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ABSTRACT
Position auctions were widely used by search engines to sell
keyword advertising before being well understood (and, in-
deed, studied) theoretically. To date, theorists have made
significant progress, for example showing that a given auc-
tion is efficient or revenue-dominates a benchmark auction
such as VCG. This paper augments that line of work, relying
on computational equilibrium analysis. By computing Nash
equilibria and calculating their expected revenue and social
welfare, we can quantitatively answer questions that theo-
retical methods have not. Broadly, the questions we answer
are: (1) How often do the theoretically predicted “good”
(i.e., efficient, high-revenue) equilibria of GSP occur? (2)
In models where GSP is known to be inefficient, how much
welfare does it waste? We also use our data to examine the
larger question of whether GSP is a good choice, compared
with the alternatives.

1. INTRODUCTION
Position auctions are a relatively new family of auctions
whose distinguishing characteristic is that rather than los-
ing, the second-highest bidder wins the second-most-desirable
good. Each year, these auctions are used to sell billions of
dollars worth of advertising space on search engine results
pages. The search engines have some degrees of freedom
within the framework of position auctions: whether adver-
tisers pay every time their ad is shown or only when the user
clicks on it, whether ads that attract more clicks are given
more favorable rankings, and how prices are set.

Although a few varieties have been tried, the major search
engines have converged on a single design: the weighted,
generalized second-price auction (wGSP for short). The
main question that this paper seeks to address is whether
or not wGSP represents a good choice compared to the auc-
tions it has replaced, and as compared to theoretical bench-
marks. Specifically, we ask whether it is more economically
efficient, and whether it generates more revenue. A range of
theoretical work has been published showing properties of
wGSP under various preference models, some positive and

some negative. These results have raised further questions,
not all of which appear to be amenable to theoretical study.

This paper attempts to answer these questions quantita-
tively. We introduce novel computational and representa-
tional techniques that for the first time permit the compu-
tation of Nash equilibria of position auctions. This allows us
to make “apples-to-apples” comparisons to find out exactly
how two different auctions behave in equilibrium, given the
same bidder preferences. It also allows us to measure the
magnitude and frequency of auction properties that are the-
oretically possible, but are not proven to always hold, such
as the existence of envy-free equilibria.

1.1 Previous Work
Although a variety of position auction variants have been
proposed, three have seen large-scale use in practice. We
describe each here and also give a short form that we will
use througout the paper.

GFP The unweighted, pay-per-click, generalized first-price
auction, used by Yahoo! and Overture from 1997-2002.

uGSP The unweighted, pay-per-click generalized second-
price auction, used by Yahoo! from 2002-2007.

wGSP The weighted, pay-per-click, generalized second-price
auction, used by Yahoo! since 2007, as well as by Mi-
crosoft Live and Google.

These auctions have all been subjected to theoretical analy-
sis under a variety of models, typically with the assumption
that bidders will converge, in repeated play, to an equilib-
rium of the full-information, one-shot game.

Edelman, et al. analyzed the uGSP1 under a preference
model (which we denote ESO) in which each bidder’s ex-
pected value per click is independent of position. The click-
through rate is decreasing in position (i.e., ads that appear
lower on the screen get fewer clicks) but independent of bid-
der [15]. They showed that in any locally envy-free equilib-
rium (one in which no bidder envies the allocation received
by a bidder in a neighboring position), uGSP is efficient and
revenue dominates the truthful equilibrium of VCG. Given
that locally, envy-free equilibria are not guaranteed to exist,
a natural question about this model is:

1
In their model, uGSP and wGSP are strategically equilvalent.



Question 1: Under ESO preferences, how often does wGSP
have efficient, VCG-revenue-dominating Nash equilibria? What
happens in other equilibria?

Varian analyzed wGSP under a more general model [36].
In his model (which we denote V), each bidder’s value per
click is still independent of position, but the click-through
rate is decreasing and “separable.” Separability means that
for any position/bidder pair, the click-through rate can be
factored into a position-specific component that is indepen-
dent of bidder identity and a bidder-specific component that
is independent of position. The weights of wGSP are as-
sumed to correspond to these bidder-specific factors. Varian
showed that in any “symmetric equilibrium” (i.e., globally
envy-free) wGSP is efficient and revenue dominates VCG.
Because symmetric equilibria are similarly not guaranteed
to exist, it is natural to ask a second question analogous to
our first:

Question 2: Under V preferences, how often does wGSP
have efficient, VCG-revenue-dominating Nash equilibria? What
happens in other equilibria?

Blumrosen, et al. proposed an even more general model
(which we denote BHN). In this model, click-through rate
is still decreasing and separable [8]. However, a bidder’s ex-
pected value per click is increasing in rank in a separable
fashion, subject to the constraint that a bidder’s expected
value per impression is weakly decreasing. The authors sup-
port their generalization by describing empirical data that
shows that conversions (e.g., sales) are more likely for clicks
in lower positions. They show that preference-profiles exist
where wGSP has no efficient, pure-strategy Nash equilib-
rium. However, while we know that such preference profiles
exist, we do not know how much of a problem they pose on
average.

Question 3: Under BHN preferences, how often does wGSP
have no efficient Nash equilibrium? How much social welfare
is lost?

Benisch, et al. proposed another model (which we denote
BSS), generalizing ESO. In this model, click-through rate is
decreasing in position but independent of bidder. However,
bidders’ values are single peaked in position and strictly de-
creasing from that peak (e.g., “brand” bidders prefer the
prestige of top positions, while “value” bidders prefer po-
sitions near the middle) [6]. They analyze this model in
an imperfect-information game, and show both that GSP
ranking rules can be arbitrarily inefficient for such models
and that more expressive bidding languages can improve ef-
ficiency. For different distributions over their model, they
bounded the loss of efficiency in the best-case Bayes-Nash
equilibrium.

Question 4: Under BSS preferences, how often does wGSP
have no efficient perfect-information Nash equilibrium? How
much social welfare is lost?

Yet another family of models are the “cascade models” [18,
22, 2] which seek to capture externalities in the bidders’ pref-
erences. Specifically, in these models a bidder’s value and
click-through rate depend on which bidders win the other
positions. The motivation for this model is that users tend
to scan and click ads in the order they appear; a good ad

can make lower ones appear less desirable, while a bad ad
can cause a user to give up on the ads entirely. Although
this is an important and plausible preference model, it is not
tractable within our current representation, and so we defer
its study to future work.

Having posed the questions that we will address, the rest of
the paper takes the following form. In Section 2, we explain
the representation that makes our computational approach
possible.2 In Section 3, we describe our specific experimen-
tal method: problem distributions, game solving algorithms
and statistical techniques. In Section 4, we address our ques-
tions, presenting the results of our experimental study.

2. POSITION AUCTIONS AS AGGS
This section describes our preference model and shows how
that model can be represented compactly to allow for more
efficient computation of Nash equilibria. The essential in-
sight that makes this possible is that these games obey
“context-specific independence:” for example, in GFP a bid-
der’s payoff depends only on his own bid and on how many
bidders bid higher than he did, but not on who they are
or exactly what their bids were. Action-graph games (de-
scribed below) exploit this independence to represent games
more compactly and make them more computationally tractable.

2.1 Preference model
In our evaluation of auction types, we use the following
model. As in previous work [36, 15, 24], we look for the
equilibria of the one-shot, full-information game.

Definition 1 (Ad auction setting). An ad auction
setting is given by a 6-tuple (N,K,M,P, V, β):

1. N is the set of bidders;

2. K is the set of possible positions;

3. M is the set of possible bids;

4. P is a matrix of click-through rates, where Pj,i is the
probability that bidder i will receive a click when his ad
is in position j;

5. V is a matrix of expected values for a click, where Vj,i

is the value that bidder i has for a click when his ad is
in position j; and

6. β is a vector of “quality scores” or weights, where βi/βj

denotes the quality of bidder i relative to bidder j.

Because our model allows for arbitrary click-value and click-
through rates for every bidder, position pairing, it strictly
generalizes all the models described earlier: ESO, V, BHN
and BSS.

2.2 AGGs
Since analyses of position auctions have relied on perfect-
information games, in principle we could discretize bid amounts
and then represent the auction as a normal-form game. This
would have the advantage that Nash equilibria of the auction

2
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Section 2 essentially follows that earlier work (albeit incorporating
some new advances). Otherwise, the results in the current paper are
entirely new.



could be identified by standard computational tools such as
Gambit [28]. The catch, of course, is that the normal form
representation of a realistic ad auction problem is unman-
ageably large. For example, the normal form representation
of a relatively small game with 10 agents and 10 bid amounts
per agent consists of 100 billion values, too many to store
even on the hard drive of many modern computers—let alone
in RAM. Thus, to have any hope of tackling position auc-
tions computationally, it is necessary to work with a rep-
resentation language that allows the game to be compactly
described.

We chose to use the action-graph game (AGG) represen-
tation [7, 20]. Action-graph games are similar to the more
widely-known graphical game representation [21] in that they
exploit utility independencies. AGGs are strictly more pow-
erful than graphical games, however. This is because AGGs
are compact not only for games with “strict utility indepen-
dencies” (the property that one agent’s payoff never depends
on some second agent’s action) but also “context-specific in-
dependencies” (one agent’s payoff is independent of a second
agent’s action, at least for some action of the first agent and
some set of actions of the second). This distinction is im-
portant for modeling position auctions. Note that any bid-
der can affect any other bidder’s payoff (e.g., by outbidding
him); hence the graphical game representation of a perfect-
information position auction is a clique, meaning that it is no
more compact than the normal form. However, position auc-
tions have considerable context-specific independence struc-
ture. To give one simple example, in a GFP auction, bidder
i’s utility is independent of bidder j’s bid, conditional on j
bidding less than i. This is the sort of structure that can be
captured by AGGs.

The core idea behind action-graph games is the action graph,
so called because nodes in this directed graph represent ac-
tions. Each agent is allowed to choose his action from an
arbitrary subset of the nodes; agents’ subsets are allowed to
overlap or coincide. Play of the game can be visualized as
each agent simultaneously placing a single token on one of
the nodes in the graph. Given the locations of all the tokens,
an agent’s utility can be computed by referring only to the
number of tokens in the neighborhood of his chosen node.
(The neighborhood of a node v is the set of all nodes having
outgoing edges that point to v; self-edges are allowed, and
so a node can belong to its own neighborhood.) Figure 1
gives an example of an action-graph game taken from [7].
Observe that there are two action sets consisting of four ac-
tions each; unlike in a graphical game, the number of agents
cannot be inferred from the graph.

Their compact size is not the only interesting thing about
AGGs. More importantly, AGG structure can be lever-
aged computationally, and hence game-theoretic computa-
tions can be performed dramatically more quickly for AGGs
than for games represented in normal form. For example,
given action graphs with bounded in-degree, a polynomial-
time dynamic programming algorithm can be used to com-
pute an agent’s expected utility under an arbitrary mixed
strategy profile [20]. (Observe that this is interesting be-
cause the standard method of computing expected utility
has running time polynomial in the size of the normal form,
but potentially exponential in the size of more compact rep-
resentations like AGGs.) This computational problem is im-
portant because it constitutes the inner loop of many game-
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Figure 1: AGG representation of an
arbitrary 3-player, 3-action game
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Figure 2: AGG representation of a
3-player, 3-action graphical game
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Figure 3: AGG representation of the
ice cream vendor game

locations along a beach. Vendors are of two kinds, choco-
late and vanilla. Chocolate (vanilla) vendors are nega-
tively affected by the presence of other chocolate (vanilla)
vendors in the same or neighboring locations, and are si-
multaneously positively affected by the presence of nearby
vanilla (chocolate) vendors. Note that this game exhibits
context-specific independence without any strict indepen-
dence, and that the graph structure is independent ofn.

Other examples of compact AGGs that cannot be com-
pactly represented as graphical games include: location
games, role formation games, traffic routing games, prod-
uct placement games and party affiliation games.

2.3 Notation

Letϕ(X) denote the set of all probability distributions over
a setX. Define the set of mixed strategies fori as

Σi ≡ ϕ(Si), (5)

and the set of all mixed strategy profiles as

Σ ≡
∏

i∈N

Σi. (6)

We denote an element ofΣi by σi, an element ofΣ by σ,
and the probability that playeri plays actions by σi(s).

Next, we give notation for applying some of the concepts
defined in Section 2.1 to situations where one or more
agents are omitted. By∆−{i,i′} we denote the set of pos-
sible distributions of agents other thani and i′, and by
D−{i,i′} we denote an element of∆−{i,i′}. Analogously,
we defineN−{i,i′}, S−{i,i′}, Σ−{i,i′} and σ−{i,i′}. As a
shorthand for the subscript−{i, i′}, which we will need
frequently in the remainder of the paper, we use an overbar,
yielding ∆, D, N, S, S, Σ andσ . When only one agent is
omitted, we writee.g. ∆−i. Finally, we overload our no-
tation, denoting byD(si, s

′
i, D) the distribution that results

when the actions ofi andi′ are added toD.

Define the expected utility to agenti for playing pure strat-
egy s, given that all other agents play the mixed strategy
profileσ−i, as

V i
s (σ−i) ≡

∑

s−i∈S−i

u(s, s−i) Pr(s−i|σ−i). (7)

The set ofi’s pure strategy best responses to a mixed strat-
egy profileσ−i is arg maxs V i

s (σ−i), and hence the full set
of i’s pure and mixed strategy best responses toσ−i is

BRi(σ−i) ≡ ϕ(arg max
s

V i
s (σ−i)). (8)

A strategy profileσ is a Nash equilibrium iff

∀i ∈ N, σi ∈ BRi(σ−i). (9)

Finally, we describe the projection of a distribution of
agents onto a smaller action space. Intuitively we construct
a graph from the point of view of an agent who took a par-
ticular action, expressing his indifference between actions
that do not affect his chosen action. For every actions ∈ S
define a reduced graphG(s) by including only the nodes
ν(s) and a new node denoted∅. The only edges included
in G(s) are the directed edges from each of the nodesν(s)
to the nodes. The projected distributionD(s) is defined
over the nodes ofG(s) as

D(s)(s′) ≡
{

D(s′) s′ ∈ ν(s)∑
s′′ 6∈ν(s) D(s′′) s′ = ∅ . (10)

In the analogous way, we defineS(s), s(s), Σ(s) andσ(s).

Figure 1: The ice cream vendor game as an AGG
(from [20]). Chocolate and vanilla ice-cream ven-
dors must choose which block to open their stores
on, given that their payoffs will depend on how many
other vendors are within one block of their location.
(Circular nodes represent actions, dotted boxes rep-
resent action sets for a group of players and arcs
represent payoff dependencies.)

theoretic algorithms, including state-of-the-art algorithms
for computing Nash equilibria like Simplicial Subdivision
[33] and Govindan-Wilson [19]. An exponential speedup to
the solution of the expected utility problem therefore trans-
lates directly to an exponential speedup of such algorithms,
without altering the solution obtained.

Although it is beyond the scope of this paper to describe
AGGs in detail, there is one further element of the rep-
resentation that we must describe here. Specifically, it is
possible to add so-called function nodes to the action graph,
which are nodes that belong to no agents’ action sets. In-
stead, the “action count” at a function node is calculated
as an (arbitrary) deterministic function of the counts at the
function node’s parents. For example, when an agent’s pay-
off for playing a depends on how many agents play any of b, c
or d, we can add a summation node to reduce the in-degree
of a. Function nodes can dramatically reduce representa-
tion size when (for example) many actions affect a given
action in the same way. As long as the functions are well-
behaved (“contribution-independent”; roughly, commutative
and associative) function nodes can be used with the dy-
namic programming algorithm from [20]. Since the variable
most important to the asymptotic running time of this al-
gorithm is the maximal in-degree of action nodes, and since
this quantity can be drastically reduced by the introduction
of high-in-degree function nodes, function nodes can also
lead to substantial computational savings.

2.3 Representing GFPs as Action-Graph Games
Having described the auction types and model that we in-
tend to solve, our next step is to show that they can be
compactly represented. This section will present algorithms
for representing an ad auction type (for example, weighted
per-click GSP) and auction setting as an action-graph game



Figure 2: A weighted GFP represented as an
AGG. (Square nodes represent summation function
nodes.)

and bounds on the size of those representations.

To get a suitably compact representation, one of our biggest
concerns is the maximum in-degree of our action graph. Ev-
ery action node must have a table representing that action’s
payoff function, and this table will grow exponentially in the
in-degree of that action node. An arc (u, v) in an AGG de-
notes that the payoff for playing action v depends on the
number of agents playing u. However, note that an agent’s
payoff depends only on the position he is awarded and the
price he is made to pay. In the case of a GFP, an agent’s price
is determined by his bid while his position is determined by
the number of bids above his and the number of bids equal
to his. (We assume that ties are broken randomly.) His
position can be affected by many different actions by other
bidders, leading to a very large in-degree. However, if we in-
troduce function nodes corresponding to summation (here-
after summation nodes) to keep track of how many bids are
equal to or greater than each possible bid value, we need
only two in-arcs to capture the two values.

Algorithm 1 converts a weighted (or, as a special case, un-
weighted3) GFP to an AGG. An example AGG is shown in
Figure 2.

For each action node, we must have a payoff function map-
ping from the inputs to that node to the payoff an agent
playing that action will get. For a bid of b by agent i, we
denote this as γ1,I

i,b for a pay-per-impression GFP. Because
of the configuration of the summation nodes, the two in-
puts to this function are the number of effective bids that
are equal to i’s bid of b and the number that are greater
than or equal. The payoff function for any action node in a
pay-per-impression GFP is given by

γ1,I
i,b (e, g) =

1

e

min(g,k)∑

j=g−e+1

(Pj,iVj,i − b).

Similarly, the payoff function for any action node in a pay-

3
Trivially, this algorithm can also be used to represent an unweighted

GFP by replacing β with a vector of ones, causing the auction to treat
bids by different agents equivalently.

foreach agent i ∈ N do
foreach bid m ∈M do

create an action node representing i bidding m;

E ← {mβi|∀i ∈ N,∀m ∈M};
foreach effective bid e ∈ E do

create a summation function node, (=, e) representing
the bidders bidding exactly e;
create a summation function node, (≥, e) representing
the bidders bidding above e;
add an arc from (=, e) to (≥, e);
if e>0 then

add an arc from (≥, e) to (≥, e′) (where e′ is the
next largest effective bid);

foreach action node a do
e← effective bid of a;
add an arc from a to (=, e);
add an arc from (=, e) to a;
add an arc from (≥, e) to a;

Algorithm 1: An algorithm for converting an auction set-
ting into an action graph representing a GFP.

per-click GFP is given by

γ1,C
i,b (e, g) =

1

e

min(g,k)∑

j=g−e+1

Pj,i(Vj,i − b).

This representation results in a graph containing nm action
nodes, each of which has an in-degree of two. Each node has
a payoff table with at most O(n2) relevant entries. Thus,
this representation requires O(n3m) space.

2.4 Representing GSPs as Action-Graph Games
GSPs are similar to GFPs in that each agent’s payoff de-
pends on a small number of values. To determine the posi-
tion (or range of positions), we use the same graph structure
as for GFPs. However, we need to augment the graph to cap-
ture the pricing rule of GSPs. This is done by adding “price
nodes”, function nodes that identify the next-highest bid.
We use the term argmax node to refer to a function node
whose value is equal to the largest (given some arbitrary
ordering) in-arc carrying a non-zero value. By ordering ac-
tion nodes according to the value of their effective bids, an
argmax node identifies the highest effective bid among the
subset of action nodes connected to it. After running the Al-
gorithm 1, we add argmax nodes as shown in Algorithm 2.
An example of the resulting action graph is illustrated in
Figure 3. Note that although the in-degree of the argmax
nodes can get large (O(nm)), the computational complex-
ity of solving an AGG only depends on the in-degree of the
action nodes.

As in the case of GSP, we must define a payoff function for
each action node. Now, we have a third input (p), which
identifies the next-highest effective bid. Let Ep denote this
value. The payoff function for any action node in a pay-per-
impression GSP is

γ2,I
i,b (e, g, p) =

1

e

min(g−1,k)∑

j=g−e+1

(Pj,iVj,i − b)

+δ(g ≤ k)(Pg,iVg,i −max{1, dEpe})/e,

where δ(x) = 1 iff x is true. Similarly, the payoff function



Figure 3: To represent a GSP as an AGG, we add
price nodes (argmax nodes denoted by hexagons) to
a GFP representation. For clarity only one price
node is pictured, while a full GSP representation
requires one price node for each effective bid.

foreach effective bid e ∈ E do
create an argmax function node, (p, e) representing the
next highest effective bid below e;
foreach action node a with effective bid e′ do

if e’ < e then
add an arc from a to (p, e);

if e’ = e then
add an arc from (p, e) to a;

Algorithm 2: An algorithm for converting an auction set-
ting into an action graph representing a GSP.

for any action node in a pay-per-click GSP is given by

γ2,C
i,b (e, g, p) =

1

e

min(g−1,k)∑

j=g−e+1

Pj,i(Vj,i − b)

+δ(g ≤ k)Pg,i(Vg,i −max{1, dEpe})/e.

This representation results in a graph containing nm ac-
tion nodes, each of which has an in-degree of three. Each
node has a payoff table with at most O(n2|E|) relevant en-
tries (where |E| ≤ nm). Thus, this representation requires
O(n4m2) space. As was the case with GFPs, we can produce
an unweighted auction by simply replacing β with a vector
of ones. We can find also AGG representations of Lahaie
and Pennock’s family of ranking rules [25] by adjusting the
values of β appropriately.

Although these techniques can represent many different po-
sition auctions, we will only focus on the ones used in prac-
tice: GFP, uGSP and wGSP.

2.5 Removal of Dominated Strategies
For tractability, we removed weakly dominated strategies
while generating action graph games. The strategies we re-
moved fall into two classes. The first class is strategies that
require a bidder to bid higher than his maximum value in

any position. The second class is strategies where the agent
bids the larger of two values that always result in the same
allocation, i.e., where every bid by any other agent is either
strictly greater than the larger bid or strictly less than the
smaller bid. This second class occurs often when bidders
have very different weights.

For some games, removing weakly dominated strategies can
remove some Nash equilibria; we consider the extent to
which this arises for our games. For the first class, we do lose
Nash equilibria, but only ones in which at least one agent is
playing the obviously dominated strategy of bidding above
his value. For the second class, we do not remove any Nash
equilibria from GFP auctions, because the dominance is al-
ways strict: by bidding the higher of the two values, the
bidder gets the same outcome but pays a strictly higher
price. However, for GSP auctions removing the second class
of dominated strategies does remove some Nash equilibria.
Fortunately, these equilibria are redundant from perspective
of auction analysis. If the removed strategy is played in a
Nash equilibrium, there must be a corresponding equilib-
rium where the bidder plays the dominating strategy. Each
equilibrium will lead to the same outcome (or distribution
over outcomes in the case of ties or mixed strategies).

3. METHOD
Broadly speaking, the method of this paper is to gener-
ate many specific preference-profile instances from each of
the preference models, build an AGG encoding the cor-
responding perfect-information auction problem, solve the
AGG computationally, and then compare the outcomes against
both each other and VCG.

3.1 Problem instances
Our preference-profiles come in four sizes and are generated
by imposing a probability distribution over the preference-
models and then drawing instances from those distributions.
For the ESO, V, and BHN preference models we used a
probability distribution that was as uniform as possible over
the space of possible preferences.

For ESO, each bidder’s value was drawn from a uniform [0, 1]
distribution. The position-specific click-through rate was
drawn from a uniform distribution over the allowed range (at
least zero, and at most the click probability of the position
immediately above).

For V, the distribution was the same as for ESO, except
that each bidder-specific click-through rate factor was drawn
from a uniform distribution on [0, 1].

For BHN, the distribution was the same as for V, except
that the position-specific click-value factor was drawn from
a uniform distribution over the allowed range (at least the
value per-click of the position immediately above, at most a
value per-click that results in the same value per-impression
as the position immediately above).

We handled BSS differently, because in addition to their
model, the authors also provided an explicit preference dis-
tribution of their own. We followed that model, which we
summarize here (a more thorough description is provided
in [6]). Click-through rate decreases exponentially. With
probability 0.5, a bidder’s peak position is drawn from uni-



form [0.8, 1.0]; otherwise this value is drawn from uniform
[0.4, 0.6]. Conversion probabilities fall off exponentially from
the peak. Value per conversion is drawn from uniform [30, 150]
while each click costs 1.

In every case, we normalized the values so that the highest
value was equal to the highest possible bid, to ensure that
the full number of bid increments was potentially useful.

We considered games at four problem sizes:

small: 5 bidders, 3 positions, 5 non-zero bid increments

medium: 10 bidders, 8 positions, 10 non-zero bid incre-
ments

large: 10 bidders, 8 positions, 20 non-zero bid increments

extra large: 10 bidders, 8 positions, 40 non-zero bid incre-
ments

To allow direct study of the effect of discretization, we gen-
erated the medium, large and extra-large problem instance
to be identical up to a normalizing constant.

For each preference model and size, we generated 100 preference-
profile instances, and then generated games for each of the
three position-auction types, GFP, uGSP and wGSP (4800
games, in all).

3.2 Computation
Our experiments were performed using a cluster of 55 ma-
chines with dual Intel Xeon 3.2GHz CPUs, 2MB cache and
2GB RAM, running Suse Linux 10.1 (Linux kernel 2.6.16.54-
0.2.5-smp).

To compute Nash equilibria, we used “simpdiv” and “gnm,”
the simplicial subdivision [33] and global Netwon method [19]
implementations provided by Gambit [28], extended to use AGGs
and the dynamic programming algorithm of [20].4

For each game, we ran simpdiv from ten different pure-strategy-
profile starting points, chosen uniformly at random. We also ran
gnm ten times, with random seeds one through ten. Each run was
limited to five CPU minutes. simpdiv took 895.1 CPU hours and
found solutions to 4230 of the 4800 games. gnm took 1402.1 CPU
hours and found solutions to 3775 games.

To improve the statistical reliability of our results, we did not
drop individual games that were not solved by the cutoff. This
is because we worried that the very features that made instances
hard to solve could also make their equilibrium outcomes qual-
itatively different those of easier-to-solve games. Instead, we
split (preference-model,size,auction) triples into two groups. For
those on which we had solved nearly every instance, we re-ran
our solvers to completion without a cutoff time. On the other
hand, some triples had been too hard to solve reliably; these we
abandoned. They were all GFP auctions at large or extra-large
sizes: (V,L,GFP), (ESO,L,GFP), (V,XL,GFP), (ESO,XL,GFP)
and (BSS,XL,GFP).

3.3 Equilibrium selection
Starting from some arbitrary equilibrium of a GSP, it will often be
the case that one or more agents can vary their bids within ranges
that do not affect the outcome (the ranking of the ads), but that
do affect the amounts that the bidders above must pay [9, 36].

4
The extension of Gambit that allows simplicial subdivision to work

with AGGs can be obtained from http://agg.cs.ubc.ca.

Thus, while social welfare is relatively stable in GSPs, equilibrium
revenue depends on which strategy each agent chooses from a set
of weak best responses.

We treat this equilibrium selection problem as a constrained opti-
mization problem: maximize or minimize revenue subject to being
in a Nash equilibrium. We represent this as a local search through
strategy-profile space. Our neighborhood relation is strategies
that differ by shifting probability mass from one bid to an adja-
cent one. Our algorithm is randomized hill-climbing: accepting
the first improving move that doesn’t violate an equilibrium con-
straint. We restart twice from each equilibrium found by simpdiv
or gnm. Note that the final maximum or minimum thus found is
not guaranteed to be a global optimum.

For consistency, we also use the same local search procedure with
GFP problems, and in all auctions when evaluating social welfare
as well as revenue.

3.4 Benchmarks: VCG and Discretized VCG
As well as comparing GSP and GFP to each other, we also com-
pared these position auctions to VCG. There are two ways of
doing this. First, we used the actual (i.e., non-discretized) pref-
erences of the agents, and computed the truthful equilibrium of
VCG. However, when making such a comparison, it is not possi-
ble to determine whether differences arise because of the auction
mechanism or because of discretization. To answer this question,
we also compared against a discretized version of VCG. Bidders’
values-per-click were discretized to the same number of incre-
ments as in the position auctions, and the optimal allocation was
found for these perturbed preferences. We still assume that bid-
ders bid truthfully in this auction. Note that such behavior is in
fact only an ε-Nash equilibrium, where ε is equal to half of one
bid increment.

3.5 Statistical Methods
To test whether one auction achieved statistically significantly
better performance than another according to a given metric (e.g.,
revenue), we used a blocking, means-of-means, bootstrapping test
[13]. We performed the test as follows:

1. For each setting instance, find the difference in the metric
across that pair of auctions on that instance. Each value is
normalized by the achievable social welfare in that instance.
Call this set of values S.

2. Draw |S| samples from S (with replacement), and compute
the mean. Perform this procedure 20,000 times. Let M
denote the set of means thus computed.

3. Our estimated performance difference is the mean of M
(the mean-of-means of S).

4. This difference has significance level α if the αth quantile
of M is weakly greater than zero.

For our hypothesis tests, we use ∗ to denote that a result has a
significance level of α = 0.05 and ∗∗ to denote that a result has
a significance level of α = 0.01. For each group of data points
(i.e., for a specific size and preference model) we must perform 80
simultaneous tests: we compare revenue and welfare in the best
and worst equilibrium, from each auction to every other. With
this many tests, we must use some multiple-comparison correc-
tion. (Otherwise, while every individual significance test will be
sound with marginal probability ≥ 0.95, the joint probability of
them all being sound could be much lower.) We use a Bonferroni
correction (effectively, dividing the desired significance level by
the number of tests performed) [30]. Thus, when reporting re-
sults for groups of data points, we use ∗ to indicate that a result
is individually significant for α = 0.000625 and ∗∗ to indicate that
a result is individually significant for α = 0.000125.
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Figure 4: In ESO, wGSP approximated efficiency
well. Finer discretization lead to more efficiency.

4. EXPERIMENTAL RESULTS
Now we turn to our experimental findings. We had two main
goals: answering the four questions posed in the introduction,
and assessing whether wGSP achieved superior performance in
equilibrium, as compared to the auctions that it has replaced
in widespread practice. This section is structured around the
preference models that each question uses. For each model, we
answer our corresponding question, and then quantify wGSP’s
performance compared to that of the other auctions.

4.1 Edelman, Schwarz, Ostrovsky model
Recall that Edelman et al. proved that in “locally envy-free equi-
libra” wGSP is weakly better than VCG in revenue and welfare
[15]. Our question was:

Question 1: Under ESO preferences, how often does wGSP
have efficient, VCG-revenue-dominating Nash equilibria? What
happens in other equilibria?

We found that wGSP approximated efficiency very well: although
wGSP was inefficient (significant∗∗ at every size), the welfare loss
was small relative to the size of the bid increment. As discretiza-
tions got finer, wGSP appeared to approach efficiency (see Fig-
ure 4).

On the other hand, our revenue results ran counter to the predic-
tion made by Edelman et al, that wGSP would revenue-dominate
VCG. Although wGSP had multiple equilibria with different rev-
enues (see Figure 5), even in its most favorable equilibria wGSP
achieved less expected revenue than VCG (see Figure 6, significant∗∗

at every size). There are a number of reasons that this could have
occurred. First, Edelman et al.’s prediction concerns only envy-
free equilibria. These equilibria arise when bidders bid within an
interval that may be empty [36]; given instances may therefore
have no such equilibria. Second, discretization means that even
when the interval is non-empty, it could fall between two bid in-
crements. Third, the only discrete bids on this interval could be
higher than the bidder’s value, and therefore would removed as
weakly dominated.5

From the perspective of practice, our efficiency results seem to
support Yahoo!’s 2002 decision to switch from GFP to uGSP:
uGSP was more efficient (see Figure 7, significant∗∗ at small and
medium sizes for best and worst equilibria. GFP was too difficult

5
We are currently running new experiments without removal of dom-

inated strategies to measure this effect; we intend to describe them
in the full version of this work.

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2
∆ Revenue

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
  

P
ro

b
a
b
ili

ty

Low (µ=-0.1054)
High (µ=-0.0187)

Figure 5: In ESO, wGSP’s expected revenue was
very sensitive to equilibrium selection.
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Figure 6: In ESO, even in the best equilibria we
found wGSP’s did not beat VCG (discrete or con-
tinuous).

to solve at larger sizes.) Our revenue results were ambiguous: we
did not observe a significant revenue difference between GFP and
wGSP. Another interesting practical conclusion is that the use of
$0.01 bid increments is not innocuous. For keywords where the
value-per-click is small, this amounts to a coarse discretization,
which could harm revenue and welfare.

4.2 Varian model
Recall that Varian proved that in “symmetric equilibria” wGSP
achieves weakly better performance than VCG according to both
revenue and welfare [36]. Our question was:

Question 2: Under V preferences, how often does wGSP have
efficient, VCG-revenue-dominating Nash equilibria? What hap-
pens in other equilibria?

As with the ESO model, we found that that even in the worst
equilibria, wGSP approximated efficiency very well. 95% confi-
dence intervals on the mean welfare loss ranged from [0.36%, 1.47%]
for the extra-large cases to [1.40%, 4.94%] for the small cases.
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Figure 7: In ESO, uGSP and wGSP are strategically
equivalent and were more efficient than GFP.
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Figure 8: In V, wGSP got more revenue than VCG.
As discretization got finer, wGSP’s expected rev-
enue gains over VCG got smaller.

Unlike in the case of ESO, our revenue findings were consistent
with Varian’s. wGSP’s best Nash equilibrium did generate more
revenue than VCG (significant∗∗ for small, medium and large
games, not significant for extra-large games). Interestingly, the
magnitude of this effect got smaller for finer discretizations (see
Figure 8). Also as with uGSP in ESO, revenue was very sensitive
to equilibrium selection (see Figure 9).

wGSP clearly dominated GFP and uGSP in terms of efficiency
(see Figure 10, significant∗∗ at every scale at which data was
present). Again, revenue results were ambiguous: wGSP’s rev-
enue was only significantly greater than GFP or uGSP for medium-
sized instances. Interestingly, finer discretization seemed to help
efficiency, but to hurt revenue.

4.3 Blumrosen, Hartline, Nong model
Blumrosen et al. proved the negative result that sometimes wGSP
has no efficient equilibrium.

Question 3: Under BHN preferences, how often does wGSP
have no efficient Nash equilibrium? How much social welfare is
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Figure 9: In V, wGSP’s revenue was very
equilibrium-selection sensitive.
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Figure 10: In V, wGSP was more efficient than
uGSP and GFP.

lost?

Our efficiency results in this setting were especially interesting.
We found that wGSP had frequent, complete failures of efficiency
(see Figure 11). Surprisingly, discretized VCG also had massive
failures of efficiency. These effects seemed to arise from the fact
that the top position, with the highest value-per-impression (and
hence then largest contribution to social welfare), had the smallest
value-per-click and was therefore very prone to being distorted by
discretization.

Despite this, wGSP had higher expected welfare than GFP and
uGSP (see Figure 12, significant∗∗ for all sizes with sufficient
data). Again, revenue results were ambiguous: although wGSP
often had higher revenue (see Figure 13), this difference was not
always significant.

4.4 Benisch, Sadeh, Sandholm model
Benisch et al. proved the negative result that sometimes wGSP
has no efficient Bayes-Nash equilibrium. Quantitatively, they
were able to upper-bound social welfare between 70% and 98%
depending on bidder values, for instances with three and four
bidders.
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Figure 11: In BHN, wGSP and discretized VCG
both have serious failures of efficiency.
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Figure 12: In BHN, wGSP was more efficient than
GFP or uGSP

Question 4: Under BSS preferences, how often does wGSP have
no efficient perfect-information Nash equilibrium? How much so-
cial welfare is lost?

Despite our very different game model (perfect-information, dis-
crete bids), we observed failures of efficiency of comparable mag-
nitude, for five-bidder and ten-bidder instances. Overall, wGSP
was more efficient than GFP (see Figure 14, significant∗∗ for all
sizes except extra large).

Revenue was ambiguous in this setting: both GFP and uGSP
were very sensitive to equilibrium selection. Significant differ-
ences only existed for the smallest instances, where GFP achieved
better revenue than uGSP (see Figure 15.

5. CONCLUSIONS
From a theoretical perspective, we were able to quantify the mag-
nitude of predicted effects and to quantify their sensitivity to
equilibrium selection. We found that (in all its equilibria) wGSP
was consistently approximately efficient in the models (V and
ESO) for which it was already known to (sometimes) have ef-
ficient equilibria. However, we found that wGSP’s revenue was
very equilibrium-selection sensitive; furthermore, even in the best
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Figure 13: In BHN, wGSP often got more revenue
than GFP or uGSP
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Figure 14: In BSS, wGSP was inefficient, but more
efficient than GFP

equilibria, it did not consistently beat VCG. For models where
wGSP has been shown to (sometimes) be inefficient—BHN and
BSS—we showed that wGSP was often inefficient, and often by
a large margin.

From a practical perspective, we found that even in settings
where it was inefficient, wGSP was consistently more efficient
than uGSP or GFP. This supports Yahoo!’s choice to switch to it
in 2007. wGSP was a less clear winner in terms of revenue: we did
not consistently observe that its best equilibria were significantly
better than those of the other auctions.

There is opportunity for future work both on the preferences and
on the computational methods. Better distributions of prefer-
ences could be learned from real-world data. AGGs (or some other
compact representation) may also be applicable to richer prefer-
ence models, like the cascade model. Better computational meth-
ods could also improve our approach: by using an equilibrium-
finding algorithm that finds all equilibria (such as the support
enumeration methods of [32]), we could make quantitative claims
about equilibrium-selection (e.g. what fraction of pure strategy
equilibria had revenue greater than VCG?)
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Figure 15: In small BSS problems, GFP generated
more revenue than wGSP.
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