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Abstract

Finding appropriate values for the parameters of an algorithm is a chal-

lenging, important, and time consuming task. While typically parameters

are tuned by hand, recent studies have shown that automatic tuning pro-

cedures can effectively handle this task and often find better parameter

settings. F-Race has been proposed specifically for this purpose and it has

proven to be very effective in a number of cases. F-Race is a racing algo-

rithm that starts by considering a number of candidate parameter settings

and eliminates inferior ones as soon as enough statistical evidence arises

against them. In this paper, we propose two modifications to the usual

way of applying F-Race that on the one hand, make it suitable for tuning

tasks with a very large number of initial candidate parameter settings and,

on the other hand, allow a significant reduction of the number of function

evaluations without any major loss in solution quality. We evaluate the

proposed modifications on a number of stochastic local search algorithms

and we show their effectiveness.

1 Introduction

The full potential of a parameterized algorithm cannot be achieved unless its
parameters are fine tuned. Often, practitioners tune the parameters using their
personal experience guided by some rules of thumb. Usually, such a procedure
is tedious and time consuming and, hence, it is not surprising that some authors
say that 90% of the total time needed for developing an algorithm is dedicated
to find the right parameter values [1]. Therefore, an effective automatic tuning
procedure is an absolute must by which the computational time and the human
intervention required for tuning can be significantly reduced. In fact, the selec-
tion of parameter values that drive heuristics is itself a scientific endeavor and
deserves more attention than it has received in the operations research litera-
ture [2]. In this context, few procedures have been proposed in the literature.
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F-Race [3, 4] is one among them and has proven to be successful and useful in
a number of tuning tasks [5, 6].

Inspired by a class of racing algorithms proposed in the machine learning
literature, F-Race evaluates a given set of parameter configurations sequentially
on a number of problem instances. As soon as statistical evidence is obtained
that a candidate configuration is worse than at least another one, the inferior
candidate is discarded and not considered for further evaluation. In all previ-
ously published works using F-Race, the initial candidate configurations were
obtained through a full factorial design. This design is primarily used to se-
lect the best parameter configuration from a relatively small set of promising
configurations that the practitioner has already established. Nevertheless, the
main difficulty of this design is that, if the practitioner is confronted with a
large number of parameters and a wide range of possible values for each param-
eter, the number of initial configurations becomes quite large. In such cases,
the adoption of the full factorial design within F-Race can become impractical
and computationally prohibitive. In order to tackle this problem, we propose
two modifications to the original F-Race approach. The first consists in gener-
ating configurations by random sampling. Notwithstanding the simplicity, the
empirical results show that this approach can be more effective—in the context
of tuning tasks—than the adoption of a full factorial design. However, if the
number of parameters is large, this methodology might need a large number of
configurations to achieve good results. We alleviate this problem taking inspi-
ration from model-based search techniques [7]. The second procedure uses a
probabilistic model defined on the set of all possible parameter configurations
and at each iteration, a small set of parameter configurations is generated ac-
cording to the model. Elite configurations selected by F-Race are then used to
update the model in order to bias the search around the high quality parameter
configurations.

The paper is organized as follows: In Section 2, we introduce the proposed
approach and we present some empirical results in Section 3. We discuss some
related work in Section 4, and conclude the paper in Section 5.

2 Sampling F-Race and Iterative F-Race for tun-

ing stochastic local search algorithms

For a formal definition of the problem of tuning SLS algorithms, we follow
Birattari et al. [3]: the problem is defined as a 6 tuple 〈Θ, I, PI , Pc, t, C〉, where
Θ is the finite set of candidate configurations, I is the possibly infinite set of
problem instances, PI is a probability measure over the set I, t is a function
associating to every instance the computation time that is allocated to it, PC

is a probability measure over the set of all possible values for the cost of the
best solution found in a run of a configuration θ ∈ Θ on an instance i, C(θ) is
the criterion that needs to be optimized with respect to θ: the solution of the
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Figure 1: Visual representation of F-Race: a set of given candidate configura-
tions are sequentially evaluated on a number of instances. As soon as sufficient
evidence is gathered that a candidate configuration is worse than at least an-
other one, the former is discarded from the race and is not further evaluated.

tuning problem consists in finding a configuration θ∗ such that

θ∗ = arg min
θ

C(θ). (1)

Typically, C(θ) is an expected value where the expectation is considered with
respect to both PI and PC . The main advantage of using expectation is that it
can be effectively and reliably estimated with Monte Carlo procedures. In this
paper, we focus on the minimization of the expected value of the solution cost
and the criterion is given as:

C(θ) = EI,C

[

c(θ, i)
]

=

∫

I

∫

C

ct(θ, i) dPC(ct|θ, i) dPI(i), (2)

where, ct(θ, i) is a random variable that represents the cost of the best solution
found by running configuration θ on instance i for t seconds. The integration is
taken in the Lebesgue sense and the integrals are estimated in a Monte Carlo
fashion on the basis of a so-called tuning set of instances. It is straightforward
to use criteria other than the expected value such as inter-quartile range of
the solution cost. In the case of decision problems, the practitioner might be
interested in minimizing the run-time of an algorithm, a task that can be handled
in a straightforward way by F-Race.

F-Race is inspired by a class of racing algorithms proposed in the machine
learning literature for tackling the model selection problem [8, 9]. In F-Race, as
in other racing algorithms, a set of given candidate configurations are sequen-
tially evaluated on a number of tuning instances. As soon as sufficient evidence
is gathered that a candidate configuration is worse than at least another one,
the former is discarded from the race and is not further evaluated. The race
terminates when either one single candidate configuration remains, or the avail-
able budget of computation time is used. The peculiarity of F-Race compared
to other racing algorithms is the adoption of the Friedman two-way analysis of
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variance by ranks [10], a nonparametric statistical test that appears particularly
suitable in the context of racing algorithms for the tuning task. The F-Race

procedure can be graphically illustrated as shown in Figure 2.
The main focus of this paper is the method by which the initial set of config-

urations is obtained in F-Race: while F-Race does not specify how Θ is defined,
in most of the studies on F-Race, the configurations are defined using a full
factorial design (FFD). In the simplest case, this is done as follows: Let M =
{M1, . . . , Md} be the set of parameters that need to be tuned whose ranges are
given by (mink, maxk), for k = 1, . . . , d, where mink and maxk are the mini-
mum and maximum values of the parameter Mk, respectively. For each element
in M, the practitioner has to choose a certain number of values; each possible
combination of these parameter values leads to one unique configuration and
the set of all possible combinations forms the initial set of configurations. If lk
values are chosen for Mk, then the number of initial configurations is

∏d
k=1

lk.

When each parameter takes l values, then
∏d

k=1
l = ld: the number of config-

urations grows exponentially with respect to the number of parameters. As a
consequence, even a reasonable number of possible values for each parameter
makes the adoption of a full factorial design impractical and computationally
prohibitive.

2.1 Sampling F-Race

A simple way to overcome the shortcomings of FFD is sampling. This means
that the elements of Θ are sampled according to a given probability measure PX

defined on the space X of parameter values. If a priori knowledge is available
on the effect of the parameters and on their interactions, this knowledge can
be used to shape the probability measure PX and therefore to suitably bias the
sampling of the initial configurations. On the other hand, if no a priori knowl-
edge on the parameter values is available, except the boundary constraints, then
each possible value in the available range for each parameter should be given
equal probability of being selected in sampling. In this case, PX is a d-variate
uniform distribution, which is factorized by a product of d univariate indepen-
dent uniform distributions. A sample from the d-variate uniform distribution is
a vector corresponding to a configuration θ such that a value xk in the vector
is sampled from the univariate independent uniform distribution parameterized
by (mink, maxk). We call this strategy random sampling design (RSD). The
F-Race procedure is then applied to the set of sampled configurations. We de-
note this procedure as RSD/F-Race. It should be noted that the performance
of the winning configuration is greatly determined by the number of sampled
configurations, Nmax.

2.2 Iterative F-Race

RSD/F-Race can identify promising configurations in the search space. However,
finding the best configuration from the promising regions is often a difficult
task. In order to address this issue, we propose iterative F-Race (I/F-Race),



IRIDIA – Technical Report Series: TR/IRIDIA/2007-011 5

a supplementary mechanism to the original F-Race approach. It is an iterative
procedure in which each iteration consists in first defining a probability measure
over the parameter space using promising configurations obtained from the pre-
vious iteration, then generating configurations that are distributed according
to the newly defined probability measure, and finally applying F-Race on the
generated configurations. This approach falls under the general framework of
model-based search [7].

The way in which the probability measure is defined at each iteration plays
a crucial role in biasing the search towards regions containing high quality con-
figurations. The main issues in the search bias are the choice of the distribution
and search intensification. For what concerns the distribution, there exist a
number of choices. Here, we adopt a d-variate normal distribution parameter-
ized by mean vector and covariance matrix. In order to intensify the search
around the promising configurations, a d-variate normal distribution is defined
on each surviving configuration from the previous iteration such that the distri-
bution is centered at the values of the corresponding configuration. Moreover,
the spread of the normal densities given by the covariance matrix is gradually
reduced at each iteration.

This paper focuses on a scenario in which the practitioner does not have
any a priori knowledge on the parameter values. Hence, we assume that the
values taken by the parameters are independent, that is, knowing a value for a
particular parameter does not give any information on the values taken by the
other parameters. Consequently, the d-variate normal distribution is factorized
by a product of d univariate independent normal densities parameterized by
µ = (µ1, . . . , µd) and σ = (σ1, . . . , σd). At each iteration, the standard deviation
vector σ of the normal densities is reduced heuristically using the idea of volume
reduction: Suppose that Ns configurations survive after a given iteration; we
denote the surviving configurations as θs = (xs

1, . . . , x
s
d), for s = 1, . . . , Ns. At a

given iteration r, let Vr be the total volume of the d-dimensional sampling region
bounded by (µsr

k ± σsr

k ), for k = 1, . . . , d; for iteration r+1, in order to intensify
the search, we reduce the volume of the sampling region by a factor equal to
the number of sample configurations allowed for each iteration, Nmax; therefore
Vr+1 = Vr/Nmax, from which after some basic mathematical transformation,
we have:

σs
k = R

sprev

k ·

(

1

Nmax

)1/d

for k = 1, . . . , d, (3)

where R
sprev

k is set to standard deviation of the normal distribution component
from which xs

k has been sampled from the previous iteration. In simple terms,
the adoption of Equation 3 allows I/F-Race to reduce the range of each param-
eter that falls around one standard deviation from the mean at a constant rate
of (1/Nmax)1/d for each iteration—the larger the value of Nmax, the higher the
rate of volume reduction. Though one could use more advanced techniques to
update the distribution as suggested by the model-based search framework [7],
we have adopted the above described heuristic way of intensifying search due to
its simplicity.
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Note that in the first iteration, a d-variate uniform distribution is used as the
probability measure, thus for the following iteration, R

sprev

k is set to the half of
range, that is, (maxk − mink)/2, where maxk and mink are parameters of the
uniform distribution component from which xs

k has been sampled, respectively.
The proposed approach adopts a strategy in which the number of configura-

tions drawn from a d-variate normal distribution defined on a surviving config-
uration is inversely proportional to the configurations’ expected solution cost.
Recall that we are faced with the minimization of the expected solution cost. To
do so, a selection probability is defined: the surviving configurations are ranked
according to their expected solution costs and the probability of selecting a
d-variate normal distribution defined on a configuration with rank z is given by:

pz =
Ns − z + 1

Ns · (Ns + 1)/2
. (4)

A configuration is obtained by first choosing a d-variate normal distribution
according to Equation 4, and then sampling from the chosen distribution. This
is repeated until Nmax configurations are sampled.

2.2.1 Implementation specific details.

In order to guarantee that I/F-Race does a specific minimum number of itera-
tions and that it has a minimum number of survivors, we have modified F-Race

slightly to stop it prematurely. At each iteration, racing is stopped if one of the
following conditions is true:

• when Nmin configuration remains;

• when a certain amount of computational budget, CBmin, is used;

• when the configurations in the race are evaluated on at least Imax in-
stances.

Though these modifications introduce 3 parameters, they are set in a reason-
able and straightforward way with respect to the total computational budget
CB when the algorithm starts: (i) CBmin is set to CB/5: this setting allows
I/F-Race to perform at least five iterations; (ii) Nmin is set to d: this setting
enables I/F-Race to search in a number of promising regions rather than just
concentrating on a single region; (iii) Imax is set to 2 · (CBmin/Nmax): if none
of the configurations is eliminated from the race then each configuration has
been evaluated on CBmin/Nmax instances; hence, twice this value seems to be
a reasonable upper bound.

The maximum number Nmax of configurations allowed for each race is kept
constant throughout the procedure. Moreover, the Ns configurations that have
survived the race are allowed to compete with the newly sampled configurations.
Therefore, Nmax − Ns configurations are sampled anew at each iteration.

The order in which the instances are given to the race is randomly shuffled
for each iteration. Since the surviving configurations of each race are allowed



IRIDIA – Technical Report Series: TR/IRIDIA/2007-011 7

to enter into the next race, their results could be reused if the configuration has
already been evaluated on a particular instance. However, since we do not want
to bias I/F-Race in the empirical study, we did not use this possibility here.

The boundary constraints are handled in an explicit way. We adopt a method
that consists in assigning the boundary value if the sampled value is outside the
boundary. The rationale behind this adoption is to allow the exploration of
values that lay at the boundary. In the case of parameters that take integer
values, the value assigned to each integer parameter in the entire procedure is
rounded off to the nearest integer.

3 Experiments

In this section, we study the proposed RSD/F-Race and I/F-Race using three
examples. Though any parameterized algorithm may be tuned, all three ex-
amples concern the tuning of stochastic local search algorithms [11]: (i) tuning
MAX −MIN ant system (MMAS) [12], a particular ant colony optimiza-
tion algorithm, for a class of instances of the traveling salesman problem

(TSP), (ii) tuning estimation-based local search, a new local search algorithm
for stochastic combinatorial optimization problems [13], for a class of instances
of the probabilistic traveling salesman problem (PTSP), and (iii) tun-
ing a simulated annealing algorithm for a class of instances of the vehicle

routing problem with stochastic demands (VRP-SD). The primary goal
of these examples is to show that RSD/F-Race and I/F-Race can significantly
reduce the computational budget required for tuning.

We compare RSD/F-Race and I/F-Race with an implementation of F-Race
that uses a full factorial design (FFD). For RSD/F-Race and I/F-Race we make
the assumption that the a priori knowledge on the parameter values is not
available. In the case of FFD, we consider two variants:

1. FFD that uses a priori knowledge; a parameter Mk is allowed to take lk
values, for k = 1, . . . , d, where lk values are chosen according to the a priori

knowledge available on the parameter values; we denote this variant by
FFDA/F-Race.

2. FFD that uses random values: a parameter Mk is allowed to take lk values,
for k = 1, . . . , d, where lk values are chosen randomly; we denote this
variant by FFDR/F-Race. Note that the number of configurations in this
variant is the same as that of FFDA/F-Race. This serves as a yardstick
to analyze the usefulness of the a priori knowledge. The rationale behind
the adoption of this yardstick is that if one just takes random values for
FFD and achieves better results then FFDA/F-Race, then we can conjecture
that the available a priori knowledge is either not accurate or simply not
useful, at least in the examples that we consider here.

The minimum number of steps allowed in F-Race for all algorithms before ap-
plying the Friedman test is set to 5 as proposed in [4].
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The maximum computational budget of FFDA/F-Race and FFDR/F-Race are
set to 10 times the number of initial configurations. This budget is also given
for RSD/F-Race and I/F-Race. In order to force RSD/F-Race to use the entire
computational budget, the number of configurations is set to one-sixth of the
computation budget. Since I/F-Race needs to perform at least five F-races
with the same budget as that of RSD/F-Race, the number of initial configura-
tions in each F-Race run by I/F-Race is set to one-fifth of the number of config-
urations given to RSD/F-Race. Moreover, in order to study the effectiveness of
RSD/F-Race and I/F-Race under strong budget constraints, the computational
budget is reduced by a factor of two, four, and eight. Note that, in these cases,
the number of configurations in RSD/F-Race and I/F-Race is set according to
the allowed budget using the same rule as described before.

Each tuning algorithm is allowed to perform 10 trials and the order in which
the instances are given to an algorithm is randomly shuffled for each trial.

All tuning algorithms were implemented and run under R version 2.41 and we
used a public domain implementation of F-Race in R which is freely available for
download [14]. MMAS2 and estimation-based local search were implemented
in C and compiled with gcc, version 3.4. Simulated annealing for VRP-SD is
implemented in C++. Experiments were carried out on AMD OpteronTM244
1.75 GHz processors with 1 MB L2-Cache and 2 GB RAM, running under the
Rocks Cluster Distribution 4.2 GNU/Linux.

In order to quantify the effectiveness of each algorithm, we study the ex-
pected solution cost of the winning configuration C(θ∗), where the expectation
is taken with respect to the set of all trials and the set of all test instances. We
report the expected solution cost of each algorithm, measured as the percentage
deviation from a reference cost, which is given by the average over C(θ∗) ob-
tained by each algorithm. The adoption of reference cost allows us to compare
the expected solution cost of different algorithms more directly.

In order to test whether the observed differences between the expected solu-
tion costs of different tuning algorithms are significant in a statistical sense, a
random permutation test is adopted. The level of significance at which we reject
the null hypothesis is 0.05; two sided p-value is computed for each comparison.

3.1 Tuning MMAS for TSP

In this study, we tune 6 parameters of MMAS:

1. relative influence of pheromone trails, α;

2. relative influence of heuristic information, β;

3. pheromone evaporation rate, ρ;

1R is a language and environment for statistical computing that is freely available under

the GNU GPL license at http://www.r-project.org/
2We used the ACOTSP package, which is a public domain software that provides an imple-

mentation of various ant colony optimization algorithms applied to the symmetric TSP. The

package available at: http://www.aco-metaheuristic.org/aco-code/
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Table 1: Computational results for tuning MMAS for TSP. The column en-
tries with the label per.dev shows the percentage deviation of each algorithms’
expected solution cost from the reference cost : +x means that the expected
solution cost of the algorithm is x% more than the reference cost and −x means
that the expected solution cost of the algorithm is x% less than the reference

cost. The column entries with the label with max.bud shows the maximum
number of evaluations given to each algorithm and the column with the label
usd.bud shows the average number of evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +13.45 7290 5954

FFDA/F-Race +11.13 7290 5233

RSD/F-Race −2.69 7290 7232

I/F-Race −3.92 7290 7181

RSD/F-Race −2.55 3645 3275

I/F-Race −3.84 3645 3564

RSD/F-Race −2.51 1822 1699

I/F-Race −3.66 1822 1793

RSD/F-Race −2.17 911 823

I/F-Race −3.23 911 894

4. parameter used in computing the minimum pheromone trail value τmin,
γ, which is given by τmax/(γ ∗ instance size);

5. number of ants, m;

6. number of neighbors used in the solution construction phase, nn.

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values.
The parameter values in FFDA/F-Race are set as follows: α ∈ {0.75, 1.00, 1.50},
β ∈ {1.00, 3.00, 5.00}, ρ ∈ {0.01, 0.02 0.03}, γ ∈ {1.00, 2.00, 3.00}, m ∈ {500,
750, 1000}, and nn ∈ {20, 30, 40}. These values are chosen reasonably close to
the values as proposed in [15]. Note that the values are chosen from the ver-
sion without the local search. The computational time allowed for evaluating a
configuration on an instance is set to 20 seconds. Instances are generated with
the DIMACS instance generator [16]. We used uniformly distributed Euclidean
instances of size 750; 1000 instances were generated for tuning; 300 other in-
stances were generated for evaluating the winning configuration. Table 1 shows
the percentage deviation of each algorithms’ expected solution cost from the
reference cost, maximum budget allowed for each algorithm and the average
number of evaluations used by each algorithm.

From the results, we can see that I/F-Race is very competitive: under equal
computational budget, the expected solution cost of I/F-Race is approximately
17% and 15% less than that of FFDR/F-Race and FFDA/F-Race, respectively
(the observed differences are significant according to the random permutation
test). On the other hand, the expected solution cost of RSD/F-Race is also very
low. However, I/F-Race reaches an expected cost that is about 1% less than
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that of RSD/F-Race. Indeed, the observed difference is significant in a statistical
sense. Regarding the budget, FFDR/F-Race and FFDA/F-Race use only 80% and
70% of the maximum budget. This early termination of the F-Race is attributed
to the adoption of FFD: since, there are rather few possible values for each pa-
rameter, the inferior configurations are identified and discarded within few steps.
However, the poor performance of FFDR/F-Race and FFDA/F-Race is not only
attributable to the fact that they do not use the budget effectively: Given only
half of the computational budget (a maximum budget of 3645), RSD/F-Race
and I/F-Race achieve expected solution costs that are still 17% and 15% lower
than FFDR/F-Race and FFDA/F-Race, respectively (the observed differences are
significant according to the random permutation test). Another important ob-
servation is that, in the case of I/F-Race and RSD/F-Race, reducing the budget
does not degrade the effectiveness to a large extent. Furthermore, in all these
reduced budget cases, I/F-Race achieves an expected solution cost which is
approximately 1% less than that of RSD/F-Race (the observed differences are
significant according to the random permutation test).

3.2 Tuning estimation-based local search for PTSP

Estimation-based local search is an iterative improvement algorithm that makes
use of the 2-exchange and node-insertion neighborhood relation, where the delta
evaluation is performed using empirical estimation techniques [13]. In order to
increase the effectiveness of this algorithm, a variance reduction technique called
importance sampling has been adopted. Three parameters that need to be tuned
in this algorithm are:

1. shift probability for 2-exchange moves, p1;

2. number of nodes allowed for shift in 2-exchange moves, w;

3. shift probability for node-insertion moves, p2.

Since this a recently developed algorithm, a priori knowledge is not available
on the parameter values. Thus, in FFDA/F-Race, the values are assigned by
discretization: for each parameter, the range is discretized as follows: p1 =
p2 ∈ {0.16, 0.33, 0.50, 0.66, 0.83}, and w = {8, 17, 25, 33, 42}. Estimation-
based local search is allowed to run until it reaches a local optimum. Instances
are generated as described in [13]: we used clustered Euclidean instances of
size 1000; 800 instances were generated for tuning; 800 more instances were
generated for evaluating the winning configuration.

The computational results show that the difference between the expected
cost of the solutions obtained by different algorithms exhibits a trend similar to
the one observed in the TSP experiments. However, the percentage deviations
from the reference cost are relatively small: under equal computational bud-
get, the expected solution cost of I/F-Race and RSD/F-Race are approximately
2% less than that of FFDR/F-Race and FFDA/F-Race, respectively. Note that
this difference is significant according to a random permutation test. Though
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Table 2: Computational results for tuning estimation-based local search for
PTSP. The column entries with the label per.dev shows the percentage devi-
ation of each algorithms’ expected solution cost from the reference cost : +x
means that the expected solution cost of the algorithm is x% more than the
reference cost and −x means that the expected solution cost of the algorithm is
x% less than the reference cost. The column entries with the label with max.bud

shows the maximum number of evaluations given to each algorithm and the col-
umn with the label usd.bud shows the average number of evaluations used by
each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +1.45 1250 1196

FFDA/F-Race +1.52 1250 1247

RSD/F-Race −0.62 1250 1140

I/F-Race −0.53 1250 1232

RSD/F-Race −0.17 625 615

I/F-Race −0.52 625 618

RSD/F-Race −0.06 312 307

I/F-Race −0.58 312 278

RSD/F-Race −0.37 156 154

I/F-Race −0.11 156 150

RSD/F-Race obtains an expected solution cost which is 0.01% less than that of
I/F-Race, the random permutation test cannot reject the null hypothesis. The
overall low percentage deviation between algorithms is attributed to the fact
that the estimation based local search is not extremely sensitive to the param-
eter values: there are only 3 parameters and interactions among them are quite
low. As a consequence, the tuning task becomes relatively easy (as in the case
of the previous task of tuning of MMAS). This can be easily seen with the
used budget of FFDR/F-Race: if the task of finding a good configurations were
difficult, the race would have terminated early. Yet, this is not the case and
almost the entire computational budget has been used.

The numerical results on the budget constraints show that both RSD/F-Race

and I/F-Race are indeed effective. Given only one-eighth of the computational
budget (a maximum budget of 156), RSD/F-Race and I/F-Race achieve expected
solution costs which are approximately 1.4% less than that of FFDR/F-Race and
FFDA/F-Race. This observed difference is significant according to the random
permutation test. However, in this case, the random permutation test cannot
reject the null hypothesis that RSD/F-Race and I/F-Race achieve expected solu-
tion costs that are equivalent. On the other hand, given one-half and one-fourth
of the computational budget, I/F-Race achieves expected solution cost that is
approximately 0.4% less that of RSD/F-Race (observed differences are significant
according to the random permutation test).
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Table 3: Computational results for tuning a simulated annealing algorithm for
VRP-SD. The column entries with the label per.dev shows the percentage
deviation of each algorithms’ expected solution cost from the reference cost :
+x means that the expected solution cost of the algorithm is x% more than the
reference cost and −x means that the expected solution cost of the algorithm is
x% less than the reference cost. The column entries with the label with max.bud

shows the maximum number of evaluations given to each algorithm and the
column with the label usd.bud shows the average number of evaluations used
by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +0.02 810 775

FFDA/F-Race +0.11 810 807

RSD/F-Race −0.05 810 804

I/F-Race −0.03 810 797

RSD/F-Race −0.03 405 399

I/F-Race −0.05 405 399

RSD/F-Race +0.02 202 200

I/F-Race −0.01 202 200

RSD/F-Race +0.02 101 101

I/F-Race +0.02 101 100

3.3 Tuning a simulated annealing algorithm for VRP-SD

In this study, 4 parameters of a simulated annealing algorithm have been tuned:

1. cooling rate, α;

2. a parameter used to compute the number of iterations after which the
process of reheating can be applied, q;

3. another parameter used to compute the number of iterations after which
the process of reheating can be applied, r;

4. parameter used in computing the starting temperature value, f ;

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values
and in the former, the values are chosen close to the values adopted in [6]: α
∈ {0.25, 0.50, 0.75}, q ∈ {1, 5, 10}, r ∈ {20, 30, 40}, f ∈ {0.01, 0.03, 0.05}.
In all algorithms, the computational time allowed for evaluating a configuration
on an instance is set to 10 seconds. Instances are generated as described in [6];
400 instances were generated for tuning; 200 more instances were generated for
evaluating the winning configuration.

The computational results show that, similar to the previous example, the
tuning task is rather easy. Concerning the expected solution cost, the random-
ized permutation test cannot reject the null hypothesis that the different algo-
rithms produce equivalent results. However, it should be noted that the main
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advantage of RSD/F-Race and I/F-Race is their effectiveness under strong bud-
get constraints: RSD/F-Race and I/F-Race, given only one-eighth of the com-
putational budget, achieve an expected solution costs which are not significantly
different from FFDR/F-Race and FFDA/F-Race.

4 Related works

The problem of tuning SLS algorithm is essentially a mixed variable stochastic
optimization problem. Even though a number of algorithms exist for mixed
variable stochastic optimization, it is quite difficult to adopt them for tuning.
The primary obstacle is that, since these algorithms have parameters, tuning
them is indeed paradoxical. Few procedures have been developed specifically
for tuning algorithms: Kohavi and John [17] proposed an algorithm that makes
use of best-first search and cross-validation for automatic parameter selection.
Boyan and Moore [18] introduced a tuning algorithm based on machine learn-
ing techniques. The main emphasis of these two works is given only to the
parameter value selection; there is no empirical analysis of these algorithms
when applied to large number of parameters that have wide range of possible
values. Audet and Orban [19] proposed a pattern search technique called mesh
adaptive direct search that uses surrogate models for algorithmic tuning. In this
approach, a conceptual mesh is constructed around a solution and the search for
better solutions is carried around this mesh. The surrogates are used to reduce
the computation time by providing an approximation to the original response
surface. Nevertheless, this approach has certain number of parameters and it
has never been used for tuning SLS algorithms. Adenso-Diaz and Laguna [1]
designed an algorithm CALIBRA specifically for fine tuning SLS algorithms.
It uses Taguchi’s fractional factorial experimental designs coupled with local
search. In this work, the authors explicitly mention that tuning wide range
of possible values for parameters is feasible with their algorithm. However, a
major limitation of this algorithm is that one cannot use it for tuning SLS al-
gorithms with more than five parameters. Recently, Hutter et al. [20] proposed
an iterated local search algorithm for parameter tuning called paramILS. This
algorithm is shown to be very effective and importantly, it can be used to tune
algorithms with large number of parameters.

5 Conclusions and future work

We proposed two supplementary procedures for F-Race that are based on ran-
dom sampling, RSD/F-Race, and model-based search techniques, I/F-Race.
While the adoption of full factorial design in the F-Race framework is impracti-
cal and computationally prohibitive when used to identify the best from a large
number of parameter configurations, RSD/F-Race and I/F-Race are useful in
such cases. Since the proposed approaches are quite effective under strong bud-
get constraints, they can reduce significantly the computational time required
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for tuning. However, based on the case studies, we conjecture that the expected
solution cost obtained by RSD/F-Race and I/F-Race is mainly attributed to the
difficulty of the tuning task.

Concerning the future research, we will extend our approach to include
catogerical variables. Regarding I/F-Race, we will also investigate the adop-
tion of distributions like Cauchy and some advanced techniques for updating
the distribution. Finally, from the case studies that were made in the paper, we
speculate that the difficulty of the tuning task depends on a number of factors
such as the sensitivity of the parameters that need to be tuned and problem
instances that need to be tackled. In this context, search space analysis on the
parameter values is an area to investigate further.
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[13] Birattari, M., Balaprakash, P., Stützle, T., Dorigo, M.: Estimation-based
local search for stochastic combinatorial optimization. Technical Report
TR/IRIDIA/2007-003, IRIDIA, Université Libre de Bruxelles, Brussels,
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[20] Hutter, F., Hoos, H., Stützle, T.: Automatic algorithm configuration based
on local search. In: AAAI-07 (to appear). (2007)


