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Abstract

The competitive nature of most algorithmic experimentation is a
source of problems that are all too familiar to the research community.
It 1s hard to make fair comparisons between algorithms and to assemble
realistic test problems. Competitive testing tells us which algorithm is
faster but not why. Because it requires polished code, it consumes time
and energy that could be spent doing more experiments. This paper
argues that a more scientific approach of controlled experimentation,
similar to that used in other empirical sciences, avoids or alleviates
these problems. We have confused research and development; compet-
itive testing is suited only for the latter.

Most experimental studies of heuristic algorithms resemble track meets
more than scientific endeavors.

Typically an investigator has a bright idea for a new algorithm and
wants to show that it works better, in some sense, than known algorithms.
This requires computational tests, perhaps on a standard set of benchmark
problems. If the new algorithm wins, the work is submitted for publication.
Otherwise it is written off as a failure. In short, the whole affair is organized
around an algorithmic race whose outcome determines the fame and fate of
the contestants.

This modus operandi spawns a host of evils that have become depress-
ingly familiar to the algorithmic research community. They are so many and
pervasive that even a brief summary requires an entire section of this paper.
Two, however, are particularly insidious. The emphasis on competition is
fundamentally anti-intellectual and does not build the sort of insight that in



the long run conduces to more effective algorithms. It tells us which algo-
rithms are better but not why. The understanding we do accrue generally
derives from initial tinkering that takes place in the design stages of the
algorithm. Because only the results of the formal competition are exposed
to the light of publication, the observations that are richest in information
are too often conducted in an informal, uncontrolled manner.

Second, competition diverts time and resources from productive investi-
gation. Countless hours are spent crafting the fastest possible code and find-
ing the best possible parameter settings in order to obtain results that are
suitable for publication. This is particularly unfortunate because it squan-
ders a natural advantage of empirical algorithmic work. Most empirical work
in other sciences tends to be slow and expensive, requiring well-appointed
laboratories, massive equipment or carefully selected subjects. By contrast,
much empirical work on algorithms can be carried out on a work station by a
single investigator. This advantage should be exploited by conducting more
experiments, rather than by implementing each one in the fastest possible
code.

There is an alternative to competitive testing, one that has been prac-
ticed in empirical sciences at least since the days of Francis Bacon. It is
controlled experimentation. Based on one’s insight into an algorithm, for
instance, one might expect good performance to depend on a certain problem
characteristic. How to find out? Design a controlled experiment that checks
how the presence or absence of this characteristic affects performance. Even
better, build an explanatory mathematical model that captures the insight,
as in done routinely in other empirical sciences, and deduce from it precise
consequences that can be put to the test. I will give this sort of experi-
mentation the deliberately honorific name ‘scientific testing’ to distinguish
it from competitive testing.

I discuss elsewhere [9] how empirical models might be constructed and
defend them as a viable and necessary alternative to a purely deductive
science of algorithms. My main object in this paper is to show that scientific
testing can avoid or substantially alleviate many of the evils that now stem
from competitive testing.

This paper is written primarily with heuristic algorithms in mind, be-
cause it is for them that empirical investigation is generally most urgent, due
to the frequent failure of purely analytical methods to predict performance.
But its points apply equally well to exact algorithms that are tested exper-
imentally. In fact a ‘heuristic’ algorithm may be more broadly conceived
as any sort of search algorithm, as suggested by the historical sense of the



word, rather than in its popular connotation of an algorithm that cannot
be proved to find the right answer. The fact that some search algorithms
will eventually explore the entire solution space and thereby find the right
answer does not change their fundamentally heuristic nature.

I begin in the first section below with a description of the current state
of affairs in computational testing. The description is a bit stark to make
a point, and I hasten to acknowledge that the algorithmic community is
already beginning to move in the direction I recommend in the two sec-
tions that follow. Perhaps a forthright indictment of the old way, however,
can hasten our progress. The final section recounts how a more scientific
approach to experimentation avoids the evils of competitive testing.

1 The Evils of Competitive Testing

The most obvious difficulty of competitive testing is making the competition
fair. Differences between machines first come to mind, but they actually
present the least serious impediment. They can be largely overcome by
testing on identical machines or adjusting for machine speed. More difficult
to defeat are differences in coding skill, tuning and effort invested.

With respect to coding skill, one might argue that competitive testing
levels the playing field by its very competitiveness. If investigators are highly
motivated to win the competition, they will go to great lengths to learn and
use the best available coding techniques and will therefore use roughly the
same techniques. But it is often unclear what coding technique is best for
a given algorithm. In any event, one can scarcely imagine a more expensive
and wasteful mechanism to ensure controlled testing—more on this later.

A particularly delicate issue is the degree to which one tunes one’s imple-
mentation. Generally it is possible to adjust parameters so that an algorithm
is more effective on a given set of problems. How much adjustment is legit-
imate? Should one also adjust the competing code? If so, how much tuning
of the competing code can be regarded as commensurate with the tuning
applied to the new code? One might fancy that these problems could be
avoided if every algorithm developer provided a ‘vanilla’ version of the code
with general-purpose parameter settings. But when a new code is written,
one must decide what is ‘vanilla’ for it. No developer will see any rationale
for deliberately picking parameter settings that result in poor performance
on the currently accepted benchmark problems. So the question of how
much tuning is legitimate recurs, with no answer in sight.



A related obstacle to fair testing is that a new implementation must
often face off against established codes on which enormous labor has been
invested, such as simplex codes for linear programming. Literally decades
of development may be reposited in a commercial code, perhaps involving
clever uses of registers, memory caches, and assembly language. A certain
amount of incumbent advantage is probably acceptable or desirable. But
publication and funding decisions are rather sensitive to initial computa-
tional results, and the technology of commercial codes can discourage the
development of new approaches. Lustig, Marsten and Shanno [13] suggest,
for example, that if interior point methods had come along a couple of years
later than they did—after the recent upswing in simplex technology now
embodied in such codes as CPLEX—they might have been judged too un-
promising to pursue.

A second cluster of evils concern the choice of test problems, which
are generally obtained in two ways. One is to generate a random sample
of problems. There is no need to dwell on the well-known pitfalls of this
approach, the most obvious of which is that that random problems generally
do not resemble real problems.

The dangers of using benchmark problems are equally grave but perhaps
less appreciated. Consider first how problems are collected. Generally they
first appear in publications that report the performance of a new algorithm
that is applied to them. But these publications would not have appeared
unless the algorithm performed well on most of the problems introduced.
Problems that existing algorithms are adept at solving therefore have a
selective advantage.

A similar process leads to a biased evolution of algorithms as well as
problems. Omnce a set of canonical problems has become accepted, new
methods that have strengths complementary to those of the old ones are
at a disadvantage on the accepted problem sets. They are less likely to
be judged successful by their authors and less likely to be published. So
algorithms that excel on the canon have a selective advantage. The tail
wags the dog as problems begin to design algorithms.

There is not to impugn in the slightest the integrity of those who collect
and use benchmark problems. Rather, we are all victims of a double-edged
evolutionary process that favors a narrow selection of problems and algo-
rithms.

Even if this tendency could be corrected, other difficulties would remain.
Nearly every problem set inspires complaints about its bias and limited
scope. Problems from certain applications are always favored and others



are always neglected. Worse than this, it is unclear that we would even be
able to recognize a representative problem set if we had one. It is rare that
anyone has the range of access to problems, many of which are proprietary,
that is necessary to make such a judgment, and new problems constantly
emerge.

Perhaps the most damaging outcome of competitive testing was men-
tioned at the outset: its failure to yield insight into the performance of
algorithms. When algorithms compete, they are packed with the cleverest
devices their authors can concoct and therefore differ in many respects. It
is usually impossible to discern which of these devices are responsible for
differences in performance.

The problem is compounded when one compares performance with a
commercial code, which is often necessary if one is to convince the research
community of the viability of a new method. The commercial package may
contain any number of features that improve performance, some of which are
typically kept secret by the vendor. The scientific value of such comparisons
is practically nil.

As already noted, the most informative testing usually takes place during
the algorithm’s initial design phase. There tend to be a number of imple-
mentation decisions that are not determined by analysis and must be made
on an empirical basis. A few trial runs are made to decide the issue. If these
trials were conducted with the same care as the competitive trials (which,
admittedly, are themselves often inadequate), much more would be learned.

Finally, competitive testing diverts time and energy from more produc-
tive experimentation. Writing efficient code requires a substantial time in-
vestment because a low-level language such as C must be used, time profiles
must repeatedly be run to identify inefficiencies, and the code must be pol-
ished again and again to root them out. The investigator must also train
himself in the art of efficient coding or else spend his research money on
assistants who know the art.

Not only does competitive testing sacrifice what would otherwise be the
relative ease of algorithmic experimentation, it surrenders its potential inde-
pendence. Experimental projectsin other fields must typically await funding
and therefore approval from funding agencies or industry sources. A lone
experimenter in algorithms, by contrast, can try out his ideas at night on a
work station when their value is evident only to him or her. This opens the
door to a greater variety of creative investigation, provided of course that
these nights are not spent shaving off machine cycles.



2 A More Scientific Alternative

None of the foregoing is meant to suggest that efficient code should not be
written. On the contrary, fast code is one of the goals of computational
testing. But this goal is better served if tests are first designed to develop
the kind of knowledge that permits effective code to be engineered. It would
be absurd to ground structural engineering, for instance, solely on a series
of competitions in which, say, entire bridges are built, each incorporating
everything the designer knows about how to obtain the strongest bridge for
the least cost. This would allow for only a few experiments a year, and it
would be hard to extract useful knowledge from the experiments. But this
is not unlike the current situation in algorithmic experimentation. Struc-
tural engineers must rely at least partly on knowledge that is obtained in
controlled laboratory experiments (regarding properties of materials, etc.),
and it is no different with software engineers.

Scientific testing of algorithms can be illustrated by some recent work on
the satisfiability problem of propositional logic. The satisfiability problem
asks, for a given set of logical formulas, whether truth values can be assigned
to the variables in them so as to make all of the formulas true. For instance,

the set of formulas
1 O T9

Z1 OT not-xo
not-zrqy or ry
not-ry or not-z,

is not satisfiable, because one of them is false no matter what truth values
are assigned to the variables z; and z3. (We assume that all formulas have
the form shown; i.e., they consist of variables or their negations joined by
or’s.)

At the moment some of the most effective algorithms for checking sat-
isfiability use a simple branching scheme [2, 8, 16]. A variable z; is set to
true and then to false to create subproblems at two successor nodes of the
root node of a search tree. When the truth value of z; is fixed, the problem
can normally be simplified. For instance, if x; is set to true, formulas con-
taining the term x; are deleted because they are satisfied, and occurrences
of not-z; are deleted from the remaining formulas. This may create single-
term formulas that again fix variables, and if so the process is repeated. If
the last term is removed from a formula, the formula is falsified and the
search must backtrack. If all formulas are satisfied, the search stops with a
solution. Otherwise the search branches on another variable and continues



in depth-first fashion.

A key to the success of this algorithm appears to be the branching rule
it uses—that is, the rule that selects which variable z; to branch on at a
node, and which branch to explore first. This is a hypothesis that can be
tested empirically.

The most prevalent style of experimentation on satisfiability algorithms,
however, does not test this or any other hypothesis in a definitive manner.
The style is essentially competitive, perhaps best exemplified by an outright
competition held in 1992 [2]. More typical are activities like the Second
DIMACS Challenge [16], which invited participants to submit satisfiability
and other codes to be tested on a suite of problems. The DIMACS challenges
have been highly beneficial, not least because they have stimulated interest
in responsible computational testing and helped to bring about some of the
improvements we are beginning to see in this area. But the codes that
are compared in this sort of activity differ in many respects, because each
participant incorporates his or her own best ideas. Again it is hard to infer
why some are better than others, and doubts about the benchmark problems
further cloud the results.

The proper way to test the branching rule hypothesis is to test algo-
rithms that are the same except for the branching rule, as was done to a
limited extent in [8]. This raises the further question, however, as to why
some branching rules are better than others. A later study [11] consid-
ered two hypotheses: a) that better branching rules try to maximize the
probability that subproblems are satisfiable, and b) that better branching
rules simplify the subproblems as much as possible (by deleting formulas
and terms). Two models were constructed to estimate the probability of
satisfiability for hypothesis (a). Neither issued in theorems but predicted
that certain rules would perform better than others. The predictions were
soundly refuted by experiment, and hypothesis (a) was rejected. A Markov
chain model was built for hypothesis (b) to estimate the degree to which
branching on a given variable would simplify the subproblem, and its pre-
dictions were consistent with experiment. This exercise seems to take a first
step toward understanding why good branching rules work.

By conventional norms, this study makes no contribution, because its
best computation times for branching rules are less than some reported in the
literature. But this assessment misses the point. The rules were deliberately
implemented in plain satisfiability codes so as to isolate their effect. Codes
reported in the literature contain a number of devices that accelerate their
performance but obscure the impact of branching rules. Beyond this, the



study was not intended to put forward a state-of-the-art branching rule and
demonstrate its superiority to others in the literature; it was intended to
deepen our understanding of branching rule behavior in a way that might
ultimately lead to better rules.

To illustrate the construction of a controlled experiment, suppose that
we wish to investigate how problem characteristics influence the behavior
of branching rules (an issue not addressed in [11]). Benchmark problems
are inadequate, because they differ in so many respects that it is rarely
evident why some are harder than others, and they may yet fail to vary
over parameters that are key determinants of performance. It is better to
generate problems in a controlled fashion.

One type of experimental design (a “factorial design”) begins with a list
of n factors that could affect performance—perhaps problem size, density,
existence of a solution, closeness to ‘renamable Horn’ [1, 3, 4], etc. Each
factor ¢ has several levels k; = 1,...,m;, corresponding to different problem
sizes, densities, etc. The levels need not correspond to values on a scale,
as for instance if the factor is ‘problem structure’ and the ‘levels’ denote
various types of structure. A sizable problem set is generated for each cell
(k1,...,ky,) of an n-dimensional array, and average performance is measured
for each set. Statistical analysis (such as analysis of variance or nonpara-
metric tests) can now check whether factor 1, for instance, has a significant
effect on performance when the remaining factors are held constant at any
given set of levels (kg,...,k,). It is also possible to measure interactions
among factors. See [11, 14] for details.

This scheme requires random generation of problems, but it bears scant
resemblance to traditional random generation. The goal is not to gener-
ate realistic problems, which random generation cannot do, but to generate
several problem sets, each of which is homogeneous with respect to charac-
teristics that are likely to affect performance.

This principle is again illustrated by recent work on the satisfiability
problem. Several investigators have noted that random problems tend to be
hard when the ratio of the number of formulas to the number of variables
is close to a critical value ([5, 6, 7, 10, 12, 15], etc.). But this observation
scarcely implies that one can predict the difficulty of a given problem by
computing the ratio of formulas to variables. Random problems with a
given ratio may differ along other dimensions that determine difficulty in
practice.

This example has an additional subtlety that teaches an important les-
son. In many experiments, nearly all problems that have the critical ratio



are hard. This may suggest that other factors are unimportant and that
there is no need to control for them. But some of the problem structures
that occur in practice, and that substantially affect performance, may occur
only with very low probability among random problems. This in fact seems
to be the case, because practical problems with the same formula/variable
ratio vary wildly in difficulty. It is therefore doubly important to generate
problem sets that control for characteristics other than a high or low for-
mula/variable ratio—not only to ensure that their effect is noticed, but even
to ensure that they occur in the problems generated.

How can one tell which factors are important? There is no easy answer
to this question. Much of the creativity of empirical scientists is manifested
in hunches or intuition as to what explains a phenomenon. Insight may
emerge from theoretical analysis or examination of experimental data for
patterns. McGeoch [14] discusses some techniques for doing the latter in an
algorithmic context.

3 What To Measure

Most computational experiments measure solution quality or running time.
The former is unproblematic. The latter, however, is better suited to com-
petitive than scientific testing.

Consider the satisfiability algorithms discussed earlier. Two theories
were proposed to explain the effect of branching rules on the performance of
branching algorithms. Both theories were based on predictions of the search
tree size. So if one is interested in confirming or refuting the theories, as
one should be in a scientific context, it makes sense to count the nodes in
the tree, not to measure physical running time.

It is true that the ultimate goal is to minimize running time. But if
the connection between branching rules and tree size is understood, one
can combine this with estimates of the amount of processing at each node
to predict the running time. The latter estimates can be based on further
empirical work.

One might object that the tree size and running time per node may
be related. It is possible, for instance, that more time is spent at each
node when the tree size is small (other things equal) in order to carry out
the greater degree of problem simplification at each node that is necessary
to produce a small tree. This might suggest that one should measure total
running time to capture the combined effect. But if the goal is to explain the



combined effect of tree size and per-node computation, one should formulate
and test models that explain this combined effect! Then one should measure
what is predicted by the models, which is more likely to be the number of
terms and formulas deleted rather than computation time. Computation
time can then predicted on the basis of the average time required to delete a
term or a formula, which naturally depends on the data structure, machine,
etc.—factors that can be investigated independently of the branching rule.

The principle is simple: measure what is predicted by the model, and
nothing more. McGeoch [14] proposes an interesting framework for thinking
about how to do this. She suggests that an algorithm be viewed as an
abstraction of a code, rather than viewing a code as an implementation of
an algorithm. In other words, the code is the phenomenon, and an algorithm
is a simplified model of what happens in the code. It may omit any mention
of data structures and machine architecture, for instance.

McGeoch goes on to suggest that an algorithm be simulated to explore
its behavior. The code that simulates the algorithm is entirely distinct from
the polished code (perhaps yet to be developed) that the algorithm models.
For instance, if one is interested in a node count for satisfiability algorithms,
one need only write enough code to generate the nodes of a search tree. The
data structure, machine, etc., are irrelevant so long as they do not affect the
node count. In particular, they may be slow and inefficient.

If I may elaborate somewhat on McGeoch’s idea, it is reminiscent of an
astronomer’s simulation of, say, galactic evolution. The astronomer may
believe that initial conditions A give rise to spiral galaxies, and initial con-
ditions B give rise to spherical galaxies. One way to check this empirically
is to simulate the motions of the stars that result from initial conditions A
or B and gravitational attraction. The algorithm simulated is an abstrac-
tion or a simplified model of the phenomenon, because it omits the effect
of interstellar matter, etc. Nonetheless it improves our understanding. The
astronomer is hardly bothered by the fact that the running time is different
from that of the real phenomenon!

In the algorithmic context, one simulates only as much detail as the
algorithmic model specifies. If one really has a model that predicts physical
running time and therefore needs to measure it, then one would simulate
the machine itself and count machine cycles. Even in this case it makes no
sense to measure the actual running time of the simulation, which might
run on any number of machines, fast and slow.

In practice, one would begin with a high-level algorithm in which the
operation of various subroutines is left unspecified. A simulation might
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measure only the number of subroutine calls. This would provide only a
crude prediction of a how a finished code would behave. Then one would
begin to flesh out the subroutines. Whenever possible, a subroutine should
be modeled independently of the calling routine. As one approaches the level
of data structures, the models predict more accurately the performance of a
finished code. Furthermore, the insight gained along the way permits one to
write better algorithms for the subroutines and eventually a fast commercial
code.

4 The Benefits of Scientific Testing

Scientific testing solves or alleviates all of the problems associated with
competitive testing that were mentioned earlier.

Consider the issue of fair comparison of algorithms. To begin with, ma-
chine speeds are completely irrelevant. If one simulates what is to be mea-
sured, as recommended above, the results are machine independent. Like-
wise it makes no difference which data structure is used, unless of course the
model being tested actually specifies the data structure, so that its operation
is explicitly simulated. In the latter case one would simply implement the
data structure specified. Coding skill is irrelevant—provided one has enough
skill to simulate the algorithm correctly! The issue of how much to tune an
algorithm becomes moot, because the parameter settings are among the
factors one would investigate experimentally. That is, rather than agonize
over what are the best parameter settings, one runs controlled experiments
in which many different parameter settings are used, precisely in order to
understand their effect on performance. Finally, established algorithms im-
plemented in highly developed codes have no advantage. The polished code
is not even used. Instead one simulates the relevant aspects of the algorithm
in a rough-and-ready implementation, perhaps using a high-level language
such as Prolog, Mathematica, Maple, or a simulation language. In short,
the problem of fair comparison becomes a nonproblem.

As already discussed, the issue of how to choose problem sets is com-
pletely transformed. Rather than try to assemble problems that are repre-
sentative of reality, one concocts problems so as to control for parameters
that may affect performance. The problems are not only likely to be atypical
but deliberately so, in order to isolate the effect of various characteristics.
Admittedly, the choice of which factors to control for is far from trivial and
may demand considerable insight as well as trial and error. But it is a
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problem that creative scientists deal with successfully in other disciplines,
whereas the task of choosing representative benchmark problems seems to
confound all efforts. Furthermore, it is a problem that algorithmists ought
to struggle with, because it goes to the heart of what empirical science is all
about.

Once the necessity of relying on benchmark problems is obviated, the
accompanying evils evaporate, including the unhealthy symbiosis between
problems and algorithms described earlier. Benchmarks will continue to play
a role; the temptation to match a finished algorithm against the benchmarks
will be irresistible. But they should play precisely this benchmarking role
for finished products and not an experimental role in the scientific study
of algorithms. It is a matter of distinguishing research and development:
benchmarks are appropriate for development, but controlled experimenta-
tion is needed for research.

This emphasis on scientific testing requires a new set of norms for re-
search. It asks that experimental results be evaluated on the basis of whether
they contribute to our understanding, rather than whether they show that
the author’s algorithm can win a race with the state of the art. It asks
scholarly journals to publish studies of algorithms that are miserable fail-
ures when their failure enlightens us.

If this seems inappropriate, it is perhaps because we have in fact con-
fused research and development. We have saddled algorithmic researchers
with the burden of exhibiting faster and better algorithms in each paper, a
charge more suited to software houses, while expecting them to advance our
knowledge of algorithms at the same time. I believe that when researchers
are relieved of this dual responsibility and freed to conduct experiments for
the sake of science, research and development alike will benefit.
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