arXiv:0811.2546v1 [cs.DS] 16 Nov 2008

Phase transition for Local Search on planted SAT

Andrei A. Bulatov Evgeny S. Skvortsov
Simon Fraser University
{abulatov,evgenys@cs.sfu.ca

Abstract

The Local Search algorithm (or Hill Climbing, or Iterativenprovement) is one of the simplest
heuristics to solve the Satisfiability and Max-Satisfidpifiroblems. It is a part of many satisfiability
and max-satisfiability solvers, where it is used to find a gstadting point for a more sophisticated
heuristics, and to improve a candidate solution. In thisepape give an analysis of Local Search on

random planted 3-CNF formulas. We show that if there is % such that the clause-to-variable ratio is

less thank Inn (n is the number of variables in a CNF) then Local Search whp dotBnd a satisfying
assignment, and if thereis> % such that the clause-to-variable ratio is greater than: then the local
search whp finds a satisfying assignment. As a byproductseeshiow that for any constanthere isy
such that Local Search applied to a random (not necesséaitygul) 3-CNF with clause-to-variable ratio

o produces an assignment that satisfies at lgastlauses less than the maximal number of satisfiable
clauses.

1 Introduction

A CNF formula over variables;, ..., x, is a conjunction of clauses,...,c, where each clause is a
disjunction of one or more literals. A formula is said to bé&-&NF if every clause contains exactty
literals. In the problenk-SAT the question is, given /&CNF, decide if it has a satisfying assignment (find
such an assignment for the search problem). In the MASAT problem the goal is to find an assignment
that satisfies as many clauses as possible. The probi8AT for k£ > 3 is one of the first problems proved
to be NP-complete problems and serves as a model problemaioy algorithm and complexity concepts
since then. In particular, Hastad [17] proved that the MAXSAT problem is NP-hard to approximate within
ratio better than 7/8. These worst case hardness resuligatedhe study of the typical case complexity of
those problems, and a quest for probabilistic or heuridgorithms with satisfactory performance, in the
typical case. In this paper we analyze the performance obbtiee simplest algorithms for (MAX#&-SAT,
the Local Search algorithm, on random planted instances.

Thedistribution. Let us start with planted instances. One of the most natadizgell studied probability
distributions on the set of 3-CNFs is the uniform distribati (n, m(n)) on the set of 3-CNFs with a given
clauses-to-variables ratio [14]. It can be constructedsamdpled as follows. Fix the number = m(n) of
3-clauses as a function of the numbeof variables. The elements @(n, m(n)) are 3-CNFs generated by
selectingm = m(n) clauses over variables,, . .., z,. Clauses are chosen uniformly at random from the
set of possible clauses, and so the probability of every B&8bm ®(n, m(n)) is the same. An important
parameter of such CNFs is thiuse-to-variable ratip’*, or densityof the formula. We will use the density
of a 3-CNF rather than the number of clauses, and so we ¥fite on) instead of®(n, m(n)). Density
can also be a function of.

http://arXiv.org/abs/0811.2546v1

However, the typical case complexity for this distributismot very interesting except for a very nar-
row range of densities. The reason is that the random 3-SAEruthis distribution demonstrates a sharp
satisfiability threshold in the densityl[2]. A random 3-CNkwdensity below the threshold (estimated to
be around 4.2) is satisfiable whp (with high probability, miag that the probability tends to 1 aggoes to
infinity), and a 3-CNF with density above the threshold isatiséiable whp. Therefore the trivial algorithm
outputting yes or no by just counting the density of a 3-CNkegjia right answer to 3-SAT whp. For more
results on the threshold see [L0] 11, 1, 18]. Itis also kndwat &s the density grows, the number of clauses
satisfied by a random assignment differs less and less frermdximal number of satisfiable clauses. If
density isinfinite (meaning it is an unbounded functionf, then whp this difference becomes negligible,
i.e.o(n). Therefore, distributionb(n, on) is not very interesting for MAX-3-SAT, at least when densgy
large, as one can get whp a very good approximation just bgkatng a random assignment.

A more interesting and useful distribution is obtained fr@imn, on) by conditioning on satisfiability:
such distribution is uniform and its elements are the sabifdi 3-CNFs. Then the problem is to find or ap-
proximate a satisfying assignment knowing it exists. Utufioately, to date there are no techniques to tackle
such problems (see, e.d.] [6, 9]), particularly, to samipdesatisfiable distribution. A good approximation
for such a distribution is the planted distributi@®'2"t(n, on), which is obtained fron®(n, on) by condi-
tioning on satisfiability by a specific “planted” assignmenh construct an element of a planted distribution
we select an assignment of a setwfariables and then uniformly at random inclugle clauses satisfied by
the assignment selected. Some attempts have been maden® aléktter approximation of the satisfiable
distribution, see, e.g. [20], however, the analysis of stistributions is difficult and it is not clear if they
are closer to the distribution sought.

Another interesting feature of the planted distributiomhiat there is a hope that it is possible to design
an algorithm that solves all planted instances whp. Someidate algorithms were suggestedlin[6,[13, 21].
Algorithm from [13] and[[21] use different approaches tovegblanted 3-SAT of high density. Experiments
show that the algorithm from [5] achieves the goal, but arnge analysis of this algorithm is not yet made.
For a wider survey on SAT algorithms the reader is referrd@3g7].

The algorithm. The Local Search algorithm (LS) is one of the oldest heasstor SAT that has been
around since the eighties. Numerous variations of this atetfave been proposed since then, see, .g., [15,
25]. We study one of the most basic versions of LS, which,ig@eCNF, starts with a random assignment
to its variables, and then on each step chooses at randornablegasuch that flipping this variable increases
the number of satisfied clauses, or stops if such a varialde dot exist. Thus LS finds a random local
optimum accessible from the initial assignment.

LS has been studied before. The worst-case performance®ij3uis not very good: the only known
lower bound for local optima of &-CNF is kiﬂm of clauses satisfied, where is the number of all clauses
[16]. In [19], it is shown that if density of 3-CNFs is lineahat is,m = (n?), then LS solves whp a
random planted instance. Finally, in [8], we gave an esionatf the dependence of the number of clauses
LS typically satisfies and the density of the formula.

Often visualization of the number of clauses satisfied by ssigament is useful: Assignments can
be thought of as points of a landscape, and the elevation ofra porresponds to the number of clauses
unsatisfied, the higher the point is, the less clauses &fi&si It is suspected that ‘topographic’ properties
of such a landscape are responsible for many complexityeptiep of satisfiability instances. For example,
it is believed that the hardness of random CNFs whose deissitiose to the satisfiability threshold is
due to the geometry of the satisfying assignments. They temdncentrate around several centers, that

make converging to a solution more difficult [7,122]. As we Iklsae the performance of LS is closely

related to geometric properties of the assignments, ancedwope that the study of LS may lead to a better
understanding of those properties.

The behavior of other SAT/MAXSAT algorithms have been stddbefore. For example, the random
walk has been analyzed in [24] and then’ih [3]. A messagem@asgde algorithm, Warning Propagation, is
studied in[[12].

Our contribution. We classify the performance of LS for all densities highemtlan arbitrary constant.
In particular, we demonstrate that LS has a threshold ingtfopmance. The main result is the following
theorem.

Theorem 1 (1) Letp > « - Inn, andx > % Then the local search whp finds a solution of an instance from
(Dplant(n’ Q’I’L).

(2) Lete < p < k- Inn, ¢ a constant, and < % Then the local search whp does not find a solution of an
instance frombP'"t (1, on).

To prove part (1) of the theorelnh 1 we show that under thoseittonsl all the local optima of a 3-CNF
whp are either satisfying assignments, that is, globalhugtior obtained by flipping almost all the values
of planted solution, and so are located on the opposite $itteeset of assignments. In the former case LS
finds a satisfying assignment, while whp it does not reaclotted optima of the second type. We also show
that that for any constant densitpthere isy such that the assignment produced by LS on an instance from
dPlnt(n on) or ®(n, on) satisfies at leastn clauses less than the maximal number of satisfiable clauses.
Unfortunately, it is somewhat difficult to run computatibeaperiments on CNFs of infinite density, as in
order to havdog n sufficiently largen must be prohibitively big. However, experiments we wereedbl
conduct agree with the results.

Another region where LS can find a solution of the random plar8-CNF is the case of very low
density. Methods similar to Lemnha 9 and Theoferh 11 show thistdw density transition happens around
o ~ n~1/%. However, we do not go into details here.

Usually the main difficulty of analysis of algorithms for dom SAT is to show that as an algorithm
runs, some kind of randomness of the current assignmentpis Kehis property allows one to use ‘card
games’, Wormald’s theorem, and differential equationsngd;i8], or relatively simple probabilistic con-
structions, such as martingales, ad in [3]. For LS randomoasnot be assumed after just a few iterations
of the algorithm, which makes its analysis more difficult.isTls why the most difficult part of the proof
is to identify to which extent assignments produced by LStasrs remain random, while most of the
probabilistic computations are fairly standard.

The paper is organized as follows. After giving several seagy definitions in Section 2, we prove in
Section 3, that above the threshold established in Thelarplanted 3-CNFs do not have local optima that
can be found by LS, other than satisfying assignments. Itidgde4 we show that below the threshold there
are many such optima, and that LS necessarily gets stuckingof them.

2 Preiminaries

SAT. A 3-CNF is a conjunction o8-clauses As we consider only 3-CNFs, we will always call them just
clauses. Depending on the number of negated literals, weglissh 4 types of clause$-, —, —), (+, —, —),
(+,+,—), and(+,+,+). If ¢ is a 3-CNF over variablesy, ..., x,, anassignmenbf these variables is

INPUT: 3-SAT formulay over variablescy, . . . , ;.
OuTPUT: Booleann-tuple v, which is a local minimum of.
ALGORITHM:
choose uniformly at random a Boolean-tuple @
let U be the set of all variables; such that the number of clauses that can be made satisfied
by flipping the value oft; is strictly greater than the number of those made unsatisfied
while U is not empty
pick uniformly at random a variable; from U
change the value ofz;
recompute U

Figure 1: Local Search

a Booleam-tuple @ = (uy,...,u,), SO the value of; is u;. Thedensityof a 3-CNF is the number™
wherem is the number of clauses, ands the number of variables ip.

The uniform distribution of 3-CNFs of density (density may be a function of), ®(n, gn) is the set
of all 3-CNFs containing: variables angn clauses equipped with the uniform probability distribation
this set. To sample a 3-CNF accordinglyd¢n, on) one chooses uniformly and independently clauses

out of 23 g possible clauses. Thus, we allow repetitions of clausesnburepetitions of variables

within a clause Random 3-SATs the problem of deciding the satisfiability of a 3-CNF ramdip sampled
accordingly to®(n, on). For short, we will call such a random formula a 3-CNF frém, on).

Theuniform planteddistribution of 3-CNF of density is constructed as follows. First, choose at random
a Boolean-tuple i, aplantedsatisfying assignment. Then I&P'2"t(n, on, i) be the uniform probability
distribution over the set of all 3-CNFs over variahigs. . . , z,, with densityp and such that is a satisfying
assignment. For our goals we can always assumeitimthe all-ones tuple, that is a 3-CNF belongs to
dPl2nt(n on, @) if and only if it contains no clauses of the type, —, —). We also simplify the notation
Pl (1 on, @) by P2 (n, on). To sample a 3-CNF accordingly @°'2"(n, on) one chooses uniformly

and independentlyn clauses out of (g) possible clauses of typés-, —, —), (+,+, —), and(+, +, +).

Random Planted 3-SA'S the problem of deciding the satisfiability of a 3-CNF frd@2" (n, on).

The problemfRandom MAX-3-SA&indRandom Planted MAX-3-SAdre the optimization versions of
Random 3-SAT and Random Planted 3-SAT. The goal in thesdgmals to find an assignment that satisfies
as many clauses as possible. Although the two problemslysural treated as maximization problems, it
will be convenient for us to consider them as problems of mining the number of unsatisfied clauses.
Since we always evaluate the absolute error of our algostmuot the relative one, such transformation does
not affect the results.

Local search. A formal description of the Local Search algorithm (LS) igami in Fig[1l. Observe that LS
stops when reaches a local minimum of the number of unsatisliéeises.

Given an assignmernt and a clause it will be convenient to say that votesfor a variablez; to have
value 1 ifc contains literalk:; and its other two literals are unsatisfied. In other wordétfifez (a)« assigns
x; 10 0, ¢ is not satisfied byz, and it will be satisfied if the value af; is changed, or (b) the only literal in
c satisfied by is x;. Similarly, we say that votes forz; if ¢ contains the negation af; and its other two

literals are not satisfied. Using this terminology we canrgefietU as the set of all variables such that the
number of votes received to change the current value isegrédan the number of those to keep it.

Random graphs. Probabilistic tools we use are fairly standard and can bedan the bookl[4].

Let ¢ be a 3-CNF with variables;, ..., z,. Theprimal graph G(y) of ¢ is the graph with vertex
set{z,...,z,} and edge sefz;z; | literals containingz;, z; appear in the same cladserhehypergraph
H(p) associated withp is a hypergraph, whose vertices are the variableg ahd the edges are the 3-
element sets of variables belonging to the same clause. tNatéf » € ®Pa"t(n, on), then H(y) is a
random 3-hypergraph with vertices andn edges, but(n) is not a random graph.

We will need the following properties that a gra@fie) of not too high density has.

Lemma?2 Letp < xInn for a certain constant, and lety € ®P2"t(n, on).
(1) For anya < 1, whp all the subgraphs a¥(y) induced by at mosb(n®) vertices have the average

degree less than 5.
(2) The probability that3(¢) has a vertex of degree greater thart? n is o(n—3).

Proof: (1) This part of the lemma is very similar to Proposition 1&1fr[12], and is proved in a similar
way. LetS be a fixed set of variables witli/| = ¢. The number of 3-element sets of variables that include
2 variables fromJ is bounded from above by

(g) (n—2) < %ﬁn.

For each of them the probability that this set is the set abl&s of one of the random clauses chosen for
© (we ignore the type of the clause) equals

knlnn 6kInn

(g) BCEDICED)

Thus, the probability that¢ of them are included as clauses is at most

142 20
2£ n 6kInn < (3ex - flnn .
20 (n—1)(n—2) n
Letd = e(3ex)?. Using the union bound, the probability that there existscuired set/ with at mostn®
variables is at most
no 20
Z n gﬁlnn
k e n
(=2
ne g 21n’*n ¢
! e n?
<dn°‘ In2 n> ¢
n

o1 — (dn®tInn)t
1—dnollnn

IA
(1=

2

o

o~
=

IN

~

=2

= (dn®'In®n)

= O(n*2mn'n).

5

(2) The probability that the degree of a fixed vertex is attlégsn is bounded from above by

<1>1n2" <3f<mlnn> Cn?n <3eﬁnlnn>ln2" <3e/<;>1n2"
- 2 =n 2 =\ ’
n In“n In“n Inn
—In?n; . . . 3knlnn) .
wheren is the probability that some particulr® » random clauses include and is the

In?n
number ofin? n-element sets of clauses. Then it is not hard to see that

In2n
3ek
n|— —0,
Inn

asn goes to infinity. O

Several times we need the following corollary from Azumatsquality for supermartingales (see Lemma 1
from [26]).

Observation 3 (1) LetY; be a supermartingale such thBt(Y;,1]Y;) < Y; and|Y;11 — Y;| < ¢ for some
2
c. ThenP (Y; — Yy > be) < e‘gﬁ, foranyb > 0.

(2) This inequality implies that iE (Y;1|Y;) < Y; — d and|Y;41 — Y| < ¢ < 1 then the process
Z; =Y; — dt is a supermartingale and we have the following inequality

dt _ (b+dt)? —bd
PY,-Yy>be)=P(Zi—Zp < (b+—)) <e 22 <e 7 (1)
&
The following lemma is a simple corollary of Chernoff bound.
Lemmad4 Letr, s be integersf < 1 a positive real, and letvq, ..., o, G, ..., s be some real constants.
There are constants and C' such that we have
P(X >Y) < CeEY))
for any random variables{ andY such thatE (X) < 4E (Y)and X =) «;X;,Y =) ;Y; for some
i=0 i=0
binomial random variables(, ..., X,,Y7,...,Ys.
Proof: Leté =) max(m:(?ai) AR It is easy to see that eveAt > Y implies occurrence of at

least one of the events from the set

S={{Xi 2 E(X;) +E{E(Y)}icqo,..rp 1Yi SE (Vi) — EE (V) }igqo,...5) -

Indeed, inequalityX < Y can be derived from inequalities, opposite to the ongsamdE (X) < 0E (V).
Application of Chernoff bound gives us inequalities

2
—E(X; 2 EY) 3 B
PUX—B(X)|> By < "R P o emmeas

2
P(Y —E(Y)|>(E(Y)) < ¢ F (263) / < B3,

Thus if we set\ = ¢2/3, C = r+ s then using union bound we can conclude that inequélity (R)sha

3 Success of Local Search

In this section we prove the first statement of the Thedren). 1This will be done as follows. First, we
show that if a 3-CNF has high density, that is, greater thasg n for somex > % then whp all the local
minima that do not satisfy the CNF — we call such minipreper— concentrate very far from the planted
assignment. This is the statement of Propos(tion 8 belownMe use Lemma 5 to prove that starting from
a random assignment LS whp does not go to that remote reghmrefore the algorithm does not get stuck
to a local minimum that is not a solution.

Several times we will need the following observation thah d@ checked using the inequality

(Z) < (%)g For anyn, v, anda with 0 < o < 1

n _ a _ a oY
<7na> < e(1 a)yn® Inn—yn® Iny+yn/) (3)

We need the following two lemmas. Recall that the plantedt&ni is the all-ones one.

Lemmab5 Leto > xInn for some constant, and let constantgg, ¢g; be such thay, < ¢;. Whp any
assignment witlggn zeros satisfies more clauses than any assignmentyvitkeros.

Proof: Let, v be some vectors withyn andg,n zeros, respectively. Letbe a random clause, then
(1) with probability £ all its literals are positive, (2) with probabilit% two literals are positive and similar
(3) with probability% one literal is positive. The probabilities that the clausedtisfied byi in these cases
are(1—qo)?, (1 —qo)?qo and(1 — qo)g2, respectively. Hence the total probability of a clause tsdtisfied

. \3 2 _ 2 _ .3 . .
(1-90)°+3(1 q07) g0+3(1-g0)gp _ 1 % A similar result holds fo. Thus the expectation of the

_3 i .
number of clauses satisfied fyand in a random formula equaf:s# knlnn and%m In n respectively,
thus applying lemm@al4 we conclude that

by « equals

. Lo (A3 3 2 _
P (u satisfies less thaﬁwm Inn clause§ < e Nninn

for some)\ > 0. There ar&™ assignments, hence, application of the union bound finiphasf of the
lemma. O

Lemma6 Letp > xInn for somex (not necessarily> %). There isa < 1 such that forp € ®PRM(n, on)
whp for any proper local minimuri of ¢ the number of variables assigned to Odis either less tham®,
or greater thandz.

Proof: Let M,|M| = ¢ be the set of all variables thatassigns to 0. LerV‘}Ch be event “for every
x; € M the number of clauses voting fef to be 1 is less than or equal to the number of clauses voting for
z; to be 0”. Sincei is a local minimum 354" is the case fofi. It is easy to see that eveBigs implies
eventBﬁ}l = “the total number of votes given by clauses for variabled/irio be 1 is less than or equal to
the total number of votes given by clauses for variables/ino be 0”. To bound the probability dff\;c"
we will bound the probability ij”Vl}.

Let ¢ be a random clause. It can contribute from 0 to 3 votes foratses inM to be one and 0 or 1
vote for them to remain zero. Let us compute, for example ptiobability that it contributes exactly two

votes for variables in\/ to become one. It happensdfis of type (+, +, —), both its positive variables
are inM and the negative variable is outsideof. Probability of this event is¢2n=2(1 — ¢/n). So the
expectation of the number of clauses voting for exactly 2ades in)M to be 1 is%ézn‘l(l —{/n)klnn.
The expectations of the numbers of clauses voting for thneleoae variables to be 1 at#3n~2xInn and
3(1 - £)%kInn, respectively.

A clause votes for a variable in/ to remain O if its type is+, —, —), one of its negative literals
is not in M, and two other literals are i/, or if its type is(+,+,—) and all the variables in it be-
long to M. Thus the expectation of the number of clauses voting foralsbes in M to remain O is
Sklnn (20n~Y(1 — €/n) + 3n~2).

Hence the expectation of the number of votes for variabléd ito flip equals

. 1
E (votes for a flip = kInn x (3 : ?6371‘2 +2- %Fn‘l(l —4/n)+1- %6(1 - €/n)2>
and expectation of the number of votes for variables/irio remain 0 equals
6o 1 3,3 2
E (votes for status quo= < Inn x ?E n (1 —4¢/n)+ ?E n .

If ¢ < =nthen

E (votes for status quo 6((n — ¢) + 3¢* 1 3(n — £)?
E (votesforaflip 66(n—¢)+302+3(n—£)2 64(n —£) + 302 + 3(n — £)?
12n2 400

Therefore we can apply Lemrfia 4 to the votes for and againstdget the following bound® (B%Y) <

e—AB(votes for aflip or some > 0. Then we can bound number of votes for a flip from belowsbin 1
for some constant and we can bound the number of séfsof size/ as

l
#(M of sizel) = <Z> < (%) _ lIn(n/0)+C

Therefore if
lIn(n/l) + ¢ < éllnn

then union bound implies that whp there is no &&such thaB%l happens. Itis easy to see that for n®
andq that is close enough to 1 the above inequality holds, whigkHes the proof of the lemma. O

Now suppose thai is a proper local minimum ap € ®P2"t(n_on). There is a clause € ¢ that is not
satisfied byii. Without loss of generality, let the variablesde x1, x5, z3, and let the variable assigned 0
be ;. Thus, clause votes forx; to be flipped to 1. Sincé is a local minimum there must a clause that is
satisfied, that becomes unsatisfied shayldlipped. We call such a clausesapportclause for the 0 value
of z1. In any support clause the supported variable is negatedhanefore any support clause has the type
(+,—,—) or (+,+,—). Avariable of a CNF is calle@-isolatedif it appears positively in at mogt clauses
of the type(+, —, —). Thedistancebetween variables of a CNFis the length of the shortest path@{y)
connecting them.

Lemma7 If k > % and o > «1Inn then for any integerd;, d> > 1 and for a randomy € ®P2"t(n, on)
whp there are no twd; -isolated variables within distana& from each other.

Proof: Letz be some variable. The probability that itds-isolated can be computed as

knlnn—d; di
P (zisd;-isolated = d; - (Hn;?n> <1 — %) <%>

rknlnn —d1 —dy
7
< dy(knlnn)® <1 — %) <1 — %) <§n>

—dx
~ d; (1 - %) (%{ lnn)dle_%nln”

= O(n~ 719,

for anye > 0.

By Lemmal2(2), the degree of every vertex@fy) whp does not exceeh? n. Hence, there are at
mostIn?® n, vertices at distance, from z. Applying the union bound we can estimate the probabiligt th
there is ad, -isolated vertex at distanag, from 2 asO(In? n - n_%””). Finally, taking into account the
probability thatx itself is d;-isolated, and applying the union bound over all verticeg:6p) we obtain
that the probability that twd; -isolated vertices exists at distanégfrom each other can be bounded from
above by

n- O(n_%n) . O(ln2d2 n - n—%fe) — O(ln2d2 n- nl_gﬁ).

Thus forx > % whp there are no two such vertices. O

Proposition 8 Letp > « - Inn, andx > % Then whp proper local minima of a 3-CNF frob®2"t (1, on)
have at mos{; ones.

Proof: Letp € ®P2"t(n, on) be a random planted instance. Supposedhata proper local minimum
that has more tharf; ones. We use the following observation. ldbe a clause not satisfied lay Then
it contains at least one variahlg that is assigned to zero hy The assignment is a local minimum, so
there must be a clauséthat is satisfied only by;. Hence,c' is a support clause, and contains a variable
x; which is assigned to zero hy. Variablesz; andz; are at distancé. Settingd; = 11 anddy = 1, by
Lemmd¥, we conclude that one of them is not 11-isolated.

Setd, = 11, d2 = 3 and consider the set of all variables assigned to zero Bythat are not 11-isolated.
By the observation above this set is non-empty. On the othedhby Lemm&l6|Z| is O(n®) for some
a < 1. Considerr € Z. It appears positively in at least 10 clauses of the tifpe—, —). Each of these
clauses is either unsatisfied or contains a variable assign®. Suppose there akeunsatisfied clauses
among them. Sinc@ is a local minimum, to prevent from flipping, x must be supported by at least
support clauses, each of which contains a variable assigr@dThus, at least 6 neighborsofnh G(¢) are
assigned to 0. Any two neighbors ofare at distance 2. By Lemma 7 at least 5 of the neighbors a&sbign
to 0 are not 11-isolated, and therefore belong td hus the subgraph induced Byin G(y) has the average
degree greater than 5, which is not possible by Lefmma 2(1). O

Now we are in a position to prove statement (1) of Thedrém 1.

Figure 2: Caps and crowns

Proof: [of TheorenT1(1)] By Lemmal5 for @ € ®P2"(n, on) whp any assignment wittin variables
equal to 1, Wher% <d< % satisfies more clauses than any assignment gitequal to 1. Then, whp a
random initial assignment for LS assigns betwéeamnd% of all variables to 1. Therefore, whp LS never
arrives to a proper local minimum with less thgyvariables equal to 1, and, by Propositidn 8, to any proper
local minimum. O

4 Failureof Local Search

We now prove statement (2) of Theoréin 1. The overall straieglye following. First, we show, Propo-
sition[10, that in contrast to the previous case there areympeoper local minima in the close proximity
of the planted assignment. Then we show, Proposition 12ttloae local minima are located so that they
intercept almost every run of LS, and thus almost every rumssiccessful.

We start off with a technical lemma. A pair of clausgs= (z1,7%2,%3), co = (T1,T4, x5) is called a
capif =1, z5 are 1-isolated, that is they do not appear in any clause dte(+, —, —) except forc; and
co, respectively, and,, x3 are not O-isolated (see Figure 2(a)). We denote equality = g(n)(1 + o(n))
by f(n) ~ g(n).

Lemma9 Letn=1 < 0 < k-Ilnn,andx < % There isa, 0 < « < 1, such that whp a random planted
CNF ¢ € ®PR"t(, on) contains at leash™ caps.

Proof: The proof is fairly standard, see, e.g. the proof of Theorefnddin [4]. We use the second
moment method. The result follows from the fact that a capgraperties similar to the properties of
strictly balanced graphssee[[4]. Take some, and letX be a random variable equal to the number of caps
in a 3-CNFyp € ®P2t(n, on). Straightforward calculation shows that the probabilitsitta fixed 5-tuple of
variables is a cap is g'n 4~ 7wn. ThereforeE (X) ~ o'n!~7mn.

Let S be afixed 5-tuple of variables, s&,= (x1, x2, 3, x4, x5), andAg denote the event th&tforms
a cap. For any other 5-tuplg, the similar event is denoted by, and we writeAr =< Ag if these two
events are not independent. By Corollary 4.3.5 of [4] it seffito show that

A* = 3P (Ar | As) = o(E (X)).
=S

LetT = (y1, 92, Y3, Y4, ys5)- Itis not hard to see that the only cases whgnand Ag are not independent
and the probability? (Ar | Ag) is significantly different from 0 isy; = x1 and{y2,ys} = {z2,z3}, Or
y1 = x5 and{ys, y3} = {z1, 24}, Orys = 1 and{y1, y4} = {2, 73}, Orys = x5 and{y1, ya} = {x1, 24}
Then, as before, it can be found that in each of these @sds- | Ag) = O(g4n‘2‘$ﬁ).

10

Finally,

A" = Y P(dr|Ag) = nP (dr | Ag) = i Ofg'n > Fi%)
T=S
We can chooser = 1 — 8kif p > 1,anda =1 —4vif 1 > o> n " forv < 1. .

Proposition 10 Letp < k- Inn, andk < % Then there isy, 0 < « < 1, such that a 3-CNF from
dPl2"t(n on) whp has at least® proper local minima.

Proof: Letc; = (x1,T2,T3), ca = (T1,%4,x5) be a cap and an assignment such that = us = 0,
andu; = 1 for all otheri. It is straightforward thati is a proper local minimum. By Lemniad 9, therexis
such that whp the number of such minima is at legst O

Before proving Proposition 12, we note that a constructiomlar to caps helps evaluate the approx-
imation rate of the local search in the case of constant teari planted and also on arbitrary CNFs. A
subformulac = (x1,x2,23),¢c1 = (T1,24,25),c0 = (T2, z6,27),c3 = (T3, xs,x9) IS called acrown if
the variablesry, ..., z9 do not appear in any clauses other thaa,, c2, c3 (see Fig[R(b)). The crown is
satisfiable, but the all-zero assignment is a proper localrmim. For a CNko and an assignmenmtto its
variables, byOPT(y) andsat(#) we denote the maximal number of simultaneously satisfidbleses and
the number of clauses satisfied #yrespectively.

Theorem 11 If densityp is such thatn ™" < p < klnn for somer < 1/4 andx < 1/27, then there is
Yo = ﬁ such that whp Local Search on a 3-CNFe ®(n, on) (¢ € ®P2"(n, on)) returns an assignment
@ such thatOPT(y) — sat(@) > v(p) - n, whereOPT(y) denotes the maximal number of clauses ithat
can be simultaneously satisfied asat(«) denotes the number of clauses satisfied by

If ¢ is constant then, is also constant.

Proof: As in the proof of Lemma]9, it can be shown that fothat satisfies conditions of this theorem

there isy = ﬁ such that whp a random [random planted] formula has at lgastrowns. Ifp is a

. . . /
constant,)’ is also a constant. For a random assignmgmwhp the variables of at leaggs;n crowns are
assigned zeroes. Such an all-zero assignment of a crowntdaaichanged by the local search. O

Then we move on to proving Propositibn] 12.

Proposition 12 Letp < k- Inn, andx < % The local search on a 3-CNF froiP'2" (n, on) whp ends up
in a proper local minimum.

If o = o(lnn) then Propositio_12 follows from Theoreml11. So in what fellowe assume that
0 > £’ - Inn. The main tool of proving Propositidn 12 is coupling of losalrch (LS) with the algorithm
STRAIGHT DESCENT (SD) that on each step chooses at random a variable assigriedrnd changes its
value to 1. Obviously SD is not a practical algorithm, sireapply it we need to know the solution. For the
purposes of our analysis we modify SD as follows. At each Stepchooses a variable at random, and if it
is assigned 0 changes its value (see[Big. 4(a)). The algotithis modified in a similar way (see Figd. 4(b)).

It is easy to see that the vector obtained by SD at sthges not depend on the formula. And since SD
treats all variables equally we can make the following

11

INPUT: ¢ € ®P12"t(n, on) with the all-ones solution, INPUT: 3-SAT formulay, Boolean tuplez,

Boolean tuplei, OuTPUT: Boolean tupler, which is local
OuTPUT: The all-ones Boolean tuple. minima of ¢.
ALGORITHM: ALGORITHM:
whilethere is a variable assigned 0 while # is not a local minima

pick uniformly at random variable; from pick uniformly at random variable; from

the set of all variables the set of all variables
ifu; =0thensetu; =1 if the number of clauses that can be made
satisfied by flipping the value af; is strictly
(@) greater than the number of those made unsatisfied

then set Uj = U;

(b)
Figure 3: Straight Descent (a) and Modified Local Search (b)

Lemma 13 If SD starts its work at a random vector with, ones and after stefy t < n — my, it arrives
to a vector withm ones, then this vector is selected uniformly at random friwegtors withm ones.

Proof: Let us denote the probability that at steD arrives to vectot, conditional to it starts from a
vector withmg ones, byP (i, t, mg). We prove by induction ohthatP (uy, t, mg) = P (ds, t, mg) for any
i1, U2 With m ones. We denote this number ByY(¢, m, mg). As the starting vector is random, it is obvious
for t = 0. Then fort > 1 and any vectofi with m ones we have

P (dt,mg) = P(dt—1mo) 2+ P (@t —1,mp)
n 7!

n
u

= P(t_lvmvm(])'E_FP(t_l?m_lva)'m?
n n

wheren is the number of variables in the formula aifdgoes over all vectors that can be obtained frdm
by flipping a one into zero. It does not depend on a particudatorii. O

We will frequently use the following two properties of th@atithm SD.
Lemma 14 Whp the running time of SD does not excéedn n.

Proof: For a variabler; the probability that it is not considered forsteps equal$1 — %)t So for

t = 2nlnn this probability equalg{1 — %)Q"m" < e~2Inm — =2 Applying the union bound over all
variables we obtain the required statement. O

Given 3-CNFy and an assignment we say that a variable; is k-righteousif the number of clauses
voting for it to be one is greater by at ledstthan the number of clauses voting for it to be zero. Let
@ € PNt (n on) andi be a Boolean tuple. THeall of radiusm with the center af is the set of all tuples
of the same length ag at Hamming distance at most from 4. Let f(n) andg(n) be arbitrary functions
andd be an integer constant. We say that a%ef n-tuples is(g(n), d)-safe if for any @ € S the number

12

of variables that are nai-righteous does not excegdn). A run of SD is said to béf(n), g(n), d)-safeif
at each step of this run the ball of radifi§:) with the center at the current assignmen(tsi§), d)-safe.

Lemmal5 Letp > «' - Inn for somex’. For any constants andd there is a constant; < 1 such that,
for anya > ay, whp arun of SD op € &P (n, on) is (yn®, n®, d)-safe.

Proof: Consider a run of SD op € ®P2"(n, on) with a random initial assignment. If SD starts its
work at a tuple withmg ones, then at stepit hasm < mg + t ones. Then by Lemmia L3 if at stéphe
current assignment of SD has ones then it is drawn uniformly at random from all vectorshwit ones.
EventUnsafe= “run of SD is not(yn®, n®, d)-safe” is a union of events “at stef SD’s run the ball of
radiusyn® with the center at the current assignment is @ict, d)-safe”. We will use the union bound to
show that probability otUnsafeis small.

Let « be a Booleam-tuple havingpn positions filled with 1s. Since whp the number of 1s in thdahit
assignment is at leagt, for every step the number of 1s is at legst_et M be an arbitrary set of variables
with |M| = n®. We consider event85i" = “every variablez; € M is notk-righteous” and34/ = “the
total number of votes given by clauses for variabledrto be 1 does not exceed the total number of votes
given by clauses for variables i1 to be 0 plusM| - k.

The same technique as in Lemhnia 6 can be used to show that thebpity of B?Vl} and consequently the
probability ofBJev‘}Ch is bounded above by """ for some constant’, not dependent oa. By inequal-
ity @), there are at mostn® - ¢7(1—)n® Inn-(1+0(1)) distinct assignments in the:®-neighborhood of SD and
en®(1—a)Inn(1+o(1)) distinct subsets of size®. So fora close to 1 the union bound implies tha§:*" whp
does not take place for any tuple, any subset of variablesyasgp which completes the proof of the
lemma. O

For CNFsyq, 19 we denote by); A 1o their conjunction.

We will need formulas that obtained from a random formula @igiag some clauses in an ‘adversarial’
manner. Following([21] we call distributions for such forlasisemi-random However, the type of semi-
random distributions we need is different from thatlin/[2LEt < 1 be some constant. A formulais
sampled according to semi-random distribut an"(n, on) if ¢ = ¢’ A, wherey' is sampled according
to ®P2"t(n, on) andy contains at most” clauses and is given by an adversary.

Corallary 16 If ¢’ € <I>51ant(n, on) then for any constants andd there is a constant, < 1 such that for
anya > ag arun of SD ony’ o 4 is whp(yn®, 2n®, d)-safe.

Proof: Let«; be obtained by application of Lemrhal 15¢6 Let oy = max(aq,n). Then fora > as
whp run of SD on ¢’ is (yn®,n®, d)-safe. Since for large enough) contains less than® variables run
of SD will be (yn®,2n®, d)-safe ony’ A 1. O

13

Lemmal7 Let(Dy,...,D;) be an integer random process> 0, and letL, H be integer constants such
that
(@ Dy=0,0< L < H,

(b) |Dry1 — Dr| =1,

(c) if L < D, < H the expectation oD, conditional toD, satisfies the inequaliti (D,41|D;) <
D, — d holds. s
Then the probability that there issuch thatD, > H is less tharl - e~ %"=

Proof: We define a set of auxiliary process@é;

L, if 7 <&,
Dt — D;, if (1 >¢), (D¢ =L)and(D¢ > L), forall ¢ € {£,...,7}),
T | De—d(r—¢), if T>¢ De=L,and¢ € {¢,...,7} is the least such thdd, < L,
L —d(r - &), otherwise, i.e.D¢ # L andt > £.

The processe®?, ..., DL are designed so that eveRy: for + > ¢ satisfies inequalitye <D§+1|D$) <
D% — d. Indeed, suppose that> ¢. If D, # L then

E(D§+1|D§>:L—d(¢+1—g):(L—(T—g)—dzDﬁ—d.

Let D¢ = L. If Do > Lforall ({¢,...,7} thenD: = D,, DfH = D,41, and the result follows from the
assumptiorE (D 1|D;) < D, —d. Ifthereis¢ € {¢,..., 7} with D¢ < L then

E(D§+1|D§) :E(D§+1|D¢) =D —d(r+1-¢) = (D¢ —d(r —¢)) —d = DS —d.

By Azuma’s inequality[{ll) for each the probability of the event “there existssuch thatDs = H” is
less thare—(H—L)d,

On the other hand leb, > L and{ be equal to the number of the most recent step for wiigh= L.
It is easy to see thdD, = DS, Thus if at some step), = H then there ig < 7 such thatD$ = H. Using
the union bound we get the required inequality. O

Lemmal8 Letp > ' - Inn for somex’. Lety be a random 3-CNF sampled according to distribution
P (1, on) such that run ofSD on ¢ is whp(y,n%,v2n%, 1)-safe for some constants, o with y; >
372. Letiy(m), ;(m) denote the pair of assignments produced by the pair of psaseSD,LS) on step.
For anyt¢, whp the Hamming distance betwe@y{t) and;(¢) does not exceeghn®.

Proof: Let N; be the set of tuples at Hamming distance at mgst* from u,(t), and€ be event
“u;(t) € Ny for somet”. LS starts with the same initial assignment as SD and weshitiw that it does not
leaveN;.

At some steps the distance betwegiit) and;(¢) remains the same, and at some it changesiil.ef;
be the assignments produced by the algorithms aftenanges have taken place, abd be the distance

14

between them. 12yon® < D, < y1n® we haveE (D,41|D;) < D, — % Indeed, the number of variables
voted to be zero does not excegth® and is at least twice less than number of variables thatrdiffé,; ()
and;(t). Since any change in the distance between the assignmegmsrisif and only if a variable voted
to be 0 or a variable at whicti;(t) and,(t) are different, we have the required inequality. Now we can
apply Lemma 17 foD settingL = 2v9n®, H = 3v,n®,d = 1/3 and get that probability of LS leaviny;,

is less tharpne""/6, O

Corollary 19 For ¢ € ®5'**(n, gn) there is a constant; such that distance betweeiy(t) and a;(t)
defined in Lemma18 whp does not exce&d

We say that a variablplaysd-righteously in a run of LS every time it is considered for flipping it is
d-righteous. Combining corollari€s116 and 19 we obtain thievieng

Lemma20 For anyd there isay < 1 such that, for a run of LS op € <I>$1‘m(n, on) whp the number of

variables that do not play-righteously is bounded above hy*.

Proof: From Corollarie$ 16 anid 19 it follows that whp at every steh®fthe number of variables that
are notd-righteous is less tham®, for somed.

Therefore denoting the number of different assignmentsidened by LS byl" (note thatl < on)
and observing that at each step the probability to considariable voted to be 0 is®~! we obtain the
following upper bound for the expectation of the number ai-derighteous variables throughout the run:

Tn® 1t < k'n(lnn)n® 1 = 'n%Inn < n®te

for arbitrarye with & + 2 < 1. We apply Markov inequality and obtaiP (I > n®*%) < n~¢, wherel
denotes the number of variables that do not playghteously. Nowx, can be set to ba + 2¢. O

A clause(Z, 7, z) is called acap supportif there arew;, wy such that{z, wy, w9, y, z) is a cap inp. For
a formulay we denote the set of variables that occur in itday(¢)). For a set of clause& we denote
by A\ K a CNF formula constructed by conjunction of the clauses.tii@isake of simplicity we will write
var(K') instead ofvar (/\ K'). In what follows it will be convenient to view a CNF as a sequesof clauses.
Note that representation of a CNF is quite natural when wepkamrandom CNF by generating random
clauses. This way every clause occupies certain posititimeifiormula. For a set of positiorfd we denote
the formula obtained fronp by removing all clauses except for occupying positiéhby ¢ | . The set of
variables occurring in the clauses in positiong?invill be denoted byar(P).

We denote by the set of all possible clauses ovevariables. Let us fix a real constant< 1. We will
need the following notation:

e let [k] denote the set of the firgtpositions of clauses ip, V' be the set of all variables ip;

e let S¥” be the set of positions from”]| occupied by clauses that are cap supports,iandL¥” the
set of variables that occur in clauses in positigifs’;

e let 7% " be set of positions ap occupied by clauses containing a variable from”;

e letU¥" be the set of positions in occupied by clauses containing a variable fram (cp l[nu]\sw,y> ;

15

e finally, let R?" = [on] \ (S¥Y U U%Y);
e letalsoM#®" = var(T%") andN¥" = var(U#").
Fig.[4 pictures the notation just introduced.

SOV
T

CERD BXRY) 800 GEok000 000 GO0 CRE) s

nY first clauses

Figure 4: A scheme of a 3-CNF. Every clause is shown as a igletanth its literals represented by squares
inside the rectangle. Literals corresponding to variabies) L?” and fromvar <<p l[ny]\sw) are shown

as diamonds and circles, respectively. Shaded rectangflesvevtical and diagonal lines represent clauses
from T%” andU%", respectively.

Lemma?2l If p < klnnandk < % then there ig:y such that for any: < p there isv < 1 such that whp:
(1) |59 ~ nk;

(2) M#" N N¥Y = g, that is variables from clauses frob"*>* do not appear in the same clauses with
variables fromS¥-";

(3) |M#¥| = 3|T¥¥|, that is no variable occurs twice in the clauses fréif”.

Proof: It follows from Lemmd® that fop < klnn,x < % there existsy,0 < a < 1 such that the
number of caps in the formula is n®. We set

o = /2, v=p+1-—a.

(1) For a subseR of all positions of clauses in let Cr denote eventR is exactly the set of positions
occupied by cap supports”. Obviously for any s&s R, |Ri| = |Rz| we haveP (Cr,) = P (Cg,).
Thus positions of the cap supports are selected uniformigretom without repetition. By straightforward
computation we have expectation of the number of cap supparbng first:” clauses equal approximately
n® . pv~1 = prtl-a—l+a — pi and variance is bounded above by the expectation, so ivfslfoom
Chebyshev inequality that random variable “number of cqgpstts among first” clauses” is whpv n*.

(2) By Lemmd2(2) whp there is no variable that occurs in mba@in® n clauses. Thereforg/%"| =
O(n*1n?n) and|N¥¥| = O(n” In?n). These sets are randomly chosen fromaglement set, and there-
fore the probability they have a common element is at mést—! In* . Due to definition ofu andv we
havey+v—-1<a/24+a/24+1—-a—-1=0.

(3) Since whpT¥¥| = O(n*1n?n), the probability that two clauses from this set share a i
bounded above by**~!1n* n. We have2; — 1 < a — 1 < 0 so this probability tends to 0.]

Let us fix a formulay selected accordinglP'"t(n, on) andu < % and letv correspond tq: as in

Lemmd2l. Lefly andUj be subsets dpn] such thatly N Uy = &, [n”] C Ty U Uy and letSy = Ty N [n”].
We denote byHr,1, a hypothesis stating that is such thatS¥* = Sy, T%" = Ty, U?” = Uy and also
MY QAN = g, [M#| = 3|T97].

16

Lemma 22 If for an eventE there is a sequenc&n) — 0 such that for all pairgTy, Up), |To U Up| <
n?” we haveP (E|Hr,u,) < 6(n) thenP (E) — 0.

Proof: We can bound probability of eveilit as

P(E) < > (P (E|Hzyuy) P (Hy 1)
To,Uo:‘ToUU0|<TL2“
+P (M#" N N#" £ @ or [M?"| < 3|T%"| or |Ty U Up| > n*))
< §(n) + P (M?YNN? #£ @)+ P (M| < 3|T9"|) + P (|Ty U Up| > n*).

By Lemma 21 probabilities of evenfe/ ¥ N N¥* #£ @ and|M¥#¥| < 3|T%"| tend to 0 a3 approaches
infinity. By Lemma2 (2) we havél, U Uy| < n? whp. Thus we obtain the resuilt. O

Observation 23 If o is selected according t®P'2"t(n, on) conditioned toH 7,1, then formula

© Lon)\(1oU10)

has the same distribution as if it was generated by pickirgus#s from all clauses over variables
V' \ var([n"]) uniformly at random.

Proof: LetC’ be the set of all clauses over variabled/if var([n”]) andRy = [on] \ (To UUp). Take a
formula) such that positions fronR, of this formula are occupied by clauses fréfn It suffices to observe
that the number of formulag’ such that)’ | g, = v | r,, S¥'* = So, TV = Ty, U¥'* = U, is the same
for anyy. So since all possible formulas over variables from someseequiprobable a random formula
is generated by random sampling of clauses. O

Proof: [of Proposition12] We will bound probability of success abdal Search under a hypothesis
of the form Hr,y, and apply Lemma@&_22 to get the result. Let be the exponent corresponding ddy
Lemmd20, and choogeandr such thatvy + 2 < 1.

Let M = M#” andL = L¥". We split formulay into 1 = ¢ |1, andypz = ¢ |jn\1, @nd
first consider a run of LS applied t, only. Formulay- can in turn be considered as the conjunction of
a1 = ¢ Ly, andpaz = @ i)\ (rpury)- IN Fig.[4 formulay; consists of clauses shaded with vertical
lines, formulay»; of clauses shaded with diagonal lines and formgpgaof clauses that are not shaded. By
Observation 23 formula,, is sampled according to

QP (n — 0y (n), ne — d2(n))
modulo names of variables whefgn) andds(n) areo(n). So formulayp, is sampled according to
5, (n — 61(n),ng — dy(n)).

By Lemmal 20 the number of variables that do not flayghteously during run of LS orp, is bounded
from above byn*4 for a certainas < 1.

We consider couplingLS,, LS,,) of runs of LS ony andy,, denoting assignments obtained by the
runs of the algorithm at stepby ., (¢) and,, (t) respectively. LetiX be the set of those variables which
do not belong ta. (squares and circles in Figl 4). Formya is a 3-CNF containing only variables from

17

K. For an assignment of values of all variabiés/e will denote byii| x its restriction onto variables from
K. We make processsS,, start with a random assignmeiit (0) = @, to all variables, and.S,,, with a
random assignment,, (0) = 4, to variables ink, such thati})|x = @,. Now the algorithms work as
follows. At every step a random variahigis chosen. ProcedsS,, makes its step, and process,,, makes
its step ifz; € K.

Whp LS, will run with at mostn® variables that do not plag-righteously. Leti’” denote the set of
such variables. Variables in formula are selected uniformly at random saif + 2p < 1 then whp set
M does not intersect withl”. Hence, every timd.S,, considers some variable frof it is 2-righteous
in w5 and belongs to at most one clausewt Therefore such a variable is at ledstighteousy and is
flipped to 1, or stays 1, whichever is to happen fdf,,,. Thus whp at every step ¢f.S,, LS,,) we have
Uy (t)| K = Uy, (t). In the rest of the proof we consider only this highly proleathse.

Consider some cap suppest= (71, T4, x5) Occupying a position € [n”] and such that; = 0,24 =
1,z5 = 0 attime 0, and a se&®., of variables occurring in clauses that contain variaktegc;) (obviously
var(¢;) C P.,). Lete; be the clause that forms a cap with We say that a variable @iscoveredat stept if
it is considered for the first time at stepLetp;, ..., p; be an ordering of elements 6%, according to the
step of their discovery. In other words if variableis the first variable fronF,, that is discoveredy, was
the last. In the case some variables are not considered aegtlace them in the end of the list in a random
order. Observe that all variables that play at Idasghteously are discovered at some step. All orderings
of variables are equiprobable, hence, the probability obidesvar(c;) to occupy placegy_», pr—1 and
pr equals3!/k(k — 1)(k — 2). We will call this orderingunlucky

Let us consider what happens if the order of discovery,0fis unlucky. All variables inP,, \ var(c;)
play 1-righteously, therefore once they are discoveredll$y, they equal to 1. Thus wheny, z4, x5 are
finally considered all clauses they occur in are satisfiedggixforc;. So variables, x4, x5 do not change
their values and the clausg remains unsatisfied by the end of the workZdf.

By Lemma2(2) whp no vertex has degree greater than, so the size of the sét., is bounded above
by 31n% n. Thus the probability of everit niuck(i) =“order of discovery ofvar(c;) is unlucky” is greater
thanﬁ. Thus, the expectation ¢fi|Unluck(i)}| equals

[Sol _ n#

nn InSn’

Any variable whp occurs in clauses frdff¥’” at most once, hence there is no variable that occurs in the
same clause with a variable frafy) and a variable from;, for i1, i € Sp, i1 # i2. This implies that events

of the formUnluck(i) are independent. Therefore random varidfld/nluck(:)}| is Bernoulli and, as its
expectation tends to infinity, the probability that it equtd 0 goes to 0. Since unlucky ordering of at least
one cap support leads to failure of the LS this proves thdtresu O

References

[1] D. Achlioptas. Lower bounds for random 3-SAT via diffatial equations. Theor. Comput. Sgi.
265(1-2):159-185, 2001.

[2] D. Achlioptas and E. Friedgut. A sharp threshold for Kecability. Random Struct. Algorithms
14(1):63-70, 1999.

18

[3] M. Alekhnovich and E. Ben-Sasson. Linear upper boundsdadom walk on small density random
3-cnfs. SIAM J. Comput.36(5):1248-1263, 2007.

[4] N. Alon and J. SpenceiThe Probabilistic MethodJohn Wiley, 2000.
[5] E. Amiri and E. Skvortsov. Pushing random walk beyonddgol ratio. INCSR pages 44-55, 2007.

[6] E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a rantjoplanted assignment in a random 3-cnf.
Manuscript, 2002.

[7] A. Braunstein, M. Mézard, and R. Zecchina. Survey pggieon: An algorithm for satisfiability.
Random Struct. Algorithm&7(2):201-226, 2005.

[8] A. Bulatov and E. Skvortsov. Efficiency of local search.9AT, pages 297-310, 2006.
[9] H. Chen. An algorithm for sat above the threshold SIAT, pages 14—24, 2003.

[10] J. M. Crawford and L. D. Auton. Experimental results be trossover point in random 3-s&rtif.
Intell., 81(1-2):31-57, 1996.

[11] O.Dubois, Y. Boufkhad, and J. Mandler. Typical randosed formulae and the satisfiability threshold.
CoRRIcs.DM/0211036, 2002.

[12] U. Feige, E. Mossel, and D. Vilenchik. Complete conesice of message passing algorithms for some
satisfiability problems. IMPPROX-RANDONpages 339-350, 2006.

[13] A. Flaxman. A spectral technique for random satisfiedtaf formulas. INSODA pages 357-363,
2003.

[14] J. Franco and Paull M. Probabilistic analysis of theisigutnam procedure for solving satisfiability.
Discr. Appl. Math, 5:77-87, 1983.

[15] J. Gu. Efficient local search for very large-scale $iatislity problem. ACM SIGART Bulletin3(1):8—
12, 1992.

[16] P. Hansen and B. Jaumard. Algorithms for the maximunsfability problem. Computing 44:279—
303, 1990.

[17] J. Hastad. Some optimal inapproximability resultsACM 48(4):798-859, 2001.

[18] A. Kaporis, L. Kirousis, and E. Lalas. The probabilistinalysis of a greedy satisfiability algorithm.
In ESA pages 574-585, 2002.

[19] E. Koutsoupias and C. Papadimitriou. On the greedyrédlyn for satisfiability. Inf. Process. Lett.
43(1):53-55, 1992.

[20] M. Krivelevich, B. Sudakov, and D. Vilenchik. On the dom satisfiable 3cnf process. submitted,
2008.

[21] M. Krivelevich and D. Vilenchik. Solving random satifile 3cnf formulas in expected polynomial
time. InSODA pages 454-463, 2006.

19

http://arXiv.org/abs/cs/0211036

[22] M. Mézard, T. Mora, and R. Zecchina. Clustering of s$ioins in the random satisfiability problem.
CoRR abs/cond-mat/0504070, 2005.

[23] D. Mitchell. A sat solver primerBulletin of the EATCS35:112-132, 2005.

[24] Christos H. Papadimitriou. On selecting a satisfyingh assignment (extended abstract).FlBCS
pages 163-169, 1991.

[25] B. Selman, H. Levesque, and D. Mitchell. A new methoddolving hard satisfiability problems. In
AAAI, pages 440446, 1992.

[26] N. Wormald. Differential equations for random proaessind random graph$he Annals of Applied
Probability, 5(4):1217-1235, 1995.

20

	Introduction
	Preliminaries
	Success of Local Search
	Failure of Local Search

