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We develop the use of statistical modeling for portable
high-level optimizations such as data layout and algorithm
selection. We build the models automatically from profiling
information, which ensures robust and accurate models that
reflect all aspects of the target platform.

We use the models to select among several data layouts
for an iterative PDE solver and to select among several sort-
ing algorithms. The selection is correct more than 99% of
the time on each of four platforms. In the few cases it selects
suboptimally, the selected implementation performs nearly
as well; that is, it always makes at least a very good choice.
Correct selection is platform and workload dependent and
can improve performance by nearly a factor of three.

We also use the models to optimize parameters of these
applications automatically. In all cases, the models pre-
dicted the optimal parameter setting, resulting in improve-
ments ranging up to factor of three.

Finally, we use the models to construct portable 

 

high-
level libraries

 

, which contain multiple implementations and
support for automatic selection and parameter optimization
of the fastest implementation for the target platform and
workload.

 

1  Introduction

 

Traditionally, libraries achieve portability through the
portability of their implementation language, which is usu-
ally C or Fortran. Unfortunately, such low-level languages
require the developer to encode many platform-specific deci-
sions into the source code. Although these decisions are usu-
ally made correctly for the initial platform, they are unlikely
to remain optimal over time or after porting.

This dilemma is particularly painful for supercomputers,
because the platforms exhibit a wide variance in the relative
costs of computation and communication. This variance
greatly reduces the chance that algorithm and layout deci-
sions remain even acceptable as an application moves to a
new machine. Figure 1 shows the huge variance in commu-
nication costs. At the same time, the CPU performance var-
ies less; the slowest is the J-Machine 
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actually has solid communication performance.
In practice, users end up rewriting their applications for

each new platform. By providing several coordinated imple-
mentations in one library, we greatly increase the chance that
at least one of them performs well on each target platform.
The framework also simplifies code reuse over time and dis-
tance by providing a complete specification and a method for
incorporation of new implementations.

 

2  Overview

 

A 

 

high-level library

 

 consists of a set of implementations
of a single specification, as shown in Figure 2. Each imple-
mentation has a model that predicts its performance on the
target platform. The models predict the execution time given
a set of input parameters, such as the problem size. To ensure
robustness and accuracy, the models are generated automati-
cally by the 

 

auto-calibration toolkit

 

 based on profiling infor-
mation for each platform, as shown in Figure 3.

The library designer provides the code, the input parame-
ters and their ranges, and a list of terms that form the basis
for the statistical models. Given the list of terms and the pro-
filing data, the toolkit 1) uses linear regression to find coeffi-
cients for each term, 2) throws out statistically insignificant
terms and recomputes the remaining coefficients, and 3) val-
idates the model against an independent set of profile sam-
ples. Figure 4 shows an example. Because the toolkit
removes irrelevant terms, designers can always add in terms
that might be relevant, which allows one list to cover all plat-
forms. Finally, the toolkit computes an accuracy metric,
called the 

 

mean relative error

 

 (MRE):

Figure 1: Variance in the costs of communication.
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which is just the geometric mean of the relative errors. Intu-
itively, the MRE tells you how far off the model is on aver-

age; we typically express it as a percentage.
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Once the calibrated models are available for each plat-
form, the selection is easy: the selector computes a predicted

Figure 2:  A high-level library consists of a set of
algorithms each with code and models. The models
used are automatically generated by the auto-calibration
toolkit and are used for algorithm selection and
parameter optimization. The selected algorithm is then
compiled for the target platform using the optimized
parameter settings.
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Figure 3: This block diagram describes the automatic
generation of models via profiling and linear regression.
The dark gray boxes indicate inputs provided by the
library designer, while the light gray boxes are provided
by the auto-calibration toolkit. Calibration code is
generated from the code and the parameter ranges;
upon execution this code produces the profiling data
used to fit the models terms provided by the designer.
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execution time for each implementation and the one with the
minimum predicted time is chosen as the winner. Accurate
models imply complete success.

Porting to a new platform thus involves porting Strata
and then running the calibration programs for each of the
high-level libraries. Porting Strata is not trivial, but it is rela-
tively straightforward and the cost is amortized over all of
the libraries, since they only require Strata and C. Occasion-
ally, the list of model terms may have to be extended to cap-
ture some unusual behavior of the new platform.

 

2.1  The Platforms

 

We evaluate these techniques on four target platforms:
the CM-5 and simulated versions of MIT’s Alewife 
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,
Intel’s Paragon 
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, and a network of workstations
based on the FORE ATM switch 

 

[FORE92][TLL93]

 

. The three
simulated architectures have not been rigorously validated
against their actual counterparts, but the Alewife and ATM
platforms match their real counterparts on several
microbenchmarks. The Paragon version underestimates

communication start-up costs.
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 Fortunately, the goal here is
not accurate simulation of the platforms, but rather a 

 

wide
variety

 

 of costs that stresses the models’ ability to track the
architectures.

The Alewife has the fastest communication performance,
with the CM-5 a close second. The primary difference is
Alewife’s support for block transfer via DMA. The Paragon
is third with a higher start-up cost for communication, but

 

1: The statistical details are beyond the scope of paper, but we should

note that we found MRE to be more useful that the traditional  metric,

which emphasizes overall variance. Term relevance is based on the null

hypothesis using 95% confidence intervals. Fitting is done via  using

weights that minimize relative rather than absolute error. Complete details
are in [B
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94].
2: This is due to numbers from Intel that assumed kernel-level message

passing rather than the user-level communication required in practice.
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Inputs for Stencil Module:
➤ Profiling Data (automatically collected)

➤ Parameters: i (iterations), w (width), h (height)

➤ Ranges: , 

➤ List of terms: 1, i, w, h, iw, ih, wh, iwh

Outputs:

➤ Model: 

➤ MRE: 1.33%

Figure 4: Example input/output pair for the stencil
application. The toolkit computes the model based on
the list of terms and the profiling data. It throws out
irrelevant terms and computes the MRE based on
independent samples.

i 1 100[ , ]∈ w h, 16 10000[ , ]∈

Stencil i w h, ,( ) 249.7 31.09iw–=

31.35ih– 4.1iwh+
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excellent throughput. The local-area network (LAN) has
good throughput, but suffers from very high start-up costs.
The CM-5 alone has hardware support for global synchroni-
zation such as barriers. The CPU performance of the four is
about the same; by design, the three simulated architectures
have the exact same CPU performance. Thus, these four
architectures differ in their relative communication and com-
putation costs: the LAN and Paragon favor few large mes-
sages, while the Alewife and CM-5 tend to allow many small
messages and more communication in general. The models
will in fact capture this knowledge precisely without any
guidance from the designer.

 

3  Stencil Computations

 

Stencil computations are a technique for iteratively solv-
ing partial differential equations. The basic technique is two-
dimensional red-black successive over relaxation
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. The two-dimensions are discretized into a

 

virtual grid

 

 and each iteration involves communication with
a fixed set of grid neighbors. For example, the basic stencil
for successive over relaxation is:

 

(2)

 

where  is the value of the center of the stencil at the 

 

i

 

th

 

iteration, the directions refer to grid neighbors, and  is the
degree of overrelaxation. Convergence is detected by track-
ing the largest update difference, or 

 

delta

 

, for each node; if
all of the nodes had delta values less than some predeter-
mined convergence threshold, then we have a solution.

Conceptually, the stencil is applied to every grid point on
every iteration. However, in practice concurrent updates of
neighboring grid points can prevent convergence. Thus, the
parallel versions use 

 

red-black

 

 ordering, which means that
we two-color the grid into red and black regions similar to a
checkerboard. We then break each iteration into red and
black halves: the corresponding halves are updated in paral-
lel. This prevents concurrent updates, since red vertices only
have black neighbors and vice versa. Virtual-grid edges that
cross node boundaries require communication, so the choice
of data layout greatly affects the performance of the solver.

 

3.1  Data-Layout Options

 

There are many ways to partition a virtual two-dimen-
sional grid among the physical processors. We would like a
partitioning that ensures load balancing and minimizes com-
munication. However, after requiring that these criteria be
met, there remain many reasonable choices. In this section,
we examine four choices, which are shown graphically in
Figure 5 for a 16-node platform.

The simplest layout is to place all of the data on one pro-
cessor, called the “uniprocessor” layout. It is primarily use-
ful for small problems that would otherwise be dominated by
the communication costs.

The second layout option is the most common: partition

xi 1+
ω
4
---- North South East West+ + +( ) 1 ω–( ) xi+=
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ω

 

the grid into equal-sized blocks. The processors form a
square grid; for example, an 800x1600 virtual grid leads to
blocks that are 100x200 on each node in a 64-node machine.
Note that a square virtual grid results in square blocks.
Square blocks minimize communication, since a square has
the minimum perimeter for a given rectangular area, and
only the elements on the perimeter must be communicated.

The third option is vertical strips. Each strip covers the
full vertical range of the virtual grid, but only covers a small
portion horizontally. Thus, a 1600x1000 virtual grid on a 16-
node machine leads to 100x1000 blocks on each node. The
strips version minimizes the 

 

number

 

 of messages, rather than
the amount of data. For a two-dimensional grid, the strip ver-
sion only needs to communicate with two neighbors, com-
pared with 4 for the square-block layout. For platforms with
high start-up costs for communication, we expect the strips
version to perform relatively well.

Finally, the fourth option is to use shared-memory hard-
ware to handle the communication implicitly. The CM-5
does not support shared memory, but the P
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 versions
can. This is not really a layout option, since all of the previ-
ous layouts could use shared memory, but it does represent a
different implementation and is subject to selection.

 

3.2  Results

 

Figure 6 show the predicted winners for each of the four
64-node platforms for a given width and height of the virtual
grid. There are many important facets to this graph. First, the
square version seems to be the overall winner. The strips
version wins when the aspect ratio is skewed towards short
and wide, which makes sense since each node gets the full
vertical range. The strips version wins much more on the
ATM due to the its high start-up cost for communication.

The uniprocessor version wins only for either small
width or small height. However, nothing discussed so far
explains why the uniprocessor version would win for very
tall but thin grids, since such grids encompass a substantial
amount of work. This behavior reflects an important aspect
of automatic selection, which is that not all of the implemen-
tations need to cover the entire input range. In this case, the
square version requires a width and height of at least 16 (a
red and black point for each node), since otherwise some

Uniprocessor Square Blocks

Vertical Strips Shared Memory

Figure 5: Data Layout Options for Stencil Computations
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nodes would have zero points. The square implementation
could be made to handle this boundary case, but only at a
significant increase in complexity. Instead, the square ver-
sion simply prohibits part of the input range. The models
support this by returning infinity for unsupported inputs, as
shown in Figure 7. The strips version requires a minimum
width of 128, but has no restrictions on the height; the width
restriction is visible in the figure.

The models thus provide an elegant way to implement
only part of the input space without limiting the end user: as
long as each input point is covered by at least one implemen-
tation, the selector will always pick a valid implementation.
In this case, the uniprocessor version covers the entire space
and thus acts as a fall back for inputs that are avoided by the
parallel implementations. It is hard to overstate the practical
importance of this combination: all of the implementations
become simpler because they can avoid parts of the input
space that are painful to implement. The use of automatic
selection hides this simplification from the user by never
selecting inappropriate implementations.

Perhaps surprisingly, the shared-memory version 

 

never

 

wins. This occurs because nodes alternate ownership of the
shared edges. Thus, the shared-memory version requires

round trips for every cache line along the boundary.

 

3

 

Of course, the figure only shows the 

 

predicted

 

 regions of
victory; the key issue is the accuracy of these regions. Fortu-
nately, the predictions are almost always correct, as shown
by Table 1. Each of platforms achieved a prediction accu-

racy of about 99%, with the overall average at 99.42%.
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 The
smaller machines did slightly worse, primarily because the
implementations tend to be closer in performance.

Each entry in the table represents thousands of execu-

 

3: An update protocol would help, but it would still not match the effi-
ciency of block transfers.
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Figure 6: This graph shows the predicted winner for each
platform based on the width and height of the virtual grid.
The predictions are quite accurate: the models produce
the correct answer more than 99% of the time.
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tions; the 16- and 32-node numbers represent 500 different
virtual-grid sizes and the 64-node numbers represent about
3000 sizes. Each grid size requires four executions, one for
each layout. However, even with this many samples the cov-
erage is spotty: the Alewife prediction graph in Figure 6 rep-
resents 60,000 grid sizes and thus 240,000 model
evaluations, compared with 12,000 simulations. To increase
the accuracy of the estimates, we concentrated most of the
selected grid sizes along the boundaries in the prediction
graph. This leads to a conservative estimate of prediction
accuracy, since we expect most of the errors to occur near
the boundaries.

The correlation of errors and boundaries has a very
important benefit: when the selector is wrong, it picks an
implementation whose performance is near optimal. For
example, if the actual execution-time surfaces must be
within 4% for the selector to make an error, then the perfor-
mance penalty for that error can be at most 4%. Thus, in the
few cases where the selector is wrong, it will always pick a
good implementation. Table 2 presents the performance pen-
alties incurred due to incorrect selections. The average pen-
alty 

 

when wrong

 

 is only 2.12%.
Of course, this number totally neglects the benefit of cor-

rect selection! We can not really use the same data to com-
pute the expected gain, since we intentionally concentrated
our samples along the boundary. We measure of gain as the
average difference between the selected implementation and
the square-block implementation. Table 3 shows the average
gains for random grids up to 5000x5000.

The ATM version shows significantly more gain simply
because the square-block layout wins a smaller proportion of
the time. Note that these numbers reflect the possibility of
incorrect selections, but none of the 80 samples included an
incorrect selection, which matches our expectations.
(Table 2 shows that the weighted impact of incorrect selec-
tions is only about 0.01%.) 

 

4: Surprisingly, the CM-5 had the best models, with a noticeable edge
over the three simulated platforms. This may be due to systematic inaccura-
cies in the simulations that are avoided by the real machine, but there is no
real evidence for this. 

Table 1: This table shows the accuracy of the model
predictions for a range of platforms and machine sizes;
in particular, these numbers reflect the percentage of
trials in which the selected implementation was indeed
the best.

Platform
16 

Nodes
32 

Nodes
64 

Nodes
Aggregate

Alewife 99.4% 99.5% 99.51% 99.50%

Paragon 99.3 99.5 99.45 99.39

ATM 98.9 99.2 99.21 99.13

CM-5 99.6 99.8 99.71 99.72

Aggregate 99.3% 99.5% 99.52% 99.42%
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3.3  Models

 

Figure 7 presents the models for Alewife for the three
primary stencil layouts, which are the most complicated and
least accurate of the four platforms. Although none of the
models are extremely complicated, there are a fair number of
terms. The list of terms is just the combinations of 

 

i

 

, 

 

w

 

, and

 

h

 

. In this case, our initial list was sufficient and the toolkit
returned simple and accurate models.

Table 2: This table reveals the penalty for selection
errors for the 64-node machines. The second column
gives the average penalty when the wrong
implementation is selected. If we weight the penalty by
its probability from Table 1 then we get the expected
penalty, shown in the third column. The fourth column
gives the worst penalty seen over all of the runs. 

Platform

Mean 
Penalty 
When 
Wrong

Expected 
Penalty

Worst-
Case 

Penalty

Alewife 2.88% 0.0141% 16.25%

Paragon 3.09 0.0170 13.63

ATM 1.43 0.0113 7.86

CM-5 1.10 0.0032 5.45

Aggregate 2.12% 0.0114% 16.25%

Table 3: Net Gain from Automatic Selection (20
samples). Individual samples showed gains ranging from
close to zero all the way up to 291% for a skewed grid on
the ATM network.

Platform Net Gain

Alewife 8%

Paragon 21%

CM-5 11%

ATM 90%

Figure 7: Alewife Models for Stencil: w and h describe
the size of the virtual grid, i is the number of iterations

Uni w h i, ,( )                      (MRE=6.84%)=

249.7i 31.09iw– 31.35ih 4.1iwh+–

Strips w h i, ,( )                     (MRE=2.34%)=

if w 128<( )  then ∞ 

else 6.919 46.42h 77.91i+ +

 12.16ih 0.04393iwh+ +

Square w h i, ,( )                   (MRE=1.00%)=

if w 16<   or  h 16<( )  then ∞ 

else 9.04 6.186w 5.478h 123.1i+ + +

 2.716iw 1.205ih 0.04406iwh–+ +

3.4  Summary
The stencil library achieves performance gains ranging

from 8-90% because of its ability to automatically select
among multiple implementations, and it always selects
implementations that are optimal or near optimal.

4  Sorting
For the second high-level library, we look at parallel

sorting, for which there are many algorithms. The goal here
is to select the fastest algorithm for the current platform and
workload. We look at two algorithms: radix sort and sample
sort. Both implementations are based on a sorting study for
Thinking Machines’ CM-2 by Guy Blelloch et al. [BLM+92].

4.1  Radix Sort
Figure 8 gives pseudo-code for parallel radix sort. The

main loop covers each of the digits, normally a particular set
of contiguous bits from a larger integer key. For example, a
32-bit integer can be thought of as 8 4-bit digits, 4 8-bit dig-
its, or even 3 11-bit digits. Increasing the width of a digit
reduces the number of loop iterations, but increases the work
within each iteration. The next section examines how to set
the digit size optimally and automatically for the target plat-
form.

The first step for each digit is to count the number of
keys with each digit value, or numeral. The result for the first
step for a base-r radix sort is a set of r counts, one for each
numeral.

In the second step, we determine the numeral counts glo-
bally by combining all of the local counts. This is done using

a vector-scan operation with a vector of r words.5 Thus, each
node knows the total number of keys to its left for each
numeral; we refer to this count as the offset. 

At the same time, we also compute the total number of
each numeral, using a vector reduction. We can combine the
total and offset to determine where to send each key. For
example, if there 1000 keys with numeral zero, then we say
that the first 1000 elements of the target array hold numeral
zero; numeral one starts at index 1001. Combining this with
the offsets, we get exact target positions for each key. If the

5: In a scan operation, each node i contributes an element  and

receives the value , where “⊕ ” denotes an associative

operator, in this case addition. Thus, each node gets the sum of the values to
its left, with node 0 receiving 0. A reduction is similar, except that each
node gets the total sum for all nodes. In a vector scan, each node contributes
a vector and the result is the vector of the element-wise scans.

for each digit { [start with LSD]
Locally count each numeral
Compute the global starting (node,

offset) pair for each numeral
Transfer each key to its (node, offset) 
Barrier for completion of reordering

}

Figure 8: Pseudo-code for Radix Sort

xi

x0 x1 … xi 1–⊕ ⊕ ⊕
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numeral-one offset for node 3 was 225, then the overall start-
ing position for node 3’s numeral-one keys would be

. This array is then evenly blocked
across all of the processors.

We make one pass through the data, sending the data
according to the index for its numeral, and then incrementing
the index. We repeat this process for each digit.

4.2  Sample Sort
The primary drawback of radix sort is that it rearranges

all of the data for every digit. Ideally, we would just move
the key directly to its final destination. This is the goal of
sample sort, which uses sampling to guess the boundary keys
for each node. Reif and Valiant developed the first sampling
sort, called flashsort, in 1983 [RV87]. Another early version
was implemented by Huang and Chow [HC83].

For n keys and p processors we get the following basic
algorithm:

1. Find keys, called splitters, that partition the

key space into p buckets,

2. Rearrange the data into the p buckets, which corre-
spond to the p processors,

3. Sort the keys within each bucket.

Unfortunately, it is possible for the splitters to be far
enough off that one of the processors is the target for more
keys than it can physically hold in memory. Furthermore, the
wider the variance in keys per node, the longer the final local
sorting phase will take, since the time of the phase is limited
by the processor with the most keys. 

Fortunately, there is a nice solution to both of these prob-
lems: we can use s buckets per processor, where s is called
the oversampling ratio. For example, if  there is still
a chance that one of the buckets will have many more keys
than the average, but it very unlikely that all ten of the buck-
ets on one processor will contain many more keys than aver-

age. The expected number of keys per node is ; if we call

the maximum number of keys per node L, then the we can

define the work ratio as . Blelloch et al. [BLM+92]

showed that  decreases exponentially with s: with

 and  keys, . In practice,
oversampling ratios of 32 or 64 ensure even load balancing
of the keys, essentially always resulting in .

Figure 9 shows the pseudo-code for sample sort with
oversampling. There is some small chance that a node will
have insufficient memory for the incoming keys. We assume

space for  keys plus the buffer storage. When there is

insufficient space for an incoming buffer, we forward it ran-
domly; we know that there is sufficient space somewhere.
We then simply restart the algorithm after the transfer phase,

1001 225+ 1226=

p 1–

s 10=

n
p
---

α L
n p⁄( )

-----------------≡

Pr α 2>[ ]

s 64= 106 Pr α 2.5>[ ] 10 6–<

α 2<

2n
p

------

which is not as bad as it sounds. First, the chance that there is
insufficient storage is near zero. Second, when we repeat the
algorithm we get independent splitters, so we expect the sec-
ond iteration to succeed. Third, most of the data is already on
the correct node.

Given that sample sort almost always rearranges the data
only once, it should beat radix sort for large numbers of keys
or for platforms with expensive communication. However, it
is more complicated than radix sort, requires more memory,
and has substantially more set-up work to perform. Thus, we
expect radix sort to do well on smaller problems and perhaps
on platforms with high-performance communication. Fur-
thermore, the time for radix sort depends linearly on the
width of the keys, while sample sort is essentially indepen-
dent of the size of the key space.

4.3  The Sorting Module
The sorting module sorts integer keys with widths from 4

to 32 bits. It assumes each node contributes a fixed-size
buffer that is at most half full of keys; after the sort, the buff-
ers contain each node’s chunk of the sorted keys, with keys
strictly ordered by processor number. The module also
returns a list of  keys that can be used to binary search
for the node containing a given key.

The module has two parameters: the number of keys per
node and the width of a key in bits. We select among four
algorithms:

1. Sample Sort

2. Radix Sort with 4 bits per digit, radix = 16

3. Radix Sort with 10 bits per digit, radix = 1024

4. Radix Sort with 14 bits per digit, radix = 16384.

Pick s keys at random on each node,
for a total of ps keys

Sort the ps keys using parallel radix sort
Send every sth key to node 0;

[these are the splitters]

Node 0 broadcasts the splitters

For each of the  keys (on each node) {

Find the target node via binary search
Group the keys into buffers by proc
When a buffer becomes full,

send it to its node
}

Transfer all non-empty buffers 
Block until all transfers are complete

[by counting outstanding transfers]

Repeat for load balancing if needed
[discussed in text]

Sort data locally to complete the sort

Figure 9: Pseudo-code for Sample Sort

n
p
---

p 1–
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4.4  Results
We start by looking at the relative performance on a 64-

node CM-5 with 28-bit keys. Figure 10 shows the perfor-
mance of the four algorithms. Figure 11 shows the prediction
graph for the 64-node CM-5. As expected, the small-radix
radix sorts work best for small problems, while sample sort
is the best asymptotically. Radix sort with a 14-bit radix
never wins: although it is the best version of radix sort for
larger problems, sample sort is even better for those same
inputs.

Several bars contain black bars. These bars mark the
actual crossover point for the corresponding region bound-
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Figure 10: Sorting Performance on a 64-Node CM-5.
This graph shows the performance of the four sorting
algorithms for a 64-node CM-5 and 28-bit keys. Sample
sort is the best for large problems, while the small-radix
radix sorts work best for small problems.
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Figure 11:  This plot shows the best algorithm for a given
key width and keys per node for a 64-node CM-5. These
regions are the predictions: the black bars denote the
actual crossover point. The bars are omitted for clarity if
the predicted crossover is within 0.5% of the actual
crossover point. Thus, the models accurately predict the
best algorithm. Note that 14-bit Radix Sort never wins.

ary. To clarify the predicted crossovers, the bars have been
omitted if the actual crossover point is within 50 keys per
node of the prediction, which is [one-fortieth?] of an inch
graphically.

Table 4 gives the predicted and actual regions for all of
the platforms, along with a summary of the prediction errors.
Given the predicted and actual intervals, we can compute the
number of different keys-per-node values for which the pre-
diction was wrong. For example, if a crossover point was off
by ten keys, then we count that error as ten incorrect predic-
tions. We take the total number of incorrect predictions and
divide by 10000, which is our nominal range of interest, to
get the “Error Ratio” column. We leave the ratio as a fraction
because the denominator is rather arbitrary. Nonetheless, the
number of errors is much smaller than the range of interest in
practice.

In general, radix sort does much better on the CM-5 than
on the other platforms. This is primarily due to two factors:
the hardware support for vector-scan operations, and the
absence of an integer multiplication instruction, which slows
down the random-number generation required by sample

Table 4: This table gives the percentage of incorrect
predictions for keys per node in the range of 1 to 10,000
on 64-node platforms. The overall mean accuracy is
99.84%. The middle columns give the predicted and
actual key ranges for which each algorithm is best.

Platform
Key 

Width
4-bit 

Radix
10-bit 
Radix

Sample 
Sort

Error 
Ratio

Alewife: pred
16

1–2584 2585– —

Alewife: act 1–2604 2605– —

Alewife: pred
24

1–1295 — 1296–

Alewife: act 1–1288 — 1289–

Alewife: pred
32

1–817 — 818–

Alewife: act 1–819 — 820–

CM-5: pred
16

1–580 581–6597 6598–

CM-5: act 1–583 584–6551 6552–

CM-5: pred
24

1–386 387–1551 1552–

CM-5: act 1–391 392–1607 1608–

CM-5: pred
32

1–290 291–879 880–

CM-5: act 1–291 292–875 876–

Paragon: pred
8

1–661 662– —

Paragon: act 1–692 693– —

Paragon: pred
16

1–553 — 554–

Paragon: act 1–547 — 548–

Paragon: pred
32

1–215 — 216–

Paragon: act 1–215 — 216–

ATM: pred
8

1–383 384– —

ATM: act 1–391 392– —

ATM: pred
16

1–312 — 313–

ATM: act 1-318 — 319–

ATM: pred
32

1–126 — 127–

ATM: act 1-127 — 128–

20
10000
---------------

7
10000
---------------

2
10000
---------------

49
10000
---------------

61
10000
---------------

5
10000
---------------

31
10000
---------------

6
10000
---------------

0
10000
---------------

8
10000
---------------

6
10000
---------------

1
10000
---------------
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sort. 
In general, radix sort is competitive only for small prob-

lems or small key widths. However, radix sort wins if it only
requires one iteration. The more interesting case is the Ale-
wife platform with 16-bit keys, in which 10-bit radix sort
requires two passes to sample sort’s one. However, the com-
munication performance of the Alewife is fast enough that
the cost of a second pass for radix sort is less than the addi-
tional overhead for sample sort.

For the stencil module, the penalty for prediction errors
was small because they only occur when there are multiple
viable options. For sorting, it is nearly impossible to measure
a penalty that is statistically significant. This is due to the
fact that the performance of sample sort varies depending on
the random-number generator: the crossover points from
radix sort to sample sort are always nebulous. As we move
away from the crossover point, the difference in perfor-
mance starts to dominate the white noise and there should be
a measurable penalty. But there are no errors away from the
crossover points!

4.5  Models
These models are slightly simpler than those for the sten-

cil module, with the CM-5 model for radix sort, shown in
Figure 12, standing out as exceptionally simple and accurate.
The first term is the cost of the buckets, which require global
vector scans and reductions. The second term is the cost of
rearranging the data, which depends of the number of itera-
tions and the number of keys per node. The last term gives
the marginal cost for the machine size. 

Thus, this model captures the performance of radix sort
on the CM-5 with only three terms and yet achieves excel-
lent accuracy (MRE = 1.33%). The original list of terms
included many other combinations that seemed important,
such as the number of processors, but the toolkit threw them
out as superfluous.

In general, the sample-sort models are less accurate than
those for radix sort. This makes sense given the variance in
execution times due to the random-number generator: some
runs are more load balanced than others. 

where:

Figure 12: CM-5 Radix Sort Model

RadixSort keys bpd width, ,( )
 11.41 bins⋅ 9.92 iter keys⋅ ⋅ 77.36 logP⋅+ +=

keys Number of keys per node≡
bpd Radix width in bits (bits per digit)≡

width Key width in bits≡

iter width
bpd

-------------- Number of iterations≡ ≡

bins 2bpd Number of buckets (the radix)≡ ≡
logP Log base 2 of the number of processors≡ 5  Parameter Optimization

The key idea in this section to is combine two powerful
techniques: automatically calibrated statistical models and
numerical root finding. Given models that accurately predict
the cost of the code for a given parameter, we can use root
finding to give us the optimal value. We do this in two differ-
ent ways depending on the nature of the models. For both
methods, the designer specifies the range of interest of the
parameter.

First, if we can set up the problem as the equality of two
models, then we can build a new model that computes the
difference of the models. The root of the new model is the
equality point of the original models. The root finder is:

int IntegerRoot(int bottom, int top,
float f(int param))

This procedure finds the root of f in the interval [bottom,
top]. If there is no root in the given range, then the root
finder returns bottom-1 if the curve is strictly negative, and
top+1 if the curve is strictly positive. If there is more than
one root, the root finder returns one of them.

In the second method, we assume that the model has a
single minimum and use a technique similar to root finding
to locate the minimum. Essentially, the algorithm is binary
search, using the numerical derivative at each point to indi-
cate in which half the minimum resides. The minimum
finder is:

int IntegerMinimum(int bottom, int 
top, float f(int param))

This procedure finds a minimum of f in the interval [bot-

tom, top].6

The overall methodology, then, is to build a composite
model, , that either has a root or a minimum, and then
to use one of the above procedures to find the optimal value
of x. This can be done either at compile time or run time.

5.1  Stencils: Extra Rows and Columns
A simple but useful optimization for stencil programs is

to give the boundary processors extra work to do to make up
for their reduced communication. Figure 13 shows the num-

6: It may be that other optimizations require a more sophisticated tool for
finding the global minimum, but for these applications the single-minimum
requirement was sufficient.

f x( )

4

2

4

33

3

3

Figure 13:  Boundary processors have fewer neighbors
to communicate with than nodes in the center.
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ber of communication directions for different nodes in the
square-block layout. Nodes with fewer directions sit idle part
of the time. Thus, we can give the boundary processors more
grid points, and the middle nodes correspondingly less. This
improves load balancing. The benefit of this optimization is
small for large machines, since there are relatively few
boundary nodes. Nonetheless, it never hurts and is a good
example of the methodology.

5.1.1  The Composite Model

To build our composite model, we combine a model for
the cost of the missing communication with a model for the
cost of the additional grid points. The model for the missing
communication is:

(3)

where BlockTransfer(x) is the cost for a block transfer of x
bytes. The size is multiplied by 8 to convert doubles to bytes,
divided by two because of red-black ordering, and divided
by 8 because the width is divided among 8 nodes. The statis-
tical fitting is hidden within the BlockTransfer function,
which is one of the Strata models.

The model for the marginal communication cost uses the
Square model from Figure 7:

(4)

We exploit the fact that the marginal cost for x extra rows
per node is the same as the marginal cost for 8x extra rows
for the whole problem, since there are 8 processors along the
vertical dimension (assuming 64 nodes). We compute the
cost for 1000 iterations and then divide by 1000 to get the
marginal cost per iteration, which effectively throws out ini-
tialization costs. Also, note that the marginal cost depends on
the existing size of the virtual grid, but the Square model
already captures this behavior.

Given our two submodels, we define the composite
model as the difference between them:

(5)

We give this function to the IntegerRoot procedure to
calculate the optimal number of extra rows. A similar func-
tion is used for the optimal number of extra columns.

5.1.2  Results

Table 5 shows the predictions for the optimal number of
extra rows and columns. Overall, we tried 100 different con-
figurations of platforms and problem sizes: in all 100 trials,
the predicted value was in fact optimal.

We can also use the models to predict the benefit of the
optimization. In particular, if we assume that the extra rows
and columns simply fill up idle time on the boundary proces-
sors, then the performance of the optimized version is nearly
identical to the performance of a problem with that many

Comm w( ) BlockTransfer 8 w ⋅
2 8( )
------------- 

 =

Computation w h x, ,( )  =

Square w h 8x+ 1000, ,( ) Square w h 1000, ,( )–
1000

---------------------------------------------------------------------------------------------------------------------

f x( ) Comm w( )  Computation w h x, ,( )–≡

fewer rows and columns. Table 5 gives the predicted and
actual benefit of the optimization. The predicted value is uni-
formly high, which is due to the fact that the implementation
requires an integer number of additional rows, and thus the
cost of a whole row can not always be hidden in the idle
time. As expected, the benefit of the optimization is rela-
tively small, and has less impact on bigger problems.

5.2  Radix Sort: Optimal Digit Size
In our second example, we attempt to pick the optimal

radix for radix sort. The best radix depends on the platform,
the problem size, and the width of the keys. Figure 14 shows
the effect of the digit size and problem size on the perfor-
mance of radix sort for a 64-node CM-5 with 28-bit keys. By
using parameter optimization, we can build one implementa-
tion that covers all of the different radix values.

5.2.1  The Composite Model

In fact, our existing models for radix sort already take the
digit size as a parameter (Figure 12). Thus, we can build a
composite model quite trivially:

Table 5: This table shows the predicted number of extra
row and columns required to provide load balancing. All
of the predictions were correct. The models can also
predict the benefit of the optimization.

Platform, Size
64 Processors

Rows Cols Opt
Benefit

Pred Actual

Alewife, 200x200 1 1 ✓ 1.6% 1.4%

CM-5, 200x200 2 1 ✓ 3.1% 2.5%

ATM, 50x50 9 2 ✓ 8.9% 8.1%

Paragon, 200x200 3 1 ✓ 3.3% 2.6%

Figure 14:  This graph plots the performance of radix sort
on a 64-node CM-5 with 28-bit keys, versus the width of
the digit in bits and the number of keys per node. For
less than 1000 keys per node, the optimal width is 4 bits,
around 1000 it is 7 bits, and above 1000 it is 10 bits. For
large enough sorts, 14-bit digits would be optimal.
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. (6)

To find the optimal radix, we simply invoke IntegerMin-
ima with f and a reasonable interval, such as [1, 16].

Unfortunately, the specified f has multiple minima. Fig-
ure 15 shows the graph of  versus x for a 64-node CM-
5 with 28-bit keys and 1000 keys per node. The drop from 9
to 10 occurs because a 9-bit radix requires four iterations,
while a 10-bit radix needs only three.

The solution is to build a model that only looks at the
minimum radix size for a given number of iterations. Thus,
we parameterize the composite model in terms of iterations,
from which we can compute the best radix. In particular, for

i iterations, the best digit width is :

. (7)

The viable sizes are circled in Figure 15; connecting the only
the circled nodes leads to a curve with exactly one minimum

at , which corresponds to a digit width of 7 bits.7

5.2.2  Results

As with the stencil example, the predicted optimal radix
was correct in all trials (40). We checked optimality by test-
ing all of the radix values.

It is difficult to access the average benefit of this optimi-
zation. The overall best choice is probably 8-bit digits, but it
is not obvious. In any case, any single choice will be very
bad for some inputs. For example, with a key width of 9, 9-
bit digits can perform up to twice as well as 8-bit digits. Sim-
ilarly, with a key width of 4, 4-bit digits on small problems
can outperform 8-bit digits by more than a factor of three.

Although the optimal value is important for good perfor-
mance, it is very difficult to determine manually. The plat-

7: The 10-bit radix is 0.31 milliseconds slower than the 7-bit version.

f x( ) Radix keys x key_width, ,( )≡

Figure 15: This graph plots the proposed composite
model from equation (6) against the parameter (bits per
digit). The graph has multiple minima and thus could
lead to suboptimal values. Only the circled nodes are
considered by the revised model of equation (7), which
only has one minimum (at 7).
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form, problem size, and key width all have substantial
impact on the best digit width, yet it is not obvious how to
combine these influences. Optimizing any single one alone
leads to inputs with poor performance. The beauty of model-
based parameter optimization is the ease with which it per-
fectly combines these influences: the composite model pre-
cisely captures the importance of each factor.

Given this family of radix sorts that use the optimal digit
width, we can now build a better sorting module. In particu-
lar, to perform algorithm selection, we first determine the
optimal digit width. We then select between radix sort with
the optimal radix and sample sort. This results in a module
with fewer implementations and better overall performance.

6  Run-Time Model Evaluation
Although it has only been hinted at so far, the model-

based decisions can be made at run-time as well as at com-
pile time. The auto-calibration toolkit simplifies run-time
evaluation by generating C models that we can link in with
the application.

Table 6 covers the two drawbacks to run-time evalua-
tion: code expansion and selection overhead. Expansion is
measured against the average of the individual implementa-

tions.8 The memory requirements should be significantly
better, since only one implementation will be paged in. The
overhead for run-time selection is about two microseconds
per implementation, although it depends on the application
and the platform. This is trivial compared to the typical exe-
cution times, which range from milliseconds to minutes.

Parameter optimization can be also be done at compile
time or run time, but if done at compile time, some of the rel-
evant inputs, such as the number of keys per node for radix
sort, might have to be filled in with generic values. Unlike
algorithm selection, run-time parameter optimization avoids
code expansion. The overhead is about 10 microseconds per
iteration, which again is in the noise.

7  Related Work
The closest related work is that of Alan Sussman

[SUS91][SUS92]. Sussman's system chooses the best mapping of
data from a fixed set of choices for compilation onto a linear
array of processors. He shows that the choice of mapping

8: The fifth stencil implementation is horizontal strips. The 14-bit ver-
sion of radix sort was removed from the sorting module.

Table 6: Overheads for run-time selection/optimization.

Metric Stencils Sorting

Implementations 5 3

Average code expansion 290% 210%

Selection (CM-5) 10.2 µs 6.0 µs

Optimization iterations 5 4

Optimization (CM-5) 51 µs 42 µs
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greatly affects the performance of two image processing
algorithms and that his system picks the best mapping by
using execution models. This work extends Sussman's work
by combining execution models with parameterized modules
by looking at general topologies, and by addressing algo-
rithm decisions in addition to layout decisions.

Predictors for Fortran include PTRAN [ABC+88] and
Parafrase-2 [POL+89]. PTRAN determines the maximum
available parallelism for a semantically single-threaded For-
tran program and can use this information to establish a
lower bound on execution time for a given number of pro-
cessors. Parafrase-2 extends this by breaking the execution
time into categories based on various operations such as
floating-point operations and memory accesses. 

Cytron [CYT85] looks at determining the optimal number
of processors to use for a fork-join task graph such as those
generated by a “doall” loop. Chen, Choo and Li [CCL88]

present a simple performance model based on the number of
processors and the times for unit computation and communi-
cation. Their optimization phase uses the model to evaluate
transformations. Culler et al. [CKP+93] propose the LogP
model as tool for algorithm development and analysis. The
models used here subsume all three of these and implicitly
handle many additional aspects, such as bisection-bandwidth
limitations, OS overheads, and caching effects. In general,
the models used in this work are more accurate and robust,
and support automatic recalibration.

Gallivan et al. [GJMW91] investigate model-based Fortran
performance prediction in two steps. First they build a data-
base of “templates” that represent common loop patterns. A
template captures the load-store behavior and the vector
behavior of the Alliant FX/8 multiprocessor. The templates
are simple models based on profiling code for a representa-
tive loop. The second step is to map application loops onto
those in the database, via compiler analysis. There will be
inaccuracies depending on how close a match the compiler
can find. The loops must avoid conditional statements, pro-
cedure calls, and nonlinear array indices. Looking at phases
allows us to avoid their restrictions: we amortize the effects
of conditional statements over time. We also automate the
modeling, which allows portability.

A. Dain Samples’ doctoral dissertation [SAM91] presents a
optimizer that selects among implementations of a sequential
module based on profile information. Our system general-
izes this technique, applies it to parallel computing, uses sta-
tistical models as the medium for feedback, and separates the
modeling from the decision making, which extends and sim-
plifies the use of the profiling information.

Some systems use programmer-supplied annotations to
control the implementation of a module. High Performance
Fortran [HPF] uses programmer directives to control the lay-
out of arrays. Prelude [WBC+91] used annotations to control
the migration of data and threads. The annotations are a
short-term solution that side-steps the difficulties of auto-
matic layout or migration.

Many languages and libraries provides support for modu-

larity, including Multipol [YEL92], Modula-3 [NEL91] and
Standard ML [MTH90], but none address automatic selection
or optimization of multiple implementations.

There are a myriad of adaptive algorithms. These algo-
rithms use feedback to adjust the key parameter dynami-
cally, which may take some time to reach the optimal value.
A good example is the “slow start” mechanism used from
TCP [JAC88]. For short messages, as seen with the World
Wide Web, the optimal value is never reached, and the con-
nection achieves very low bandwidth. In contrast, model-
based parameter optimization starts with the optimal value.
The feedback-based algorithms are more robust: they can
handle dynamic or unknown environments. A hybrid may
work best: compute the starting value and adapt over time.

8  Conclusions
The performance of the stencil module strongly depends

on the layout of the virtual grid onto physical processors.
The square-block layout is the best overall, but the unipro-
cessor and vertical strips versions are often better. The
shared-memory version never wins.

The performance of the sorting algorithms depends on
the size of the problem, the width of the keys, and the target
platform. The radix sorts work best for small problems or
small key widths, while sample sort is usually better asymp-
totically. 

The models for both modules were quite accurate: the
selector picked the best implementation more than 99% of
the time on all of the platforms. In the few cases in which a
suboptimal implementation was selected, that implementa-
tion was nearly as good as the best choice: only a few per-
cent slower on average for the stencils and nearly identical
for sorting. The system only makes errors near the bound-
aries of the performance surfaces, from which it follows that
the penalty for these errors is small.

In contrast, the benefit of picking the right implementa-
tion was often very significant: averaging 8-90% for stencils
and often more than a factor of two for sorting. We also used
the models for parameter optimization. We found no errors
in the prediction of the optimal parameter value (140 trials),
and benefits ranging from a few percent to a factor of three.

An important benefit of automatic selection is the tre-
mendous simplification of the implementations that arose
from the ability to ignore painful parts of the input range. By
adding preconditions into the models, we ensure that the
selector never picks inappropriate implementations. Thus, an
immediate consequence of automatic selection is the ability
to combine several simple algorithms that only implement
part of the input range.

In general, porting a high-level library requires much less
work than porting an application. The implementations
depend on only C and Strata. The libraries are essentially
self-tuning: they combine the flexibility of multiple imple-
mentations with an automatic method for selecting the best
one in the new environment. Applications that use the librar-
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ies are also more portable, because many of the perfor-
mance-critical decisions are embedded within the libraries.

Model-based parameter optimization provides a form of
adaptive algorithm. In fact, one way to view this technique is
as a method to turn algorithms with parameters that are diffi-
cult to set well into adaptive algorithms that compute the
best value. This brings a new level of performance to porta-
ble applications: the key performance parameters are set
optimally and automatically as the environment changes.

Selection can be done at run time as well as compile
time. The code expansion is small and the overhead is insig-
nificant compared to the execution time. Run-time parameter
optimization has low overhead, no code expansion, and can
exploit workload information, such as the problem size, that
is only available dynamically.

Finally, parameter optimization can be combined with
automatic algorithm selection to produce simple, more pow-
erful modules, with better overall performance. The selec-
tion is done in two passes: first, we find the optimal
parameter values for each of the parameterized implementa-
tions, and then we select among the optimized versions. For
both applications, there are inputs for which the selected and
optimized version is more than three times faster than best
overall (optimized) implementation.
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