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Abstract. Statistical learning problems in many fields involve sequen-
tial data. This paper formalizes the principal learning tasks and describes
the methods that have been developed within the machine learning re-
search community for addressing these problems. These methods include
sliding window methods, recurrent sliding windows, hidden Markov mod-
els, conditional random fields, and graph transformer networks. The pa-
per also discusses some open research issues.

1 Introduction

The classical supervised learning problem is to construct a classifier that can
correctly predict the classes of new objects given training examples of old objects
[19]. A typical application is in optical character recognition where the objects
are images of hand-written characters and the classes are the 26 alphabetic
letters. The classifier takes an image as input and produces a letter as output.
This task is typically formalized as follows.

Let x denote an image of a hand-written character and y ∈ {A, . . . , Z} denote
the corresponding letter class. A training example is a pair (x, y) consisting of
an image and its associated class label. We assume that the training examples
are drawn independently and identically from the joint distribution P (x, y), and
we will refer to a set of N such examples as the training data.

A classifier is a function h that maps from images to classes. The goal of the
learning process is to find an h that correctly predicts the class y = h(x) of new
images x. This is accomplished by searching some space H of possible classifiers
for a classifier that gives good results on the training data without overfitting.

Over the past 10 years, supervised learning has become a standard tool in
many fields, and practitioners have learned how to take new application prob-
lems and view them as supervised learning problems. For example, in cellular
telephone fraud detection, each x describes a telephone call, and y is 0 if the call
is legitimate and 1 if the call originated from a stolen (or cloned) cell phone [8].
Another example involves computer intrusion detection where each x describes a
request for a computer network connection and y indicates whether that request
is part of an intrusion attempt. A third example is part-of-speech tagging in
which each x describes a word and each y gives the part-of-speech of that word
(noun, verb, adjective, etc.).
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One thing that is apparent in these (and other) applications is that they
do not quite fit the supervised learning framework. Rather than being drawn
independently and identically (iid) from some joint distribution P (x, y), the
training data actually consist of sequences of (x, y) pairs. These sequences exhibit
significant sequential correlation. That is, nearby x and y values are likely to be
related to each other.

For example, before a cell phone is stolen, all of the y values will be 0. Af-
terwards, all of the y values will be 1. Similarly, computer intrusions exhibit
significant clustering—particularly denial of service attacks. Other kinds of at-
tacks are deliberately spaced over time to avoid detection, which is a form of
temporal anti-correlation. In part-of-speech tagging, sequences of parts of speech
are constrained by the grammar of the language. Hence, in English, a sequence
such as (verb verb adjective verb verb) would be very unlikely. Sequential pat-
terns are present even in the original task of character recognition: Character
sequences usually form words rather than random sequences of letters.

Sequential patterns are important because they can be exploited to improve
the prediction accuracy of our classifiers. In English, for example, if the classifier
determines that one letter is Q, then the next letter is almost certain to be
U. In telephone fraud detection, it is only possible to detect fraud by looking
at the distribution of typical (legitimate) phone calls and then to see that this
distribution changes when the telephone is stolen. Any single phone call, viewed
in isolation, appears to be perfectly legitimate.

The sequential supervised learning problem can be formulated as follows.
Let {(xi,yi)}N

i=1 be a set of N training examples. Each example is a pair of
sequences (xi,yi), where xi = 〈xi,1,xi,2, . . . ,xi,Ti〉 and yi = 〈yi,1, yi,2, . . . , yi,Ti〉.
For example, in part-of-speech tagging, one (xi,yi) pair might consist of xi = 〈do
you want fries with that〉 and yi = 〈verb pronoun verb noun prep pronoun〉. The
goal is to construct a classifier h that can correctly predict a new label sequence
y = h(x) given an input sequence x.

This task should be contrasted with two other, closely-related tasks. The
first of these is the time-series prediction problem. Here the task is to predict
the t+1st element of a sequence 〈y1, . . . , yt〉. This can be extended in two ways.
First, we can consider the case where each yt is a vector yt. The time-series
task becomes to predict simultaneously a whole collection of parallel time series:
Predict yt+1 given 〈y1, . . . ,yt〉. Second, we can consider the case when there are
other “features” or co-variates 〈x1, . . . ,xt,xt+1〉 available.

There are two key differences between time-series prediction and sequential
supervised learning. First in sequential supervised learning, the entire sequence
〈x1, . . . ,xT 〉 is available before we make any predictions of the y values, whereas
in time-series prediction, we have only a prefix of the sequence up to the current
time t + 1. Second, in time-series analysis, we have the true observed y values
up to time t, whereas in sequential supervised learning, we are not given any y
values and we must predict them all.

The second closely-related task is sequence classification. In this task, the
problem is to predict a single label y that applies to an entire input sequence



3

〈x1,x2, . . . ,xT 〉. For example, given a sequence of images of hand-written char-
acters, the task might be to determine the identity of the person who wrote
those characters (hand-writing identification). In these kinds of problems, each
training example consists of a pair (xi, yi), where xi is a sequence 〈xi,1, . . . ,xi,Ti 〉
and each yi is a class label (such as a person’s identification number). A similar
problem arises in recognizing whole words on handwritten checks. The xi could
be a sequence of hand-written letters, and yi could be a word such as “hundred”.

All of these problems are closely related, and sometimes a solution to one
can be converted into a solution for another. For example, one strategy for
recognizing a handwritten word (e.g., “hundred”) would be first to solve the
sequential supervised learning problem of recognizing the individual letters 〈H,
U, N, D, R, E, D〉, and then assembling them into the entire word. This works
for cases where the class label y can be decomposed into sub-parts (in this
case, individual letters). But no similar strategy would work for recognizing an
individual’s identity from their handwriting.

Similarly, some methods for sequential supervised learning make their predic-
tions by scanning the sequence from left-to-right, and such methods can typically
be applied to time-series problems as well. However, methods that analyze the
entire sequence of xt values before predicting the yt labels typically can give
better performance on the sequential supervised learning problem.

2 Research Issues in Sequential Supervised Learning

Now let us consider three fundamental issues in sequential supervised learning:
(a) loss functions, (b) feature selection, and (c) computational efficiency.

2.1 Loss Functions

In classical supervised learning, the usual measure of success is the proportion
of (new) test data points correctly classified. This is known as the 0/1 loss, since
a loss of 1 is received for every misclassified test point and a loss of 0 for every
correctly-classified test point. More recently, researchers have been studying non-
uniform loss functions. These are usually represented by a cost matrix C(i, j),
which gives the cost of assigning label i to an example whose true label is j.
In such cases, the goal is to find a classifier with minimum expected cost. One
strategy for developing such a classifier is to learn a conditional density estimator
P (y|x) and then classify a new data point x according to the formula

y = argmin
i

∑
j

P (j|x)C(i, j).

This formula chooses the class whose expected cost is minimum.
In sequential supervised learning problems, many different kinds of loss func-

tions are encountered. Statistical learning methods are needed that can minimize
the expected loss for all of these different loss functions. First, we will consider
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some of the loss functions that have appeared in various applications. Second,
we will discuss how these different loss functions might be incorporated into
learning and prediction.

In some problems, the goal is to predict the entire output sequence of labels
yi correctly, and any error in this sequence counts as an error for the entire
sequence. Other problems exhibit the opposite extreme: the goal is to predict
correctly as many individual labels yi,t in the sequence as possible. One can
imagine problems intermediate between these extremes.

In many applications, different kinds of errors have different costs. Consider
cellular telephone fraud. The real goal here is to determine the time t∗ at which
the telephone was stolen (or cloned). As described above, we can view this as a
sequential supervised learning problem in which yt = 0 for t < t∗ and yt = 1 for
t ≥ t∗. Consider the problem of making a prediction t for the value of t∗. One
strategy would be to apply the learned classifier h to classify each element xi,t

and predict t = t for the earliest time t for which h(xi,t) = 1. A typical form
for the loss function assesses a penalty of c1(t∗ − t) if t < t∗ and a penalty of
c2(t − t∗) if t > t∗. In the telephone fraud case, the first penalty is the cost of
lost business if we prematurely declare the telephone to be stolen. The second
penalty is the cost of the fraudulent calls when we are late in declaring the
telephone to be stolen. More complex loss functions can be imagined that take
into account the cost of each individual telephone call. This argument applies to
any form of monitoring of financial transactions. It also applies to systems that
must determine when manufacturing equipment begins to malfunction.

Another kind of loss function applies to problems of event detection. Suppose
that the input sequence xi consists of infrequent events superimposed on “nor-
mal” signals. For example, in high-energy physics, these might be detections of
rare particles. In astronomy, these might be sightings of events of interest (e.g.,
gamma ray bursts). The loss function should assign a cost to missed events, to
extra events, and to events that are detected but not at the correct time.

Finally, a loss function closely related to event detection arises in the problem
of hyphenation. Consider the problem of learning to hyphenate words so that
a word processor can determine where to break words during typesetting (e.g.,
“porcupine” → “00101000”). In this case, the input sequence xi is a string of
letters, and the output sequence yi is a sequence of 0’s and 1’s, such that yi,t = 1
indicates that a hyphen can legally follow the letter xi,t. Each opportunity for
a hyphen can be viewed as an event. False positive hyphens are very expensive,
because they lead to incorrectly-hyphenated words that distract the reader. False
negative hyphens are less of a problem—provided that at least one hyphen is
correctly identified. Furthermore, hyphens near the middle of long words are
more helpful to the typesetting program than hyphens near the ends of the
words. This is a case where the loss function involves a global analysis of the
predicted sequence yi but where not all of the individual yt predictions need to
be correct.

How can these kinds of loss functions be incorporated into sequential super-
vised learning? One approach is to view the learning problem as the task of
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predicting the (conditional) joint distribution of all of the labels in the output
sequence: P (yi|xi). If this joint distribution can be accurately predicted, then
all of the various loss functions can be evaluated, and the optimal decisions can
be chosen. There are two difficulties with this: First, predicting the entire joint
distribution is typically very difficult. Second, computing the optimal decisions
given the joint distribution may also be computationally infeasible.

Some loss functions only require particular marginal probabilities. For exam-
ple, if the loss function is only concerned with the number of correct individual
predictions yi,t, then the goal of learning should be to predict the individual
marginal probabilities P (yi,t|xi) correctly. If the loss function is only concerned
with classifying the entire sequence correctly, then the goal should be to predict
argmaxyi

P (yi|xi) correctly. We will see below that there are learning algorithms
that directly optimize these quantities.

2.2 Feature Selection and Long-Distance Interactions

Any method for sequential supervised learning must employ some form of divide-
and-conquer to break the overall problem of predicting yi given xi into subprob-
lems of predicting individual output labels yi,t given some subset of information
from xi (and perhaps other predicted values yi,u). One of the central problems
of sequential supervised learning is to identify the relevant information subset
for making accurate predictions.

In standard supervised learning, this is known as the feature selection prob-
lem, and there are four primary strategies for solving it. The first strategy, known
as the wrapper approach [12], is to generate various subsets of features and eval-
uate them by running the learning algorithm and measuring the accuracy of the
resulting classifier (e.g., via cross-validation or by applying the Akaiki Informa-
tion Criterion). The feature subsets are typically generated by forward selection
(starting with single features and progressively adding one feature at a time)
or backward elimination (starting with all of the features and progressively re-
moving one feature at a time). For some learning algorithms, such as linear
regression, this can be implemented very efficiently.

The second strategy is to include all possible features in the model, but to
place a penalty on the values of parameters in the fitted model. This causes the
parameters associated with useless features to become very small (perhaps even
zero). Examples of this approach include ridge regression [10], neural network
weight elimination [24], and L1-norm support vector machines (SVMs; [5]).

The third strategy is to compute some measure of feature relevance and
remove low-scoring features. One of the simplest measures is the mutual infor-
mation between a feature and the class. This (or similar measures) forms the
basis of recursive-partioning algorithms for growing classification and regression
trees. These methods incorporate the choice of relevant features into the tree-
growing process [3, 21]. Unfortunately, this measure does not capture interactions
between features. Several methods have been developed that identify such in-
teractions including RELIEFF [14], Markov blankets [13], and feature racing
[17].



6

The fourth strategy is to first fit a simple model and then analyze the fitted
model to identify the relevant features. For example, Chow and Liu [4] describe
an efficient algorithm for fitting a tree-structured Bayesian network to a data set.
This network can then be analyzed to remove features that have low influence on
the class. Kristin Bennett (personal communication, 2001) fits L1-norm SVMs to
drug binding data to remove irrelevant features prior to fitting a more complex
SVM regression model.

In sequential supervised learning, most authors have assumed that a fixed-
sized neighborhood of features is relevant for predicting each output value. For
example, suppose we assume a neighborhood of size 3. Then we will employ
xi,t−1,xi,t, and xi,t+1 to predict yi,t. However, this has two drawbacks. First,
not all of the features in each feature vector {xi,u}t+1

u=t−1 are necessarily relevant.
Second, there may be longer-range interactions that are missed. For example,
consider the problem of predicting the pronunciation of English words from their
spelling. The only difference between the words “thought” and “though” is the
final “t”, yet this influences the pronunciation of the initial “th” (changing it
from unvoiced to voiced). An even more extreme case is the pair “photograph”
and “photography” in which the final “y” changes the pronunciation of every
vowel in the word.

Of the four feature-selection strategies discussed above, it is unlikely that
the first two are feasible for sequential supervised learning. There are so many
potential features to consider in a long sequence, that a direct search of possible
feature subsets becomes completely intractable (even with greedy algorithms).
The third and fourth approaches are more promising, but with long sequences,
they still raise the possibility of overfitting. Hence, any successful methodology
for feature selection (and for handling long distance interactions) will proba-
bly need to combine human expertise with statistical techniques rather than
applying statistical techniques alone.

2.3 Computational Efficiency

A third challenge for sequential supervised learning is to develop methods for
learning and classification that are computationally efficient. We will see below
that some of the learning algorithms that have been proposed for sequential
supervised learning are computationally expensive.

Even after learning, it may be computationally expensive to apply a learned
classifier to make minimum-cost predictions. Even relatively efficient methods
such as the Viterbi algorithm can be slow for complex models.

These computational challenges are probably easier to solve than the statis-
tical ones. As in many other computational problems, it is usually possible to
identify a series of approximate methods that are progressively more expensive
and more accurate. The cheapest methods can be applied first to generate a set
of possible candidate solutions which can then be evaluated more carefully by
the more expensive methods.
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3 Machine Learning Methods for Sequential Supervised
Learning

In this section, we will briefly describe six methods that have been applied to
solve sequential supervised learning problems: (a) sliding-window methods, (b)
recurrent sliding windows, (c) hidden Markov models, (d) maximum entropy
Markov models, (e) input-output Markov models, (f) conditional random fields,
and (g) graph transformer networks.

3.1 The Sliding Window Method

The sliding window method converts the sequential supervised learning problem
into the classical supervised learning problem. It constructs a window classifier
hw that maps an input window of width w into an individual output value y.
Specifically, let d = (w − 1)/2 be the “half-width” of the window. Then hw

predicts yi,t using the window 〈xi,t−d, xi,t−d+1, . . . , xi,t, . . . , xi,t+d−1, xi,t+d〉. In
effect, the input sequence xi is padded on each end by d “null” values and then
converted into Ni separate examples.

The window classifier hw is trained by converting each sequential training
example (xi,yi) into windows and then applying a standard supervised learning
algorithm. A new sequence x is classified by converting it to windows, applying
hw to predict each yt and then concatenating the yt’s to form the predicted
sequence y.

The obvious advantage of this sliding window method is that permits any
classical supervised learning algorithm to be applied. Sejnowski and Rosenberg
[23] applied the backpropagation neural network algorithm with a 7-letter sliding
window to the task of pronouncing English words. A similar approach (but with
a 15-letter window) was employed by Qian and Sejnowski [20] to predict protein
secondary structure from the protein’s sequence of amino acid residues. Provost
and Fawcett [8] addressed the problem of cellular telephone cloning by applying
the RL rule learning system to day-long windows from telephone calling logs.

Although the sliding window method gives adequate performance in many
applications, it does not take advantage of correlations between nearby yt val-
ues. To be more precise, the only relationships between nearby yt values that
are captured are those that are predictable from nearby xt values. If there are
correlations among the yt values that are independent of the xt values, then
these are not captured.

3.2 Recurrent Sliding Windows

One way that sliding window methods can be improved is to make them recur-
rent. In a recurrent sliding window method, the predicted value yi,t is fed as
an input to help make the prediction for yi,t+1. Specifically, with a window of
half-width d, the most recent d predictions, yi,t−d, yi,t−d+1, . . . , yi,t−1, are used
as inputs (along with the sliding window 〈xi,t−d, xi,t−d+1, . . . , xi,t, . . . , xi,t+d−1,
xi,t+d〉) to predict yi,t.
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Table 1. left-to-right and right-to-left.

Direction of % correct
letter Level of Aggregation

Method processing Word Letter

Sliding Window 12.5 69.6
Recurrent Sliding Window Left-to-Right 17.0 67.9
Recurrent Sliding Window Right-to-Left 24.4 74.2

Bakiri and Dietterich [1] applied this technique to the English pronunciation
problem using a 7-letter window and a decision-tree algorithm. Table 1 summa-
rizes the results they obtained when training on 1000 words and evaluating the
performance on a separate 1000-word test data set. The baseline sliding window
method correctly pronounces 12.5% of the words and 69.6% of the individual
letters in the words. A recurrent sliding window moving left-to-right improves
the word-level performance but worsens the pronunciations of individual letters.
However, a right-to-left sliding window improves both the word-level and letter-
level performance. Indeed, the percentage of correct word-level pronunciations
has nearly doubled!

Clearly, the recurrent method captures predictive information that was not
being captured by the simple 7-letter sliding window. But why is the right-to-left
scan superior? It appears that in English, the right-to-left scan is able to capture
long-distance effects such as those mentioned above for “thought” and “photog-
raphy”. For example, the right-most window can correctly pronounce the “y” of
“photography”. This information is then available when the system attempts to
pronounce the “a”. And this information in turn is available when the system is
pronouncing the second “o”, and so on. Because the stress patterns in English
are determined by the number of syllables to the right of the current syllable,
a right-to-left recurrent window is able to correctly predict these stresses, and
hence, choose the correct pronunciations for the vowels in each syllable.

One issue arises during training: What values should be used for the yi,t

inputs when training the window classifier? One approach would be to first train
a non-recurrent classifier, and then use its yi,t predictions as the inputs. This
process can be iterated, so that the predicted outputs from each iteration are
employed as inputs in the next iteration. Another approach is to use the correct
labels yi,t as the inputs. The advantage of using the correct labels is that training
can be performed with the standard supervised learning algorithms, since each
training example can be constructed independently. This was the choice made
by Bakiri and Dietterich.

In addition to recurrent decision trees, many other classifiers can be made
recurrent. Recurrent neural networks are of particular interest. Figure 1 shows
two of the many architectures that have been explored. Part (a) shows a network
in which the output units are fed as inputs to the hidden units at the next time
step. This is essentially identical to the recurrent decision trees employed by
Bakiri and Dietterich, except that during training, the predicted outputs yi,t−1

are used as the inputs at time t. Networks similar to this were first introduced
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(a) (b)

x x

y y

∆ ∆
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Fig. 1. Two recurrent network architectures: (a) outputs are fed back to hidden units;
(b) hidden units are fed back to hidden units. The ∆ symbol indicates a delay of one
time step.

by Jordan [11]. Part (b) shows a network in which the hidden unit activations
at time t − 1 are fed as additional inputs at time t. This allows the network
to develop a representation for the recurrent information that is separate from
the representation of the output y values. This architecture was introduced by
Elman [7].

These networks are usually trained iteratively via a procedure known as
backpropagation-through-time (BPTT) in which the network structure is “un-
rolled” for the length of the input and output sequences xi and yi [22]. Recurrent
networks have been applied to a variety of sequence-learning problems [9].

3.3 Hidden Markov Models and Related Methods

The hidden Markov Model (HMM; see Figure 2(a)) is a probabilistic model of the
way in which the xi and yi strings are generated—that is, it is a representation
of the joint distribution P (x,y). It is defined by two probability distributions:
the transition distribution P (yt|yt−1), which tells how adjacent y values are
related, and the observation distribution P (x|y), which tells how the observed
x values are related to the hidden y values. These distributions are assumed to
be stationary (i.e., the same for all times t).

In most problems, x is a vector of features (x1, . . . , xn), which makes the
observation distribution difficult to handle without further assumptions. A com-
mon assumption is that each feature is generated independently (conditioned
on y). This means that P (x|y) can be replaced by the product of n separate
distributions P (xj |y), j = 1, . . . , n.

The HMM generates xi and yi as follows. Suppose there are K possible
labels 1, . . . , K. Augment this set of labels with a start label 0 and a terminal
label K + 1. Let yi,0 = 0. Then, generate the sequence of y values according
to P (yi,t|yi,t−1) until yi,t = K + 1. At this point, set Ti := t. Finally, for each
t = 1, . . . , Ti, generate xi,t according to the observation probabilities P (xi,t|yi,t).
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(a) (b)

(c) (d)

Fig. 2. Probabilistic models related to hidden Markov models: (a) HMM, (b) maximum
entropy Markov model, (c) input-output HMM, and (d) conditional random field

In a sequential supervised learning problem, it is straightforward to determine
the transition and observation distributions. P (yi,t|yi,t−1) can be computed by
looking at all pairs of adjacent y labels (after prepending 0 at the start and
appending K + 1 to the end of each yi). Similarly, P (xj |y) can be computed by
looking at all pairs of xj and y.

The most complex computation is to predict a value y given an observed se-
quence x. This computation depends on the nature of the loss function. Because
the HMM is a representation of the joint probability distribution P (x,y), it can
be applied to compute the probability of any particular y given any particular
x: P (y|x). Hence, for an arbitrary loss function L(y,y), the optimal prediction
is

y = argmin
z

∑
y

P (y|x)L(z,y).

However, if the sequences are of length L and there are K labels, then direct
evaluation of this equation requires O(KL) probability evaluations, which is
usually impractical.

There are two notable cases where this computation can be performed in
O(K2L) time. The first is where the loss function depends on the entire sequence.
In this case, the goal is usually to find the y with the highest probability: y =
argmaxy P (y|x). This can be computed via the Viterbi algorithm, which is a
dynamic programming algorithm that computes, for each class label u and each
time step t, the probability of the most likely path starting at time 0 end ending
at time t with class u. When the algorithm reaches the end of the sequence, it
has computed the most likely path from time 0 to time Ti and its probability.

The second interesting case is where the loss function decomposes into sepa-
rate decisions for each yt. In this case, the so-called Forward-Backward algorithm
can be applied. It performs a left-to-right pass, which fills a table of αt(yt) val-
ues which represent P (y1, . . . , yt|x1, . . . ,xt), and a right-to-left pass, which fills
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a table of βt(yt) values which represent P (yt, . . . , yTi |xt+1, . . . ,xTi). Once these
two passes are complete, the quantity

γt(u) =
αt(u) · βt(u)∑
v αt(v) · βt(v)

gives the desired probability: P (yt = u|x). This probability can be applied to
choose the predicted value yt that minimizes the loss function.

Although HMMs provide an elegant and sound methodology, they suffer from
one principal drawback: The structure of the HMM is often a poor model of the
true process producing the data. Part of the problem stems from the Markov
property. Any relationship between two separated y values (e.g., y1 and y4)
must be communicated via the intervening y’s. A first-order Markov model (i.e.,
where P (yt) only depends on yt−1) cannot in general capture these kinds of
relationships.

Sliding window methods avoid this difficulty by using a window of xt values
to predict a single yt. However, the second problem with the HMM model is
that it generates each xt only from the corresponding yt. This makes it difficult
to use an input window. In theory, one could replace the output distribution
P (xt|yt) by a more complex distribution P (xt|yt−1, yt, yt+1) which would then
allow an observed value xt to influence the three y values. But it is not clear
how to represent such a complex distribution compactly.

Several directions have been explored to try to overcome the limitations of
the HMM: Maximum Entropy Markov models (MEMMs), Input-Output HMMs
(IOHMMs), and conditional random fields (CRFs); see Figure 2. All of these
are conditional models that represent P (y|x) rather than P (x,y). They do not
try to explain how the x’s are generated. Instead, they just try to predict the
y values given the x’s. This permits them to use arbitrary features of the x’s
including global features, features describing non-local interactions, and sliding
windows.

The Maximum Entropy Markov Model learns P (yt|yt−1,xt). It is trained via
a maximum entropy method that attempts to maximize the conditional likeli-
hood of the data:

∏N
i=1 P (yi|xi). The maximum entropy approach represents

P (yt|yt−1,xt) as a log-linear model:

P (yt|yt−1,x) =
1

Z(yt−1,x)
exp

(∑
α

λαfα(x, yt)

)
,

where Z(yt−1,x) is a normalizing factor to ensure that the probabilities sum to 1.
Each fα is a boolean feature that can depend on yt and on any properties of the
input sequence x. For example, in their experiments with MEMMs, McCallum,
et al. [18] employed features such as “x begins with a number”, “x ends with a
question mark”, etc. Hence, MEMMs support long-distance interactions.

The IOHMM is similar to the MEMM except that it introduces hidden state
variables st in addition to the output labels yt. Sequential interactions are mod-
eled by the st variables. To handle these hidden variables during training, the
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Expectation-Maximization (EM; [6]) algorithm is applied. Bengio and Frasconi
[2] report promising results on various artificial sequential supervised learning
and sequence classification problems.

Unfortunately, the MEMM and IOHMM models suffer from a problem known
as the label bias problem. To understand the origins of the problem, consider the
MEMM and note that∑

yt

P (yt|yt−1,x1, . . . ,xt) =
∑
yt

P (yt|yt−1,xt) · P (yt−1|x1, . . . ,xt−1)

= 1 · P (yt−1|x1, . . . ,xt−1) = P (yt−1|x1, . . . ,xt−1)

This says that the total probability mass “received” by yt−1 (based on x1, . . . ,xt−1)
must be “transmitted” to labels yt at time t regardless of the value of xt. The
only role of xt is to influence which of the labels receive more of the probability
at time t. In particular, all of the probability mass must be passed on to some
yt even if xt is completely incompatible with yt.

For example, suppose that there are two labels {1, 2} and that the input string
x =“rob” is supposed to get the label string “111” and x =“rib” is supposed to
get the label string “222”. Consider what happens with the input string x =“rib”.
After observing the x1 = r, the probability of y1 is evenly split between labels
“1” and “2”: P (y1 = 1|x1 = r) = P (y1 = 2|x1 = r) = 0.5. After observing
x2 = i, the probability remains equally split, because the 0.5 probability for
P (y1 = 1|x1 = r) must be passed on to P (y2 = 1|x1 = r,x2 = i), since the
y1 = 1 → y2 = 2 transition has probability 0. After observing x3 = b, the
probability of y3 = 1 and y3 = 2 remains equally split. So the MEMM has
completely ignored the “i”! The same problem occurs with the hidden states st

of the IOHMM.

3.4 Conditional Random Fields

Lafferty, McCallum, and Pereira [15] introduced the conditional random field
(CRF; Figure 2(d)) to try to overcome the label bias problem. In the CRF, the
relationship among adjacent pairs yt−1 and yt is modeled as an Markov Random
Field conditioned on the x inputs. In other words, the way in which the adjacent
y values influence each other is determined by the input features.

The CRF is represented by a set of potentials Mt(yt−1, yt|x) defined as

Mt(yt−1, yt|x) = exp


∑

α

λαfα(yt−1, yt,x) +
∑

β

λβgβ(yt,x)


 ,

where the fα are boolean features that encode some information about yt−1, yt,
and arbitrary information about x, and the gβ are boolean features that encode
some information about yt and x. As with MEMM’s and IOHMM’s, arbitrarily
long-distance information about x can be incorporated into these features.

As with HMM’s, CRF’s assume two special labels 0 and K + 1 to indicate
the start and end of the sequence. Let Mt(x) be the (K + 2) × (K + 2) matrix
of potentials for all possible pairs of labels for yt−1 and yt.
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The CRF computes the conditional probability P (y|x) according to

P (y|x) =
∏L

t=1 Mt(yt−1, yt|x)[∏L
t=1 Mt(x)

]
0,K+1

,

where L is one more than the length of the strings, y0 = 0, yL = K + 1, and the
denominator is the (0, K + 1) entry in the matrix product of the Mt potential
matrices. The normalizer in the denominator is needed because the potentials
Mt are unnormalized “scores”.

The training of CRFs is expensive, because it requires a global adjustment of
the λ values. This global training is what allows the CRF to overcome the label
bias problem by allowing the xt values to modulate the relationships between
adjacent yt−1 and yt values. Algorithms based on iterative scaling and gradient
descent have been developed both for optimizing P (y|x) and also for separately
optimizing P (yt|x) for loss functions that depend only on the individual labels.

Lafferty, et al. compared the performance of the HMM, MEMM, and CRF
models on a part-of-speech tagging problem. For a basic configuration, in which
the MEMM and CRF features were defined to provide the same information as
the HMM, the error rates of the three methods were HMM: 5.69%, MEMM:
6.37%, and CRF: 5.55%. This is consistent with the hypothesis that the MEMM
suffers from the label bias problem but the HMM and the CRF do not. Lafferty
et al. then experimented with providing a few simple spelling-related features
to the MEMM and CRF models, something that is impossible to incorporate
into the HMM. The resulting error rates where MEMM: 4.81% and CRF: 4.27%.
Even more dramatic results are observed if we consider only “out of vocabulary”
words (i.e., words that did not appear in any training sentence): HMM: 45.99%,
MEMM: 26.99%, CRF: 23.76%. The spelling-related features provide powerful
information for describing out of vocabulary words, whereas the HMM must rely
on default observation probabilities for these words.

3.5 Graph Transformer Networks

In a landmark paper on handwritten character recognition, LeCun, Bottou, Ben-
gio, and Haffner [16] describe a neural network methodology for solving complex
sequential supervised learning problems. The architecture that they propose is
shown in Figure 3. A graph transformer network is a neural network that trans-
forms an input graph into an output graph. For example, the neural network
in the figure transforms an input graph, consisting of the linear sequence of xt,
into an output graph, consisting of a collection of ut values. Each xt is a feature
vector attached to an edge of the graph; each ut is a pair of a class label and a
score. The Viterbi transformer analyzes the graph of ut scores and finds the path
through the graph with the lowest total score. It outputs a graph containing only
this path, which gives the predicted yt labels.

The architecture is trained globally by gradient descent. In order to do this,
each graph transformer must be differentiable with respect to any internal tun-
able parameters. LeCun et al. describe a method called discriminative forward
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Fig. 3. The GTN architecture containing two graph transformers: a neural network
and a Viterbi transformer.

training that adjusts the parameters in the neural network to reduce the score
along paths in the u graph corresponding to the correct label sequence y and to
increase the scores of the other paths. An advantage of this approach is that ar-
bitrary loss functions can be connected to the output of the Viterbi transformer,
and the network can be trained to minimize the loss on the training data.

4 Concluding Remarks

Sequential supervised learning problems arise in many applications. This paper
has attempted to describe the sequential supervised learning task, discuss the
main research issues, and review some of the leading methods for solving it.
The four central research issues are (a) how to capture and exploit sequential
correlations, (b) how to represent and incorporate complex loss functions, (c)
how to identify long-distance interactions, and (d) how to make the learning
algorithms fast. Our long-term goal should be to develop a toolkit of off-the-
shelf techniques for sequential supervised learning. Although we are still some
distance from this goal, substantial progress has already been made, and we can
look forward to more exciting work in the near future.
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