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Outline
• Metaheuristics and measuring their performance

• Univariate Analysis

• Characterisation and statistical testing

• Component comparison and tuning

• Multivariate Analysis

• Characterisation and statistical testing in two 
scenarios



Metaheuristics
• Creating a heuristic from a collection of other 

heuristics.

• Construction heuristics

• Local search neighbourhoods

• Hill-climbing and memory techniques

• etc.



Measuring Performance
• Often we don’t reach an optimal solution after 

a given time bound.

• Two helpful metrics:

• Solution quality achievable given a time 
bound

• Time required to find a solution with a given 
quality

• Both are (in general) random variables.



Measuring Performance
• The field of statistics offers:

• A systematic framework for designing 
experiments.

• A Mathematical foundation for inferring the 
probability of events from empirical data.



Univariate Model
• Experimenter is interested in either solution 

cost or run-time.

• In both cases, the variable not under 
consideration is fixed to something 
reasonable.



Characterisation
• Performance measure X of a metaheuristic on 

a single instance is described equivalently by

• its probability distribution

• its cumulative (discrete) distribution function
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Fig. 1. ECDFs of two metaheuristics on the graph coloring problem. On the left we
measure the solution cost in terms of number of colors which are to be minimized,
on the right we measure the computational time to find a solution with the minimal
number of colors. A dashed line and a dotted line are used to distinguish between
different algorithms.

Characterization The performance measure X (solution-cost or run-time) of a
metaheuristic on a single instance can be described by its probability distribution
p(x) = Pr [X = x] or equivalently by its cumulative distribution function7

F (x) = Pr [X ≤ x] =
∑

xi≤x

p(xi). (1)

Alternatively, if the probability distribution is known, few parameters, e.g., the
mean and variance, may be enough to represent it.

In experiments on metaheuristics, we observe data X1, . . . , Xn sampled from
the distributions above. It is then possible to derive the empirical cumulative
distribution function (ECDF) as follows

Fn(x) =
1
n

n∑

i=1

I(Xi ≤ x) (2)

where I(·) denotes the indicator function. Note that the formula is general and
holds both for uncensored as well as for censored data. In experiments on meta-
heuristics which consider run-time, sample data may be censored if a time limit
(imposed for practical reasons) is reached before a local optimum or a solution
with certain properties is found.

In Figure 1 we show examples of ECDFs for metaheuristics on the graph
coloring problem. On the left two metaheuristics are run 30 times on the same
7 We restrict the notation to the discrete case, which is often the case of the existent

experimental research.
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Characterisation
• Our experiments sample data X1, X2, ..., Xn 

from these distributions, giving an empirical 
cumulative distribution function (ECDF)

• Holds for censored and uncensored data.
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Characterisation
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Characterisation
• Usually we care about performance on a class 

of instances.

• We use a representative sample of this class,     
   , yielding the modified probability distribution

• More convenient if the samples have equal 
probability.

instance and the depicted ECDFs represent the frequency with which each algo-
rithm attains coloring at least as good as the colors indicated on the x-axis. On
the right two metaheuristics are left running 600 seconds on the same instance
recording the time when the chromatic number is found. In this case, the ECDFs
represent the frequency with which a solution is found within the time indicated.
The fact that one ECDF is truncated (i.e., it does not reaches 1) indicates that
the algorithm was not able to solve the instance within the given time.

Usually, the performance assessment of a metaheuristic is carried out on a
representative sample of a class of instances. In this context, a performance
measure X of a metaheuristic that is applied to a class of instances Π can be
described by the following probability distribution [6,23]

p(x) =
∑

π∈Π

p(x|π)p(π). (3)

In practice, instances in the class may have different probabilities to appear and,
hence, the term p(π) has an influence in the analysis. If instances are instead
equally likely to appear, the term p(π) is a constant and may be neglected. The
way to deal with p(π) is in the instance sampling process. Here we assume for
the sake of simplicity that instances are sampled from the class Π with equal
probability.

Summary measures for sampled data are divided into measures of location,
such as the sample mean and q-quantiles, and measures of dispersion, such as the
sample variance and the standard variation. Clearly, summary measures tend to
hide part of the information contained in the sample data. Often histograms,
boxplots and ECDF plots are used to provide a more complete view of the data.

Few computational studies focus on the characterisation of metaheuristic per-
formance, i.e., the nature of the distribution p(x). On the side of run-time, some
links have been explored with a branch of statistics called survival analysis that
deals with time-to-event models. It was shown that ECDFs of run-time obtained
by high-performance metaheuristics are often close to being exponentially dis-
tributed [19]. On the side of solution-cost, some research has used models from
extreme value theory to support the conclusion that ECDFs are well approxi-
mated by Weibull distributions [25].

Analysis Most of the literature on metaheuristics has focused on experimental
comparisons. In this case, the use of descriptive statistics, such as the sample
mean and the standard deviation, is not sufficient. Inferential statistics must also
be used to check that the sampled data are enough to claim that the differences
observed can be generalized to the population distributions. Statistical tests are
used to make these statements objective by checking whether a standard level of
confidence is present in the data. If the test does not allow to reject the absence of
differences, the researcher must either collect more data in order to increase the
power of the test and detect also small differences or he must stop if differences
become irrelevant in practical terms.
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Characterisation
• Summary measures for this sample data are 

divided into

• measures of location (sample mean, q-
quantiles)

• measures of dispersion (sample variance)

• Summary measures by definition remove 
some of the information in the samples.

• Should prefer the ECDFs themselves.



Characterisation
• For run-time, there are links to a branch of 

statistics called survival analysis, dealing with 
time-to-event models.

• ECDFs for run-time are often exponentially 
distributed.

• ECDFs for solution cost are often well-
approximated by Weibull distributions.



Statistical Analysis
• Descriptive statistics are not sufficient.

• Inferential statistics must be used to check 
that the sampled data are enough to 
generalise the results.

• Statistical testing makes these statements 
objective.

• Both parametric and non-parametric tests 
exist.



Statistical Analysis
• Parametric tests often assume normally 

distributed data.

• Authors claim that this isn’t an issue 
because some parametric tests are robust?

• Non-parametric tests remove this normality 
assumption



Statistical Analysis
• Two sample unreplicated tests

• Matched pairs Welch t-test (parametric)

• binomial test or Wilcoxon signed rank test (non-
parametric)

• Replicated

• Blocking on both instance and seed, or

• two-way ANOVA or Kruskal-Wallis rank sum test



Statistical Analysis
• It can be more accurate to compare the ECDFs of 

two metaheuristics.

• Kolmogorov-Smirnov (KS) test uses the maximal 
difference between two ECDF curves. Can identify 
statistical dominance.

• Can be hard to identify a preferred metaheuristic 
when there is no statistical dominance.

• All of these tests assume uncensored data.



Regression Trees
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Fig. 2. An example of regression tree analysis for Tabu Search components on the
graph coloring problem. The importance of the effect of factors on the performance
is recognizable from the level in the tree where the relative branching occurs. In this
analysis the two numerical parameters do not yield any branching meaning that their
effect is negligible.

value ranges. This is especially helpful if quantitative and qualitative variables
are contained in the system, as it is often the case if metaheuristic parameters
are considered. Both are matched onto decision tree splits within the same bi-
nary tree. The importance of a variable or value range of a variable directly
corresponds to the level of the nodes containing it in its decision criterion. A
weakness of this technique is that variable interactions are not considered in the
linear models that determine the splits. The sample set is partitioned into axis
parallel rectangles in the coordinate system of the variables. CART, classification
and regression trees, a standard method, dates back to [7].

An example of the output of this analysis is given in Figure 2. The data
are extracted by an experiment designed to assess the contribution of compo-
nents in a Tabu Search metaheuristic for the graph coloring problem. Factors of
the study were: three strategies to restrict the neighborhood, three prohibition
mechanisms in the definition of a tabu move and two numerical parameters for
the definition of the tabu length. All these Tabu Search instantiations were run
once with the same time limit on 30 uniform graphs of the same size. In the fig-
ure, the performance measure y corresponds to the number of colors normalized
among the instances. The lower this measure is, the better the performance of
the algorithms that belong to the root-leaf path is. The number of data n left
after the partition is also reported. On the nodes, the p-value of the test that
determines branching is also reported.

Designs and techniques for parameter screening and tuning The de-
ployment of a metaheuristic usually involves setting the values of a large number
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Parameter Tuning
• How to determine which algorithm parameters 

and instance properties have effects on the 
response.

• What are the most important parameters?

• Factorial designs aren’t really appropriate

• Fractional Factorial Designs can be

• Authors mention desirability functions and 
overlay plots.



Sequential Testing
• How many runs do we need to make to 

identify differences between two parameter 
configurations?

• Racing algorithms (F-Race)

• Sequential Parameter Optimisation (SPO)

• Crossover between the two?



Multivariate Model
• A thorough understanding of metaheuristic 

performance should include both run-time and 
solution quality.

• Authors distinguish two scenarios of this type.



Scenario One
• We evaluate solution cost and run-time at the 

point where a certain termination criteria is 
reached.

• Each run of a metaheuristic is single data 
point (solution cost, run-time)



Characterisation
• If             is the bivariate performance 

measure, the cumulative distribution function 
is

• and the corresponding ECDF:

configuration, the internal model of SPO may also be used for algorithm anal-
ysis purposes (parameter interactions, etc.). A crossover of the two approaches,
extending SPO by means of automatic hypothesis testing as used in the F-Race,
is suggested in [4].

3 The Multivariate Model

In the analysis of metaheuristics for optimization problems the univariate case
may be oversimplified. A thorough understanding of the performance of a meta-
heuristic should include indeed both solution-cost and run-time. In this case,
the analysis falls into the scope of Multivariate statistics. We distinguish two
specific scenarios under the multivariate model that may be of interest for the
researcher:

– Scenario 1 : study of solution cost and run-time when a certain termination
criterion is reached, that is, the metaheuristic terminates naturally ; therefore,
each run of a metaheuristic is represented by a point in the plane solution-
cost× run-time;

– Scenario 2 : study of solution cost and run-time during the run of the algo-
rithm until a certain termination condition is reached; hence, each run of an
algorithm is characterized by a set of points in the plane solution-cost×run-
time..

3.1 Scenario 1

A typical example under this scenario is the study of construction heuristics.
They terminate when a complete solution has been produced. The interest is in
determining which heuristic returned the best solution and was the fastest.

Characterization Let X ∈ R2 denote now the bivariate performance measure
of solution-cost and run-time. Its distribution function is defined by

F (x) = Pr[X ≤ x]

where ≤ denotes the weak component-wise order in R2. F (x) gives the probabil-
ity that a metaheuristic finds a given solution cost within a given run-time.
The estimation of this probability is obtained from a collection of n points
X1, . . . ,Xn of solution-cost and run-time at the end of n independent runs.
The corresponding ECDF is then defined as:

Fn(x) =
1
n

n∑

i=1

I(Xi ≤ x).

Note that the ECDF can take also points derived from intersections of point
coordinates [17]. Algorithms for computing these ECDFs are described in [5,14].

9

configuration, the internal model of SPO may also be used for algorithm anal-
ysis purposes (parameter interactions, etc.). A crossover of the two approaches,
extending SPO by means of automatic hypothesis testing as used in the F-Race,
is suggested in [4].

3 The Multivariate Model

In the analysis of metaheuristics for optimization problems the univariate case
may be oversimplified. A thorough understanding of the performance of a meta-
heuristic should include indeed both solution-cost and run-time. In this case,
the analysis falls into the scope of Multivariate statistics. We distinguish two
specific scenarios under the multivariate model that may be of interest for the
researcher:

– Scenario 1 : study of solution cost and run-time when a certain termination
criterion is reached, that is, the metaheuristic terminates naturally ; therefore,
each run of a metaheuristic is represented by a point in the plane solution-
cost× run-time;

– Scenario 2 : study of solution cost and run-time during the run of the algo-
rithm until a certain termination condition is reached; hence, each run of an
algorithm is characterized by a set of points in the plane solution-cost×run-
time..

3.1 Scenario 1

A typical example under this scenario is the study of construction heuristics.
They terminate when a complete solution has been produced. The interest is in
determining which heuristic returned the best solution and was the fastest.

Characterization Let X ∈ R2 denote now the bivariate performance measure
of solution-cost and run-time. Its distribution function is defined by

F (x) = Pr[X ≤ x]

where ≤ denotes the weak component-wise order in R2. F (x) gives the probabil-
ity that a metaheuristic finds a given solution cost within a given run-time.
The estimation of this probability is obtained from a collection of n points
X1, . . . ,Xn of solution-cost and run-time at the end of n independent runs.
The corresponding ECDF is then defined as:

Fn(x) =
1
n

n∑

i=1

I(Xi ≤ x).

Note that the ECDF can take also points derived from intersections of point
coordinates [17]. Algorithms for computing these ECDFs are described in [5,14].

9

configuration, the internal model of SPO may also be used for algorithm anal-
ysis purposes (parameter interactions, etc.). A crossover of the two approaches,
extending SPO by means of automatic hypothesis testing as used in the F-Race,
is suggested in [4].

3 The Multivariate Model

In the analysis of metaheuristics for optimization problems the univariate case
may be oversimplified. A thorough understanding of the performance of a meta-
heuristic should include indeed both solution-cost and run-time. In this case,
the analysis falls into the scope of Multivariate statistics. We distinguish two
specific scenarios under the multivariate model that may be of interest for the
researcher:

– Scenario 1 : study of solution cost and run-time when a certain termination
criterion is reached, that is, the metaheuristic terminates naturally ; therefore,
each run of a metaheuristic is represented by a point in the plane solution-
cost× run-time;

– Scenario 2 : study of solution cost and run-time during the run of the algo-
rithm until a certain termination condition is reached; hence, each run of an
algorithm is characterized by a set of points in the plane solution-cost×run-
time..

3.1 Scenario 1

A typical example under this scenario is the study of construction heuristics.
They terminate when a complete solution has been produced. The interest is in
determining which heuristic returned the best solution and was the fastest.

Characterization Let X ∈ R2 denote now the bivariate performance measure
of solution-cost and run-time. Its distribution function is defined by

F (x) = Pr[X ≤ x]

where ≤ denotes the weak component-wise order in R2. F (x) gives the probabil-
ity that a metaheuristic finds a given solution cost within a given run-time.
The estimation of this probability is obtained from a collection of n points
X1, . . . ,Xn of solution-cost and run-time at the end of n independent runs.
The corresponding ECDF is then defined as:

Fn(x) =
1
n

n∑

i=1

I(Xi ≤ x).

Note that the ECDF can take also points derived from intersections of point
coordinates [17]. Algorithms for computing these ECDFs are described in [5,14].

9



Characterisation
• Can compare the envelope or center of gravity 

of the two sets of points.
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Fig. 3. Two sets of points in the space solution-cost and run-time obtained by running
two construction heuristics for graph coloring on 20 instances.

Analysis In multivariate analysis the interest is either about the “external”
structure of data (i.e., the configuration or interpoint distances of swarms of
points in the Euclidean space R2 of solution-cost and run-time) or about the
“internal” structure of the variables (i.e., how much correlated solution-cost and
run-time are). In our specific case, the interest is mainly in the “external” struc-
ture which, in the two algorithms case, corresponds to comparing two samples
of points by examining the center of gravity of the two swarms. Note that when
the points represent results on different instances it may be necessary to apply
some transformation to data in order to make their comparison meaningful.

This situation is represented in Figure 3 where we plot the points in the space
solution-cost and run-time attained by two construction heuristics for the graph
coloring problem, namely DSATUR [8] and RLF [22]. Each point represents
one run of the construction heuristic on one instance and indicates the quality
of the solution returned and the computational time. The data are collected
by running both algorithms on a set of 20 instances of similar characteristics
yielding 20 bivariate observations per algorithm.

In parametric statistics, a test to compare the bivariate means is the Hotelling’s
T2 test [1]. In the case of comparisons with more than two algorithms, the mul-
tivariate analysis of variance (MANOVA) [32] can be used to guarantee the
overall confidence level before proceeding to the pairwise comparisons. In the
non-parametric alternative, extensions of permutation tests based on the same
Hotelling’s T2 test statistic have been proposed in [16,26]. Note that the no-
tion of rank ordering that underlies univariate non-parametric statistics does
not readily extend into several dimensions.

As in the previous cases, one could also look more closely at the distribution of
solution-cost and run-time, hence considering the corresponding ECDFs. Statis-
tical tests based on a supremum test statistic similar to the Kolmorogov-Smirnov
test for the two-sample case or the Birnbaum-Hall test for the multi-sample case
can be applied to compare these distributions. However, the distribution of the

10



Statistical Analysis
• Can compare bivariate means using

• Hotelling’s T2 test (parametric)

• multivariate analysis of variance (MANOVA)

• Rank ordering doesn’t extend to multiple 
dimensions, so non-parametric testing is 
unclear.

• Can also extend Kolmogorov-Smirnov and 
Birnbaum-Hall to the ECDFs.



Scenario Two
• The experimenter is interested in solution cost 

during the run of a metaheuristic.

• A single run is now a set of (solution cost, run-
time) points.

• Analysis and characterisation from random-set 
theory.



Characterisation
• Given that we care about improvements over 

the course of a run, we can use the set of non-
dominated points:

• ECDF defined as usual:

test statistics is not known in advance and, therefore, one has to implement
permutation tests.

3.2 Scenario 2

In this scenario, the researcher is interested in the distribution of the solution
cost over the time in which the metaheuristic was running. The analysis be-
comes more complex because, as described previously, it has to focus on sets of
points of solution-cost and run-time collected during possibly multiple runs of
the metaheuristics.

Characterization As suggested in [17,19,33], the distribution of solution-cost
and run-time is seen as a random set of bidimensional points which is obtained
during the run. Therefore, topics of random set theory seem appropriate for the
analysis of metaheuristics under this scenario [17,15]. If only the improvements
with respect to solution cost are recorded, the run of a metaheuristic can then
be described as a set of non-dominated points of solution-cost and run-time [17].
Let X = {Xj ∈ R2, j = 1, . . . ,m} be a random set of m points of solution-cost,
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run-time is then denoted by
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where X ! x means that X1 ≤ x ∨ . . . ∨Xm ≤ x [17]. The estimation of this
probability is obtained from a collection of points of solution-costs and run-
times whenever there is an improvement on the solution-cost during each of the
n independent runs. The corresponding ECDF is then defined as follows:

Fn(x) =
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i=1

I(Xi ! x) (5)

where X1, . . . ,Xn are n sets of non-dominated points of solution-cost and run-
time obtained in n independent runs. Note that Eq. (4) corresponds to the
attainment function (AF) and Eq. (5) to the empirical AF [17].10
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Stützle [33] proposed a similar perspective to analyze a metaheuristic by
the ECDF of run-time for chosen bounds on the solution cost based on certain
ratios from the known optimum (or lower bounds); the resulting distributions
are called qualified run-time distributions functions.
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Stützle [33] proposed a similar perspective to analyze a metaheuristic by
the ECDF of run-time for chosen bounds on the solution cost based on certain
ratios from the known optimum (or lower bounds); the resulting distributions
are called qualified run-time distributions functions.
10 Code for computing these ECDFs is available at www.tik.ee.ethz.ch/pisa/.

11



Characterisation
• We can slice this bivariate ECDF in any of the 

three axes to create interesting graphs.

• The authors only mention probability 
quantiles. time
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Fig. 4. Plots of EAFs for the performance of a Novelty and a Tabu Search algorithm
for an instance of the graph coloring problem. See text for more details.

Analysis When comparing metaheuristics in this scenario, the best metaheuris-
tic is the one that produces a set of points of solution-cost and run-time that
dominates all the other sets of points of solution-cost and run-time associated
with the other metaheuristics. It is difficult to find such metaheuristic in practice.
There are those that converge to reasonably good solution quality very quickly,
and those that can reach high quality solutions only after a large amount of
time, following a slower convergence rate. The goal should be to find which
metaheuristic performs better with respect to different intervals of computation
time.

Very little research has been undertaken on this topic. We mention the work
of Taillard [34] who suggested the use of statistical tests to compare solution costs
of algorithms during the run. After collecting points of solution-cost and run-time
associated to multiple runs of several metaheuristics, a Mann-Whitney test is
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Statistical Analysis
• Fairly rare to see statistical dominance of 

these ECDFs in practice.

• Perhaps finding the best performance for 
some specific run-times, etc.



Statistical Analysis
• Taillard has used a Mann-Whitney test for 

comparing the solution costs of a set of 
algorithms each time any of them improve.

• Can also use KS or Birnbaum-Hall analogues 
to test inequality of ECDFs.

• Note also that these bivariate ECDFs do not 
capture dependence between solution cost 
and run-time.



Nutshell Summary?
• Univariate case is well studied and principled 

analysis is (relatively) straightforward.

• Multivariate case gets hairy quickly, is still an 
active area of research.

• Advanced methods for the multivariate case 
haven’t really been explored.

• Try to be as principled as possible, perhaps?


