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Abstract

This paper describes PAIRWISE BISECTION:
a nonparametric approach to optimizing a
noisy function with few function evaluations.
The algorithm uses nonparametric reasoning
about simple geometric relationships to find
minima efficiently. Two factors often frus-
trate optimization: noise and cost. Output
can contain significant quantities of noise or
error, while time or money allows for only
a handful of experiments. Pairwise bisection
is used here to attempt to automate the pro-
cess of robust and efficient experiment design.
Real world functions also tend to violate tra-
ditional assumptions of continuousness and
Gaussian noise. Since nonparametric statis-
tics do not depend on these assumptions,
this algorithm can optimize a wide variety of
phenomena with fewer restrictions placed on
noise. The algorithm’s performance is com-
pared to that of three competing algorithms,
Amoeba, PMAX, and Q2 on several different
test functions. Results on these functions in-
dicate competitive performance and superior
resistance to noise.

1. Problem

The problem of optimizing a function f : ®* — R
will be discussed here as finding a local minimum for
the function, i.e. a point z* such that there exists a
neighborhood B of z* with

f(@") < f(=)

In the noisy case, the observed output y is a combina-
tion of the underlying function f and some amount of

Ve € B. (1)
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error or noise. Assuming noise has a mean of zero,
y(z) = f(x) + noise (2)

For example, during the optimization of a chemical
process, if the underlying function f(z) is the yield
of a chemical reaction using parameters z (say, tem-
perature and pH,) then the noisy output y(z) might
represent the observed yield. The task of the optimizer
is to find z*, the combination of temperature and pH
with the greatest expected yield. Many algorithms ex-
ist to perform this task, especially in the numerical
analysis literature (Press et al., 1992), but they typi-
cally require many iterations of the experimental cycle.
When experiments are costly or time-consuming, these
algorithms are inappropriate.

2. Other Approaches

Many disciplines have methods that are relevant to
noisy optimization. Space permits only a brief survey.

Numerical analysis: Numerical methods such as
Levenberg-Marquardt (Press et al., 1992) have fast
convergence properties, but they can oscillate or di-
verge to infinity. Furthermore, current numerical
methods cannot survive noise.

Stochastic approximation: (Robbins & Monro,
1951) finds roots without the use of derivative esti-
mates. Keifer-Wolfowitz (KW) (Kushner & Clark,
1978) is a related algorithm for noisy optimization.
It estimates the gradient by performing experiments
in both directions along each dimension of the input
space. Based on the estimate, it moves its experiment
center and repeats, using decreasing step sizes to en-
sure convergence. KW'’s strengths are its aggressive
exploration, its simplicity, and its convergence guaran-
tees. Noise can cause it to attempt wild experiments,



however. The number of experiments can also be large,
since it throws away all data after each gradient esti-
mation.

Amoeba search: Amoeba (Press et al., 1992)
searches k-d space using a simplex (i.e. a k+ 1 di-
mensional polyhedron). The function is evaluated at
each vertex. The worst-performing vertex is reflected
through the hyperplane defined by the remaining ver-
tices to produce a new simplex that has moved up
the estimated gradient. Ingenious simplex transforma-
tions let the simplex shrink near the optimum, grow
in large linear zones, and ooze along ridges. Amoeba
is sensitive to noise, and it is also not efficient with
its experiments; it only keeps the most recent k& + 1
results.

Experiment design and Response surface meth-
ods (Box & Draper, 1987): A region of interest (ROI)
is established at a starting point and experiments are
made at positions that can best be used to identify lo-
cal function properties with low-order polynomial re-
gression. When the gradient is estimated confidently,
the ROI is moved accordingly. Quadratic regression
locates optima within the ROI. The strength of RSM
is that it avoids changing operating conditions based
on inadequate evidence, but moves once the data jus-
tifies it. Noise can be handled by adding experiments.
Experimental efficiency is also good, but a weakness of
RSM is that human judgment is needed for choosing
the size and shape of the ROI to trade off bias and
variance.

Evolutionary computation and Learning au-
tomata: Methods such as genetic algorithms begin by
sampling uniformly, but then bias later samples in fa-
vor of the experiments that had good outcomes. There
is a vast literature of refinements of such methods.
These approaches need thousands, sometimes millions,
of evaluations, so experimental efficiency is very low.

PMAX: Based on the data from the experiments so
far, PMAX uses a non-linear function approximator
to estimate the underlying function f(z). The next
experiment is taken at the point that maximizes the
estimate of f. This approach has been used with
a decision-tree approximator (Salganicoff & Ungar,
1995), with neural nets (in many commercial prod-
ucts), and with locally weighted regression (Moore &
Schneider, 1996). Variations of PMAX include taking
the next experiment not at the predicted optimum, but
instead where the confidence intervals are widest, or
where the top of the confidence interval is maximized
(Moore & Schneider, 1996), or in accordance with the
Interval Estimation heuristic (Kaelbling, 1990).

Empirically, we have found that PMAX using locally
weighted regression as the function approximator is of-
ten faster than more sophisticated alternatives (Moore
& Schneider, 1996). However it has some serious draw-

backs:

e First, one must solve the bias-variance trade-
off. This is often determined automatically us-
ing cross-validation (Moore et al., 1994), but this
proves difficult with a set of very few, weirdly dis-
tributed datapoints obtained during optimization.
Empirically we have observed dismal performance
when attempting this.

e Second, PMAX is very expensive. It needs to
train a function approximator each time an exper-
iment is made, and then the approximate func-
tion must be numerically optimized to produce
the suggested experiment.

e Third, PMAX can get stuck in “hallucinated” op-
tima.

e Fourth, and most importantly, it assumes a locally
smooth function. Discontinuities are disastrous

for PMAX.

Q2: the Q2 algorithm (Moore et al., 1998) attempts
to achieve second order (quadratic) convergence by fit-
ting local quadratics in a Newton-like method. Unlike
RSM it attempts to entirely automatically determine
a good region of interest, i.e. a region predicted to
with high probability contain a local optimum, that
is as small as possible (so as to minimize bias in the
quadratic approximation) but not so small that there
is no confidence in the optimum location. Q2 performs
well on a variety of noisy tasks subject to the assump-
tions of a continuous underlying f(z) and Gaussian
noise. Experimental efficiency appears to be competi-
tive with Amoeba and PMAX.

3. Nonparametric Statistics

Nonparametric statistics have been heavily used in
many areas of data analysis and machine learning for
years (Sprent, 1989). They rely on taking numerical
operations on the data and then testing for evidence
of some effect. They usually do so by empirically look-
ing at the distribution of this property implied by the
null hypothesis, and then testing whether the current
data set’s property lies in or out of the empirical null
distribution.

Nonparametric statistics have the advantage of hav-
ing fewer assumptions about the data, and can there-
fore be applied more broadly and with less trepidation.



Surprisingly, nonparametric statistics generally suffer
little loss in power in removing these assumptions.
Because of their more general nature, nonparametric
statistics can handle a diverse array of distributions
of data; in most arenas, nonparametric statistics are
synonymous with distribution-free statistics. When
experimental conditions depart substantially from the
basic assumptions underlying parametric tests, such
as normally distributed noise, nonparametric statistics
can offer much more powerful and robust tests.

Nonparametric statistics have rarely been used for ac-
tive learning or experiment design, and never previ-
ously (to our knowledge) for automated optimization
of noisy functions.

4. Detecting Minima

Because the function to be optimized will typically be
unknown before optimization takes place, we wish to
create a guiding model for minima which has simple
and hopefully robust assumptions about the shape of
the minimum. Therefore, we restrict ourselves to the
following assumption: the outputs of points closer to
the minimum are smaller than those of points farther
away. Given a set of points and a candidate minimum
z* we assume that, locally

f(z) = g(|Je —27]))

g monotonic (3)

Since we do not specify the shape of the function g, the
only parameter for a model k is z;,. Having few model
parameters allows efficient use of the data to make in-
ferences, thus requiring fewer experiments. The shape
of the minimum can take any form so long as the func-
tion is monotonically increasing with respect to the
distance from the minimum. Although this imposes
a strong assumption of symmetry with respect to the
distance metric ||-||, there is no requirement on f(x)
for continuousness or any prespecified noise distribu-
tion for y(z). Another useful property of this model
is immunity to all monotonic transformations of the
data.

Observed data will fit this model of minima to varying
degrees, so one would like to quantify the degree of
fit. Given the assumption of Equation 3, we will use a
nonparametric method to test the positive monotonic
association between |Jz — 2*|| and f(x). A typical non-
parametric measure used for this purpose is Kendall’s
correlation coefficient, otherwise known as Kendall’s
tau (Kendall, 1938). We will denote the Kendall’s tau
for the relationship between ||z — 2*|| and y(z) in the
data set D as 7+ p. In this paper, the subscript D
will be omitted whenever possible.

Figure 1. Example calculation of the statistic 7 with two
input dimensions. Each circle is a point in two-dimensional
space, with the y value inside the circle. Solid lines are the
perpendicular bisectors of each pair of points.
pair’s bisector, a solid triangle indicates the direction of the
smaller of the two points. A +1 or -1 indicates whether the
query point X is on the same side of the bisector as the
smaller of the two points. The statistic 7x is equivalent
to the sum of these numbers divided by the number of

For each

bisectors.

An intuitive geometric interpretation of the appear-
ance of Kendall’s tau here is the following: if one cre-
ates a perpendicular bisector between a pair of points
xz1 and x5, our model of a minimum will be satisfied
only if the minimum is on the same side of the bisector
as the point with the smaller y(z). One can imagine
creating n choose 2 bisectors in space, one for each pair
of points in the data set. The number of satisfied bisec-
tors minus the number of unsatisfied bisectors, divided
by the total number of bisectors, will have the same
distribution as Kendall’s tau. Figure 1 contains an ex-
ample of our use of Kendall’s tau and its calculation
with three data points.

More generally, we wish to calculate 7, for the model
of Equation 3 with z* = m and data set D. To do
this, we acquire the paired data, ||z; — m|| and y;, and
denote their ranks by r; and s; respectively. Next,
arrange the r; in ascending order (so that r; = i.)
A monotonic association between ||z —m|| and y(x)
should cause the s; to show either an increasing or de-
creasing trend. To measure this, we score each paired
difference s; —s; for i = 1,2,...,n—1 and j > ¢ as
+1 if the difference is positive and as -1 if negative.
Kendall called a positive difference a concordance and
a negative difference a discordance. Denoting the sums
of concordances and discordances by n. and ng4 respec-
tively, the equation for our tau is



Ne — Nyg
%n(n -1)

Tm = (4)
If the monotonic association is perfectly positive, 7, =
1, and perfectly negative association gives 7,, = —1.
If the rankings of ||z — m|| and y are independent, we
expect T,, to be close to 0. Ties in the rankings pose
no special difficulty; full explanation can be found in
Sprent (1989).

y(x)

Figure 2. Example data set

y(x)

6
[x-15|

Figure 3. Data from Figure 2 plotting |z — 15| against y(z)
in order to test the hypothesis that z* = 15.

123456 78 9 101112
2354611291110 8 7

|z — 15| rank
y(z) rank

Table 1. Ranked data from Figure 3. The paired ranks are
used to calculate 7 for the hypothesis that * = 15 for the
data in Figure 2.

For example, suppose that we have observed the data
in Figure 2 in which there is one input z and one

output y(z) = f(x) + noise. A possible model for a
minimum might be Equation 3 with z* = 15. In
order to test this model’s degree of fit, we will test
for a positive monotonic association between ||z — z*||
and f(x). This relationship is illustrated in Fig-
ure 3. Calculating 7,,=15 and its significance for this
model’s fit to the data in Table 1 yields the following:
ne=10+94+74+7+64+6+04+2+0+04+0+0= 47,
ng=1+14+24+1+14+04+5+2+34+2+1+0=19,
and 7 = (47— 19)/66 = 0.4242. A test for significance
of the hypothesis Hy : 7 = 0 against Hy : 7 > 0, will
require a precalculated table of critical values (found
in Sprent (1989).) Such a table gives a threshold value
of 0.3929 when n = 12 for 5% significance. Since
0.4242 > 0.3929, we reject Hy and accept a positive
monotonic association between |z — 15| and f(z) with

a confidence of 95%.

5. The PB1 Algorithm

The PAIRWISE BisEcTION (PBI1) algorithm has two
major phases. The first phase is sample reduction, in
which the data set is narrowed to a subset of promis-
ing points. The second phase is ezperiment selection,
which consists of choosing a point z from the area
defined by the reduced sample generated in the first
phase.

PHASE 1: SAMPLE REDUCTION

The purpose of sample reduction is to select a promis-
ing subset of the known datapoints. The reduced sam-
ple will ideally possess the following properties:

A. Covers a small enough section of the input space to
eliminate the bias of the monotonic model (Equa-
tion 3)

B. Contains enough points to counter the effects of
noise

C. Convexity

Not all these conditions can usually be satisfied at
once, so sample reduction makes tradeoffs among
them. The sample reduction phase used by PB1 con-
sists of finding the reduced set of points, D,.q4. At
the global level, the monotonic-minimum model is al-
most certainly biased. However, we will assume that
it is still useful as a heuristic indicator of unpromis-
ing points. These unpromising points are gradually
eliminated until a small set of points remains.

The sample reduction phase consists of the following
three steps :



1. Include all n known points into sample set Dy.

2. For every point j in D;, calculate ;. Generate
Dj41 by removing the exterior ! point in D; with
the smallest 7. Repeat this step for Dy through
Dy_1.

3. Decide which of these sample sets, Dy through
D,,_1, to use by choosing the smallest sample set
with a significant 7. The determination of signif-
icance in this case is decided by applying a two-
tailed hypothesis test to all points in D; (i.e., one
of the points’ 7 must be either significantly high
or low.)

Intuitively, since the 7 measure detects basin-like
structures, steps 1 and 2 will tend to produce reduced
samples that converge on local minima. When this is
the case, always selecting the smallest reduced sample
in step 3 will favor condition A, and the requirement
of structural significance will enforce condition B. The
final condition C is directly ensured by step 2, because
points are only allowed to be removed from the “exte-
rior” of the sample.

PHASE 2: EXPERIMENT SELECTION

The purpose of this phase is to select a point inside
the region defined by the points in the reduced sample.
The experiment selection phase consists of two steps:

1. Define the Region of Interest (ROI). The ROI
is defined as the set of all points in the input
space which meet the criteria given by Equations 5
and 6. For all points z in RO/,

Iz ==l (5)

min [Jz —y|| <  min
YED rea 2€(D—Drea)

This describes a Voronoi manifold from within
which the experiment must be drawn. The other
requirement is that all points in the ROI must also
fit the data in the reduced sample, i.e., for all z
in ROI,

Te,Drea 2 T (6)

Where 7% is a critical value for 7 that indicates a
significance level of a (typically 0.05). This value
only depends on the number of points in D,.q4,
and is precalculated.

! An exterior point is defined here to be any point which
is furthest from the centroid of the sample when all points
are projected onto the line through it and the centroid.
This is intended to be an approximation of the exterior
points of the minimum-area convex polyhedron.

2. Choose g experiments uniformly randomly from
within ROI. From these g points, with proba-
bility p choose the point with the best 7. With
probability (1 — p) choose the point furthest away
from all previously seen points.

The above procedure is currently implemented by a
simple algorithm that randomly draws points from the
full input space, then eliminates all points that do not
meet the criteria of 5 and 6. For our experiments the
somewhat arbitrarily chosen g and p values were 25
and 0.25, respectively. The values were selected prior
to running the algorithm on the test functions. The
performance of the algorithm does not seem sensitive
to the values.

6. Results

We compare PB1 with four versions of Amoeba and
three versions of PMAX. Amoeba is the classic search
algorithm from Press et al. (1992). Amoeba?2 is the
same except 1t is made resistant to noise by doing two
evaluations at each simplex vertex and taking their av-
erage. Amoeba4 and Amoeba8 similarly average four
and eight evaluations at each vertex. All the Amoebas
begin with a medium-sized simplex started randomly
in input space. The three different versions of PMAX
used locally weighted quadratic regression with differ-
ent kernel widths, meaning different positions on the
bias-variance tradeoff.

We use exactly the same experimental methodology as
Moore et al. (1998). All algorithms were tested on the
functions from Figure 4; Table 2 contains the results.
In all experiments we performed 25 independent runs
of each optimizer, with each run consisting of 60 exper-
iments. In addition to selecting the datapoints for the
experiments, at every stage the optimizers also gave
their estimate of the location of the optimum, and so
we look at the true value of the underlying function
at these estimates of the optimum. For PB1, the esti-
mate of the optimum was taken to be the point in the
reduced sample with the highest 7 value. For the ith
run of a particular optimizer, let s; denote the mean of
the true values at the estimates of the optimum. The
figures in the columns are the mean s; value of the op-
timizer on the final 15 of the 60 experiments over all

25 runs (ie. (3, s:)/25).

PB1 performs well on all the functions, although it
performs especially well in domains which are noisy,
contain outliers, or contain discontinuities. An initial
suspicion was that the symmetric nature of the mini-
mum model that PB1 uses would render the algorithm
susceptible to “ridges” in the objective function; we
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Figure 4. The test functions used to evaluate performance. The task was to maximize the value of the test function.

investigate this by adding two irrelevant dimensions
to the fjuass function. This created a long ridge in
four-dimensional space. PB1 fared as well as or better
than all other methods except Amoeba on this func-
tion. The frosensrock function contained a more pro-
nounced and difficult ridge, which was responsible for
PB1’s worst performance, although PB1 became com-
petitive in the noisy case.

Figure 4 shows a simulated version of a real industrial
(1998).
The optimization task is to maximize the yield, which
is determined by five parameters: reactant feed rate,

chemical process described in Moore et al.

mix-ratio, liquid level, thickener feed rate, and target
inventory level. The yield is a very noisy and highly

non-quadratic function; one input is almost irrelevant,
the others are all important, and two of the inputs
must run to their maximum legal value for best per-
formance. The results are given in Table 2, and show
that PB1 performs significantly better than all other
methods tested.

Next, we examine a domain where experiments are
time-consuming, a generalization of the multi-buffer
machine task described in Mahadevan et al. (1997)
(this makes ten products instead of five). There are
two inputs defining a simple parameterized policy for
when to service an unreliable machine. This task
is evaluated by a computationally expensive simula-
tion; each function evaluation requires 10000 simu-



Table 2. The functions used are those from Figure 4, with the goal of maxmization. Numbers in columns are mean score
of last 15 experiments out of 60. The sample size is 25. ‘Noise’ is normally distributed with a standard deviation of 0.3.
‘Outliers’ indicates that with probability 0.1, noise will be an order of magnitude greater (standard deviation = 3.0).
‘2dims’ indicates that two irrelevant input dimensions were added to the function. Significant (p < 0.05) results are
denoted by an asterisk, and indicate that the algorithm tested significantly better than all other methods on that task.
Due to the highly non-normal distribution of these means (bimodal in many cases) a nonparametric rank-sum test was

used to determine significance.

Amoeba  Amoeba  Amoeba  Amoeba | PMAX PMAX PMAX

1 2 4 8 Global Local V.Local Q2 PB1
foauss 1.00 0.99 0.80 0.61 0.99 0.99 1.00 1.00 1.00
fgauss+Noise 0.36 0.52 0.52 0.45 0.42 0.57 0.54 0.69 0.79*
fgauss+Noise+Outliers 0.48 0.29 0.38 0.41 0.20 0.36 0.35 0.43 0.72
fgauss+2dims 0.99* 0.82 0.56 0.21 0.40 0.41 0.34 0.78 0.79
fgauss+2dims+Noise 0.21 0.21 0.22 0.20 0.36 0.36 0.28 0.31 0.60*
fgauss+2dims+Noise+Outliers 0.17 0.14 0.13 0.16 0.20 0.25 0.19 0.18 0.48%*
faiscont 0.67 0.66 0.59 0.61 0.93 0.93 0.89 0.53 1.00*
faiscont+Noise 0.76 0.81 0.78 0.76 0.86 0.90 0.78 0.86 0.90
faiscont+Noise+Qutliers 0.71 0.73 0.70 0.74 0.65 0.71 0.65 0.71 0.89%*
fRosenbrock 9.97* 9.75 8.94 5.40 8.96 9.23 9.43 9.71 9.59
fRosenbrock+Noise 9.60 9.58 8.93 5.42 8.89 9.28 8.93 9.72%* 9.46
fRosenbrock +Noise+Outliers 9.27 9.56 8.79 5.36 8.90 9.07 8.47 9.53 9.51
feosines 0.75 0.75 0.65 0.42 0.58 0.60 0.56 0.88 0.90
feosines+Noise 0.54 0.59 0.56 0.36 0.53 0.60 0.34 0.56 0.79
feosines+Noise+Outliers 0.41 0.39 0.38 0.34 0.33 0.34 0.21 0.29 0.77*
Chemical Plant Simulation 26.39 30.04 25.24 17.90 40.33 39.52 24.80 42.79 | 48.86*
Multi-Buffer Simulation 1.68 2.41 2.82 1.02 -1.38 -1.45 -1.52 3.06 3.49

lation steps. Evaluations are very stochastic (with
highly non-Gaussian noise). The results are shown
for runs of only 24 experiments. PB1 learns a good
policy in these 24 experiments, i.e. a total of only
24 x 10000 simulation steps. This compares favorably
with the tens of millions of simulation steps needed for
reinforcement learning in Mahadevan et al. (1997).

7. Discussion

The ability of PB1 to choose points in the experiment
selection phase is still being improved upon. The cur-
rent method has difficulty in moving along some ridges,
for example the ridge in the frosenbrock function. This
difficulty may be a result of the model’s inherent bias
towards basin-like structures. Ways to address this,
such as a different methods of experiment selection or

manipulation of the distance metric, are being inves-
tigated.

Since pairwise bisection only requires distance mea-
surements to evaluate points for their potential as min-
ima, future work will apply it to optimization in hybrid
continuous-discrete input spaces. The only aspect of
the current algorithm that uses measurements other
than distance is the determination of which points are
“exterior” points. Ongoing work eliminates this de-
pendency and allows PB1 to be used in any domain
where a distance or similarity function can be defined,
e.g., combinatorial optimization of Bayes net structure
fits to data. The nonparametric nature of this algo-
rithm already allows it to optimize in non-continuous
output spaces.



8. Conclusion

We have developed a statistical method for char-
acterizing optima, pairwise bisection, which uses a
Kendall’s tau distribution. A new optimization al-
gorithm based on this nonparametric approach uses
the statistic for sample reduction and experiment se-
lection, and it seems to be competitive with existing
algorithms. Pairwise bisection attempts to introduce
discrete reasoning into optimization by assuming a set
of binary constraints on the the minimum, namely,
that the smaller member of every pair of data points
is closer to a minimum. Nonparametric statistical rea-
soning decides whether a set of points indicates the
presence of a minimum, and where to choose future
experiments. This initial foray indicates a promising
line of research for integrating nonparametric statistics
into optimization and active learning. In future work
we will apply these methods to learning parameters for
robot control and other types of control systems.
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