Algorithms for Pure Nash Equilibria in
Weighted Congestion Games

PANAGIOTA N. PANAGOPOULOU and PAUL G. SPIRAKIS
Patras University, Greece

In large-scale or evolving networks, such as the Internet, there is no authority possible to enforce
a centralized traffic management. In such situations, game theory, and especially the concepts of
Nash equilibria and congestion games [Rosenthal 1973] are a suitable framework for analyzing the
equilibrium effects of selfish routes selection to network delays. We focus here on single-commodity
networks where selfish users select paths to route their loads (represented by arbitrary integer
weights). We assume that individual link delays are equal to the total load of the link. We then
focus on the algorithm suggested in Fotakis et al. [2005], i.e., a potential-based method for finding
pure Nash equilibria in such networks. A superficial analysis of this algorithm gives an upper bound
on its time, which is polynomial in n (the number of users) and the sum of their weights W. This
bound can be exponential in n when some weights are exponential. We provide strong experimental
evidence that this algorithm actually converges to a pure Nash equilibrium in polynomial time.
More specifically, our experimental findings suggest that the running time is a polynomial function
of n and log W. In addition, we propose an initial allocation of users to paths that dramatically
accelerates this algorithm, compared to an arbitrary initial allocation. A by-product of our research
is the discovery of a weighted potential function when link delays are exponential to their loads.
This asserts the existence of pure Nash equilibria for these delay functions and extends the result
of Fotakis et al. [2005].

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Routing and layout

General Terms: Algorithms, Theory, Experimentation

Additional Key Words and Phrases: Congestion games, game theory, pure Nash equilibria

1. INTRODUCTION

In large-scale or evolving networks, such as the Internet, there is no authority
possible to employ a centralized traffic management. Besides the lack of central
regulation, even cooperation of the users among themselves may be impossible

This work was partially supported by the EU within the Future and Emerging Technologies Pro-
gramme under contract IST200133135 (CRESCCO) and within the 6th Framework Programme
under contract 001907 (DELIS), and by the General Secretariat for Research and Technology of
the Greek Ministry of Development within the programme PENED 2003.

Authors’ address: Research Academic Computer Technology Institute, N. Kazantzaki Str., Patras
University, Rion, GR 26 500 Patras, Greece; email: {panagopp,spirakis}@cti.gr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2006 ACM 1084-6654/2006/0001-ART2.7 $5.00 DOI 10.1145/1187436.1216584 http://doi.acm.org
10.1145/1187436.1216584

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006, Pages 1-19.

2 . P. N. Panagopoulou and P. G. Spirakis

because of the fact that the users may not even know each other. A natural
assumption in the absence of central regulation and coordination is to assume
that network users behave selfishly and aim at optimizing their own individual
welfare. Thereupon, it is of great importance to investigate the selfish behavior
of users in order to understand the mechanisms in such noncooperative network
systems.

Since each user seeks to determine the shipping of her own traffic over the
network, different users may have to optimize completely different and even
conflicting measures of performance. A natural framework in which to study
such multiobjective optimization problems is (noncooperative) game theory. We
can view network users as independent agents participating in a noncoopera-
tive game and expect the routes chosen by users to form a Nash equilibrium in
the sense of classical game theory: a Nash equilibrium is a state of the system
such that no user can decrease her individual cost by unilaterally changing her
strategy.

Users selfishly choose their private strategies, which, in our setting, corre-
spond to paths from their sources to their destinations. When routing their
traffics according to the strategies chosen, the users will experience a latency
caused by the traffics of all users sharing edges (i.e., the latency on the edges
depends on their congestion). Each user tries to minimize her private cost, ex-
pressed in terms of her individual latency. If we allow as strategies for each
user, all probability distributions on the set of their source-destination paths,
then a Nash equilibrium is guaranteed to exist. It is very interesting, however,
to explore the existence of pure Nash equilibria in such systems, i.e., situations
in which each user is deterministically assigned on a path from which she has
no incentive to unilaterally deviate.

Rosenthal [1973] introduced a class of games, called congestion games, in
which each player chooses a particular subset of resources out of a family of
allowable subsets for her (her strategy set), constructed from a basic set of
primary resources for all the players. The delay associated with each primary
resource is a nondecreasing function of the number of players who choose it
and the total delay received by each player is the sum of the delays associ-
ated with the primary resources she chooses. Each game in this class pos-
sesses at least one Nash equilibrium in pure strategies. This result follows
from the existence of a real-valued function (an exact potential [Monderer and
Shapley 1996]) over the set of pure strategy profiles with the property that the
gain (i.e. the increment of the payoff function) of a player unilaterally shift-
ing to a new strategy is equal to the corresponding increment of the potential
function.

In a multicommodity network congestion game the strategy set of each player
is represented as a set of origin-destination paths in a network, the edges of
which play the role of resources. If all origin-destination pairs of the users
coincide, we have a single-commodity network congestion game and then all
users share the same strategy set. In a weighted congestion game we allow
users to have different demands for service and, thus, affect the resource delay
functions in a different way, depending on their own weights. Hence, weighted
congestion games are not guaranteed to possess a pure Nash equilibrium.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 3

1.1 Related Work

As already mentioned, the class of (unweighted) congestion games is guaran-
teed to have at least one pure Nash equilibrium. In Fabrikant et al. [2004], it
is proved that a pure Nash equilibrium for any (unweighted) single-commodity
network congestion game can be constructed in polynomial time, no matter
what resource delay functions are considered (so long as they are nondecreas-
ing functions with loads). On the other hand, it is shown that even for an
unweighted multicommodity network congestion game, it is PLS-complete to
find a pure Nash equilibrium, although it certainly exists.

For the special case of single-commodity network congestion games where the
network consists of parallel edges from a unique origin to a unique destination
and users have varying demands, it was shown in Fotakis et al. [2002] that there
is always a pure Nash equilibrium, which can be constructed in polynomial time.
Moreover, in Gairing et al. [2004], it was shown that a pure Nash equilibrium
can be computed in polynomial time even under the restriction that each user
may only be routed on a link from a certain set of allowed links for the user.

Milchtaich [1996] deals with the problem of weighted parallel-edges conges-
tion games with user-specific costs: each allowable strategy of a user consists
of a single resource and each user has her own private cost function for each
resource. It is shown that all such games involving only two users, or only two
possible strategies for all the users, or equal delay functions, always possess a
pure Nash equilibrium. On the other hand, it is shown that even a three-user,
three-strategies, weighted parallel-edges congestion game may not possess a
pure Nash equilibrium.

In Libman and Orda [1997] and in Fotakis et al. [2005] it is (independently)
proved that even for a weighted single-commodity network congestion game
with resource delays being either linear or 2-wise linear functions of their loads,
there may be no pure Nash equilibrium. Nevertheless, in Fotakis et al. [2005], it
is proved that for the case of a weighted network congestion game with resource
delays linear to their loads, at least one pure Nash equilibrium exists and can
be computed in pseudopolynomial time. In Fotakis et al. [2005], it is shown
that the “shortest-path-allocation” rule that we consider in our experiments
maintains a pure Nash equilibrium if the network is layered, series-parallel,
and has identical resource delays.

The algorithm Nashify() that we present and experimentally evaluate in this
work is motivated by Feldmann et al. [2003] and Even-Dar et al. [2003], where
nashification, i.e., the efficient transformation of an assignment of weights on
paths to a pure Nash equilibrium, was first considered.

1.2 Our Results

We focus our interest on weighted single-commodity network congestion games
with resource delays equal to their loads. As already mentioned, any such
game possesses a pure Nash equilibrium, and the algorithm suggested in
Fotakis et al. [2005] requires, at most, a pseudopolynomial number of steps
to reach an equilibrium; this bound, however, has not yet been proved to be
tight. The algorithm starts with any initial allocation of users on paths and

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

4 . P. N. Panagopoulou and P. G. Spirakis

iteratively allows each unsatisfied user to switch to any other path, where she
could reduce her cost. We experimentally show that the algorithm actually con-
verges to a pure Nash equilibrium in polynomial time for a variety of networks
and distributions of users’ weights. In addition, we propose an initial alloca-
tion of users onto paths that, as our experiments show, leads to a significant
reduction of the total number of steps required by the algorithm, as compared
to an arbitrary initial allocation.

Moreover, we present a b-potential function for any network congestion game
with resource delays being exponential to their loads, thus assuring the exis-
tence of a pure Nash equilibrium in any such game (Theorem 5.1).

2. DEFINITIONS AND NOTATION

2.1 Games

A game I' = (N, (I;);en, (1;)ien) in strategic form is defined by a finite set of
players N ={1,2,...,n}, a finite set of strategies I1; for each playeri € N, and
a payoff function u; : I1 — R for each player, where I1 = x;cnI1; is the set of
pure strategy profiles or configurations.

A game is symmetric if all players are indistinguishable, i.e., all I1;’s are the
same and all u;’s, considered as a function of the choices of the other players,
are identical symmetric functions of n — 1 variables.

A pure Nash equilibrium is a configuration 7 = (7q,...,m,) such that for
each player i u;(w) > u;(my,...,7/,...,m,) for any 7 € I1;. A game may not
possess a pure Nash equilibrium, in general. However, if we extend the game to
include as strategies for each i all possible probability distributions on IT; and
if we extend the payoff functions u; to capture expectation, then an equilibrium
is guaranteed to exist [Nash 1950].

2.2 Congestion Games

A congestion model (N, E, (T1;);cn, (de)ecr) is defined as follows. N denotes the
set of players {1, ..., n}. E denotes a finite set of resources. For i € N let IT; be
the set of strategies of player i, where each w; € II; is a nonempty subset of
resources. Fore € E letd, : {1,...,n} — R denote the delay function, where
d.(k) denotes the cost (e.g. delay) to each user of resource e, if there are exactly
k players using e.

The congestion game associated with this congestion model is the game in
strategic form (N, (IT;);en, (1;);ien), where the payoff functions u; are defined
as follows: Let [T = x;cnI1;. For all w = (w4, ..., w,) € I1 and for every e € E
let 0.(zw) be the number of users of resource e according to the configuration w:
o(w)=|{i € N :e € w;}|. Define u; : [1 > R by u;j(w) = — Zeewi d(o.()).

In a network congestion game the families of subsets I1; are represented
implicitly as paths in a network. We are given a directed network G = (V, E)
with the edges playing the role of resources, a pair of nodes (s;, ;) € V x V
for each player i and the delay function d. for each e € E. The strategy set of
player i is the set of all paths from s; to ¢;. If all origin-destination pairs (s;, ¢;)
of the players coincide with a unique pair (s, ¢), we have a single-commodity

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 5

network congestion game and then all users share the same strategy set; hence,
the game is symmetric.

2.3 Weighted Congestion Games

In a weighted congestion model, we allow the users to have different demands
and, thus, affect the resource delay functions in a different way, depending on
their own weights. A weighted congestion model (N, (w;);en, E, (I1;)ien, (de)ecE)
is defined as follows. N denotes the set of players {1,...,n}, w; denotes the
demand of player i, and E denotes a finite set of resources. Fori € N let IT;
be the set of strategies of player i, where each w; € I1; is a nonempty subset of
resources. For each resource e € E let d.(-) be the delay per user that requests
its service, as a function of the total usage of this resource by all the users.
The weighted congestion game associated with this congestion model is the
game in strategic form ((w;);en, (IT;)ien, (U)ien), where the payoff functions u;
are defined as follows. For any configuration @ < II and for all e € E, let
Ae(w) ={i € N : e € w;} be the set of players using resource e according to @.
The cost A!(w) of user i for adopting strategy =; € II; in a given configuration
w is equal to the cumulative delay A, () on the resources that belong to w;:

W(w) = A (@) = Y de(0e(w))
ecw;
where, for alle € E, 0.(w) = } ;.\ (Wi is the load on resource e with respect
to the configuration . The payoff function for player i is then u;(w) = —A ().
A configuration @ € Il is a pure Nash equilibrium if, and only if, for alli € N,

hoy (@) < Ap(w_y, ;) Vm € TI;

where (w_;, ;) is the same configuration as @, except for user i that has now
been assigned to path 7;. Since the payoff functions u; can be implicitly com-
puted by the resource delay functions d., in the following we will denote a
weighted congestion game by ((w;)ien, (TT;)ien, (de)ecE)-

In a weighted network congestion game the strategy sets I1; are represented
implicitly as s; — # paths in a directed network G = (V, E). If all origin-
destination pairs (s;,#;) of the players coincide with a unique pair (s, t), we
have a weighted single-commodity network congestion game and then all users
share the same strategy set. In this case, however, the game is not necessarily
symmetric, since the users have different demands and thus their cost functions
will also differ.

2.4 Potential Functions

Fix some vector b € R” ;. A function F : x;cnI1; — R is a b-potential for the
weighted congestion game I' = (w;)ien, (I1;)ien, (dedecg) if Var € x;jenIl;, Vi €
N, Vni (S l_[i,

M) — A (w_j, ;) =b; - (F(w) — F(w_;, ;)
F is an exact potential for I' if b; = 1 for alli € N. It is well known [Monderer

and Shapley 1996] that if there exists a b-potential for a game in strategic form
I, then I" possesses a pure Nash equilibrium.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

6 . P. N. Panagopoulou and P. G. Spirakis

2.5 Layered Networks

Let ¢ > 1 be an integer. A directed network (V, E) with a distinguished source-
destination pair (s, t), s, t € V, is £-layered if every directed s —¢ path has length
exactly £ and each node lies on a directed s — ¢ path. The nodes of an ¢-layered
network can be partitioned into ¢ + 1 layers, Vg, V1, ..., V,, according to their
distance from the source node s. Since each node lies on directed s — ¢ path,
Vo = {s} and V, = {¢}. Similarly, we can partition the edges E of an ¢-layered
network in ¢ subsets E1, ..., E;,, whereforall j € {1,...,¢}, E; = {e =(u,v) €
E:ueV;; andv e V;}.

3. THE PROBLEM

We focus our interest on the existence and tractability of pure Nash equilibria
in weighted single-commodity network congestion games with resource delays
identical to their loads. Consider the single-commodity network G = (V, E)
with a unique source s € V and a unique destination ¢ € V and the weighted
single-commodity network congestion game ((w;);cn, P, (de)eck) associated with
G, such that P is the set of all directed s — ¢ paths of G and d.(x) = x for all
ec E.Let w = (wy, ..., w,) be an arbitrary configuration and recall that 6,(w)
denotes the load of resource e € E under configuration @w. Since resource delays
are equal to their loads, for alli € N, it holds that

@) = (@) =Y 6@ =Y > w,

ecw; ecw; jeNlecw;

A useri € N is satisfied in the configuration @ € P" if she has no incentive to
unilaterally deviate from o, i.e. iffor all s—¢ paths 7w € P, Ap (w) < Az(w_;, 7).
Hence, user i is satisfied if, and only if, she is assigned to a path that minimizes
her latency, with respect to the configuration @_; of all the users except for i.
The configuration @ is a pure Nash equilibrium if, and only if, all users are
satisfied in w.

In Fotakis et al. [2005], it was shown that any weighted network congestion
game with resource delays being linear functions of their loads possesses a pure
Nash equilibrium that can be computed in pseudopolynomial time:

THeOREM 3.1 ([FoTakis ET AL. 2005]). For any weighted multicommodity
network congestion game with linear resource delays, at least one pure Nash
equilibrium exists and can be computed in pseudopolynomial time.

Proor (SkercH). Fix an arbitrary network G = (V, E) with linear resource
delaysd.(x) = a.x+b.,e € E,a., b, > 0. Let w be an arbitrary configuration for
the corresponding weighted multicommodity congestion game. The function

d(w) = Zde(ee(w))ee(w) + Xn: Z de(wi)wi

ecE i=1 ecw;

is then a b-potential for the game where, Vi € N, b; = ﬁ O

Here we focus on weighted single-commodity network congestion games with
resource delays identical to their loads, for which case the above theorem yields:

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 7

CoroLLARY 3.2. For any weighted single-commodity network congestion
game with resource delays equal to their loads, at least one pure Nash equi-
librium exists and can be computed in pseudopolynomial time.

Proor (SkercH). The b-potential function establishing the result is

() =Y B(@)® +) |mi|w} eh)

ecE i=1
where, Vi € N, b; = ﬁ O

In Section 4, we present the pseudopolynomial algorithm Nashify() for the com-
putation of a pure Nash equilibrium for a weighted single-commodity network
congestion game, while in Section 6 we provide experimental evidence that such
a pure Nash equilibrium can actually be computed in polynomial time, as our
following conjecture asserts:

CoNJECTURE 3.3. Algorithm Nashify() converges to a pure Nash equilibrium
in polynomial time.

4. THE ALGORITHM

The algorithm presented below converts any given nonequilibrium configura-
tion into a pure Nash equilibrium by performing a sequence of greedy selfish
steps. A greedy selfish step is a user’s change of her current pure strategy (i.e.,
path) to her best pure strategy with respect to the current configuration of all
other users. By Shortest_Path;(w_;) we denote the path that minimizes the la-
tency of user i, with respect to the configuration of all other users.

Algorithm Nashify(G, (w;);en, @)

Input: A network G = (V, E) with a unique source—destination pair (s, ¢)
A aset N ={1,...,n} of users, each user i having weight w;
Output: configuration @ which is a pure Nash equilibrium

1. begin

2. select an initial configuration o = (w4, ..., @,)
3. while 3 user i that is unsatisfied

4. w; = Shortest_Path;(w_;)

5. return w

6. end

The above algorithm starts with an initial allocation of each useri € N on
an s —t path w; of the single-commodity network G. The algorithm iteratively
examines whether there exists any user that is unsatisfied. If there is such a
user, say i, then user i performs a greedy selfish step, i.e., she switches to the s—¢
path that minimizes her latency, given the configuration @ _;. The existence of
the potential function (1) assures that the algorithm will terminate after a finite
number of steps at a configuration from which no user will have an incentive
to deviate, i.e., at a pure Nash equilibrium.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

8 . P. N. Panagopoulou and P. G. Spirakis

4.1 Complexity Issues

Suppose that the users have arbitrary weights. Let W =)", _; w;. Observe that,
for any configuration w,

() = Z(Qe(w))2+i|wi|wi2

ecE i=1
n
< ZW2 —i—Z|E|w;2
ecE i=1
< 2|E|W?

Without loss of generality, assume that the users have integer weights. At each
iteration of the algorithm Nashify(), an unsatisfied user performs a greedy self-
ish step, so her cost must decrease by at least 1 and, thus, the potential function
(1) decreases by at least 2min; w; > 2. Hence, the algorithm requires, at most,

|E|W? steps so as to converge to a pure Nash equilibrium.
(max; w;)?

Prorosition 4.1. Suppose that ~F = O(n*) for some constant k. Then

algorithm Nashify() will converge to a pure Nash equilibrium in polynomial
time.
Proor. Observe that
d(w) < 2|E|W?

2|E |(n max w;)

IATA

2|E |n® min w; - O(n*)

which implies that the algorithm will reach a pure Nash equilibrium in
O(|E|n**2) steps. O

5. THE CASE OF EXPONENTIAL DELAY FUNCTIONS

In this section, we deal with the existence of pure Nash equilibria in weighted
(multicommodity) network congestion games with resource delays being ex-
ponential to their loads. Let G = (V, E) be any directed network and let
N = {1,2,...,n} be the set of network users. For each i € N, denote by II;
the set of all s; — ¢; paths in G from the source s; to the destination ¢;. Consider
the weighted network congestion game I' = ((w;);en, (IT;);en, (de)ecg) associated
with G, such that for any configuration @ € x?_,II; and for alle € E

d.(0(w)) = exp(O(w))

We next show that ®(w) =), 5 exp(f.(w)) is a b-potential for such a game and
some positive n-vector b, assuring the existence of a pure Nash equilibrium.

TuEOREM 5.1. For any weighted network congestion game with resource de-
lays exponential to their loads, at least one pure Nash equilibrium exists.

Proor. Let w e x_,II; be an arbitrary configuration. Let i be a user of
demand w; and fix some path 7; € IT;. Denote @’ = (w_;, ;). Observe that, for

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 9
all e € {w; N 7;}, it holds that 6,.(w) = 6.(w’). Hence

W) = W(@) =) expl(w)) — Y exp(Be(w”))

ecw; eem;
= Z exp(Be(w)) — Z exp(f. ("))
ecw;\7; eem;\w;
= Z exp(B.(w_;) + w;) — Z exp(Oe(w_;) + w;)
ecw;\7; eem;\w;
= exp(wi)-(Y expl(m) —) expwe(w_i)))
eewi\m eem\wi

Now observe that for all e ¢ {{w; \ 7;} U {m; \ @;}} it holds that 0,(w) = 6.(ww”’).
Hence,

d(w) — (')

Z exp(e(@)) — exp(b ("))

ecE

= Z exp (QQ(ZD')) - eXP(Qe(ZU/))

ecw;\m;

+ Y exp(le(w)) — exp(fe(w))

eETIi\ZD'i

= > exp@e(m_i) +w;) — expOe(@_;))

eewi\m
+) exp(@ i) — exp(fe(w ;) + w;)
eeni\wi
= Y exp(f(w_))expw;) — 1)
eewg\m
— Y explfo(w_))expw;) — 1)
eeni\wi
= (expw;) — 1) (> exple(w)— Y exp(He(Wi)))
eewi\m eem\wi
-1 . .
= OPW) =Ly i)
exp(w;)
Thus, ® is a b-potential for our game, where Vi ¢ N, b; = ef;‘(pu()w)j 7, assuring the

existence of at least one pure Nash equilibrium. 0O

6. EXPERIMENTAL EVALUATION

6.1 Implementation Details

We implemented algorithm Nashify() in C++ programming language using sev-
eral advanced data types of LEDA [Mehlhorn and Naher 1999].

In our implementation, we considered two initial allocations of users on
paths:

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

10 . P. N. Panagopoulou and P. G. Spirakis

%

Fig. 1. Network 1.

Fig. 3. Network 3.

1. Random allocation: Each user assigns its traffic uniformly at random on an
s — t path.

2. Shortest-path allocation: Users are sorted in nonincreasing order of their
weights, and the maximum weighted user among those that have not been
assigned a path yet selects a path that minimizes her latency, with respect
to the loads on the edges caused by the users of larger weights.

Note that, in our implementation, the order in which users are checked for
satisfaction (line 3 of algorithm Nashify()) is the worst possible, i.e., we sort
users in nondecreasing order of their weights and, at each iteration, we choose
the minimum weighted user among the unsatisfied ones to perform a greedy
selfish step. By doing so, we force the potential function to decrease as little
as possible and thus we maximize the number of iterations, so as to be able to
better estimate the worst-case behavior of the algorithm.

6.2 Experimental Setup

6.2.1 Networks. Figures 1-9 show the single commodity networks consid-
ered in our experimental evaluation of algorithm Nashify(). Network 1 is the
simplest possible layered network and Network 2 is its generalization. Observe
that the number of possible s — ¢ paths of Network 1 is 3, while the number of
possible s —¢ paths for Network 2 is 3°. Network 3 is an arbitrary dense layered
network and Network 4 is the 5 x 5 grid. Networks 5 and 6 are ¢-layered net-
works with the property that layers 1,2,...,¢ — 1 form a tree rooted at s and
layer ¢ comprises all the edges connecting the leaves of this tree with ¢. Network
7 is the clique of 9 nodes, while Network 8 is a 16-node network with 15 s — ¢

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 11

Fig. 4. Network 4.

®

Fig. 5. Network 5.

©,
() () @
O O O O O O O O O QO O O "0

Fig. 6. Network 6.

paths, each of different length. Finally, Network 9 is an arbitrary nonlayered
network.

6.2.2 Distributions of Weights. For each network, we simulated the algo-
rithm Nashify() for n = 10,11, ..., 100 users. Obviously, if users’ weights are
polynomial in n, then the algorithm will definitely terminate after a polynomial
number of steps. Based on this fact, as well as on Proposition 4.1, we focused
on instances where some usershave exponential weights. More specifically, we

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

12 . P. N. Panagopoulou and P. G. Spirakis

Fig. 9. Network 9.
ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 13

12 12
#steps / n (initial allocation is random) #steps / n (initial allocation is random)
* #steps / n (initial allocation is shortest path) = #steps / n (initial allocation is shortest path)
1ol log(W) : 1o/ log(W)
8 8
6 6 B
4f 4
0 oo 0 s
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12 __ — 12
—— #steps/n (initial allocation is random) #steps / n (initial allocation is random)
* #steps /n (initial allocation is shortest path) + #steps / n (initial allocation is shortest path)
10pL log(W) ’ 10t log(W)
8 8
6 i 6
4 4
2r 2
0 W . N . ‘
0 2 4 6 8 10 12 0 4 8 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)

(c) (d)
Fig. 10. Experimental results for Network 1.
considered the following four distributions of weights:

1. 10% of users have weight 10%1° and 90% of users have weight 1,
2. 50% of users have weight 10*/1° and 50% of users have weight 1,
3. 90% of users have weight 10"/1° and 10% of users have weight 1,
4. users have uniformly at random selected weights in the interval [1, 10%/10].

Distributions (1-3), albeit simple, represent the distribution of service require-
ments in several communication networks, where a fraction of users has exces-
sive demand that outweighs the demand of the other users.

6.3 Results and Conclusions

Figures 10-18 show, for each network and each one of the distributions of
weights (1-4), the number of steps performed by algorithm Nashify(), over the
number of users (# steps/n) as a function of the sum of weights of all users
W. For each instance, we considered both random and shortest-path initial
allocation.

Observe that the shortest-path initial allocation significantly outperforms
any random initial allocation, no matter what networks or distributions
of weights are considered. In particular, the shortest-path initial allocation

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

14 e

P. N. Panagopoulou and P. G. Spirakis

12,
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
* #steps / n (initial allocation is shortest path) * #steps / n (initial allocation is shortest path)
10[L log(W) 10 log(W)
8|
6
4
2
0
00 2 4 6 8 [2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12 60 e 9
—— #steps / n (initial allocation is random) —— #steps /n (initial allocation is random)
+ #steps / n (initial allocation is shortest path) * #steps / n (initial allocation is shortest path)
- log(W) 50 5 log(W)
8 40
6 30
4 20
’ M 1
0! 0
0 s " 3 s " 0 2 4 6 8 10 12
sum of weights W (logarithmic scale)

(©)

sum of weights W (logarithmic scale)

(d)

Fig. 11. Experimental results for Network 2.

12 14
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
* #steps / n (initial allocation is shortest path) * #steps / n (initial allocation is shortest path)
1ol _log(W) 12 log(W)
10|
8|
8
6
6
4
4
2 2
-
o o - - - - -
0 2 4 6 8 10 12 0 2 4 6 8 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12
—— #steps / n (initial allocation is random) 1200
* #steps / n (initial allocation is shortest path) #steps / n (initial allocation is random)
10 log(W) * #steps / n (initial allocation is shortest path)
1000 n log(W)
8|
800
6 600
4 400,
2 200,
-, e, e
0 0! -
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)

(c)

(d)

Fig. 12. Experimental results for Network 3.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games

12,
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
« #steps / n (initial allocation is shortest path) #steps / n (initial allocation is shortest path)
1ol tog(w) 10 log(W)
8 8
6 6
4 4
2 2
C'0 2 4 6 8 12 GO 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12,
—— #steps / n (initial allocation is random) 1200 __
« #steps /n (initial allocation is shortest path) #steps / n (initial allocation is random)
10 log(W) « #steps / n (initial allocation is shortest path)
1000 n log(W)
8 800
6 600
4 400
2 200
0 L
0 2 4 6 B 12 % 2]) 3 0 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(c) (d)
Fig. 13. Experimental results for Network 4.
12, 12,
#steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
+ #steps/ n (initial allocation is shortest path) + #steps / n (initial allocation is shortest path)
10 log(W) 10 log(W)
8
6
4
2
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12
#steps / n (initial allocation is random) . 1200 —
« #steps / n (initial allocation is shortest path) #steps / n (initial allocation is random)
ol logowy « #steps / n (initial allocation is shortest path)
1000 n log(W)
8 800
6 600
4 400,
: WW 20
% 2 4 6) 0 T2 % - 3 3 i 2

sum of weights W (logarithmic scale)

(c)

4
sum of weights W (logarithmic scale)

(d)

Fig. 14. Experimental results for Network 5.

15

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

16 .

P. N. Panagopoulou and P. G. Spirakis

12 12,
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
* #steps / n (initial allocation is shortest path) * #steps / n (initial allocation is shortest path)
log(W) log(W)
10
8
6|
4
2
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12
—— #steps / n (initial allocation is random) 1200 — —
+ #steps / n (initial allocation is shortest path) #steps / n (initial allocation is random)
10 log(W) * #steps / n (initial allocation is shortest path)
1000 n log(W)
8 800
6 600
4 400
2 W .
0 o "y
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(©) (d)
Fig. 15. Experimental results for Network 6.
12
—— #tsteps / n (initial allocation is random)
+ #steps /n (initial allocation is shortest path) 14 — —
log(W) #steps / n (!n!(!al allocalgon is random)
10 « #steps / n (initial allocation is shortest path)
12 log(W)
8 10
6l 8
6
4
4
2
2
0 s
o 2 4 3 s T 12 % 2 3 S G [
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12
—— #steps / n (initial allocation is random) 1200 — —
#steps / n (initial allocation is shortest path) #steps / n (initial allocation is random)
+ #steps / n (initial allocation is shortest path)
10 log(W)
1000 n log(W)
8 800
6 600
4 400
2 200
)
o .
[2 4 6 8 10 12 0 2 4 6 8 1 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)

(c)

(d)

Fig. 16. Experimental results for Network 7.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games

12, 12,
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
« #steps / n (initial allocation is shortest path) * #steps / n (initial allocation is shortest path)
100 log(W) log(W)
8
6
4
2
0 0
[2 4 6 8 10 12 [2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
12, 30,
—— #steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
+ #steps / n (initial allocation is shortest path) = #steps / n (initial allocation is shortest path)
10[L log(W) 25/ 2log(W)
8
6
4
2
. aet e
0 0 " MR SR 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(c) (d)
Fig. 17. Experimental results for Network 8.
12 18
#steps / n (initial allocation is random) —— #steps / n (initial allocation is random)
« #steps / n (initial allocation is shortest path) 16, #steps / n (initial allocation is shortest path)
10, log(W) B o log(W)
14
8 12
10
6
8
4 6
4
2 .
: -
2 o - -
e W . e -
e — o Pt -‘.‘-af..o‘._- - —"
0 A 0
[2 4 6 8 10 12 [2 4 6 8 10 12
sum of weights W (logarithmic scale) sum of weights W (logarithmic scale)
(a) (b)
"2/ stops I (it allocation s rand 350
eps / n (initial allocation is random) #steps / n (initial allocation is random)
* #steps / n (initial allocation is shortest path) « #steps / n (initial allocation is shortest path) |-
10 logW) 300 (n/3) log(W)
8 250
200
6
150}
4
100
2 50
b
o .,,',-n.n""',w o P et
0 2 10 12 0 12

4 6 8
sum of weights W (logarithmic scale)

(c)

4 6 8 10
sum of weights W (logarithmic scale)

(d)

Fig. 18. Experimental results for Network 9.

17

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

18 . P. N. Panagopoulou and P. G. Spirakis

appears to be a pure Nash equilibrium for sparse (Networks 1 and 2), grid
(Network 4) and treelike networks (Networks 5 and 6), as well as for the clique
(Network 7). As regards the dense-layered network (Network 3) and the non-
layered Networks 8 and 9, the number of steps over the number of users seems
to be bounded by a small constant.

On the other hand, the behavior of the algorithm when beginning with an
arbitrary allocation is considerably worse. First, note that, in this case, the
fluctuations observed at the plots are due to the randomization of the initial
allocation. On average, however, we can make safe conclusions regarding the
way # steps/n increases as a function of W. For the distributions of weights
(1-3), it is clear that the number of steps over the number of users is asymp-
totically upper bounded by the logarithm of the sum of all weights, implying
that # steps = O(nlog(W)). Unfortunately, the same does not seem to hold for
randomly selected weights (distribution 4). In this case, however, as Figures 10—
18d show, nlog(W) seems to be a good asymptotic upper bound for #steps/n,
suggesting that #steps = O(n?log(W)).

Note that, for all networks, the maximum number of steps over the number
of users occurs for the random distribution of weights. Also observe that, for
the same value of the sum of weights W, the number of steps is dramatically
smaller when there are only two distinct weights (distributions 1-3). Hence,
we conjecture that the complexity of the algorithm actually depends not only
on the sum of weights, but also on the number of distinct weights of the input.

Also note that the results shown in Figures 10 and 11 imply that, when
starting with an arbitrary allocation, the number of steps increases as a linear
function of the size of the network. Since the number of s — ¢ paths in Network
2 are exponential in comparison to that of Network 1, we would expect a signif-
icant increase in the number of steps performed by the algorithm. Figures 10
and 11, however, show that this is not the case. Instead, the number of steps
required for Network 2 are, at most, five times the number of steps required
for Network 1.

Summarizing our results, we conclude that

¢ ashortest-path initial allocation is usually a few greedy selfish steps far from
a pure Nash equilibrium, amplifying Conjecture 3.3, while

e an arbitrary initial allocation does not assure a similarly fast convergence to
a pure Nash equilibrium; however, Conjecture 3.3 seems to be valid for this
case as well, and

¢ the worst-case input for an arbitrary initial allocation occurs when all users’
weights are distinct and some of them are exponential.

REFERENCES

EvEN-DAR, E., KESSELMAN, A., AND MaNSoUR, Y. 2003. Convergence time to Nash equilibria. In
ICALP. 502-513.

FABRIKANT, A., PapapiMITRIOU, C. H., AND TALWAR, K. 2004. The complexity of pure Nash equilibria.
In Proc. of the 36th ACM Symposium on Theory of Computing. 281-290.

FELDMANN, R., GarINGg, M., Liicking, T., MonIEN, B., AND Ropg, M. 2003. Nashification and the
coordination ratio for a selfish routing game. In ICALP. 514-526.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games . 19

Foraxis, D., KONTOGIANNTS, S., KouTtsoupias, E., MavroNIcoLAS, M., AND SPIRAKIS, P. 2002. The struc-
ture and complexity of Nash equilibria for a selfish routing game. In Proc. of the 29th International
Colloquium on Automata, Languages and Programming. 123-134.

Foraxis, D., KonToGIANNIS, S., AND SpirRaKIs, P. 2005. Selfish unsplittable flows. In Theoretical
Computer Science (TCS) 348, 2-3 (Dec.), 129-366. Preliminary version in the 31st International
Colloquium on Automata, Languages and Programming (ICALP’04), pp. 593605, 2004.

Foraxkis, D., KonNToGIANNTS, S., AND SPirAKIS, P. 2006. Symmetry in network congestion games:
Pure equilibria and anarchy cost. Workshop on Approximation and online Algorithms - WAOA05,
LNCS 3879, pp. 161-175.

GaIRING, M., Ltcking, T., MavronicoLas, M., AND MoniEN, B. 2004. Computing Nash equilibria for
scheduling on restricted parallel links. In Proc. the 36th Annual ACM Symposium on Theory of
Computing. 613-622.

LBman, L. AND Orpa, A. 1997. Atomic resource sharing in noncooperative networks. In INFO-
COM. 1006-1013.

MEeHLHORN, K. AND NAHER, S. 1999. LEDA: A Platform for Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge.

MircuTalcH, I. 1996. Congestion games with player-specific payoff functions. Games and Eco-
nomic Behavior 13, 111-124.

MONDERER, D. AND SHAPLEY, L. 1996. Potential games. Games and Economic Behavior 14,124-143.

NasH,J.F. 1950. Equilibrium points in n-person games. Proc. of National Academy of Sciences 36,
48-49.

RosenTHAL, R. W. 1973. A class of games poseessing pure-strategy Nash equilibria. International
Journal of Game Theory 2, 65-67.

Received September 2005; revised January 2006; accepted January 2006

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

