
A Modular Multiphase Heuristic
Solver for Post Enrolment

Course Timetabling
Marco Chiarandini, Chris Fawcett, Holger H. Hoos

A Competition Retrospective.
Chris Fawcett
March 12, 2008

Outline

• The ITC format.

• The problem model for track 2.

• Our development strategy.

• What actually ended up happening.

• The Algorithm.

• Parameter tuning.

• Performance.

The ITC

• Second time the competition has been run.

• First was in 2003, with a different format.

• Three independent tracks, each with
different problem models.

• Finalists chosen in each track based on
publicly available instances.

The ITC

• Five finalists chosen based on algorithm
performance on fourteen public instances.

• The problem? The performance is self-
reported, along with the random seed used.

• Verification of that seed is performed by
the track organisers.

• Our solution? Thousands of runs, of course!

Track 2

• Meant to describe the university
timetabling problem where students pick
courses before they are scheduled.

• Timetable constructed based on the course
choices for all students.

• Each course (event) must be given a time
slot and a room.

Track 2 Specifics

• n events to be scheduled into 45 slots (9
slots x 5 days).

• r rooms, each with a capacity.

• f “room features”

• Satisfied by rooms.

• Required by events.

Track 2 Specifics

• s students, each attending a set of events.

• Each event has a set of available timeslots.

• Possible precedence constraints between
pairs of events

• “A must be in an earlier slot than B”.

Hard Constraints

• No student can attend two events at the
same time.

• The room chosen for a particular event
must be big enough and have the right
features.

• One event per room in each time slot.

•

Hard Constraints

• Each event cannot be assigned to a time
slot that is not in its “available” set.

• Events cannot violate the given precedence
constraints.

• Can leave events unscheduled to prevent
hard constraint violations.

Soft Constraints

• Try not to schedule events in the last time
slot of each day.

• Students shouldn’t attend three or more
events in successive time slots in one day.

• Students shouldn’t have only a single event
on a given day.

Valid vs. Feasible
solutions

• A valid timetable is one with no hard
constraint violations, but where some
events have been left unscheduled.

• A feasible timetable is a valid timetable with
no events unscheduled.

• All solutions returned must be valid.

Development Strategy

• Try and integrate the automated parameter
tuning process earlier in development.

• Expose as many parameters as possible, let
ParamILS sort it out.

• Iterate based on the tuning results.

What Actually
Happened?

• ~1 month of development and tuning.

• Some success using this model.

• Pressed for time, so in the end things were
quite rushed.

• Not quite enough time for all of the tuning.

• Some parameters dropped in order to have
faster tuning runs.

Our Algorithm

• Builds on work by Marco Chiarandini in the
2003 competition.

• Three phases:

• Construction.

• Hard constraint satisfaction.

• Soft constraint satisfaction.

Construction

• Generates valid solutions, with possibly
many events left unscheduled.

• Unscheduled events are iteratively placed
into with feasible time slot that is available
to the fewest unscheduled events.

• A topological order is used to make sure
precedence constraints are satisfied.

Hard Constraint Solver

• Tabu search

• At each iteration, an unscheduled event is
inserted into the best non-tabu time slot.

• Selected by looking at the number of
students involved.

• All events now causing violations are
removed from the timetable.

Soft Constraint Solver

• Simulated annealing over several
neighbourhoods.

• 1-exchange

• 2-exchange

• Swap of time slots

• Kempe chains.

Soft Constraint Solver

• The soft constraint neighbourhoods can
introduce hard constraint violations.

• If a quick run of the hard constraint solver
can’t repair them, revert.

Parameter Tuning

• During development, many tuning runs
used to see how heuristics performed, as
well as combinations of heuristics.

• Final tuning used 8 parameters with
reasonably discretised domains, for time
reasons.

• Each instance run took five minutes, with
16 instances in the training set.

Parameter Tuning

• 80 ParamILS runs performed on Arrow,
with each run lasting approximately 24
hours.

• Several parameters ended up being set to
the same value in all 80 final configurations.

• Others were set to several close values in
their domains.

Public Instances

• Sixteen instances in total, with seven
released two weeks before the competition
deadline.

• 8 had only 200 events and were generally
trivial to solve the hard constraints for.

• 8 had 400 events and were quite a bit
harder.

Public Instance
Performance

• 541 runs on each of the 16 instances, using
the final parameter configuration.

• Best solutions found for each instance were
feasible.

• For several 200-event instances, the soft
constraint violations were brought to zero
or very close to zero.

SQD
• This is the empirical SQD for instance 2-10 with the final parameter

configuration.

• This is arguably the hardest public instance we had, our submission had
quality 1364.

Conclusions

• We were selected as finalists, so hopefully
that means the approach was at least
decent.

• ParamILS was extremely helpful.

• There is no way we could have manually
tuned without taking a lot of time away
from development.

Questions?

