5, 3, 4, 2, 6, so that initially 5 is the best saturated arm,
then 3 is the best saturated arm, and finally 2 is the best saturated arm.

Next, we will show that, with high probability, the regret due to playing a saturated arm during
one of the V `,a

j steps is at most 3∆a. The idea is that since saturated arms have their θi(t)s tightly
concentrated around their means µi, so with high probability, either the arm with the highest mean,
i.e., the best saturated arm a, or an arm with mean very close to µa will be chosen to be played
during these V `,a

j steps.
More precisely, define E(T ) to be the event that for all t ∈ [1, T ], and for all i ∈ C(t), µi−∆i/2 ≤

θi(t) ≤ µi + ∆i/2.

Lemma 4. Pr(E(T )) ≥ 1− 4(N−1)
T .

Proof. Refer to Appendix C.2.

Given that E(T ) holds, if a saturated arm i is played at a time t among one of the V `,a
j steps,

then,
µi + ∆i/2 ≥ θi(t) ≥ θa(t) ≥ µa −∆a/2,

which implies that
∆i = µ1 − µi ≤ µ1 − µa + ∆a

2 + ∆i
2 ⇒ ∆i ≤ 3∆a. (9)

Therefore, given event E(T ), the expected regret due to play of a saturated arm in one of the V `,a
j

steps is at most 3∆a, and thus, the expected regret due to playing saturated arms in interval Ij is

E[Rs(Ij)|E(T )] ≤ E[

γj+1∑
`=1

N∑
a=2

(3∆a)V
`,a
j ]. (10)

Recall that V `,a
j denotes the number of steps before either event M(t) happens or some arm

other than a becomes the best saturated arm. Now, given event E(T ), while a is the best saturated
arm, the event M ′(t), defined below, implies event M(t),

M ′(t) : θ1(t) > µa + ∆a/2. (11)

More precisely, if a is the best saturated arm, then µa + ∆a/2 = maxi∈C(t) µi + ∆i/2, and if E(T )
holds, then maxi∈C(t) µi+∆i/2 ≥ maxi∈C(t) θi(t), thereforeM ′(t)⇒ θ1(t) > maxi∈C(t) θi(t) ≡M(t).

This means that given event E(T ), and given s(j) = s, V `,a
j is stochastically dominated by

geometric random variable X(j, s, µa + ∆a/2) (which was defined as the number of trials until an
independent sample from Beta(s+ 1, j − s+ 1) distribution exceeds µa + ∆a/2):

E[V `,a
j |s(j), E(T )] ≤ E[X(j, s(j), µa +

∆a

2
)|s(j)]. (12)
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This gives

E[Rs(Ij)|E(T )] ≤ E[

γj+1∑
`=1

N∑
a=2

(3∆a)V
`,a
j |E(T )]

= E[

γj+1∑
`=1

N∑
a=2

(3∆a)E[V `,a
j |s(j), E(T )]]

≤ E[(γj + 1)

N∑
a=2

(3∆a) min{E[X(j, s(j), µa +
∆a

2
)|s(j)], T} (using (12))(13)

Now, the total expected regret due to saturated arms, given E(T ), is

E[Rs(T )|E(T )] =
T−1∑
j=0

E[Rs(Ij)|E(T )]

≤
T−1∑
j=0

E[γj
∑
a

(3∆a)E[X(j, s(j), µa +
∆a

2
)|s(j)]]

+

T−1∑
j=0

E[
∑
a

(3∆a) min{E[X(j, s(j), µa +
∆a

2
)|s(j)], T}]

=
T−1∑
j=0

E

[
γj
∑
a

(3∆a)

(
1

Fj+1,ya(s(j))
− 1

)]

+
∑
j

E[
∑
a

(3∆a) min{E[X(j, s(j), µa +
∆a

2
)|s(j)], T}], (14)

where ya = µa + ∆a/2. The last equality follows from Lemma 1, which gives the expression for the
expected value of random variable X(j, s, y). In this section, we abbreviate the symbol FBn,p for the
cdf of Binomial(n, p) distribution to Fn,p.

Recall that γj denotes the number of occurrences of event M(t) in interval Ij , i.e. the number
of times in interval Ij , θ1(t) was greater than θi(t) of all saturated arms i ∈ C(t), and still the
first arm was not played. The only reason the first arm would not be played at a time t despite
of θ1(t) > maxi∈C(t) θi(t), is that some unsaturated arm u with highest θu(t) was played instead.
And, since an unsaturated arm u can be played for at most Lu times before it becomes saturated,
the random variables γj always satisfy

T−1∑
j=0

γj ≤
N∑
u=2

Lu =

N∑
u=2

16 lnT

∆2
u

. (15)
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Therefore, for the first term on the right hand side of (14) we have

T−1∑
j=0

E[γj
∑
a

3∆a

Fj+1,ya(s(j))
]

=
∑
a

T−1∑
j=0

E[γj
3∆a

Fj+1,ya(s(j))
]

≤
∑
a

(
∑
u

Lu)E[max
j

3∆a

Fj+1,ya(s(j))
]

≤ (
∑
u

Lu)
∑
a

E[
3∆a

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≤ byaj∗ac) +

3∆a

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≥ dyaj∗ae)]

≤ (
∑
u

Lu)
∑
a

E[
3∆a

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≤ byaj∗ac)] + (

∑
u

Lu) · 6∆a

1− ya
, (16)

where we define random variable j∗a as

j∗a = arg max
j∈{0,...,T−1}

1

Fj+1,ya(s(j))
.

(Note that j∗a is completely specified by the random sequence s(1), s(2), ....) The last inequality
follows from the fact that Fj+1,y(s) ≥ (1− y)Fj,y(s), and that for s ≥ dyje, Fj,y(s) ≥ 1/2 (Fact 2).
Now, for the first term in above,

E[
1

Fj∗a+1,ya(s(j∗a))
· I(s(j∗a) ≤ byaj∗ac)] ≤

∑
j

E[
1

Fj+1,ya(s(j))
· I(s(j) ≤ byajc)]

=
∑
j

byajc∑
s=0

fj,µ1(s)

Fj+1,ya(s)
≤
∑
j

µ1

∆′a
e−Daj ≤ 16

∆3
a

, (17)

where ∆′a = µ1 − ya = ∆a/2, Da is the KL-divergence between Bernoulli distributions with pa-
rameters µ1 and ya. The penultimate inequality follows using (3) in the proof of Lemma 3, with
∆′ = ∆′a, and D = Da. The last inequality uses the geometric series sum (note that Da ≥ 0 by
Gibbs’ inequality),∑

j e
−Daj ≤ 1

1−e−Da
≤ min{ 2

Da
, e
e−1} ≤

2
min{Da,1} ≤

2
∆′a

2 = 8
∆2

a
.

Substituting the bound from Equation (17) in Equation (16),∑T−1
j=0 E

[
γj
∑

a
3∆a

Fj+1,ya (s(j))

]
≤ (
∑

u Lu)
∑

a(
48
∆2

a
+ 6∆a

∆′a
) = (

∑
u Lu)

∑
a(

48
∆2

a
+ 12). (18)

For the second term on the right hand side of (14), we use Lemma 3 while substituting y with
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ya = µa + ∆a
2 and ∆′ with µ1 − ya = ∆a

2 , to obtain that

T−1∑
j=0

∑
a

(3∆a)E
[
min{E[X(j, s(j), µa +

∆a

2
)|s(j)], T}

]

≤
∑
a

(3∆a)

16(lnT )

∆a2 −1∑
j=0

(
1 +

2

1− ya

)
+

T∑
j≥ 16(lnT )

∆a2

(3∆a)
16

T

≤
∑
a

48 lnT

∆a
+

192

∆2
a

+ 48∆a. (19)

Substituting results from Equation (18) and (19) in Equation (14),

E[Rs(T )|E(T )] ≤ (
∑
u

Lu)
∑
a

(
48

∆2
a

+ 12) +
∑
a

(
48 lnT

∆a
+

192

∆2
a

+ 48∆a)

≤ 768(lnT )(
∑
i

1

∆2
i

)2 + 192(lnT )
∑
i

1

∆2
i

+ 48(lnT )
∑
a

1

∆a
+ 192

∑
a

1

∆2
a

+ 48(N − 1).

Now, using the result that Pr(E(T )) ≤ 4(N − 1)/T (by Lemma 4), we can bound the total regret
due to playing saturated arms as

E[Rs(T )] ≤ E[Rs(T )|E(T )] + T · Pr(E(T ))

≤ 768(lnT )(
∑
i

1

∆2
i

)2 + 192(lnT )
∑
i

1

∆2
i

+ 48(lnT )
∑
a

1

∆a
+ 192

∑
a

1

∆2
a

+ 52(N − 1).

Since an unsaturated arm u becomes saturated after Lu plays, regret due to unsaturated arms is
at most

E[Ru(T )] ≤
N∑
u=2

Lu∆u = 16(lnT )

(
N∑
u=2

1

∆u

)
.

Summing the regret due to saturated and unsaturated arms, we obtain the result of Theorem
2.

Conclusion. In this paper, we showed theoretical guarantees for Thompson Sampling close to
other state of the art methods, like UCB. Our result is a first step in theoretical understanding of
TS and there are several avenues to explore for the future work: There is a gap between our upper
bounds and the lower bound of Lai–Robbins [7]. While it may be easy to improve the constant
factors in our upper bounds by making the analysis more careful (but more complicated), it seems
harder to improve the dependence on the ∆’s. With further work, our technique in this paper
can provide several extensions, including analysis of TS for bandits with more general distributions
than Bernoulli, delayed and batched feedbacks, prior mismatch and posterior reshaping discussed in
[2]. As mentioned before, empirically TS has been shown to have superior performance than other
methods, especially for handling delayed feedback. A theoretical justification of this observation
would require a tighter analysis of TS than what we have achieved here, and in addition, it would
require lower bound on the regret of the other algorithms. TS has also been used for problems such
as regularized logistic regression [2]. These multi-parameter settings lack theoretical analysis.
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A Multiple optimal arms

Consider the N -armed bandit problem with µ∗ = maxi µi. We will show that adding another arm
with expected reward µ∗ can only decrease the expected regret of TS algorithm. Suppose that we
added arm N + 1 with expected reward µ∗. Consider the expected regret for the new bandit in
time T , conditioned on the exact time steps among 1, . . . , T , on which arm N + 1 is played by the
algorithm. Since the arm N+1 has expected reward µ∗, there is no regret in these time steps. Now
observe that in the remaining time steps, the algorithm behaves exactly as it would for the original
bandit with N arms. Therefore, given that the (N+1)th arm is played x times, the expected regret
in time T for the new bandit will be same as the expected regret in time T − x for the original
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bandit. Let RN (T ) and RN+1(T ) denote the expected regret in time T for the original and new
bandit, respectively. Then,

E[RN+1(T )] = E[E[RN+1(T )|kN+1(T )]] = E[E[RN (T − kN+1(T ))|kN+1(T )]]

≤ E[E[RN (T )|kN+1(T )]] = E[RN (T )].

This argument shows that the expected regret of Thompson Sampling for the N -armed bandit
problem with r optimal arms is bounded by the expected regret of Thompson Sampling for the
(N − r + 1)-armed bandit problem obtained on removing (any) r − 1 of the optimal arms.

B Facts used in the analysis

Fact 1.
F betaα,β (y) = 1− FBα+β−1,y(α− 1),

for all positive integers α, β.

Proof. This fact is well-known (it’s mentioned on Wikipedia) but we are not aware of a specific
reference. Since the proof is easy and short we will present a proof here. The Wikipedia page also
mentions that it can be proved using integration by parts. Here we provide a direct combinatorial
proof which may be new.

One well-known way to generate a r.v. with cdf F betaα,β for integer α and β is the following:
generate uniform in [0, 1] r.v.s X1, X2, . . . , Xα+β−1 independently. Let the values of these r.v. in

sorted increasing order be denoted X↑1 , X
↑
2 , . . . , X

↑
α+β−1. Then X↑α has cdf F betaα,β . Thus F betaα,β (y) is

the probability that X↑α ≤ y.
We now reinterpret this probability using the binomial distribution: The event X↑α ≤ y happens

iff for at least α of the X1, . . . , Xα+β−1 we have Xi ≤ y. For each Xi we have Pr[Xi ≤ y] = y; thus
the probability that for at most α − 1 of the Xi’s we have Xi ≤ y is FBα+β−1,y(α − 1). And so the

probability that for at least α of the Xi’s we have Xi ≤ y is 1− FBα+β−1,y(α− 1).

The median of an integer-valued random variable X is an integer m such that Pr(X ≤ m) ≥ 1/2
and Pr(X ≥ m) ≥ 1/2. The following fact says that the median of the binomial distribution is
close to its mean.

Fact 2 ([6]). Median of the binomial distribution Binomial(n, p) is either bnpc or dnpe.

Fact 3 ([1]). (Chernoff–Hoeffding bound) Let X1, ..., Xn be random variables with common range
[0, 1] and such that E[Xt|X1, ..., Xt−1] = µ. Let Sn = X1 + . . .+Xn. Then for all a ≥ 0,

Pr(Sn ≥ nµ+ a) ≤ e−2a2/n,

Pr(Sn ≤ nµ− a) ≤ e−2a2/n.

Lemma 5.
FBn,p(np− nδ) ≤ e−2nδ2

, 1− FBn,p(np+ nδ) ≤ e−2nδ2
, (20)

1− FBn+1,p(np+ nδ) ≤ e4δ

e2nδ2 . (21)

17



Proof. The first result is a simple application of Chernoff–Hoeffding bounds from Lemma 3. For
the second result, we observe that,

FBn+1,p(np+ nδ) = (1− p)FBn,p(np+ nδ) + pFBn,p(np+ nδ − 1) ≥ FBn,p(np+ nδ − 1).

By Chernoff–Hoeffding bounds,

1− FBn,p(np+ δn− 1) ≤ e−2(δn−1)2/n = e−2(n2δ2+1−2δn)/n ≤ e−2nδ2+4δ =
e4δ

e2nδ2 .

C Proofs of Lemmas

C.1 Proof of Lemma 2

Proof. Recall that k2(t) denotes the number of plays of second arm before time t, and S2(t) denotes

the number of successes among these k2(t) plays. Define A(t) to be the event that S2(t)
k2(t) ≤ µ2 + ∆

4 .

By the Chernoff–Hoeffding bounds (Fact 3), at any time t such that k2(t) ≥ L = 16(lnT )/∆2,

Pr(A(t)) = Pr

(
S2(t)

k2(t)
> µ2 +

∆

4

)
≤ e−2L∆2/16 ≤ e−2 lnT =

1

T 2
.

Then, for every time t such that k2(t) ≥ L, we have that

Pr(θ2(t) > µ2 +
∆

2
) ≤ Pr(θ2(t) > µ2 +

∆

2
|A(t)) + Pr(A(t))

≤ Pr(θ2(t) >
S2(t)

k2(t)
− ∆

4
+

∆

2
) + Pr(A(t))

= F
k2(t)+1,

S2(t)
k2(t)

+ ∆
4

(S2(t)) + Pr(A(t))

≤ F
k2(t),

S2(t)
k2(t)

+ ∆
4

(S2(t)) + Pr(A(t))

≤ exp{−2∆2k2(t)2/16

k2(t)
}+

1

T 2

≤ e−2L∆2/16 +
1

T 2
= e−2 lnT +

1

T 2
=

2

T 2
.

The third-last inequality follows from the observation that

FBn+1,p(r) = (1− p)FBn,p(r) + pFn,p(r − 1) ≤ (1− p)FBn,p(r) + pFn,p(r) = FBn,p(r).

And, the second-last inequality follows from Chernoff–Hoeffding bounds (refer to Fact 3 and Lemma
5).

Summing above over t = 1, . . . , T , we get the result of the lemma.
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C.2 Proof of Lemma 4

Proof. Define Ai(t) to be the event that Si(t)
ki(t)
≤ µi + ∆i

4 . By the Chernoff–Hoeffding bounds (Fact

3), at any time t such that arm i has been played at least Li = 16(lnT )/∆2
i times before t,

1− Pr(Ai(t)) = Pr

(
Si(t)

ki(t)
> µi +

∆i

4

)
≤ e−2Li∆

2
i /16 ≤ e−2 lnT ≤ 1

T 2
.

Then, for every time t after Li plays of arm i,

Pr

(
θi(t) > µi +

∆i

2

)
≤ Pr(θi(t) > µi +

∆i

2
|Ai(t)) + (1− Pr(Ai(t)))

≤ Pr(θi(t) >
Si(t)

ki(t)
− ∆i

4
+

∆i

2
) + 1− Pr(A(t))

= F
ki(t)+1,

Si(t)

ki(t)
+

∆i
4

(Si(t)) + 1− Pr(Ai(t)) (Fact 1)

≤ F
ki(t),

Si(t)

ki(t)
+

∆i
4

(Si(t)) + 1− Pr(Ai(t))

≤ exp{−2∆2
i ki(t)

2/16

ki(t)
}+

1

T 2

≤ e−2Li∆
2
i /16 +

1

T 2
= e−2 lnT +

1

T 2
=

2

T 2
.

The third last inequality follows from the observation that

FBn+1,p(r) = (1− p)FBn,p(r) + pFn,p(r − 1) ≤ (1− p)FBn,p(r) + pFn,p(r) = FBn,p(r).

And, second last inequality follows from Chernoff–Hoeffding bounds (refer to Fact 3 and Lemma
5).

Similarly, we can derive that

Pr(θi(t) < µi −
∆i

2
) ≤ 2

T 2
,

Summing above over t = 1, . . . , T, i = 2, . . . , N , we get the result of the lemma.
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