A Modular Multiphase Heuristic
Solver for Post Enrolment
Course Timetabling

Marco Chiarandini, Chris Fawcett, Holger H. Hoos

A Competition Retrospective.
Chris Fawcett
March 12,2008

Qutline

The ITC format.

The problem model for track 2.
Our development strategy.

What actually ended up happening.
The Algorithm.

Parameter tuning.

Performance.

The ITC

Second time the competition has been run.
First was in 2003, with a different format.

Three independent tracks, each with
different problem models.

Finalists chosen in each track based on
publicly available instances.

The ITC

Five finalists chosen based on algorithm
performance on fourteen public instances.

The problem? The performance is self-
reported, along with the random seed used.

Verification of that seed is performed by
the track organisers.

Our solution? Thousands of runs, of course!

Track 2

® Meant to describe the university

timetabling problem where students pick
courses before they are scheduled.

® [imetable constructed based on the course
choices for all students.

® Each course (event) must be given a time
slot and a room.

Track 2 Specifics

® n events to be scheduled into 45 slots (9
slots x 5 days).

® r rooms, each with a capacity.
® f “room features”
® Satisfied by rooms.

® Required by events.

Track 2 Specifics

® s students, each attending a set of events.
® Each event has a set of available timeslots.

® Possible precedence constraints between
pairs of events

® “A must be in an earlier slot than B”’.

Hard Constraints

No student can attend two events at the
same time.

The room chosen for a particular event
must be big enough and have the right

features.

One event per room in each time slot.

Hard Constraints

Each event cannot be assigned to a time
slot that is not in its “available” set.

Events cannot violate the given precedence
constraints.

Can leave events unscheduled to prevent
hard constraint violations.

Soft Constraints

Try not to schedule events in the last time
slot of each day.

Students shouldn’t attend three or more
events in successive time slots in one day.

Students shouldn’t have only a single event
on a given day.

Valid vs. Feasible
solutions

® A valid timetable is one with no hard
constraint violations, but where some
events have been left unscheduled.

® A feasible timetable is a valid timetable with
no events unscheduled.

® All solutions returned must be valid.

Development Strategy

® [ry and integrate the automated parameter
tuning process earlier in development.

® Expose as many parameters as possible, let
ParamlLS sort it out.

® |terate based on the tuning results.

What Actually
Happened!

~| month of development and tuning.
Some success using this model.

Pressed for time, so in the end things were
quite rushed.

Not quite enough time for all of the tuning.

Some parameters dropped in order to have
faster tuning runs.

Our Algorithm

® Builds on work by Marco Chiarandini in the
2003 competition.

® Three phases:
® Construction.
® Hard constraint satisfaction.

® Soft constraint satisfaction.

Construction

® Generates valid solutions, with possibly
many events left unscheduled.

® Unscheduled events are iteratively placed
into with feasible time slot that is available
to the fewest unscheduled events.

® A topological order is used to make sure
precedence constraints are satisfied.

Hard Constraint Solver

® T[abu search

® At each iteration, an unscheduled event is
inserted into the best non-tabu time slot.

® Selected by looking at the number of
students involved.

® All events now causing violations are
removed from the timetable.

Soft Constraint Solver

® Simulated annealing over several
neighbourhoods.

| -exchange
2-exchange
Swap of time slots

Kempe chains.

Soft Constraint Solver

® The soft constraint neighbourhoods can
introduce hard constraint violations.

® |f a quick run of the hard constraint solver
can’t repair them, revert.

Parameter Tuning

® During development, many tuning runs
used to see how heuristics performed, as
well as combinations of heuristics.

® Final tuning used 8 parameters with
reasonably discretised domains, for time
reasons.

® FEach instance run took five minutes, with
|6 instances in the training set.

Parameter Tuning

® 80 ParamlLS runs performed on Arrow,
with each run lasting approximately 24
hours.

® Several parameters ended up being set to
the same value in all 80 final configurations.

® Others were set to several close values in
their domains.

Public Instances

® Sixteen instances in total, with seven
released two weeks before the competition
deadline.

® 8 had only 200 events and were generally
trivial to solve the hard constraints for.

® 8 had 400 events and were quite a bit
harder.

Public Instance
Performance

® 54| runs on each of the |16 instances, using
the final parameter configuration.

® Best solutions found for each instance were
feasible.

® For several 200-event instances, the soft
constraint violations were brought to zero
or very close to zero.

SQD

This is the empirical SQD for instance 2-10 with the final parameter
configuration.

This is arguably the hardest public instance we had, our submission had
quality 1364.

4 1 1 1 1 1 1 1
1288 1488 16688 15088 2808 2288 2488 2608 2508 3668

Conclusions

® We were selected as finalists, so hopefully
that means the approach was at least
decent.

® ParamlLS was extremely helpful.

® There is no way we could have manually
tuned without taking a lot of time away
from development.

Questions!

