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Abstract

Market simulations, like their real-world counterparts,
are typically domains of high complexity, high variabil-
ity, and incomplete information. The performance of
autonomous agents in these markets depends both upon
the strategies of their opponents and on various market
conditions, such as supply and demand. Because the
space for possible strategies and market conditions is
very large, empirical analysis in these domains becomes
exceedingly difficult. Researchers who wish to evaluate
their agents must run many test games across multiple
opponent sets and market conditions to verify that agent
performance has actually improved. Our approach is
to improve the statistical power of market simulation
experiments by controlling their complexity, thereby
creating an environment more conducive to structured
agent testing and analysis. We develop a tool that con-
trols variability across games in one such market en-
vironment, the Trading Agent Competition for Sup-
ply Chain Management (TAC SCM), and demonstrate
how it provides an efficient, systematic method for TAC
SCM researchers to analyze agent performance.

Introduction
The Trading Agent Competition for Supply Chain Manage-
ment (TAC SCM) (Collins et al. 2005) is a market simula-
tion in which autonomous agents act as manufacturers in a
two-tier supply chain marketplace. Agents are responsible
for purchasing components from suppliers, manufacturing
finished products, and selling these products to customers
via reverse auction. TAC SCM is interesting to many re-
searchers because it provides a competitive environment in
which dynamic, agent-based supply chain methods can be
evaluated without the costs and risks associated with a real-
world supply chain.

The primary measure of agent performance is total profit
over a simulated year of activity. Availability and prices
of parts in the procurement market, and unmet demand and
prices in the customer market, are influenced by both the mix
of agents, known as the profile space (Wellman et al. 2006),
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and by random variations in supply, demand, and other mar-
ket parameters, which we refer to as the market space.

Like many market simulations, the high dimensionality of
both the profile and market space, and the time required to
complete a TAC SCM simulation (nearly an hour), cause
systematic analysis to be intractable. The complexity is
particularly burdensome during the testing phase of agent
design— whenever changes are made to the agent, a reliable
evaluation of performance requires a large number of simu-
lations to marginalize over the profile and market space.

If the complexity of these market simulations could be
reduced or controlled, researchers would better be able to
analyze the performance of their agent and the decisions of
their competitors. While the size of the profile space is ex-
tremely large, the researcher does have control in selecting
the set of competitors. The market space, however, is not
controlled by the researcher, but instead by the TAC SCM
server. Our objective is to put control over the market space
back into the researcher’s hand.

In this paper, our contributions are twofold:

1. Propose a new method for agent evaluation in TAC SCM
and other competitive simulation environments. We in-
troduce a tool that enables us to evaluate agents with this
method, and show through statistical power analysis that
this method requires fewer simulations for significance
testing than other methods currently in use.

2. Demonstrate how using this tool has led to new insights
about agent interactions that are otherwise difficult to ob-
tain, such as the effects of stochastic agents and specific
market factors on various game metrics.

Related Work
Currently, most TAC SCM researchers test their agents in a
market simulation environment provided by the Swedish In-
stitute of Computer Science (SICS).1 The server provided
by SICS for agent testing is the same server used in the
annual TAC SCM tournament. Such a framework, in con-
junction with a user-submitted agent repository, allows for
testing under conditions that are identical to the competition
environment, to the extent that the actual competition agents
are available. However, within this environment, there still

1http://www.sics.se/tac/page.php?id=1



exists a large amount of variability within the profile space
and market space.

Managing Profile Variability
The first difficulty that arises in trading agent performance
testing is choosing a set of agents to compete against, as it
is intractable to test against every possible set of opponents
available. Some approaches taken by different research
teams are to run against different variations of their own
agent (He et al. 2006), the set of dummy agents included
in the TAC SCM server (He et al. 2006), and a fixed set
of agents from the agent repository (Pardoe & Stone 2004;
Pardoe, Stone, & VanMiddlesworth 2006). The University
of Michigan team has attempted to find the set of agents
closest to game-theoretic equilibrium, which could then be
used as background opponents in agent testing (Wellman et
al. 2006).

Managing Market Variability
In addition to the complexity introduced by the profile space,
the TAC SCM server is specifically designed to generate
highly variable market conditions in order to challenge the
adaptability of the competing agents. Dimensions of vari-
ability include availability of components across component
types and suppliers, customer demand across multiple mar-
ket segments, randomly-assigned interest rates and ware-
housing charges, and other random processes, such as the
customers’ decisions when two agents offer identical prices.

A number of methods are currently in place by the TAC
SCM community to manage the variability caused by the
market space. The University of Texas and Southampton
teams have run tests with different variations of their agent
in the same simulation, causing each agent variation to see
the same set of market conditions (Pardoe, Stone, & Van-
Middlesworth 2006; He et al. 2006). While analyzing self-
play performance may be worthwhile at times, there are sit-
uations where running an agent against itself (or a slightly
modified clone) is not representative of how the agent would
perform in a real-world situation, particularly if one usually
competes against a set of opponents with less similar strate-
gies. The simulation becomes particularly misrepresenta-
tive when more than two agent variations are being tested at
once. Experimental results have shown that the set of agents
competing in self-play is typically the least strategically sta-
ble of all possible profiles (Wellman et al. 2006). Perfor-
mance tests also provide evidence that as more of the same
type of agent are added to a game, that agent’s performance
decreases (He et al. 2006). Additionally, we would like to
test over a variety of different competitor profiles, but when
multiple agent variations are being tested concurrently, this
profile space is constrained.

Instead of comparing profit values directly, another op-
tion is to use control variates to calculate demand-adjusted
profit (DAP) (Wellman et al. 2006). This metric factors out
profit variations caused by differences in demand, and al-
lows agent profit levels to be compared between any two
games. While this can greatly increase significance if a
highly correlated variate is used, we will show that there
are other factors influencing profit that are not considered

by this demand-adjusted metric. Additionally, if new strate-
gies are introduced to the profile space, the coefficients used
for this control variate may be inaccurate, and will have to
be recalculated.

The University of Minnesota team (Borghetti & Sodomka
2006) has created a controlled server which allows for re-
searchers to run the same market conditions across multiple
games. This paper expands on that work by allowing in-
dividual aspects of the market, such as supply or customer
demand, to be repeated in multiple games, and shows how
this control of market conditions benefits agent testing and
evaluation.

Reusable Trajectories
Outside of the TAC SCM domain, Kearns et al have intro-
duced reusable trajectories to reliably evaluate a restricted
class of strategies in a partially observable Markov decision
process (Kearns, Mansour, & Ng 2000).

The authors describe two methods of generating reusable
trajectories. The first method uses a strong generative model
to create a number of trajectory trees, and then evaluates
the average return of each strategy in the given trees. The
generative model required for the trajectory tree method is
not available in TAC SCM.

The second method does not require a strong generative
model. Instead, a number of random trajectories are gener-
ated, and the value of a strategy is evaluated as the average
return of all random trajectories with the same observable
history as the given strategy.

This method is difficult to apply to TAC SCM because
there is an incredibly large number of actions an agent can
choose each day. For example, agent offer prices can vary
by as little as $1, and the quantity of parts requested from
each supplier can range from 0 to many thousands. Thus, it
is highly unlikely that an agent would ever choose the same
actions as the random agent.

Approach
We now describe our method for evaluating agents in highly
variable environments, and we compare it with other meth-
ods. We also provide a method for analyzing the effects of
individual market factors on agent profit and order prices.

Testing in Paired Markets
Consider a situation where a researcher has an agent A, and
has made some modifications to this agent, resulting in agent
A′. It must now be determined whether or not these changes
have actually improved or hurt agent performance, or re-
sulted in no significant effect. In this situation, we propose
the method of paired market testing to efficiently analyze
agent performance.

First, we randomly choose N different sets of market con-
ditions. We then run N simulations with agent A and N
simulations with agent A′. The N different sets of market
conditions seen by one agent variation are the same as the
N different sets of market conditions seen by the other. We
can thus compare the profit difference between the two agent
variations for each corresponding set of market conditions



using a paired-means t-test, as performed by other TAC re-
searchers when both agent variations compete in the same
simulation (Pardoe, Stone, & VanMiddlesworth 2006). The
paired market testing method removes the possibility of the
agent variations interacting in the same game, which could
potentially distort the results. We expect to see that using our
method will result in a smaller standard deviation in profit
than other methods that also test agent variations in seperate
games.

Our method is only possible if market conditions can be
repeated across games. We have developed a framework that
allows for such market repeatability, and we describe it later.
First, we present a way in which the performance of these
different testing methods can be quantified.

Analysis of Testing Methods
A statistical power analysis (Cohen 1988) is used to de-
termine the probability of obtaining statistically significant
results from a hypothesis test that compares profit levels of
two agent variations. The relationship can be described by
four parameters:

1. Statistical power, the probability of correctly recognizing
a difference between the two agent variations.

2. Sample size N , the number of simulations for each agent.
3. Significance level α, the maximum acceptable probability

of incorrectly detecting a significant difference in profit
between the two agents (type I error).

4. Effect size ES, the minimum profit difference required
for us to consider there to be an important difference be-
tween the two agents.

If any three of these parameters are known, the fourth can
be determined. In our case, we want to estimate how many
simulations must be run in order to achieve significant re-
sults with a reasonably high probability. We use an α value
of 0.05, and follow the convention established by Cohen that
considers a “reasonably high” value for statistical power to
be 0.8 (Cohen 1988). Effect size in this case is defined as
the mean profit difference between the two groups divided
by the standard deviation.We calculate the root mean square
of the two standard deviations when independent groups
are used (Cohen 1988), and the standard deviation of the
profit differences when testing in paired markets (Gibbons,
Hedeker, & Davis 1993).

We perform our analysis on three different agent testing
methods: a baseline case, in which each agent is tested
independently and average profit levels are compared; the
demand-adjusted case, which is similar to the baseline, ex-
cept that profit levels are first adjusted based on the level
of demand in the simulation; and the paired market case,
which is similar to the baseline, except that for each simula-
tion, the market conditions faced by one agent are identical
to the market conditions faced by the other.

Analyzing Effects of Individual Market Factors
While it is clear that market variability, as a whole, has a
significant effect on agent performance, we have not yet dis-
cussed which specific market factors are responsible for per-
formance variations. Such knowledge would be particularly

valuable during the agent design process—variable factors
that cause little to no variation in the final result can be ig-
nored in future research, thus reducing dimensionality and
simplifying learning models. We may also find market fac-
tors that look promising to focus on in future research, be-
cause they are shown to be significant in the model out-
put. Once we find the important variability factors, future
research can examine exactly how they affect agent perfor-
mance.

One possible approach is to reduce or remove variability
of all market factors except for one, and examine how vary-
ing that single factor affects prices and profit levels. How-
ever, such an aggressive manipulation of the market space
runs the risk of producing results that are misrepresentative
of an actual simulation.

Instead, the method we use is a factors fixing sensitivity
analysis (Saltelli 2002). First, consider all market factors
(such as individual supplier and customer demand walks)
that could potentially affect some simulation output (such as
daily order prices or profit levels). The interactions of the
market inputs with the simulation output can be described
with a high dimensional model representation:

Y = f( ~X) =
∑

i=1 fi(Xi) +
∑

i<j fij(Xi, Xj)

+... + f(X1, X2, ..., Xn)

where the output Y , which could be order price, is a function
of the various market factors Xi, each of which can have
an effect individually or through some joint interaction with
other factors.

If each market factor is controlled by its own pseudo-
random sequence, then we can repeat the pseudo-random
sequences across simulations for all market factors but one,
and allow the remaining factor to vary across multiple simu-
lations. The “uncontrolled” factor, the one for which we do
not force a repeated pseudo-random sequence, affects ev-
ery term in the above equation which contains this factor.
We can subsequently observe how the variability of that sin-
gle market factor Xi affects the variance of the output. The
variance of the output Y , given repeated pseudo-random se-
quences for every market factor except for Xi, is represented
as V (Y |X−i).

Note that the variance in this case is likely dependent
upon the pseudo-random sequences we have chosen to re-
peat. Thus, it is important to run across many different re-
peated pseudo-random sequences, or market conditions. If
we run simulations with a number of different repeated se-
quences for factors besides Xi, we find the expected, or av-
erage, output variance E(V (Y |X−i)). If this is not statis-
tically distinguishable from the inherent variance caused by
stochastic agents alone, then the market factor Xi must not
have any significant influence on the specified output.

We can thus define the total sensitivity index for market
factor Xi to be the ratio of the expected value of the vari-
ance that Xi is contributing, either individually or through
interactions with other market factors, to the total variance
of the output.

ST
i =

E(V (Y |X−i))
V (Y )

(1)



Ideally, we would like to get total sensitivity indices for
each of the individual factors in the model. However, be-
cause each TAC SCM game takes almost an hour, running
enough games to find sensitivity values for every factor is
impractical. We settle for a method that first considers
groups of factors, such as supply and demand, and treats
them as single factors in the factors fixing method. While
there may be some interactions that are overlooked, our ab-
straction allows us to greatly reduce the complexity of the
space to show which are at least the most promising sets of
factors to decompose in the future.

Controlling the Market Space
In order to support our testing approach, we extend the
TAC SCM server to allow for repeatable pseudo-random se-
quences of any individual market factor or combination of
factors. The actual values of these factors are not explicitly
selected; instead, the research may decide which of these
factors will vary across games, by selectively locking the
starting conditions of the various pseudo-random processes.
We refer to our extension of the TAC SCM server as the
controlled server. In total, there are thirty-seven different
pseudo-random processes that can be controlled. Any pro-
cess that is uncontrolled will vary in the same way that it
does in the original server.

Experimental Results
We now demonstrate how using the controlled server can
make comparisons between agent variations more efficient.
We also show how the controlled server can be used to learn
information about the game that would otherwise be diffi-
cult to obtain, such as the effects of stochastic agents on the
game, and which specific market factors have the greatest
impact on game outputs.

The agents used for our experiments include:
DeepMaize from the University of Michigan, Maxon
from Xonar Inc, MinneTAC from the University of Min-
nesota, PhantAgent from Politechnica University of
Bucharest, RationalSCM from the Australian National
University, and TacTex from the University of Texas.
Agents were obtained from the TAC SCM agent repository.
We selected these agents because they were the most
competitive agents that were readily available to us. Of the
six agents, five were finalists in the 2006 competition, and
the sixth, RationalSCM, was a finalist in 2005. TacTex
was the winner of both the 2005 and 2006 competition.

Improved Significance Testing
We have run a number of performance tests to demonstrate
the value of using the controlled server. We use two different
versions of the TacTex agent—one that competed in 2005,
and one that competed in 2006. We would like to know how
much performance differs between these two agent varia-
tions.

To determine this, we run forty simulations with
TacTex05 and forty simulations with TacTex06. With
the original TAC SCM server, market conditions are differ-
ent in each of the 80 games. We compute the difference

Figure 1: Standard deviation comparison of different per-
formance evaluation methods. Results are shown for two
versions of TacTex, for simple profit and demand-adjusted
profit with the regular server, and for profit with the con-
trolled server.

Figure 2: Number of samples required to detect, with signif-
icance, a given profit difference between two agents. These
results are based upon a power analysis where α = .05 and
power = .80.

in average profit between TacTex05 and TacTex06, as
well as the standard deviation associated with that differ-
ence. We analyze our results using both simple profit and
demand-adjusted profit.

We then run tests with the controlled server. We ran-
domly choose forty different sets of pseudo-random se-
quences, each set defining some market conditions. We
again run forty simulations with TacTex05 and forty with
TacTex06 using paired market testing; that is, the set of
forty market conditions seen by TacTex05 are the same as
the forty seen by TacTex06.

Figure 1 shows the mean difference and the standard de-
viation of the difference for each of these methods. Clearly,
the standard deviation of the profit difference is substantially
smaller using the controlled server. These results also sup-
port the use of demand-adjusted profit, but because DAP is
only adjusted for demand, it gives a slightly higher standard
deviation than the controlled server method, which consid-
ers all market conditions.



Figure 3: Daily profit values for TacTex06 using a set of
repeated market conditions. Each line represents a differ-
ent simulation. Other agents and fixed market conditions
resulted in similarly low standard deviations in profit.

Using the standard deviation present in each method to
approximate effect size, we can estimate the number of sam-
ples required for each method to achieve statistical signifi-
cance. Figure 2 provides sample size estimates required to
detect a given profit difference between the agent variations.

The results suggest that our controlled server allows
for researchers to perform significance tests with non-
interacting agents in fewer games than has previously been
possible. This added market control can be used not just
for significance testing, but also for analyzing different in-
teractions within the game that were previously obfuscated
by market variability. We now present some additional ways
we have performed analysis using the controlled server.

Measuring Effects of Stochastic Agents
The adaptive methods of some TAC SCM agents have cre-
ated an incentive for other agents to behave stochastically.2
The presence of these stochastic agents in TAC SCM is not
disputed, but the effect they have on the simulation out-
come is currently unknown. Even when the profile space
and the market space are fixed, a single stochastic agent will
cause output variability through both its own decisions and
by affecting the decisions of other, potentially deterministic,
agents.

Our tests attempt to measure the noise caused by these
stochastic agents. To do so, we run a number of simula-
tions with a controlled server and compare the results to
those from a traditional random environment, where mar-
ket conditions vary between simulations. In the controlled
environment, the same profile space and market conditions
are repeated across N simulations, and a measurement of
standard deviation in profit is obtained. Because the mar-
ket space and profile space are repeated across simulations,
they cannot be contributing to profit variation from one sim-
ulation to the next. Thus, any observed variation in simula-

2While agents are able to adapt across simulations during the
TAC SCM competition, the agents we test with here are only able
to adapt within the individual simulations.

Figure 4: Daily profit values for TacTex06 using random
market conditions. Other agents had similar profit variabil-
ity.

tion output must be caused by random processes within the
agents themselves.

Our results are presented in Table 1. We show each
agent’s average overall profit value (µR) and standard de-
viation (σR) in random market conditions, and the expected
standard deviation (E(σC)) in controlled market conditions.
To ensure the results we obtain are not a product of the
market conditions we’ve randomly selected to repeat with
the controlled server, we run the same tests with M differ-
ent sets of market conditions, and average the results to get
an expected value for the standard deviation (in these tests,
N = 20 and M = 5). As it can be seen in the Table, there
is a large difference in the standard deviations between the
random and controlled cases.

Agent µR σR E(σC)
TacTex06 8.0878 5.558 0.990
DeepMaize 6.303 5.186 1.067
PhantAgent 6.255 6.611 0.930

Maxon 1.99 4.101 0.782
MinneTAC -1.331 3.470 0.867

RationalSCM -1.623 5.301 1.024

Table 1: Average overall profit and standard deviation val-
ues for the agents playing with random vs controlled market
conditions

See Figures 3 and 4 for a specific illustration of the data
summarized in the table. Our results indicate that, while
stochastic agents are indeed present in TAC SCM, their ran-
dom behaviors do not have a significant effect on the profit
levels of the agents. Similar results were observed when
comparing the variability of the daily order prices instead
of profit. From these results, it is clear that market condi-
tions are far more influential in determining agent profit and
order prices. This is promising because it shows that the
source of variability we cannot control (stochastic behavior
in opponent decision processes) does not have a large effect
on simulation output, while the source of variability we can



control (market conditions) does have a large effect on agent
performance and daily order price.

Measuring Effects of the Market Space

We applied the abstract factors fixing method with daily or-
der price as its output across 170 different TAC simulations.
For five different sets of market conditions, we ran ten dif-
ferent simulations, each time allowing either supply to vary,
demand to vary, or having all factors fixed. We also used
twenty random games from our tests in previous sections
and the same profile space. From these tests, we were able
to compute the total sensitivity indices for supply, demand,
and the situation where everything is fixed but the stochastic
behaviors of the agents.

The results of our analysis can be seen in Figure 5 for
a single product. The analysis shows, in general, that de-
mand plays a much larger role in determining order prices
than does supply, which supports the use of demand con-
trol variates as a performance metric (Wellman et al. 2006).
However, we can see that supply does have an influence on
order price, as well. The shape of the curve is also interest-
ing – for nearly all product indices, there are well-defined
spikes at specific intervals, which suggest that these may
be times when order prices are most affected by demand
factors. However, such a statement cannot be made with
certainty until we perform the factors fixing method with a
greater number of different market conditions. As our test-
ing continues, we expect this process to reveal a good deal
of information about the interactions market conditions have
with order prices and profit levels.

Conclusions and Future Work

We have proposed a method for more efficient agent testing
and evaluation, and introduce a tool that makes such an eval-
uation possible. We show through a statistical power analy-
sis that paired markets testing method requires fewer games
to be run for significance testing. We have also used this tool
to measure the amount of variability caused by stochastic
processes in agents, and have demonstrated how researchers
can determine which market factors most influence order
prices and profit levels.

A more in-depth sensitivity analysis is a main priority for
future work. Specifically, if we wish to continue using the
abstract method of fixed factors, it will be important to show
that the reduction in complexity is worth the loss of infor-
mation such an abstraction causes.

While our work has been focused primarily on techniques
that can be used to control the variability in the market space,
we have only performed minimal tests in using these meth-
ods to better understand the interactions of the profile space.
Just as the profile space was held fixed in our tests to sim-
plify analysis, tests of the profile space could similarly use
the controlled server to control variability from the market
space.

Figure 5: Total sensitivity indices for the daily order price of
a particular product (Pintel CPU, 5.0 GHz), given variabil-
ity of demand, supply, and stochastic agents. Results were
similar with other products.
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