
ar
X

iv
:0

81
1.

25
46

v1
 [

cs
.D

S
]

16
 N

ov
 2

00
8

Phase transition for Local Search on planted SAT

Andrei A. Bulatov Evgeny S. Skvortsov
Simon Fraser University

{abulatov,evgenys}@cs.sfu.ca

Abstract

The Local Search algorithm (or Hill Climbing, or Iterative Improvement) is one of the simplest
heuristics to solve the Satisfiability and Max-Satisfiability problems. It is a part of many satisfiability
and max-satisfiability solvers, where it is used to find a goodstarting point for a more sophisticated
heuristics, and to improve a candidate solution. In this paper we give an analysis of Local Search on
random planted 3-CNF formulas. We show that if there isκ < 7

6
such that the clause-to-variable ratio is

less thanκ lnn (n is the number of variables in a CNF) then Local Search whp doesnot find a satisfying
assignment, and if there isκ > 7

6
such that the clause-to-variable ratio is greater thanκ lnn then the local

search whp finds a satisfying assignment. As a byproduct we also show that for any constant̺ there isγ
such that Local Search applied to a random (not necessarily planted) 3-CNF with clause-to-variable ratio
̺ produces an assignment that satisfies at leastγn clauses less than the maximal number of satisfiable
clauses.

1 Introduction

A CNF formula over variablesx1, . . . , xn is a conjunction of clausesc1, . . . , cm where each clause is a
disjunction of one or more literals. A formula is said to be ak-CNF if every clause contains exactlyk
literals. In the problemk-SAT the question is, given ak-CNF, decide if it has a satisfying assignment (find
such an assignment for the search problem). In the MAX-k-SAT problem the goal is to find an assignment
that satisfies as many clauses as possible. The problemk-SAT for k ≥ 3 is one of the first problems proved
to be NP-complete problems and serves as a model problem for many algorithm and complexity concepts
since then. In particular, Håstad [17] proved that the MAX-k-SAT problem is NP-hard to approximate within
ratio better than 7/8. These worst case hardness results motivate the study of the typical case complexity of
those problems, and a quest for probabilistic or heuristic algorithms with satisfactory performance, in the
typical case. In this paper we analyze the performance of oneof the simplest algorithms for (MAX-)k-SAT,
the Local Search algorithm, on random planted instances.

The distribution. Let us start with planted instances. One of the most natural and well studied probability
distributions on the set of 3-CNFs is the uniform distribution Φ(n,m(n)) on the set of 3-CNFs with a given
clauses-to-variables ratio [14]. It can be constructed andsampled as follows. Fix the numberm = m(n) of
3-clauses as a function of the numbern of variables. The elements ofΦ(n,m(n)) are 3-CNFs generated by
selectingm = m(n) clauses over variablesx1, . . . , xn. Clauses are chosen uniformly at random from the
set of possible clauses, and so the probability of every 3-CNF from Φ(n,m(n)) is the same. An important
parameter of such CNFs is theclause-to-variable ratio, mn , ordensityof the formula. We will use the density
of a 3-CNF rather than the number of clauses, and so we writeΦ(n, ̺n) instead ofΦ(n,m(n)). Density
can also be a function ofn.

1

http://arXiv.org/abs/0811.2546v1

However, the typical case complexity for this distributionis not very interesting except for a very nar-
row range of densities. The reason is that the random 3-SAT under this distribution demonstrates a sharp
satisfiability threshold in the density [2]. A random 3-CNF with density below the threshold (estimated to
be around 4.2) is satisfiable whp (with high probability, meaning that the probability tends to 1 asn goes to
infinity), and a 3-CNF with density above the threshold is unsatisfiable whp. Therefore the trivial algorithm
outputting yes or no by just counting the density of a 3-CNF gives a right answer to 3-SAT whp. For more
results on the threshold see [10, 11, 1, 18]. It is also known that, as the density grows, the number of clauses
satisfied by a random assignment differs less and less from the maximal number of satisfiable clauses. If
density isinfinite (meaning it is an unbounded function ofn), then whp this difference becomes negligible,
i.e. o(n). Therefore, distributionΦ(n, ̺n) is not very interesting for MAX-3-SAT, at least when densityis
large, as one can get whp a very good approximation just by checking a random assignment.

A more interesting and useful distribution is obtained fromΦ(n, ̺n) by conditioning on satisfiability:
such distribution is uniform and its elements are the satisfiable 3-CNFs. Then the problem is to find or ap-
proximate a satisfying assignment knowing it exists. Unfortunately, to date there are no techniques to tackle
such problems (see, e.g., [6, 9]), particularly, to sample the satisfiable distribution. A good approximation
for such a distribution is the planted distributionΦplant(n, ̺n), which is obtained fromΦ(n, ̺n) by condi-
tioning on satisfiability by a specific “planted” assignment. To construct an element of a planted distribution
we select an assignment of a set ofn variables and then uniformly at random include̺n clauses satisfied by
the assignment selected. Some attempts have been made to define a better approximation of the satisfiable
distribution, see, e.g. [20], however, the analysis of suchdistributions is difficult and it is not clear if they
are closer to the distribution sought.

Another interesting feature of the planted distribution isthat there is a hope that it is possible to design
an algorithm that solves all planted instances whp. Some candidate algorithms were suggested in [6, 13, 21].
Algorithm from [13] and [21] use different approaches to solve planted 3-SAT of high density. Experiments
show that the algorithm from [5] achieves the goal, but a rigorous analysis of this algorithm is not yet made.
For a wider survey on SAT algorithms the reader is referred to[23, 7].

The algorithm. The Local Search algorithm (LS) is one of the oldest heuristics for SAT that has been
around since the eighties. Numerous variations of this method have been proposed since then, see, e.g., [15,
25]. We study one of the most basic versions of LS, which, given a CNF, starts with a random assignment
to its variables, and then on each step chooses at random a variable such that flipping this variable increases
the number of satisfied clauses, or stops if such a variable does not exist. Thus LS finds a random local
optimum accessible from the initial assignment.

LS has been studied before. The worst-case performance of pure LS is not very good: the only known
lower bound for local optima of ak-CNF is k

k+1m of clauses satisfied, wherem is the number of all clauses
[16]. In [19], it is shown that if density of 3-CNFs is linear,that is,m = Ω(n2), then LS solves whp a
random planted instance. Finally, in [8], we gave an estimation of the dependence of the number of clauses
LS typically satisfies and the density of the formula.

Often visualization of the number of clauses satisfied by an assignment is useful: Assignments can
be thought of as points of a landscape, and the elevation of a point corresponds to the number of clauses
unsatisfied, the higher the point is, the less clauses it satisfies. It is suspected that ‘topographic’ properties
of such a landscape are responsible for many complexity properties of satisfiability instances. For example,
it is believed that the hardness of random CNFs whose densityis close to the satisfiability threshold is
due to the geometry of the satisfying assignments. They tendto concentrate around several centers, that
make converging to a solution more difficult [7, 22]. As we shall see the performance of LS is closely

2

related to geometric properties of the assignments, and so we hope that the study of LS may lead to a better
understanding of those properties.

The behavior of other SAT/MAXSAT algorithms have been studied before. For example, the random
walk has been analyzed in [24] and then in [3]. A message passing type algorithm, Warning Propagation, is
studied in [12].

Our contribution. We classify the performance of LS for all densities higher than an arbitrary constant.
In particular, we demonstrate that LS has a threshold in its performance. The main result is the following
theorem.

Theorem 1 (1) Let̺ ≥ κ · lnn, andκ > 7
6 . Then the local search whp finds a solution of an instance from

Φplant(n, ̺n).

(2) Letc ≤ ̺ ≤ κ · lnn, c a constant, andκ < 7
6 . Then the local search whp does not find a solution of an

instance fromΦplant(n, ̺n).

To prove part (1) of the theorem 1 we show that under those conditions all the local optima of a 3-CNF
whp are either satisfying assignments, that is, global optima, or obtained by flipping almost all the values
of planted solution, and so are located on the opposite side of the set of assignments. In the former case LS
finds a satisfying assignment, while whp it does not reach thelocal optima of the second type. We also show
that that for any constant density̺there isγ such that the assignment produced by LS on an instance from
Φplant(n, ̺n) or Φ(n, ̺n) satisfies at leastγn clauses less than the maximal number of satisfiable clauses.
Unfortunately, it is somewhat difficult to run computational experiments on CNFs of infinite density, as in
order to havelog n sufficiently largen must be prohibitively big. However, experiments we were able to
conduct agree with the results.

Another region where LS can find a solution of the random planted 3-CNF is the case of very low
density. Methods similar to Lemma 9 and Theorem 11 show that this low density transition happens around
̺ ≈ n−1/4. However, we do not go into details here.

Usually the main difficulty of analysis of algorithms for random SAT is to show that as an algorithm
runs, some kind of randomness of the current assignment is kept. This property allows one to use ‘card
games’, Wormald’s theorem, and differential equations as in [1, 8], or relatively simple probabilistic con-
structions, such as martingales, as in [3]. For LS randomness cannot be assumed after just a few iterations
of the algorithm, which makes its analysis more difficult. This is why the most difficult part of the proof
is to identify to which extent assignments produced by LS as it runs remain random, while most of the
probabilistic computations are fairly standard.

The paper is organized as follows. After giving several necessary definitions in Section 2, we prove in
Section 3, that above the threshold established in Theorem 1planted 3-CNFs do not have local optima that
can be found by LS, other than satisfying assignments. In Section 4 we show that below the threshold there
are many such optima, and that LS necessarily gets stuck intoone of them.

2 Preliminaries

SAT. A 3-CNF is a conjunction of3-clauses. As we consider only 3-CNFs, we will always call them just
clauses. Depending on the number of negated literals, we distinguish 4 types of clauses:(−,−,−), (+,−,−),
(+,+,−), and(+,+,+). If ϕ is a 3-CNF over variablesx1, . . . , xn, anassignmentof these variables is

3

INPUT: 3-SAT formulaϕ over variablesx1, . . . , xn.
OUTPUT: Booleann-tuple~v, which is a local minimum ofϕ.
ALGORITHM:
choose uniformly at random a Booleann-tuple~u
let U be the set of all variablesxi such that the number of clauses that can be made satisfied

by flipping the value ofxi is strictly greater than the number of those made unsatisfied
while U is not empty

pick uniformly at random a variablexj from U
change the value ofxj
recompute U

Figure 1: Local Search

a Booleann-tuple~u = (u1, . . . , un), so the value ofxi is ui. Thedensityof a 3-CNFϕ is the numbermn
wherem is the number of clauses, andn is the number of variables inϕ.

Theuniform distribution of 3-CNFs of density̺ (density may be a function ofn), Φ(n, ̺n) is the set
of all 3-CNFs containingn variables and̺ n clauses equipped with the uniform probability distribution on
this set. To sample a 3-CNF accordingly toΦ(n, ̺n) one chooses uniformly and independently̺n clauses

out of 23

(

n
3

)

possible clauses. Thus, we allow repetitions of clauses, but not repetitions of variables

within a clause.Random 3-SATis the problem of deciding the satisfiability of a 3-CNF randomly sampled
accordingly toΦ(n, ̺n). For short, we will call such a random formula a 3-CNF fromΦ(n, ̺n).

Theuniform planteddistribution of 3-CNF of density̺ is constructed as follows. First, choose at random
a Booleann-tuple~u, a plantedsatisfying assignment. Then letΦplant(n, ̺n, ~u) be the uniform probability
distribution over the set of all 3-CNFs over variablesx1, . . . , xn with density̺ and such that~u is a satisfying
assignment. For our goals we can always assume that~u is the all-ones tuple, that is a 3-CNF belongs to
Φplant(n, ̺n, ~u) if and only if it contains no clauses of the type(−,−,−). We also simplify the notation
Φplant(n, ̺n, ~u) by Φplant(n, ̺n). To sample a 3-CNF accordingly toΦplant(n, ̺n) one chooses uniformly

and independently̺n clauses out of7

(

n
3

)

possible clauses of types(+,−,−), (+,+,−), and(+,+,+).

Random Planted 3-SATis the problem of deciding the satisfiability of a 3-CNF fromΦplant(n, ̺n).
The problemsRandom MAX-3-SATandRandom Planted MAX-3-SATare the optimization versions of

Random 3-SAT and Random Planted 3-SAT. The goal in these problems is to find an assignment that satisfies
as many clauses as possible. Although the two problems usually are treated as maximization problems, it
will be convenient for us to consider them as problems of minimizing the number of unsatisfied clauses.
Since we always evaluate the absolute error of our algorithms, not the relative one, such transformation does
not affect the results.

Local search. A formal description of the Local Search algorithm (LS) is given in Fig. 1. Observe that LS
stops when reaches a local minimum of the number of unsatisfied clauses.

Given an assignment~u and a clausec it will be convenient to say thatc votesfor a variablexi to have
value 1 ifc contains literalxi and its other two literals are unsatisfied. In other words if either (a)~u assigns
xi to 0, c is not satisfied by~u, and it will be satisfied if the value ofxi is changed, or (b) the only literal in
c satisfied by~u is xi. Similarly, we say thatc votes forxi if c contains the negation ofxi and its other two

4

literals are not satisfied. Using this terminology we can define setU as the set of all variables such that the
number of votes received to change the current value is greater than the number of those to keep it.

Random graphs. Probabilistic tools we use are fairly standard and can be found in the book [4].
Let ϕ be a 3-CNF with variablesx1, . . . , xn. The primal graphG(ϕ) of ϕ is the graph with vertex

set{x1, . . . , xn} and edge set{xixj | literals containingxi, xj appear in the same clause}. Thehypergraph
H(ϕ) associated withϕ is a hypergraph, whose vertices are the variables ofϕ and the edges are the 3-
element sets of variables belonging to the same clause. Notethat if ϕ ∈ Φplant(n, ̺n), thenH(ϕ) is a
random 3-hypergraph withn vertices and̺ n edges, butG(n) is not a random graph.

We will need the following properties that a graphG(ϕ) of not too high density has.

Lemma 2 Let̺ < κ lnn for a certain constantκ, and letϕ ∈ Φplant(n, ̺n).
(1) For anyα < 1, whp all the subgraphs ofG(ϕ) induced by at mostO(nα) vertices have the average

degree less than 5.
(2) The probability thatG(ϕ) has a vertex of degree greater thanln2 n is o(n−3).

Proof: (1) This part of the lemma is very similar to Proposition 13 from [12], and is proved in a similar
way. LetS be a fixed set of variables with|U | = ℓ. The number of 3-element sets of variables that include
2 variables fromU is bounded from above by

(

ℓ
2

)

(n − 2) ≤
1

2
ℓ2n.

For each of them the probability that this set is the set of variables of one of the random clauses chosen for
ϕ (we ignore the type of the clause) equals

κn lnn
(

n
3

) =
6κ ln n

(n− 1)(n − 2)
.

Thus, the probability that2ℓ of them are included as clauses is at most
(

1
2ℓ

2n
2ℓ

)(

6κ ln n

(n− 1)(n − 2)

)

≤

(

3eκ ·
ℓ lnn

n

)2ℓ

.

Let d = e(3eκ)2. Using the union bound, the probability that there exists a required setU with at mostnα

variables is at most

nα
∑

ℓ=2

(

n
k

)

(

√

d

e

ℓ lnn

n

)2ℓ

≤

nα
∑

ℓ=2

(

ne

ℓ
·
d

e
·
ℓ2 ln2 n

n2

)ℓ

≤
nα
∑

ℓ=2

(

d
nα ln2 n

n

)ℓ

= (dnα−1 ln2 n)2
1 − (dnα−1 lnn)ℓ−1

1 − dnα−1 lnn

= O(n2α−2 ln4 n).

5

(2) The probability that the degree of a fixed vertex is at least ln2 n is bounded from above by

(

1

n

)ln2 n(
3κn ln n

ln2 n

)

≤ n− ln2 n

(

3eκn ln n

ln2 n

)ln2 n

=

(

3eκ

lnn

)ln2 n

,

wheren− ln2 n is the probability that some particularln2 n random clauses includex, and

(

3κn lnn
ln2 n

)

is the

number ofln2 n-element sets of clauses. Then it is not hard to see that

n

(

3eκ

lnn

)ln2 n

−→ 0,

asn goes to infinity. 2

Several times we need the following corollary from Azuma’s inequality for supermartingales (see Lemma 1
from [26]).

Observation 3 (1) LetYt be a supermartingale such thatE (Yt+1|Yt) ≤ Yt and |Yt+1 − Yt| < c for some

c. ThenP (Yt − Y0 ≥ bc) ≤ e−
b2

2t , for anyb > 0.
(2) This inequality implies that ifE (Yt+1|Yt) < Yt − d and |Yt+1 − Yt| < c ≤ 1 then the process

Zt = Yt − dt is a supermartingale and we have the following inequality

P (Yt − Y0 ≥ bc) = P

(

Zt − Z0 ≤

(

b+
dt

c

))

≤ e−
(b+dt)2

2tc2 ≤ e−bd. (1)

The following lemma is a simple corollary of Chernoff bound.

Lemma 4 Let r, s be integers,θ < 1 a positive real, and letα1, . . . , αr, β1, . . . , βs be some real constants.
There are constantsλ andC such that we have

P (X > Y) < Ce−λE(Y) (2)

for any random variablesX andY such thatE (X) < θE (Y) andX =
r
∑

i=0
αiXi, Y =

s
∑

i=0
βiYi for some

binomial random variablesX1, . . . ,Xr, Y1, . . . , Ys.

Proof: Let ξ = 1−θ
(r+s)max(max(αi),max(βi))

. It is easy to see that eventX > Y implies occurrence of at
least one of the events from the set

S = {{Xi ≥ E (Xi) + ξE (Y)}i∈{0,...,r}, {Yi ≤ E (Yi) − ξE (Y)}i∈{0,...,s}}.

Indeed, inequalityX < Y can be derived from inequalities, opposite to the ones inS andE (X) < θE (Y).
Application of Chernoff bound gives us inequalities

P (|X − E (Xi) | > ξE (Y)) < e
−E(Xi)ξ

2

„

E(Y)

E(Xi)

«2

/3
≤ e−ξ

2
E(Y)θ−2/3,

P (|Y − E (Yi) | > ξE (Y)) < e
−E(Yi)ξ

2

„

E(Y)

E(Yi)

«2

/3
≤ e−ξ

2
E(Y)/3.

Thus if we setλ = ξ2/3,C = r+s then using union bound we can conclude that inequality (2) holds. 2

6

3 Success of Local Search

In this section we prove the first statement of the Theorem 1(1). This will be done as follows. First, we
show that if a 3-CNF has high density, that is, greater thanκ log n for someκ > 7

6 then whp all the local
minima that do not satisfy the CNF — we call such minimaproper— concentrate very far from the planted
assignment. This is the statement of Proposition 8 below. Then we use Lemma 5 to prove that starting from
a random assignment LS whp does not go to that remote region. Therefore the algorithm does not get stuck
to a local minimum that is not a solution.

Several times we will need the following observation that can be checked using the inequality
(

n
ℓ

)

≤
(

ne
ℓ

)ℓ
. For anyn, γ, andα with 0 < α < 1

(

n
γnα

)

≤ e(1−α)γnα lnn−γnα lnγ+γnα

. (3)

We need the following two lemmas. Recall that the planted solution is the all-ones one.

Lemma 5 Let ̺ ≥ κ ln n for some constantκ, and let constantsq0, q1 be such thatq0 < q1. Whp any
assignment withq0n zeros satisfies more clauses than any assignment withq1n zeros.

Proof: Let ~u,~v be some vectors withq0n andq1n zeros, respectively. Letc be a random clause, then
(1) with probability 1

7 all its literals are positive, (2) with probability37 two literals are positive and similar
(3) with probability 3

7 one literal is positive. The probabilities that the clause is satisfied by~u in these cases
are(1− q0)

3, (1− q0)
2q0 and(1− q0)q

2
0, respectively. Hence the total probability of a clause to besatisfied

by ~u equals(1−q0)3+3(1−q0)2q0+3(1−q0)q20
7 =

1−q30
7 . A similar result holds for~v. Thus the expectation of the

number of clauses satisfied by~u and~v in a random formula equals1−q
3
0

7 κn lnn and1−q31
7 κn lnn respectively,

thus applying lemma 4 we conclude that

P

(

~u satisfies less than1−(q30+q31)/2
7 κn lnn clauses

)

< e−λ
′n lnn,

for someλ′ > 0. There are2n assignments, hence, application of the union bound finishesproof of the
lemma. 2

Lemma 6 Let̺ ≥ κ lnn for someκ (not necessarily> 7
6). There isα < 1 such that forϕ ∈ Φplant(n, ̺n)

whp for any proper local minimum~u ofϕ the number of variables assigned to 0 by~u is either less thannα,
or greater than9n

10 .

Proof: Let M, |M | = ℓ be the set of all variables that~u assigns to 0. LetBeachM be event “for every
xi ∈M the number of clauses voting forxi to be 1 is less than or equal to the number of clauses voting for
xi to be 0”. Since~u is a local minimum,BeachM is the case for~u. It is easy to see that eventBeachM implies
eventBallM = “the total number of votes given by clauses for variables inM to be 1 is less than or equal to
the total number of votes given by clauses for variables inM to be 0”. To bound the probability ofBeachM

we will bound the probability ofBallM .
Let c be a random clause. It can contribute from 0 to 3 votes for variables inM to be one and 0 or 1

vote for them to remain zero. Let us compute, for example, theprobability that it contributes exactly two

7

votes for variables inM to become one. It happens ifc is of type (+,+,−), both its positive variables
are inM and the negative variable is outside ofM . Probability of this event is37ℓ

2n−2(1 − ℓ/n). So the
expectation of the number of clauses voting for exactly 2 variables inM to be 1 is3

7ℓ
2n−1(1 − ℓ/n)κ ln n.

The expectations of the numbers of clauses voting for three and one variables to be 1 are17ℓ
3n−2κ ln n and

3
7(1 − ℓ

n)2ℓκ lnn, respectively.
A clause votes for a variable inM to remain 0 if its type is(+,−,−), one of its negative literals

is not inM , and two other literals are inM , or if its type is (+,+,−) and all the variables in it be-
long to M . Thus the expectation of the number of clauses voting for variables inM to remain 0 is
3
7κ ln n

(

2ℓ2n−1(1 − ℓ/n) + ℓ3n−2
)

.
Hence the expectation of the number of votes for variables inM to flip equals

E (votes for a flip) = κ lnn×

(

3 ·
1

7
ℓ3n−2 + 2 ·

3

7
ℓ2n−1(1 − ℓ/n) + 1 ·

3

7
ℓ(1 − ℓ/n)2

)

and expectation of the number of votes for variables inM to remain 0 equals

E (votes for status quo) = κ lnn×

(

6

7
ℓ2n−1(1 − ℓ/n) +

3

7
ℓ3n−2

)

.

If ℓ < 9
10n then

E (votes for status quo)
E (votes for a flip)

=
6ℓ(n− ℓ) + 3ℓ2

6ℓ(n− ℓ) + 3ℓ2 + 3(n − ℓ)2
= 1 −

3(n− ℓ)2

6ℓ(n − ℓ) + 3ℓ2 + 3(n− ℓ)2

< 1 −
3 · 1

100n
2

12n2
= 1 −

1

400
.

Therefore we can apply Lemma 4 to the votes for and against 0s and get the following boundP
(

BallM
)

<

e−λE(votes for a flip) for someλ > 0. Then we can bound number of votes for a flip from below byδℓ lnn
for some constantδ and we can bound the number of setsM of sizeℓ as

#(M of sizeℓ) =

(

n
ℓ

)

≤
(ne

ℓ

)ℓ
= eℓ ln(n/ℓ)+ℓ.

Therefore if
ℓ ln(n/ℓ) + ℓ < δℓ lnn

then union bound implies that whp there is no setM such thatBallM happens. It is easy to see that forℓ > nα

andα that is close enough to 1 the above inequality holds, which finishes the proof of the lemma. 2

Now suppose that~u is a proper local minimum ofϕ ∈ Φplant(n, ̺n). There is a clausec ∈ ϕ that is not
satisfied by~u. Without loss of generality, let the variables inc bex1, x2, x3, and let the variable assigned 0
bex1. Thus, clausec votes forx1 to be flipped to 1. Since~u is a local minimum there must a clause that is
satisfied, that becomes unsatisfied shouldx1 flipped. We call such a clause asupportclause for the 0 value
of x1. In any support clause the supported variable is negated, and therefore any support clause has the type
(+,−,−) or (+,+,−). A variable of a CNF is calledk-isolatedif it appears positively in at mostk clauses
of the type(+,−,−). Thedistancebetween variables of a CNFϕ is the length of the shortest path inG(ϕ)
connecting them.

8

Lemma 7 If κ > 7
6 and̺ ≥ κ ln n then for any integersd1, d2 ≥ 1 and for a randomϕ ∈ Φplant(n, ̺n)

whp there are no twod1-isolated variables within distanced2 from each other.

Proof: Let x be some variable. The probability that it isd1-isolated can be computed as

P (x is d1-isolated) = d1 ·

(

κn lnn
d1

)(

1 −
3

7n

)κn lnn−d1 (3

7n

)d1

≤ d1(κn lnn)d1
(

1 −
3

7n

)κn lnn (

1 −
3

7n

)−d1 (7

3
n

)−d1

∼ d1

(

1 −
3

7n

)−d1

(
7κ

3
lnn)d1e−

3
7
κ lnn

= O(n−
3κ
7

+ε),

for anyǫ > 0.
By Lemma 2(2), the degree of every vertex ofG(ϕ) whp does not exceedln2 n. Hence, there are at

mostln2d2 n vertices at distanced2 from x. Applying the union bound we can estimate the probability that
there is ad1-isolated vertex at distanced2 from x asO(ln2d2 n · n−

3
7
κ). Finally, taking into account the

probability thatx itself is d1-isolated, and applying the union bound over all vertices ofG(ϕ) we obtain
that the probability that twod1-isolated vertices exists at distanced2 from each other can be bounded from
above by

n ·O(n−
3κ
7) ·O(ln2d2 n · n−

3
7
κ) = O(ln2d2 n · n1− 6

7
κ).

Thus forκ > 7
6 whp there are no two such vertices. 2

Proposition 8 Let̺ ≥ κ · lnn, andκ > 7
6 . Then whp proper local minima of a 3-CNF fromΦplant(n, ̺n)

have at mostn10 ones.

Proof: Letϕ ∈ Φplant(n, ̺n) be a random planted instance. Suppose that~u is a proper local minimum
that has more thann10 ones. We use the following observation. Letc be a clause not satisfied by~u. Then
it contains at least one variablexi that is assigned to zero by~u. The assignment~u is a local minimum, so
there must be a clausec′ that is satisfied only byxi. Hence,c′ is a support clause, and contains a variable
xj which is assigned to zero by~u. Variablesxi andxj are at distance1. Settingd1 = 11 andd2 = 1, by
Lemma 7, we conclude that one of them is not 11-isolated.

Setd1 = 11, d2 = 3 and consider the setZ of all variables assigned to zero by~u that are not 11-isolated.
By the observation above this set is non-empty. On the other hand, by Lemma 6,|Z| is O(nα) for some
α < 1. Considerx ∈ Z. It appears positively in at least 10 clauses of the type(+,−,−). Each of these
clauses is either unsatisfied or contains a variable assigned to 0. Suppose there arek unsatisfied clauses
among them. Since~u is a local minimum, to preventx from flipping, x must be supported by at leastk
support clauses, each of which contains a variable assignedto 0. Thus, at least 6 neighbors ofx in G(ϕ) are
assigned to 0. Any two neighbors ofx are at distance 2. By Lemma 7 at least 5 of the neighbors assigned
to 0 are not 11-isolated, and therefore belong toZ. Thus the subgraph induced byZ inG(ϕ) has the average
degree greater than 5, which is not possible by Lemma 2(1). 2

Now we are in a position to prove statement (1) of Theorem 1.

9

x x

x
x

4 5

2
3 x1

x1 x1 x2 x3

x1

x4

x5

x x

xx

6

7 9

8

x

x
2

3

Figure 2: Caps and crowns

Proof: [of Theorem 1(1)] By Lemma 5 for aϕ ∈ Φplant(n, ̺n) whp any assignment withdn variables
equal to 1, where13 ≤ d ≤ 2

3 , satisfies more clauses than any assignment withn
10 equal to 1. Then, whp a

random initial assignment for LS assigns between1
3 and 2

3 of all variables to 1. Therefore, whp LS never
arrives to a proper local minimum with less thann10 variables equal to 1, and, by Proposition 8, to any proper
local minimum. 2

4 Failure of Local Search

We now prove statement (2) of Theorem 1. The overall strategyis the following. First, we show, Propo-
sition 10, that in contrast to the previous case there are many proper local minima in the close proximity
of the planted assignment. Then we show, Proposition 12, that those local minima are located so that they
intercept almost every run of LS, and thus almost every run isunsuccessful.

We start off with a technical lemma. A pair of clausesc1 = (x1, x2, x3), c2 = (x1, x4, x5) is called a
cap if x1, x5 are 1-isolated, that is they do not appear in any clause of thetype(+,−,−) except forc1 and
c2, respectively, andx2, x3 are not 0-isolated (see Figure 2(a)). We denote equalityf(n) = g(n)(1 + o(n))
by f(n) ∼ g(n).

Lemma 9 Letn−
1
4 < ̺ ≤ κ · lnn, andκ < 7

6 . There isα, 0 < α < 1, such that whp a random planted
CNFϕ ∈ Φplant(n, ̺n) contains at leastnα caps.

Proof: The proof is fairly standard, see, e.g. the proof of Theorem 4.4.4 in [4]. We use the second
moment method. The result follows from the fact that a cap hasproperties similar to the properties of
strictly balanced graphs, see [4]. Take somen, and letX be a random variable equal to the number of caps
in a 3-CNFϕ ∈ Φplant(n, ̺n). Straightforward calculation shows that the probability that a fixed 5-tuple of
variables is a cap is∼ ̺4n−4− 6

7
̺

ln n . ThereforeE (X) ∼ ̺4n1− 6
7

̺

lnn .
LetS be a fixed 5-tuple of variables, say,S = (x1, x2, x3, x4, x5), andAS denote the event thatS forms

a cap. For any other 5-tupleT , the similar event is denoted byAT , and we writeAT ≍ AS if these two
events are not independent. By Corollary 4.3.5 of [4] it suffices to show that

∆∗ =
∑

T≍S

P (AT | AS) = o(E (X)).

LetT = (y1, y2, y3, y4, y5). It is not hard to see that the only cases whenAT andAS are not independent
and the probabilityP (AT | AS) is significantly different from 0 is:y1 = x1 and{y2, y3} = {x2, x3}, or
y1 = x5 and{y2, y3} = {x1, x4}, ory5 = x1 and{y1, y4} = {x2, x3}, ory5 = x5 and{y1, y4} = {x1, x4}.
Then, as before, it can be found that in each of these casesP (AT | AS) = O(̺4n−2− 3

7
̺

ln n).

10

Finally,

∆∗ =
∑

T≍S

P (AT | AS) = n2
P (AT | AS) = n2 ·O(̺4n−2− 3

7
̺

ln n)

= O(̺4n−
3
7

̺

ln n) = o(E (X)).

We can chooseα = 1 − 6
7κ if ̺ ≥ 1, andα = 1 − 4ν if 1 > ̺ > n−ν for ν < 1

4 . 2

Proposition 10 Let ̺ ≤ κ · lnn, and κ < 7
6 . Then there isα, 0 < α ≤ 1, such that a 3-CNF from

Φplant(n, ̺n) whp has at leastnα proper local minima.

Proof: Let c1 = (x1, x2, x3), c2 = (x1, x4, x5) be a cap and~u an assignment such thatu3 = u5 = 0,
andui = 1 for all otheri. It is straightforward that~u is a proper local minimum. By Lemma 9, there isα
such that whp the number of such minima is at leastnα. 2

Before proving Proposition 12, we note that a construction similar to caps helps evaluate the approx-
imation rate of the local search in the case of constant density on planted and also on arbitrary CNFs. A
subformulac = (x1, x2, x3), c1 = (x1, x4, x5), c2 = (x2, x6, x7), c3 = (x3, x8, x9) is called acrown if
the variablesx1, . . . , x9 do not appear in any clauses other thanc, c1, c2, c3 (see Fig. 2(b)). The crown is
satisfiable, but the all-zero assignment is a proper local minimum. For a CNFϕ and an assignment~u to its
variables, byOPT(ϕ) andsat(~u) we denote the maximal number of simultaneously satisfiable clauses and
the number of clauses satisfied by~u, respectively.

Theorem 11 If density̺ is such thatn−ν ≤ ̺ ≤ κ ln n for someν < 1/4 andκ < 1/27, then there is
γ̺ = 1

o(n) such that whp Local Search on a 3-CNFϕ ∈ Φ(n, ̺n) (ϕ ∈ Φplant(n, ̺n)) returns an assignment

~u such thatOPT(ϕ) − sat(~u) ≥ γ(̺) · n, whereOPT(ϕ) denotes the maximal number of clauses inϕ that
can be simultaneously satisfied andsat(~u) denotes the number of clauses satisfied by~u.

If ̺ is constant thenγ̺ is also constant.

Proof: As in the proof of Lemma 9, it can be shown that for̺ that satisfies conditions of this theorem
there isγ′ = 1

o(n) such that whp a random [random planted] formula has at leastγ′n crowns. If̺ is a

constant,γ′ is also a constant. For a random assignment~u, whp the variables of at leastγ
′

1024n crowns are
assigned zeroes. Such an all-zero assignment of a crown cannot be changed by the local search. 2

Then we move on to proving Proposition 12.

Proposition 12 Let̺ ≤ κ · lnn, andκ < 7
6 . The local search on a 3-CNF fromΦplant(n, ̺n) whp ends up

in a proper local minimum.

If ̺ = o(lnn) then Proposition 12 follows from Theorem 11. So in what follows we assume that
̺ > κ′ · lnn. The main tool of proving Proposition 12 is coupling of localsearch (LS) with the algorithm
STRAIGHT DESCENT (SD) that on each step chooses at random a variable assigned to 0 and changes its
value to 1. Obviously SD is not a practical algorithm, since to apply it we need to know the solution. For the
purposes of our analysis we modify SD as follows. At each stepSD chooses a variable at random, and if it
is assigned 0 changes its value (see Fig. 4(a)). The algorithm LS is modified in a similar way (see Fig. 4(b)).

It is easy to see that the vector obtained by SD at stept does not depend on the formula. And since SD
treats all variables equally we can make the following

11

INPUT: ϕ ∈ Φplant(n, ̺n) with the all-ones solution,
Boolean tuple~u,

OUTPUT: The all-ones Boolean tuple.
ALGORITHM:
while there is a variable assigned 0

pick uniformly at random variablexj from
the set of all variables

if uj = 0 then set uj = 1

(a)

INPUT: 3-SAT formulaϕ, Boolean tuple~u,
OUTPUT: Boolean tuple~v, which is local

minima ofϕ.
ALGORITHM:
while ~u is not a local minima

pick uniformly at random variablexj from
the set of all variables
if the number of clauses that can be made
satisfied by flipping the value ofxi is strictly
greater than the number of those made unsatisfied
then set uj = ui

(b)

Figure 3: Straight Descent (a) and Modified Local Search (b)

Lemma 13 If SD starts its work at a random vector withm0 ones and after stept, t ≤ n −m0, it arrives
to a vector withm ones, then this vector is selected uniformly at random from all vectors withm ones.

Proof: Let us denote the probability that at stept SD arrives to vector~u, conditional to it starts from a
vector withm0 ones, byP (~u, t,m0). We prove by induction ont thatP (~u1, t,m0) = P (~u2, t,m0) for any
~u1, ~u2 with m ones. We denote this number byP (t,m,m0). As the starting vector is random, it is obvious
for t = 0. Then fort > 1 and any vector~u with m ones we have

P (~u, t,m0) = P (~u, t− 1,m0) ·
m

n
+
∑

~u′

P
(

~u′, t− 1,m0

)

·
1

n

= P (t− 1,m,m0) ·
m

n
+ P (t− 1,m− 1,m0) ·

m

n
,

wheren is the number of variables in the formula and~u′ goes over all vectors that can be obtained from~u
by flipping a one into zero. It does not depend on a particular vector~u. 2

We will frequently use the following two properties of the algorithm SD.

Lemma 14 Whp the running time of SD does not exceed2n lnn.

Proof: For a variablexi the probability that it is not considered fort steps equals
(

1 − 1
n

)t
. So for

t = 2n lnn this probability equals
(

1 − 1
n

)2n lnn
≤ e−2 lnn = n−2. Applying the union bound over all

variables we obtain the required statement. 2

Given 3-CNFϕ and an assignment~u we say that a variablexi is k-righteousif the number of clauses
voting for it to be one is greater by at leastk than the number of clauses voting for it to be zero. Let
ϕ ∈ Φplant(n, ̺n) and~u be a Boolean tuple. Theball of radiusm with the center at~u is the set of all tuples
of the same length as~u at Hamming distance at mostm from ~u. Let f(n) andg(n) be arbitrary functions
andd be an integer constant. We say that a setS of n-tuples is(g(n), d)-safe, if for any ~u ∈ S the number

12

of variables that are notd-righteous does not exceedg(n). A run of SD is said to be(f(n), g(n), d)-safeif
at each step of this run the ball of radiusf(n) with the center at the current assignment is(g(n), d)-safe.

Lemma 15 Let ̺ > κ′ · lnn for someκ′. For any constantsγ andd there is a constantα1 < 1 such that,
for anyα > α1, whp a run of SD onϕ ∈ Φplant(n, ̺n) is (γnα, nα, d)-safe.

Proof: Consider a run of SD onϕ ∈ Φplant(n, ̺n) with a random initial assignment. If SD starts its
work at a tuple withm0 ones, then at stept it hasm ≤ m0 + t ones. Then by Lemma 13 if at stept the
current assignment of SD hasm ones then it is drawn uniformly at random from all vectors with m ones.
EventUnsafe= “run of SD is not(γnα, nα, d)-safe” is a union of events “at stept of SD’s run the ball of
radiusγnα with the center at the current assignment is not(nα, d)-safe”. We will use the union bound to
show that probability ofUnsafeis small.

Let ~u be a Booleann-tuple havingpn positions filled with 1s. Since whp the number of 1s in the initial
assignment is at leastn3 , for every step the number of 1s is at leastn

3 . LetM be an arbitrary set of variables
with |M | = nα. We consider eventsBeachM = “every variablexi ∈ M is notk-righteous” andBallM = “the
total number of votes given by clauses for variables inM to be 1 does not exceed the total number of votes
given by clauses for variables inM to be 0 plus|M | · k.”

The same technique as in Lemma 6 can be used to show that the probability ofBallM and consequently the
probability ofBeachM is bounded above bye−λ

′nα lnn for some constantλ′, not dependent onα. By inequal-
ity (3), there are at mostγnα ·eγ(1−α)nα lnn·(1+o(1)) distinct assignments in theγnα-neighborhood of SD and
en

α(1−α) lnn(1+o(1)) distinct subsets of sizenα. So forα close to 1 the union bound implies thatBeachM whp
does not take place for any tuple, any subset of variables at any step which completes the proof of the
lemma. 2

For CNFsψ1, ψ2 we denote byψ1 ∧ ψ2 their conjunction.
We will need formulas that obtained from a random formula by adding some clauses in an ‘adversarial’

manner. Following [21] we call distributions for such formulas semi-random. However, the type of semi-
random distributions we need is different from that in [21].Let η < 1 be some constant. A formulaϕ is
sampled according to semi-random distributionΦ

plant
η (n, ̺n) if ϕ = ϕ′∧ψ, whereϕ′ is sampled according

to Φplant(n, ̺n) andψ contains at mostnη clauses and is given by an adversary.

Corollary 16 If ϕ′ ∈ Φ
plant
η (n, ̺n) then for any constantsγ andd there is a constantα2 < 1 such that for

anyα > α2 a run ofSD onϕ′ ◦ ψ is whp(γnα, 2nα, d)-safe.

Proof: Let α1 be obtained by application of Lemma 15 toϕ′. Letα2 = max(α1, η). Then forα > α2

whp run ofSD onϕ′ is (γnα, nα, d)-safe. Since forn large enoughψ contains less thannα variables run
of SD will be (γnα, 2nα, d)-safe onϕ′ ∧ ψ. 2

13

Lemma 17 Let (D0, . . . ,Dl) be an integer random process,d > 0, and letL,H be integer constants such
that

(a) D0 = 0, 0 < L < H,

(b) |Dτ+1 −Dτ | = 1,

(c) if L ≤ Dτ ≤ H the expectation ofDτ+1 conditional toDτ satisfies the inequalityE (Dτ+1|Dτ) <
Dτ − d holds.

Then the probability that there isτ such thatDτ > H is less thanl · e−d
H−L

2 .

Proof: We define a set of auxiliary processesDξ
τ :

Dξ
τ =























L, if τ < ξ,

Dτ , if (τ ≥ ξ), (Dξ = L) and(Dζ ≥ L), for all ζ ∈ {ξ, . . . , τ}),

Dζ − d(τ − ζ), if τ > ξ,Dξ = L, andζ ∈ {ξ, . . . , τ} is the least such thatDζ < L,

L− d(τ − ξ), otherwise, i.e.,Dξ 6= L andτ ≥ ξ.

The processesD0
τ , . . . ,D

l
τ are designed so that everyDξ

τ for τ ≥ ξ satisfies inequalityE
(

Dξ
τ+1|D

ξ
τ

)

≤

Dξ
τ − d. Indeed, suppose thatτ ≥ ξ. If Dξ 6= L then

E

(

Dξ
τ+1|D

ξ
τ

)

= L− d(τ + 1 − ξ) = (L− (τ − ξ) − d = Dξ
τ − d.

LetDξ = L. If Dζ ≥ L for all ζ{ξ, . . . , τ} thenDξ
τ = Dτ , D

ξ
τ+1 = Dτ+1, and the result follows from the

assumptionE (Dτ+1|Dτ) < Dτ − d. If there isζ ∈ {ξ, . . . , τ} with Dζ < L then

E

(

Dξ
τ+1|D

ξ
τ

)

= E

(

Dξ
τ+1|Dζ

)

= Dζ − d(τ + 1 − ζ) = (Dζ − d(τ − ζ)) − d = Dξ
τ − d.

By Azuma’s inequality (1) for eachξ the probability of the event “there existsτ such thatDξ
τ = H” is

less thane−(H−L)d.
On the other hand letDτ > L andξ be equal to the number of the most recent step for whichDξ = L.

It is easy to see thatDτ = Dξ
τ . Thus if at some stepDτ = H then there isξ < τ such thatDξ

τ = H. Using
the union bound we get the required inequality. 2

Lemma 18 Let ̺ > κ′ · lnn for someκ′. Let ϕ be a random 3-CNF sampled according to distribution
Φ
plant
η (n, ̺n) such that run ofSD onϕ is whp(γ1n

α, γ2n
α, 1)-safe for some constantsγ1, γ2 with γ1 >

3γ2. Let~ud(m), ~ul(m) denote the pair of assignments produced by the pair of processes (SD,LS) on stepm.
For anyt, whp the Hamming distance between~ud(t) and~ul(t) does not exceedγ1n

α.

Proof: Let Nt be the set of tuples at Hamming distance at mostγ1n
α from ~ud(t), andE be event

“~ul(t) 6∈ Nt for somet”. LS starts with the same initial assignment as SD and we willshow that it does not
leaveNt.

At some steps the distance between~ud(t) and~ul(t) remains the same, and at some it changes. Let~ud, ~ul
be the assignments produced by the algorithms afterτ changes have taken place, andDτ be the distance

14

between them. If2γ2n
α < Dτ < γ1n

α we haveE (Dτ+1|Dτ) < Dτ −
1
3 . Indeed, the number of variables

voted to be zero does not exceedγ2n
α and is at least twice less than number of variables that differ in ~ud(t)

and~ul(t). Since any change in the distance between the assignments happens if and only if a variable voted
to be 0 or a variable at which~ud(t) and~ul(t) are different, we have the required inequality. Now we can
apply Lemma 17 forD settingL = 2γ2n

α,H = 3γ2n
α, d = 1/3 and get that probability of LS leavingNt

is less than̺ ne−n
α/6. 2

Corollary 19 For ϕ ∈ Φ
plant
η (n, ̺n) there is a constantα3 such that distance between~ud(t) and ~ul(t)

defined in Lemma 18 whp does not exceednα3 .

We say that a variableplaysd-righteously in a run of LSif every time it is considered for flipping it is
d-righteous. Combining corollaries 16 and 19 we obtain the following

Lemma 20 For anyd there isα4 < 1 such that, for a run of LS onϕ ∈ Φ
plant
η (n, ̺n) whp the number of

variables that do not playd-righteously is bounded above bynα4 .

Proof: From Corollaries 16 and 19 it follows that whp at every step ofLS the number of variables that
are notd-righteous is less thannα̃, for someα̃.

Therefore denoting the number of different assignments considered by LS byT (note thatT ≤ ̺n)
and observing that at each step the probability to consider avariable voted to be 0 isnα̃−1 we obtain the
following upper bound for the expectation of the number of non-d-righteous variables throughout the run:

Tnα̃−1 ≤ κ′n(lnn)nα̃−1 = κ′nα̃ lnn ≤ nα̃+ε

for arbitraryε with α̃ + 2ε < 1. We apply Markov inequality and obtainP
(

I > nα̃+2ε
)

≤ n−ε, whereI
denotes the number of variables that do not playd-righteously. Nowα4 can be set to bẽα+ 2ε. 2

A clause(x, y, z) is called acap supportif there arew1, w2 such that(x,w1, w2, y, z) is a cap inϕ. For
a formulaψ we denote the set of variables that occur in it byvar(ψ). For a set of clausesK we denote
by
∧

K a CNF formula constructed by conjunction of the clauses. Forthe sake of simplicity we will write
var(K) instead ofvar (

∧

K). In what follows it will be convenient to view a CNF as a sequence of clauses.
Note that representation of a CNF is quite natural when we sample a random CNF by generating random
clauses. This way every clause occupies certain position inthe formula. For a set of positionsP we denote
the formula obtained fromϕ by removing all clauses except for occupying positionsP by ϕ ↓P . The set of
variables occurring in the clauses in positions inP will be denoted byvar(P).

We denote byC the set of all possible clauses overn variables. Let us fix a real constantν < 1. We will
need the following notation:

• let [k] denote the set of the firstk positions of clauses inϕ, V be the set of all variables inϕ;

• let Sϕ,ν be the set of positions from[nν] occupied by clauses that are cap supports inϕ, andLϕ,ν the
set of variables that occur in clauses in positionsSϕ,ν ;

• let Tϕ,ν be set of positions ofϕ occupied by clauses containing a variable fromLϕ,ν;

• letUϕ,ν be the set of positions inϕ occupied by clauses containing a variable fromvar
(

ϕ ↓[nν]\Sϕ,ν

)

;

15

• finally, letRϕ,ν = [̺n] \ (Sϕ,ν ∪ Uϕ,ν);

• let alsoMϕ,ν = var(Tϕ,ν) andNϕ,ν = var(Uϕ,ν).

Fig. 4 pictures the notation just introduced.

nν
first clauses

Sφ,ν

. . .

Figure 4: A scheme of a 3-CNF. Every clause is shown as a rectangle with its literals represented by squares

inside the rectangle. Literals corresponding to variablesfrom Lφν and fromvar
(

ϕ ↓[nν]\Sϕ,ν

)

are shown

as diamonds and circles, respectively. Shaded rectangles with vertical and diagonal lines represent clauses
from T φν andUφν , respectively.

Lemma 21 If ρ ≤ κ lnn andκ < 7
6 then there isµ0 such that for anyµ < µ0 there isν < 1 such that whp:

(1) |Sϕ,ν | ∼ nµ;

(2) Mϕ,ν ∩Nϕ,ν = ∅, that is variables from clauses fromUϕ,ν do not appear in the same clauses with
variables fromSϕ,ν;

(3) |Mϕ,ν | = 3|Tϕ,ν |, that is no variable occurs twice in the clauses fromTϕ,ν.

Proof: It follows from Lemma 9 that for̺ ≤ κ lnn, κ < 7
6 there existsα, 0 < α < 1 such that the

number of caps in the formula is∼ nα. We set

µ0 = α/2, ν = µ+ 1 − α.

(1) For a subsetR of all positions of clauses inφ let CR denote event “R is exactly the set of positions
occupied by cap supports”. Obviously for any setsR1, R2, |R1| = |R2| we haveP (CR1) = P (CR2).
Thus positions of the cap supports are selected uniformly atrandom without repetition. By straightforward
computation we have expectation of the number of cap supports among firstnν clauses equal approximately
nα · nν−1 = nµ+1−α−1+α = nµ and variance is bounded above by the expectation, so it follows from
Chebyshev inequality that random variable “number of cap supports among firstnν clauses” is whp∼ nµ.

(2) By Lemma 2(2) whp there is no variable that occurs in more thanln2 n clauses. Therefore|Mϕ,ν | =
O(nµ ln2 n) and|Nϕ,ν | = O(nν ln2 n). These sets are randomly chosen from ann-element set, and there-
fore the probability they have a common element is at mostnµ+ν−1 ln4 n. Due to definition ofµ andν we
haveµ+ ν − 1 < α/2 + α/2 + 1 − α− 1 = 0.

(3) Since whp|Tϕ,ν | = O(nµ ln2 n), the probability that two clauses from this set share a variable is
bounded above byn2µ−1 ln4 n. We have2µ− 1 < α− 1 < 0 so this probability tends to 0. 2

Let us fix a formulaϕ selected accordinglyΦplant(n, ̺n) andµ < 1
5 , and letν correspond toµ as in

Lemma 21. LetT0 andU0 be subsets of[̺n] such thatT0 ∩U0 = ∅, [nν] ⊆ T0 ∪U0 and letS0 = T0 ∩ [nν].
We denote byHT0U0 a hypothesis stating thatϕ is such thatSϕ,ν = S0, Tϕ,ν = T0, Uϕ,ν = U0 and also
Mϕ,ν ∩Nϕ,ν = ∅, |Mϕ,ν | = 3 |Tϕ,ν |.

16

Lemma 22 If for an eventE there is a sequenceδ(n) −→
n−→∞

0 such that for all pairs(T0, U0), |T0 ∪U0| <

n2ν we haveP (E|HT0U0) ≤ δ(n) thenP (E) −→
n−→∞

0.

Proof: We can bound probability of eventE as

P (E) ≤
∑

T0,U0:|T0∪U0|<n2ν

(P (E|HT0U0)P (HT0U0)

+P
(

Mϕ,ν ∩Nϕ,ν 6= ∅ or |Mϕ,ν| < 3 |Tϕ,ν| or |T0 ∪ U0| ≥ n2ν
)

)

≤ δ(n) + P (Mϕ,ν ∩Nϕ,ν 6= ∅) + P (|Mϕ,ν | < 3 |Tϕ,ν |) + P
(

|T0 ∪ U0| ≥ n2ν
)

.

By Lemma 21 probabilities of eventsMϕ,ν ∩Nϕ,ν 6= ∅ and|Mϕ,ν | < 3 |Tϕ,ν | tend to 0 asn approaches
infinity. By Lemma 2 (2) we have|T0 ∪ U0| < n2ν whp. Thus we obtain the result. 2

Observation 23 If ϕ is selected according toΦplant(n, ̺n) conditioned toHT0U0 then formula

ϕ ↓[̺n]\(T0∪U0)

has the same distribution as if it was generated by picking clauses from all clauses over variables
V \ var([nν]) uniformly at random.

Proof: Let C′ be the set of all clauses over variables inV \var([nν]) andR0 = [̺n] \ (T0 ∪U0). Take a
formulaψ such that positions fromR0 of this formula are occupied by clauses fromC′. It suffices to observe
that the number of formulasψ′ such thatψ′ ↓R0= ψ ↓R0 , Sψ

′,ν = S0, Tψ
′,ν = T0, Uψ

′,ν = U0 is the same
for anyψ. So since all possible formulas over variables from some setare equiprobable a random formula
is generated by random sampling of clauses. 2

Proof: [of Proposition 12] We will bound probability of success of Local Search under a hypothesis
of the formHT0U0 and apply Lemma 22 to get the result. Letα4 be the exponent corresponding to̺ by
Lemma 20, and chooseµ andν such thatα4 + 2µ < 1.

Let M = Mϕ,ν andL = Lϕ,ν . We split formulaϕ into ϕ1 = ϕ ↓T0 andϕ2 = ϕ ↓[̺n]\T0
and

first consider a run of LS applied toϕ2 only. Formulaϕ2 can in turn be considered as the conjunction of
ϕ21 = ϕ ↓U0 andϕ22 = ϕ ↓[̺n]\(T0∪U0). In Fig. 4 formulaϕ1 consists of clauses shaded with vertical
lines, formulaϕ21 of clauses shaded with diagonal lines and formulaϕ22 of clauses that are not shaded. By
Observation 23 formulaϕ22 is sampled according to

Φplant(n− δ1(n), n̺− δ2(n))

modulo names of variables whereδ1(n) andδ2(n) areo(n). So formulaϕ2 is sampled according to

Φ
plant

2µ (n− δ1(n), n̺− δ2(n)).

By Lemma 20 the number of variables that do not play2-righteously during run of LS onϕ2 is bounded
from above bynα4 for a certainα3 < 1.

We consider coupling(LSϕ, LSϕ2) of runs of LS onϕ andϕ2, denoting assignments obtained by the
runs of the algorithm at stept by ~uϕ(t) and~uϕ2(t) respectively. LetK be the set of those variables which
do not belong toL (squares and circles in Fig. 4). Formulaϕ2 is a 3-CNF containing only variables from

17

K. For an assignment of values of all variables~u we will denote by~u|K its restriction onto variables from
K. We make processLSϕ start with a random assignment~uϕ(0) = ~u0

ϕ to all variables, andLSϕ2 with a
random assignment~uϕ2(0) = ~u0

ϕ2
to variables inK, such that~u0

ϕ|K = ~u0
ϕ2

. Now the algorithms work as
follows. At every step a random variablexi is chosen. ProcessLSϕ makes its step, and processLSϕ2 makes
its step ifxi ∈ K.

WhpLSϕ2 will run with at mostnα4 variables that do not play2-righteously. LetW denote the set of
such variables. Variables in formulaϕ1 are selected uniformly at random so ifα4 + 2µ < 1 then whp set
M does not intersect withW . Hence, every timeLSϕ considers some variable fromM it is 2-righteous
in ϕ2 and belongs to at most one clause ofϕ1. Therefore such a variable is at least1-righteousϕ and is
flipped to 1, or stays 1, whichever is to happen forLSϕ2. Thus whp at every step of(LSϕ, LSϕ2) we have
~uϕ(t)|K = ~uϕ2(t). In the rest of the proof we consider only this highly probable case.

Consider some cap supportci = (x1, x4, x5) occupying a positioni ∈ [nν] and such thatx1 = 0, x4 =
1, x5 = 0 at time 0, and a setPci of variables occurring in clauses that contain variablesvar(ci) (obviously
var(ci) ⊆ Pci). Let cj be the clause that forms a cap withci. We say that a variable isdiscoveredat stept if
it is considered for the first time at stept. Let p1, . . . , pk be an ordering of elements ofPci according to the
step of their discovery. In other words if variablep1 is the first variable fromPci that is discovered,pk was
the last. In the case some variables are not considered at all, we place them in the end of the list in a random
order. Observe that all variables that play at least1-righteously are discovered at some step. All orderings
of variables are equiprobable, hence, the probability of variablesvar(ci) to occupy placespk−2, pk−1 and
pk equals3!/k(k − 1)(k − 2). We will call this orderingunlucky.

Let us consider what happens if the order of discovery ofPci is unlucky. All variables inPci \ var(ci)
play 1-righteously, therefore once they are discovered byLSϕ they equal to 1. Thus whenx1, x4, x5 are
finally considered all clauses they occur in are satisfied, except forcj . So variablesx1, x4, x5 do not change
their values and the clausecj remains unsatisfied by the end of the work ofLSϕ.

By Lemma 2(2) whp no vertex has degree greater thanln2 n, so the size of the setPci is bounded above
by 3 ln2 n. Thus the probability of eventUnluck(i) =“order of discovery ofvar(ci) is unlucky” is greater
than 1

ln6 n
. Thus, the expectation of|{i|Unluck(i)}| equals

|S0|

ln6 n
=

nµ

ln6 n
.

Any variable whp occurs in clauses fromTϕ,ν at most once, hence there is no variable that occurs in the
same clause with a variable fromci1 and a variable fromci2 for i1, i2 ∈ S0, i1 6= i2. This implies that events
of the formUnluck(i) are independent. Therefore random variable|{i|Unluck(i)}| is Bernoulli and, as its
expectation tends to infinity, the probability that it equals to0 goes to 0. Since unlucky ordering of at least
one cap support leads to failure of the LS this proves the result. 2

References

[1] D. Achlioptas. Lower bounds for random 3-SAT via differential equations. Theor. Comput. Sci.,
265(1-2):159–185, 2001.

[2] D. Achlioptas and E. Friedgut. A sharp threshold for k-colorability. Random Struct. Algorithms,
14(1):63–70, 1999.

18

[3] M. Alekhnovich and E. Ben-Sasson. Linear upper bounds for random walk on small density random
3-cnfs.SIAM J. Comput., 36(5):1248–1263, 2007.

[4] N. Alon and J. Spencer.The Probabilistic Method. John Wiley, 2000.

[5] E. Amiri and E. Skvortsov. Pushing random walk beyond golden ratio. InCSR, pages 44–55, 2007.

[6] E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a randomly planted assignment in a random 3-cnf.
Manuscript, 2002.

[7] A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algorithm for satisfiability.
Random Struct. Algorithms, 27(2):201–226, 2005.

[8] A. Bulatov and E. Skvortsov. Efficiency of local search. In SAT, pages 297–310, 2006.

[9] H. Chen. An algorithm for sat above the threshold. InSAT, pages 14–24, 2003.

[10] J. M. Crawford and L. D. Auton. Experimental results on the crossover point in random 3-sat.Artif.
Intell., 81(1-2):31–57, 1996.

[11] O. Dubois, Y. Boufkhad, and J. Mandler. Typical random 3-sat formulae and the satisfiability threshold.
CoRR, cs.DM/0211036, 2002.

[12] U. Feige, E. Mossel, and D. Vilenchik. Complete convergence of message passing algorithms for some
satisfiability problems. InAPPROX-RANDOM, pages 339–350, 2006.

[13] A. Flaxman. A spectral technique for random satisfiable3cnf formulas. InSODA, pages 357–363,
2003.

[14] J. Franco and Paull M. Probabilistic analysis of the davis-putnam procedure for solving satisfiability.
Discr. Appl. Math., 5:77–87, 1983.

[15] J. Gu. Efficient local search for very large-scale satisfiability problem.ACM SIGART Bulletin, 3(1):8–
12, 1992.

[16] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Computing, 44:279–
303, 1990.

[17] J. Håstad. Some optimal inapproximability results.J. ACM, 48(4):798–859, 2001.

[18] A. Kaporis, L. Kirousis, and E. Lalas. The probabilistic analysis of a greedy satisfiability algorithm.
In ESA, pages 574–585, 2002.

[19] E. Koutsoupias and C. Papadimitriou. On the greedy algorithm for satisfiability. Inf. Process. Lett.,
43(1):53–55, 1992.

[20] M. Krivelevich, B. Sudakov, and D. Vilenchik. On the random satisfiable 3cnf process. submitted,
2008.

[21] M. Krivelevich and D. Vilenchik. Solving random satisfiable 3cnf formulas in expected polynomial
time. InSODA, pages 454–463, 2006.

19

http://arXiv.org/abs/cs/0211036

[22] M. Mézard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability problem.
CoRR, abs/cond-mat/0504070, 2005.

[23] D. Mitchell. A sat solver primer.Bulletin of the EATCS, 85:112–132, 2005.

[24] Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract). InFOCS,
pages 163–169, 1991.

[25] B. Selman, H. Levesque, and D. Mitchell. A new method forsolving hard satisfiability problems. In
AAAI, pages 440–446, 1992.

[26] N. Wormald. Differential equations for random processes and random graphs.The Annals of Applied
Probability, 5(4):1217–1235, 1995.

20

	Introduction
	Preliminaries
	Success of Local Search
	Failure of Local Search

