
Towards Industrial-Like Random SAT Instances∗

Carlos Ansótegui

DIEI, UdL

Jaume II 69, Lleida, Spain

Maria Luisa Bonet

LSI, UPC

J. Girona 1–3, Barcelona, Spain

Jordi Levy

IIIA, CSIC

Campus UAB, Bellaterra, Spain

Abstract

We focus on the random generation of SAT in-
stances that have computational properties that are
similar to real-world instances. It is known that
industrial instances, even with a great number of
variables, can be solved by a clever solver in a
reasonable amount of time. This is not possible,
in general, with classical randomly generated in-
stances. We provide different generation models
of SAT instances, extending the uniform and reg-
ular 3-CNF models. They are based on the use of
non-uniform probability distributions to select vari-
ables. Our last model also uses a mechanism to
produce clauses of different lengths as in industrial
instances. We show the existence of the phase tran-
sition phenomena for our models and we study the
hardness of the generated instances as a function
of the parameters of the probability distributions.
We prove that, with these parameters we can adjust
the difficulty of the problems in the phase transition
point. We measure hardness in terms of the per-
formance of different solvers. We show how these
models will allow us to generate random instances
similar to industrial instances, of interest for testing
purposes.

1 Introduction

SAT is an NP-complete problem in the worst case, and in fact
a big percentage of formulas need exponential size resolution
proofs to be shown unsatisfiable. Nevertheless, state-of-the-
art solvers have been shown of practical use working with
real-world (industrial) instances. As a consequence the de-
velopment of these tools has generated a lot of interest.

The celebration of SAT competitions has become an essen-
tial method to validate techniques and lead the development
of new solvers. In these competitions there are three cate-
gories of benchmarks, randomly generated, crafted, and in-
dustrial instances. It is difficult for solvers to perform well
on all of them. This has led researchers to say that randomly
generated and industrial instances are of distinct nature. It

∗Research partially supported by the research projects TIN2007-
68005-C04-{01,03,04} and TIN2006-15662-C02-02.

has been postulated that industrial instances have a hidden
structure that can be exploited. In [12] it is proved that in-
dustrial instances contain a small number of variables that,
when instantiated, make the formula easy to solve. In [1] it
is shown that industrial instances have a smaller tree-like res-
olution space complexity than randomly generated instances
with the same number of variables.

The practical applicability of SAT solvers forces them to
try to be good in the industrial category. However the num-
ber of benchmarks in this category is limited. Also, the in-
stances are isolated ones, not a family of instances, one for
every number of variables. And finally, they do not have a pa-
rameterized degree of difficulty. On the other hand, random
formulas can be easily generated with any size, hence with
the desired degree of difficulty. Moreover, they can be gener-
ated automatically on demand, what makes their use in com-
petitions more fair, because they are not known in advance
by participants. It would be interesting to be able to generate
instances with the good properties of both categories.

This project was stated in “Ten Challenges in Propositional
Reasoning and Search” [11] and in “Ten Challenges Redux :
Recent Progress in Propositional Reasoning and Search” [8]

as the tenth challenge. Also Rina Dechter in [4] proposes the
same objective. In this paper we want to make a contribution
in this direction, defining new generators models of random
formulas.

Our models are based on the uniform and the regular ran-
dom k-CNF generators. The first one has been studied for
a long time and consists in selecting uniformly and indepen-
dently m clauses from the set of all clauses of size k on a
given set of n variables. The second one is studied in [2;
3] and consists in selecting uniformly one formula from the
set of formulas with m clauses of size k, and n variables,
where all literals have nearly the same number of occur-
rences, i.e. either �k·m

2n � or �k·m
2n � + 1. We generalize these

two models, to build our first four models (geometric, georeg-
ular, powerlaw and powregular), by selecting variables fol-
lowing two distinct probability distributions, one geometric
P (i) = C b−i and another one power-law P (i) = C i−β .
Both distributions include the classical definition as a spe-
cial case (b = 1 or β = 0). On the other hand, when we
move away from these special cases, some variables occur
much more frequently than others. In all the previous models
the length of clauses is fixed. Since this is not the common

387

structure in industrial instances we introduce a fifth model.
This last model iteratively uses a probability distribution to
select a variable and another probability distribution to select
a clause where to put the variable. We also compare the fre-
quency of number of occurrences of variables and lengths of
clauses that we obtain, with the frequencies observed in in-
dustrial instances. We show that the power-law distribution
fits very well the frequencies observed in the instances of the
SAT Race 2008.

We have observed that for all our models we can experi-
mentally identify a phase transition point characterized by a
constant ratio on the number of clauses over the number of
variables. This is not trivial, since there are variations of our
models where the phase transition point would not happen at
a fixed ratio. We are interested in generating formulas with
this precise ratio, because otherwise we could easily produce
trivially satisfiable or unsatisfiable instances. Instead we want
to obtain reasonably easy formulas, as close to the industrial
ones as possible, but not trivial.

Finally, as a test of how real our random instances look
like, we have compared the time required by solvers special-
ized in industrial instances with the time required by solvers
specialized in random instances. We observe that, when we
move away from the classical case, solvers specialized in in-
dustrial instances become faster than solvers specialized in
random instances.

2 Description of the Models

We generalize the uniform and the regular random k-CNF
generators by selecting variables following two distinct non-
uniform distributions, one geometric and the other one power-
law.

2.1 Geometric and Powerlaw k-CNF Models

The distributions we use must have a discrete and finite do-
main of size n, where n is the number of variables. Therefore,
n is a parameter of the distribution, and we need in fact a fam-
ily of probability distribution functions, one for each value of
n. In the particular case of the uniform distribution, for every
n, we have P (X = i; n) = 1/n.

Given a continuous probability distribution φ with domain[
0, 1

]
, we can easily generate a family of probability distribu-

tions P (X = i; n), with discrete domain i = {1, . . . , n}, as

follows. We break the interval
[
0, 1

]
into n pieces, obtaining

the points 1/n, 2/n, . . . , 1. Then P (X = i; n) is defined to
be φ(i/n) with the appropriated normalization. This results
into:

P (X = i; n) =
φ(i/n)∑n

j=1 φ(j/n)

Since limn→∞

∑n
j=1 φ(j/n) 1

n =
∫ 1

0 φ(x) dx, for big val-

ues of n we have:

P (X = i; n) =
φ(i/n)∑n

j=1 φ(j/n)
≈n→∞

φ(i/n)

n
∫ 1

0 φ(x) dx
=

φ(i/n)

n

We should say that we don’t use in our models the previous
approximation even though the error it gives is sufficiently
small. We calculate the exact normalization constant.

Input: n, m, k, b
Output: a k-SAT instance with n variables and m clauses
F = ∅;
for i = 1 to m do

repeat
Ci = ;
for j = 1 to k do

p = rand(); v = 1;
while p > P (v; b, n) do

p = p − P (v; b, n); v = v + 1;
endwhile

Ci = Ci ∨ (−1)rand(2) · v;
endfor

until Ci is not a tautology or simplifiable
F = F ∪ {Ci}

endfor

Figure 1: Geometric k-CNF generator. Function rand()

return a real random number uniformly distributed in [0,1),
and rand(2) returns either 0 or 1 with probability 0.5.

We have observed that defining our probability distribu-
tions this way, allows us to generate formulas that have a
phase transition phenomena. Not all distributions to select
variables will give us formulas with this property.

To define the geometric k-CNF model we use the following
probability density function

φgeo(x; b) =
b ln b

b − 1
b−x

where b > 1. Notice that, since limb→1 φgeo(x; b) = 1, at the
limit b = 1 we obtain the uniform distribution. Hence, the
uniform k-CNF model is a particular case of the geometric
k-CNF model with b = 1.

The continuous probability function φgeo(x; b) results into
the following family of discrete probability distributions:

P (X = i; b, n) =
b (1 − b−1/n)

b − 1
b−i/n

In the powerlaw model we would have to use the continu-
ous probability distribution φpow(x; β) = (1−β)x−β . How-
ever, this function is not defined in x = 0, so a small change
is necessary. We use the interval

[
0 + ε, 1 + ε

]
, for a small

value of ε, or equivalently we use the function

φpow(x; β) =
1 − β

(1 + ε)1−β − ε1−β
(x + ε)−β

Using φpow and normalizing we obtain the following fam-
ily of discrete probability distributions:

P (X = i; β, n) =
(i + ε · n)−β∑n

j=1(j + ε · n)−β

Notice that, since φpow(x; 0) = 1, the powerlaw k-CNF
model is a generalization of the uniform k-CNF model where
β = 0. Geometric k-CNF formulas may be generated with
the algorithm in Figure 1. To generate powerlaw formulas we
just substitute P (v; b, n) by P (v; β, n) in the algorithm.

388

Input: n, m, k, b
Output: a k-SAT instance with n variables and m clauses
bag = ∅;
for v = 1 to n do

bag = bag ∪ {�P (v; b, n)k m
2 � copies of v};

bag = bag ∪ {�P (v; b, n)k m
2 � copies of ¬v};

endfor
S = subset of k m − |bag| literals from {1, . . . , n,¬1, . . . ,¬n}

maximizing P (v; b, n)k m
2 − �P (v; b, n)k m

2 �
bag = bag ∪ S;
repeat

F = ∅;
for i = 1 to m do

Ci = random sub-multiset of k literals from bag
bag = bag \ Ci

F = F ∪ {Ci};
endfor

until F does not contain tautologies or simplifiable clauses

Figure 2: Geo-regular k-CNF generator

2.2 Geo-regular and Pow-regular k-CNF Models

In regular k-CNF formulas all literals occur nearly the same
number of times, i.e. �k·m

2n � or �k·m
2n � + 1 times. In geo-

regular we want the variables to occur with a frequency given
by P (X = i; b, n). Geo-regular k-CNF formulas are gener-
ated as follows. We construct a multiset bag with approxi-
mately P (X = v; b, n)k m

2 copies of the literals v and ¬v, for
each variable v = 1, . . . , n. Then, we make a random parti-
tion of bag into m subsets (clauses) of size k, such that none
of these clauses is a tautology or is simplifiable. Algorithm
in Figure 2 describes this procedure. Notice that when a tau-
tology or simplifiable clause is generated (i.e. a clause with
repeated variables), we discard all generated clauses, not just
the last one. To see that the algorithm terminates, we need
to prove that a formula without tautologies and simplifiable
clauses exists. For this it is sufficient to show that the most
frequent variable has at most m copies in the bag. We choose
the parameter b in a range that ensures this.

The Pow-regular k-CNF formulas are generated identi-
cally, but substituting everywhere P (X = i; b, n) by P (X =
i; β, n) in the algorithm.

2.3 Models with Clauses of Variable Size

The double-powerlaw model (Figure 3) constructs a formula
by repeating the following process. It chooses a variable and
a clause following two (not necessarily equal) distributions,
and includes the variable with an arbitrary sign in the clause.

3 Industrial SAT Instances

In the previous section we have described generalized models
of random SAT instances. We want this models to generate
formulas as close as possible to industrial ones. Therefore,
to choose the distribution φ (geometric or powerlaw), and the
best value of the parameter (b for the geometric and β for the
powerlaw), we have analyzed some industrial instances. We
have studied the 100 benchmarks (all industrial) used in the
SAT Race 2008. All together, they contain n = 25693792

Input: n, m, k, βv, βc

Output: a SAT instance with n variables, m clauses
for i = 1 to m do

Ci := ;
for i = 1 to k ∗ m do

repeat
p := rand(); v := 1;
while p > P (v; βv, n) do

p := p − P (v; b, n); v := v + 1;
endwhile
p := rand(); c := 1;
while p > P (c; βc, m) do

p := p − P (v; b, n); c := c + 1;
endwhile

while v ∈ Cc

Cc := Cc ∨ (−1)rand(2) · v;
endfor

Figure 3: Double-powerlaw CNF generator.

variables, with a total of
∑n

i=1 N(i) = 349760681 occur-
rences, where N(i) is the number of occurrences of the vari-
able i. Therefore, the average number of occurrences per
variable is E [N(i)] =

∑n
i=1 N(i)/n = 13.6. If we used

the classical (uniform) random model to generate instances
with this average number of occurrences, most of the vari-
ables would have a number of occurrences very close to 13.6.
However, in the analyzed industrial instances, close to 90%
of the variables have less than this number of occurrences,
and more than 60% have 6 or less occurrences. The big value
of the average is produced by a small fraction of the variables
that have a huge number of occurrences. This indicates that
the number of occurrences could be better modeled with a
power-law distribution as suggested by [3].

We can estimate the form of the function φ that best fits
these industrial instances, as follows. Compute the number
of occurrences N(i) of each variable i of the set of variables
of the industrial instance. Sort them in decreasing order in
the number of occurrences, i.e. assume N(i) ≥ N(i + 1),
for i = 1, . . . , n − 1. Then, approximating φ as N(i) and
normalizing it conveniently, we obtain

φind(i/n) =
n∑n

j=1 N(j)
N(i)

for i = 1, . . . , n. The resulting function is shown in Figure 4
in red.

Notice that log φgeo(x; b) is linear on x, whereas
log φpow(x; β) is linear on log x. Therefore, if we plot φind

on double logarithmic axes and on semi-logarithmic axes,
we can see which one of the theoretical functions, φgeo or
φpow, best fits φind. As shown in Figure 4 (right) φind(x) ≈
φpow(x; 0.82). The coincidence between both functions has
two reasons. First, as suggested in [3], the distribution of fre-
quencies on the number of occurrences of variables follows
a power-law distribution, in industrial SAT instances. This
coincidence validates the hypothesis of that paper. Second,
the use of a (continuous) power-law distribution (with do-
main [1, 0]) to assign probabilities to variables, has as a conse-
quence, a (discrete) power-law distribution on the frequencies

389

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

φind(x)
φpow(x;0.82)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e-06 1e-05 1e-04 0.001 0.01 0.1 1

φind(x)
φpow(x;0.82)

Figure 4: Estimated industrial function φind(x) (in red) and
powerlaw function φpow(x; 0.82) (in blue), with normal axes
(left) and double-logarithmic axes (right).

of occurrences (with a different exponent). This second result
is proved in the following theorem.

Theorem 1 In the powerlaw model, with φpow(x; β) = (1−
β)x−β , when n tends to ∞, the probability that a variable
has k occurrences follows a powerlaw distribution P (k) ∼
k−α, where α = 1/β + 1.

PROOF: Let P (X = i, β) = C · (i/n)−β be the probability
of choosing variable i in the powerlaw generation model. Let
N(i) be the number of occurrences of variable i in a randomly
generated formula F . We have E [N(i)] = C · (i/n)−β · |F |.
Chernoff’s or Hoeffding’s bounds ensure that, for big n’s,
N(i) is approximately E [N(i)]. Hence, N(1) > N(2) >
· · · > N(n) with high probability.

Now we want to approximate the provability F (k) =
P (K ≥ k) that a variable occurs at least k times. Let i be
the index of a variable satisfying E [N(i)] = k. For big
n, all variables with index smaller that i have more than k
occurrences, and those with indexes between i + 1 and n
have less than k occurrences. Therefore, P (K ≥ k) = i/n,
for the particular i defined above. From E [N(i)] = k and
E [N(i)] = C · (i/n)−β · |F | we obtain

F (k) = P (K≥k) = i/n =

(
k

C |F |

)
−1/β

We can approximate the probability f(k) = P (K=k) as the
derivative of F (k),

f(k) ≈ −
∂

∂k

(
k

C |F |

)
−1/β

=
β

(C |F |)−1/β
k−1/β−1

Hence we obtain a discrete power-law (zeta) distribution with
exponent α = 1/β + 1.

The previous theorem can be generalized only assuming
that P (X = i), i.e. φ, decreases monotonously. The ap-
proximations used in this theorem are validated by the fol-
lowing experiment. We have generated a random formula
with the powerlaw model with 107 variables, 2.5 107 clauses
and β = 0.82. The frequencies of occurrences of vari-
ables are shown in Figure 5 and are compared with those
obtained for the SAT Race 2008, and the line with slope
α = 1/0.82 + 1 = 2.22.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

SAT Race 2008
α = 2.22

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

powerlaw with β = 0.82
α = 1/0.82+1 = 2.22

Figure 5: Comparison of the frequencies of variable occur-
rences obtained for the SAT Race 2008, and the random
model powerlaw with β = 0.82. It is also shown the line
with slope α = 1/0.82 + 1 = 2.22.

4 Experimental Results

First, we want to locate the phase transition points, and sec-
ond, we want to study the performance of some solvers on the
instances generated with our models.

In order to choose the SAT solvers we took the best ones
from the industrial and random categories at the SAT 2007
Competition. Then, we selected from each category the best
performing one on the instances we have generated. The
SAT solver minisat (v.2) [6] was selected as the specialized
solver in industrial instances. Solvers kcnfs (v.2004) [5] and
march ks [7] were selected as specialized solvers in random
instances. gnovelty+ [10] was selected as an incomplete local
search solver, that usually performs well on satisfiable ran-
dom instances. We also provide results with the SAT solver
satz (v.2004) [9] that has shown a good average performance.

All the experiments were run on a 1Ghz machine with
1Gbyte of RAM.

We have identified the existence of a phase transition
point for all the generation models we have introduced.
We provide results for geometric and geo-regular with b ∈
{1, 2, 4, 6, 16}, and for powerlaw and pow-regular with β ∈
{0, 0.25, 0.5, 0.75, 1}. Figure 6 shows the clause/variable ra-
tio at the phase transition points (the exact points are in Ta-
ble 1). Each data point represents the results on the compu-
tation of 200 instances. The length of the clauses, k, was set
to 3. Recall that for b = 1 (β = 0), the geometric (power-
law) and geo-regular (pow-regular) are the uniform and regu-
lar random k-CNF generators, respectively. Their phase tran-
sition point is located around the clause/variable ratio 4.25
and 3.55, respectively.

We can observe that as we increase the base b or the expo-
nent β the phase transition ratios become lower. Also we see
that the regular models have always a lower ratio, and the reg-
ular and non regular models seem to converge as we increase
b or β.

As we discussed in the introduction, our goal is to gen-
erate random instances with properties similar to industrial
instances. One way of checking that we are going in the right
direction is to show that SAT solvers specialized in industrial
instances have better performance than the ones specialized
in random instances, contrarily to what we could expect since
these instances are indeed random.

We also want to conduct such experimental investigation

390

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 2 4 6 8 10 12 14 16

cl
au

se
/v

ar
ia

bl
e

ra
tio

 a
t c

ro
ss

ov
er

 p
oi

nt

b

geometric
georegular

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

cl
au

se
/v

ar
ia

bl
e

ra
tio

 a
t c

ro
ss

ov
er

 p
oi

nt

β

powerlaw
powregular

Figure 6: Clause/variable ratio at the phase transition point as
a function of b. We use 200 instances per point.

on the hardest instances our model can produce for a partic-
ular number of variables. The hardest instances are usually
located at the phase transition region, since these instances
are (almost) minimally unsatisfiable or have very few mod-
els. So the instances we use always have clause/variable ratio
around the previously computed phase transition point. We
increase the number of variables until we achieve a median
time of around 100 seconds to solve the instances using the
SAT solver satz, which we use as a reference of the difficulty
of the instances.

Since we wanted to compare how good SAT solvers spe-
cialized in industrial instances are on these random instances,
we present the ratio of minisat versus satz and kcnfs. Figure 7
shows the results of the comparisons (the numerical data can
be found at Table 1).

As we expected, the regular models are always harder for
all solvers. For the geometric and geo-regular models, min-
isat is always worse than the other two solvers, although the
difference becomes smaller as we increase b. However, for
the powerlaw and pow-regular models, minisat outperforms
kcnfs as we increase β and becomes as good as satz. In par-
ticular, with the pow-regular model, for β = 0 kcnfs is two
orders of magnitude better than minisat, but for β = 1, the
situation becomes the opposite.

Although we have shown that for high values of β we may
be achieving the properties that we were looking for, we still
have some unresolved issues: (i) minisat is not outperform-
ing satz, which is worse than minisat on several industrial
instances; (ii) our instances have a fixed clause length con-
trary to what happens for industrial instances; and (iii) the
instances we are generating are really small (though challeng-
ing) compared to the size of some industrial instances, which
have hundreds of thousands of variables and can be solved in

 1

 10

 100

 0 2 4 6 8 10 12 14 16

cp
ut

 ti
m

e
ra

tio

b

geometric minisat/satz
geometric minisat/kcnfs
georegular minisat/satz

georegular minisat/kcnfs

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

cp
ut

 ti
m

e
ra

tio

β

powerlaw minisat/satz
powerlaw minisat/kcnfs
powregular minisat/satz

powregular minisat/kcnfs

Figure 7: CPU time ratio minisat/satz and minisat/kcnfs as
a function of b or β for the models: geometric, geo-regular,
powerlaw and pow-regular. We use 200 instances per point.

seconds by an specialized industrial SAT solver.

Therefore, we still need to improve our best generation
models so far, powerlaw and pow-regular. The solution also
comes from our previous study at section 2 on industrial in-
stances, were apart form observing that the occurrences of
variables may follow a powerlaw distribution, also the occur-
rences of the length of clauses may follow a powerlaw distri-
bution.

Table 1 also shows the results for the double-powerlaw
model, for β = 0.75 and k = 5, where k is now the aver-
age size of the length of clauses. The β parameter is obtained
from our study in Section 3, and the k parameter is set to
5 to ensure that the instances are not too easy. Our results
are calculated at the phase transition point as in the previous
models. As we can see, finally, we get bigger instances that
can be solved easily by minisat, and take a longer time for the
satz and march ks solvers. We do not provide experimental
results using kcnfs since this solver does not accept clauses
of the length we have generated.

We have to say though, that the great difference in the
median time comes directly from solving the satisfiable
instances, since for the unsatisfiable instances, satz and
march ks take around 10 seconds. We think that this is be-
cause in the double-powerlaw model, the powerlaw distribu-
tion gives the frequencies of big clauses (tail of the distri-
bution), but the frequency of small clauses has to be adjusted
with other methods. Notice that a big number of small clauses
using very frequent variables results into easy to prove unsat-
isfiable formulas. We made the decision not to include hacks
to avoid this, and to present clearly the experimental data.
We also wanted to test if the satisfiable instances could be
easily solved by an incomplete solver specialized in random

391

b, β m n m/n minisat satz kcnfs

geometric

1 1657 390 4.248 1027 94 25

2 1773 425 4.171 649 94 24

4 2047 520 3.936 476 89 33

8 2357 660 3.571 372 94 56

16 2625 830 3.162 343 90 92

geo-regular

1 921 260 3.542 2743 90 28

2 1006 290 3.468 1849 96 32

4 1230 370 3.324 1036 111 36

8 1475 480 3.072 633 102 42

16 1687 610 2.765 428 87 55

powerlaw

0 1657 390 4.248 915 91 24

0.25 1873 450 4.162 669 101 31

0.5 2984 800 3.730 220 88 43

0.75 6027 2100 2.870 124 87 426

1 9460 5500 1.720 81 73 10
4

pow-regular

0 921 260 3.542 2965 89 28

0.25 1124 325 3.458 1199 122 39

0.5 1858 580 3.203 236 85 40

0.75 4366 1675 2.606 117 91 244

1 7905 4850 1.629 118 96 10
4

double-powerlaw

β m n m/n minisat satz march

0.75 1325201 5 · 105 2.650 3.93 344 5121

Table 1: Median time (seconds) for 200 instances at the phase
transition point. Timeout of 10000 seconds.

instances. The selected solver was, gnovelty+ [10], the win-
ner of the random category for satisfiable instances at the SAT
solver competition. Gnovelty+ was not able to solve any in-
stances with a cutoff of 10000 seconds.

5 Conclusions

We have proposed a generalization of the uniform and the
regular k-CNF random generation models, by generalizing
the probability distribution used on the selection of variables
to a geometric and a powerlaw distribution.

An important result is that all our models guarantee the
existence of the phase transition phenomena. We generate
instances at the phase transition point, of any given num-
ber of variables and computational hardness by adjusting the
parameters of the distributions. This is an important result
since in order to do the same with the standard generators
(uniform and regular random) we have to move to the under-
constrained or over-constrained regions, where we find less
interesting problems.

We have shown that the instances generated with the pow-
erlaw or pow-regular models present computational proper-
ties that are similar to industrial instances. In order to be able
to generate bigger instances with variable clause length, we
have provided a fifth model, double powerlaw, where we as-
sign a different probability of being chosen to each variable
and to each clause. This generates formulas were some vari-
ables occur very often and some clauses are very long.

We have conducted an experimental investigation with
SAT solvers specialized in industrial instances and others spe-
cialized in random instances, to validate that our randomly
generated instances have similar computational properties to
real-world or industrial instances.

This is a first step in the development of generators for
problem instances that have computational properties more
similar to real-world (industrial) instances. Further research
would require to identify other general properties of industrial
instances and adapt our generation models to simulate them.

References

[1] C. Ansótegui, M. L. Bonet, J. Levy, and F. Manyà. Mea-
suring the hardness of sat instances. In Proc. of the 23th
AAAI Conf. on Artificial Intelligence, AAAI’08, 2008.

[2] R. Bayardo and R. Schrag. Using CSP look-back tech-
niques to solve exceptionally hard SAT instances. In
Proc. of the 2nd Int. Conf. on Principles and Practice of
Constraint Programming, CP’96, pages 46–60, 1996.

[3] Y. Boufkhad, O. Dubois, Y. Interian, and B. Selman.
Regular random k-sat: Properties of balanced formulas.
J. Autom. Reasoning, 35(1-3):181–200, 2005.

[4] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[5] O. Dubois and G. Dequen. A backbone-search heuristic
for efficient solving of hard 3-SAT formulae. In Proc.
of the 17th Int. Joint Conf. on Artificial Intelligence, IJ-
CAI’01, pages 248–253, 2001.

[6] N. Eén and N. Sörensson. An extensible SAT-solver. In
Proc. of the 6th Int. Conf on Theory and Applications of
Satisfiability Testing, SAT’03, pages 502–518, 2003.

[7] M. J. Heule and H. van Maaren. Whose side are you
on? finding solutions in a biased search-tree. Journal
on Satisfiability, Boolean Modeling and Computation,
4:117–148, 2008.

[8] H. A. Kautz and B. Selman. Ten challenges redux: Re-
cent progress in propositional reasoning and search. In
Proc. of the 9th Int. Conf. on Principles and Practice of
Constraint Programming, CP’03, pages 1–18, 2003.

[9] C. M. Li and Anbulagan. Look-ahead versus look-back
for satisfiability problems. In Proc. of the 13th Int. Conf.
on Principles and Practice of Constraint Programming,
CP’07, pages 341–355, 1997.

[10] D. N. Pham, J. Thornton, C. Gretton, and A. Sattar. Ad-
vances in local search for satisfiability. In Proc. of the
20th Australian Conf. on Artificial Intelligence, pages
213–222, 2007.

[11] B. Selman, H. A. Kautz, and D. A. McAllester. Ten
challenges in propositional reasoning and search. In
Proc. of the 15th Int. Joint Conf. on Artificial Intelli-
gence, IJCAI’97, pages 50–54, 1997.

[12] R. Williams, C. P. Gomes, and B. Selman. Backdoors to
typical case complexity. In Proc. of the 18th Int. Joint
Conf. on Artificial Intelligence, IJCAI’03, pages 1173–
1178, 2003.

392

