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Abstract. Algorithm selection, algorithm portfolios, and randondzeestarts,
can profit from a probabilistic model of algorithm run-tinte be estimated from
data gathered by solving a set of experiments. Censoredlisgnoffers a prin-
cipled way of reducing this initial training time. We studyettrade-off between
training time and model precision by varying the censorimgg¢hold, and ana-
lyzing the consequent impact on the performance of an optiessart strategy,
based on an estimated model of runtime distribution.

We present experiments with a SAT solver on a graph-coldsergchmark. Due
to the “heavy-tailed” runtime distribution, a modest ceirsg can already reduce
training time by a few orders of magnitudes. The nature objbtémization pro-
cess underlying the restart strategy renders its perfazenaarprisingly robust,
also to more aggressive censoring.

1 Introduction

The interest in algorithm performance modeling is twoféld.accurate model can pro-
vide useful insights for analyzing algorithm behavior [itJgan as well be used to au-
tomate selection [2], or, more generally, allocation of poational resources among
different algorithms. In the context of computational penfiance analysis of solvers
for constraint satisfaction, an interest has been recgntiywing around the existence,
in some structured domains, of a second phase transitidheinnder-constrained re-
gion [3], where, for some problems, the run-time distribntexhibits “heavy tails”, i.e.,
is Pareto for both very large and very small values of time [@}his case, the prob-
ability mass of the algorithm’s runtime distribution carfieetively be shifted towards
lower time values, by simply running multiple copies of tlzene algorithm in parallel
(algorithmportfolios [5]), or by repeatedly restarting a single algorithm, eactetwith
a different initialization or random seed [6], as this altote avoid the “unlucky” long
runs, and profit from the very short ones.

Both strategies can be rendered more efficient if a modelmtirae distribution
(RTD) is available for the algorithm/problem combinatidrhand? In the context of

* In the following, for the sake of readability, we will ofteefer to the RTD of a problem in-
stance, meaning the RTD of different runs of the randomiZgdrghm of interest on that



algorithm portfolios, models can be used to allocate resmsito different competing
algorithms, or to evaluate the optimal number of componfamta homogeneous port-
folio [7]. In the case of restarts, it has been shown that ttemedge of the RTD allows
to determine an optimal strategy, based on a constant ¢6joff

What makes these approaches problematic is the huge caioputene required,
not for training the model, but for gathering the trainindad&self, as one might need
to solve a large number of problems, in order to obtain abtdisample of run-time
values. One way of countering this is offereddmnsored sampling, a technique com-
monly used for lifetime distribution estimation (see, g[8]), which allows to bound
the duration of each training experiment, and still explo& information conveyed by
runs that reach the censoring threshold.

This obviously has a cost, to be paid in terms of the precisfahe obtained model.
This cost can in principle be measured according to trathlistatistical goodness-of-
fit tests, but if the sole purpose of the model is to set up dqootor a restart strategy,
in order to gain on future performance, then the only guanfipractical interest is the
loss in performance induced by the censored sampling.

The main objective of this work is to analyze this trade-afveeen training time
and efficiency, in the case of optimal restarts. To this ainpvesent experiments with
a randomized version [4] of a well known complete SAT soh&r pn a benchmark
of graph coloring problems from SATLIB [10], on which heatajled behavior can be
observed.

In the following, after some additional references (Segt.c2nsored sampling
(Sect. 3) and restart strategies (Sect. 4) are briefly intred, followed by a description
(Sect. 5) and discussion (Sect. 6) of experimental results.

2 Previouswork

As an extensive review of the literature on modeling runetilistribution is beyond the
scope of this paper, we will limit to a few examples. The betwasf complete SAT
solvers on solvable and unsolvable instances near phasitiva have been shown to
be approximable by Weibull and lognormal distributiongpexgively [11]. Heavy-tailed
behavior is observed for backtracking search on structuneiérconstrained problems
in [3,4], but also in many other problem domains, such as agermetworks [12].
Interesting hypothesis on the mechanism behind it are exglo [1]. The performance
of local search SAT solvers is analyzed in [13,14], and medi&l [15] using a mixture
of exponential distributions.

The literature on algorithm portfolios [5,7], anytime atgboms [16,17], and restart
strategies [18,6,19,20,12] provides many examples of pipdication of performance
modeling to resource allocation. In [21] we presented a dyaapproach, in which a
conditional model of performance is updated and progrelsaxploited during train-
ing. See also [22] for more references.

instance; and the RTD of a problem set, meaning the RTD oémifft runs of the random-
ized algorithm of interest, each run on a different instanicg&form randomly picked without
replacement from the set.



3 Censored sampling

Consider a “Las-Vegas” algorithm [6] runnirfg times on instances of a family of
problems, on which we believe that the algorithm will digpéasimilar behavior. Be
T = {t1,t2, ..., 1} the set of outcomes of the experiments. In order to modelrtbie-p
ability density function (pdf) of solution time we can choose a parametric function
g(t|9), with paramete#, and then express the likelihoodBfgivend, as

k k
£(710) = [T e(ilo) = [T g(t:l9) (1)
i=1 i=1
We can then search the valuegahat maximizes (1), or, in a Bayesian approach, in-
troduce a priop(f) on the parameter, and maximize the poster{6t7 ) « £(7 |0)p(0).
Typel censored sampling (see, e.g., [8]) consists in stopping experimental runis tha
exceed a cutoff time., and replacing the corresponding multiplicative term ipwith

£.(td0) = [ a(rloyar = 1= Gt @
whereG(t]0) = fotg(7'|9)d7' is the conditional cumulative distribution function
(CDF) corresponding tg. This allows to limit the computational cost of running the
experiments, while exploiting the information carried bysuccessful runs. Ifiype I
censored sampling, & experiments are run in parallel, and stopped after a desired
berwu of uncensored samples is obtained. In this way the fracti@®osored samples
¢ = (k —u)/k is set in advance, while the censoring threshldor the remaining
k — u runs is determined by the outcome of the experiments, asifiagtime of the
u-th fastest experiment.

4 Optimal restart strategies

A restart strategy consists in executing a sequence of fuasandomized algorithm,
in order to solve a same problem instance, stopping each after a timeT (k) if no
solution is found, and restarting the algorithm with a diffiet random seed; it can be
operationally defined by a functidh : N — RT producing the sequence of thresholds
T (k) employed. Luby et. al [6] proved that the optimal restaitstgy isuniform, i. e.,
one in which a constarif' (k) = T is used to bound each run. They show that, in
this case, the expected value of the total run-timei. e., the sum of runtimes of the
successful run, and all previous unsuccessful runs, candieated as

T — [} F(r)dr
F(T)
whereF (t) is the cumulative distribution function (CDF) of the rumagt for an un-
bounded run of the algorithm, i. e., a function quantifyihg probability that the prob-

lem is solved before time If such distribution is known, an optimal cutoff tinft& can
be evaluated minimizing (3). Otherwise, they suggest aarsal non-uniform restart

E(tr) = 3



strategyU, with cutoff sequencé1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,...},° proving
that its computational performancg is, with high probability, within a logarithmic
factor worse than thexpected total run-timeE (¢ ) of the optimal strategy.

5 Experiments

A model F' of the RTD on a set of problems can be obtained from censorédian
censored runtime samples; the performance of the corrdgppaub-optimal uniform
strategy?’, evaluated minimizing (3) with¥" in place of the reaF’, will depend on
the precision of the estimated, which will in turn depend on the number of samples
used to estimate it, and the amount of censoring. If we fix timalver of samples, and
vary the fraction of censored samples, we expect to obsetkada-off between the
time spent running the training experiments, from whoseamesf' is estimated, and
the performance of the correspondifiglt is precisely this trade-off that we intend to
analyze heré.

In order to do so, we set up a simple learning scheme. Given af ggoblems,
and a randomized solver we first randomly pick a subset af problems. For each
problem, we start runs of the algorithns, differing only for the random seed, for a
total of & = nr parallel runs. We control the duration of these “trainingperiments
with Type Il censored sampling (see Sect 3), fixing a cengdriactionc € [0,1) in
advance: as the fir${1 — ¢)k] runs terminate, we stop also the remainjrg| runs.
The gathered runtime samples are then used to train a nhodihe RTD, from which
a uniform strategyl’ is evaluated, by minimizing (3) numerically. The perforroamf
T is then tested on the remaining problems of the set. Varyjige can measure the
corresponding variations in training time, and in the perfance ofl’ on the test set.

The experiments were conducted using Satz-Rand [4], aovess$iSatz [9] in which
random noise influences the choice of the branching vari@ae is a modified ver-
sion of the complete DPLL procedure, in which the choice ef variable on which
to branch next follows an heuristic ordering, based on finst second level unit prop-
agation. Satz-Rand differs in that, after the list is forptbe next variable to branch
on is randomly picked among the tdpfraction of the list. We present results with
the heuristic starting from the most constrained varigldesuggested also in [9], and
noise parameter set 4.

The benchmark used (obtained from SATLIB [10]) consistsifiétent sets of SAT-
encoded “morphed” graph-coloring problems [2B)({ vertices,400 edges) colors,
resulting in500 variables and100 clauses when encoded as a CNF3 SAT problem):
each graph is composed of the set of common edges among tdomagraphs, plus

® The sequence is composed of power2pfvhen2’~1 is used twice2’ is the next. More
preciselyk = 1,2, ..., T(k) =2t if k=27 — 1, T(k) :=T(k -2 +1)if 207 <
k<2l -1

5 Note that a given problem set might contain instances whitthv sensibly different RTDs:
in this case, the obtained model would capture the over&idlier of the algorithm on the
set, and the corresponding restart strategy would be sufapior each single instance. We
ignore this issue here, as we are only interested in conparitong differenf”, and not with
the realF.



fractionsp € [0, 1] and1 — p of the remaining edges for each graph, chosen as to form
regular ring lattices. Each of tieeproblem sets contairi€)0 instances, generated with

a logarithmic grid of9 different values for the parametgy from 2° to 28, to which

we henceforth refer with labely ..., 8. This benchmark is particularly interesting, as
the parametep controls the amount of structure in the problem, and the ywailed
behavior of Satz-Rand varies accordingly on the differetg.s

For each problem set, we repeated the simple scheme debsatilmye, running
r = 20 copies of Satz-Rand on eachrot= 50 randomly picked training instances, and
evaluatingl’ on the remaining0. The process was repeated fdrdifferent levels of
the censored fractioa during training, frome = 0 to ¢ = 0.9. For practical reasons,
experiments with: = 0 were actually run with a very high censoring thresAdl®):
only a few runs of Satz-Rand exceeded this value.

As for the model, we tried different alternatives, incluglieibull& lognormal, and
the novel double and right-hand Pareto lognormal, intredua [24] to model heavy
tailed distributions. The double Pareto-lognormal disttion (DPLN) describes the
distribution of the product of two independent random Jalga, one with lognormal
distribution, one with Double Pareto distribution, whos# pan be written agt°—!
fort < 1 (left tail), andyt—>~! fort > 1, v = a3/(a + ). The advantage of DPLN
is that it can adapt to both lognormal and heavy tailed distions. We also tested
various mixtures of two distributions, with pdf of the forfiit|0) = wf (¢|61) + (1 —

w) f2(t]02), with parameteé = (w, 61, 62), w € [0, 1].

The models were trained by maximum likelihood, as describ&gct. 3. To com-
pare with a non-parametric approach, we repeated the expets using the Kaplan-
Meier estimator [25], which can also account for censoredpdas. Among the para-
metric models, we obtained the best results with a mixtuctuding one lognormal
and either one double-Pareto lognormal, or only the heaNget component, the Dou-
ble Pareto distribution described above.

We present the results for this latter mixture, and for th@lKa-Meier estimator.
All quantities reported are upp€6% confidence bounds obtained from resultsl 6f
runs. In Figg. 1, 2, right column, we present the tradeofiieen training cost, labeled
t rai n, and restart performances on the test set, for the two mossigectively la-
beledl ogndp andkne, at different values of the censoring fractiaiWe also plot the
cost of the universal strategy, label&d on the test set (the performance on the train-
ing set is similar, as both are composedofandomly picked problem instances). For
the test time, we can appreciate some degradation of peafurenonly for very heavy
censoring ¢ = 0.8, 0.9), for which the advantage in training time is negligible aay.
Note that this does not mean that the accuracy of the modelaacted: to highlight
this apparent contradiction, we also plotted, in left cafyitihe value of a? statistic

" As we are also conducting experiments with parallel pdadobf heterogeneous algorithms,
and thus we need a common measure of time, we modified thenakigode of Satz-Rand
adding a counter, that is incremented at every loop in the.cdtle resulting time measure
was consistent with the number of backtracks. All runtimegsorted are in millions of loop
cycles.

81t is interesting to see that the Weibull distribution, reted in [11] as having a good fit on
satisfiable problems near the sat-unsat phase transiigrinstead a very poor fit in this case.



of the parametric modelogndp.® While for the uncensored estimate this is near or
below thed5% acceptance threshold (indicated by the white bars in thig, phe value
of the x? test degrades rapidly even for low values:of

In Figg. 3to 6 we display, on the top row, the average of theltieg censoring
threshold,, for different censoring fractions This, along with the training cost, allows
to appreciate the tail behavior of Satz-Rand on the diffiggerblem set. On problem set
1, most runtimes have a similar value, and the remaining fewaery larget. is greatly
reduced by a modest= 0.1, but further censoring does not decrease it much: the same
obviously applies to training cost. On problem 8etuntime values are spread along
two orders of magnitude. Increasingnas a more gradual impact 65 and on training
cost. This situation varies gradually for intermediateljpeon sets. Probler is less
interesting, as all runs of Satz-Rand end in a similar tinmg, laeavy tailed behavior
is not observed. The resulting plots are similar to problerwithout the heavy tail
effects. In the second row, we display the CBFestimated bydpl ogn, on a single
run, for different censoring levelg & 0.1, ¢ = 0.5, ¢ = 0.9), compared with a better
approximation of the real’ of the set, the empirical Kaplan-Meier CDF evaluated on
200 uncensored runs for each problem (labeledl ). To further investigate the tail
behavior of Satz-Rand RTD, in the third row we display thellog plot of its survival
function1 — F(x), where a Pareto taib{ t~) is displayed as a straight line. In both
cases, one can visually appreciate the degradation of tlielmiaduced by censored
sampling, especially for values ofarger thart., which are not seen by the model. So
why the performance of the restart strategy is not affectdd?fourth row of Figg. 3
to 6 seems to suggest an answer. It plots the expected cosft &uniform restart
strategy, against the restart threshldevaluated usindpl ogn at different levels of
censoring. The comparison temeal is theactual performance of a restart strategy
T, evaluatedh-posteriori on the same run: averaging this on multiple runs, one would
obtain an estimate of the re&l(¢r) for the problem set. We can see that the estimated
and real cost differ greatly, but have a similar minimumstailows? to be efficient
also with a poot, obtained from a heavily censored runtime sample.

Fig. 7 plots the CDF' obtained with the non-parametric Kaplan-Meier estimator.
This simple model proved similar in performancedpl ogn, also in the few cases
where this latter failed to converge (see again Figg. 1, 2).

For what concerns the universal restart stratégits performance on the test set is
consistently worse. Its advantage on the training set wedigtable, as in our simple
scheme0 copies of Satz-Rand are run in parallel on each traininglpropand obvi-
ously decreases with on sets7, 8, training cost is actually lower far = 0.8,0.9. We
expect to further reduce training cost, again with a low iotfwan test performance, by
simply running less parallel copies.

® Measured as in [11], dividing thencensored data intom bins (on a logarithmic scale), and
comparing the number of samplesin each bin to the one; predicted by the fitted distri-
bution, according to the formulg® = 3" [(0; — e;)/e:]*. A high value indicates a poor fit:
the model passes the test with confidencié x? is lower than thel — o quantile of they?
distribution withm — k degrees of freedont; being the number of parameters in the model.



6 Discussion

There is only an apparent contradiction between the rapigadiation of the model,
following the increase in censored data, and the stabilitthe performance of the
estimated optimal restart strategy. Traditional staiidtiests are in fact intended to
measure the fit of a pdf along the whole spectrum of possibleesaThe formula for
the restart performance (3) is instead based onctimaulative distribution function,
which is the integral of the pdf; and on its further integovatup toT", which is usually
small. This means that the actual shape of a large portidreafistribution is irrelevant,
as long as its mass does not vary; while for values lowerihahe integration involved
in the CDF acts as a “denoising” filter, making (3) more rolasbss of fit of the model.

From a more practical point of view, our experiments show ¢évan a sub-optimal
restart strategy can have a relevant advantage over thersaly This advantage can
be obtained for an additional training effort, which can beagly reduced by censored
sampling. On a larger test set, this initial training effaduld pay off quite rapidly.
Note also that there is no reason to stop the training proessis is relatively cheap
compared to problem solving, and each restart can also espieted as a censored
sample.

We expect analogous results with any heavy-tailed randedraigorithm. This mo-
tivates us to further investigate methods to merge traiamgjexploitation of models of
algorithm performance, as in [22]. Current research is diatea companion analysis
of the effect of censoring in the case of algorithm portfsliand the combination of
universal and estimated optimal restart strategies, tter lhased on censored and un-
censored samples gathered on a sequence of problems, itier faniting cost in the
initial phase, when the model is still unreliable, itife-long learning fashion.
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Fig. 1. Problemsl to 4. Left: the trade-off between training costr(ai n) and test performances
of the parametric mixture lognormal-double Pardtogndp), and the non-parametric Kaplan-
Meier estimator Krre), for different censoring fractions. U labels the performancg; of the
universal strategy on the test set. Right;,, of the x? statistics fol ogndp (black), compared
tolog,, of the acceptance threshold (white).



Probl. 5 training and test cost
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Problem 1, censoring thresh. t Problem 2, censoring thresh. t.
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Fig. 3. Problemsl (left column) and2 (right column). From top to bottom: average censoring
thresholdt. for different fractions of censoring; CDF; tail of the swai function; estimated
expected cost of restart for different censoring levels:(0.1, ¢ = 0.5, ¢ = 0.9), compared with
real cost, evaluated posteriori. Last three rows refer to a single run. Note the similar manim
last row.
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Fig.4. Problems3 (left column) and4 (right column).From top to bottom: average censoring
thresholdt. for different fractions of censoring; CDF; tail of the swai function; estimated
expected cost of restart for different censoring levels:(0.1, ¢ = 0.5, ¢ = 0.9), compared with
real cost, evaluated posteriori. Last three rows refer to a single run. Note the similar manim
last row.
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Fig.5. Problems5 (left column) and6 (right column). From top to bottom: average censoring
thresholdt. for different fractions of censoring; CDF; tail of the swai function; estimated
expected cost of restart for different censoring levels:(0.1, ¢ = 0.5, ¢ = 0.9), compared with
real cost, evaluated posteriori. Last three rows refer to a single run. Note the similar manim
last row.
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Fig. 6. Problems7 (left column) andg (right column). From top to bottom: average censoring
thresholdt. for different fractions of censoring; CDF; tail of the swai function; estimated
expected cost of restart for different censoring levels:(0.1, ¢ = 0.5, ¢ = 0.9), compared with
real cost, evaluated posteriori. Last three rows refer to a single run. Note the similar manim
last row.
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Fig. 7. Problemsl to 8, Kaplan-Meier estimator.



