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Abstract. Algorithm selection, algorithm portfolios, and randomized restarts,
can profit from a probabilistic model of algorithm run-time,to be estimated from
data gathered by solving a set of experiments. Censored sampling offers a prin-
cipled way of reducing this initial training time. We study the trade-off between
training time and model precision by varying the censoring threshold, and ana-
lyzing the consequent impact on the performance of an optimal restart strategy,
based on an estimated model of runtime distribution.
We present experiments with a SAT solver on a graph-coloringbenchmark. Due
to the “heavy-tailed” runtime distribution, a modest censoring can already reduce
training time by a few orders of magnitudes. The nature of theoptimization pro-
cess underlying the restart strategy renders its performance surprisingly robust,
also to more aggressive censoring.

1 Introduction

The interest in algorithm performance modeling is twofold.An accurate model can pro-
vide useful insights for analyzing algorithm behavior [1];it can as well be used to au-
tomate selection [2], or, more generally, allocation of computational resources among
different algorithms. In the context of computational performance analysis of solvers
for constraint satisfaction, an interest has been recentlygrowing around the existence,
in some structured domains, of a second phase transition, inthe under-constrained re-
gion [3], where, for some problems, the run-time distribution exhibits “heavy tails”, i.e.,
is Pareto for both very large and very small values of time [4]. In this case, the prob-
ability mass of the algorithm’s runtime distribution can effectively be shifted towards
lower time values, by simply running multiple copies of the same algorithm in parallel
(algorithmportfolios [5]), or by repeatedly restarting a single algorithm, each time with
a different initialization or random seed [6], as this allows to avoid the “unlucky” long
runs, and profit from the very short ones.

Both strategies can be rendered more efficient if a model of run-time distribution
(RTD) is available for the algorithm/problem combination at hand.4 In the context of

4 In the following, for the sake of readability, we will often refer to the RTD of a problem in-
stance, meaning the RTD of different runs of the randomized algorithm of interest on that



algorithm portfolios, models can be used to allocate resources to different competing
algorithms, or to evaluate the optimal number of componentsfor a homogeneous port-
folio [7]. In the case of restarts, it has been shown that the knowledge of the RTD allows
to determine an optimal strategy, based on a constant cutoff[6].

What makes these approaches problematic is the huge computation time required,
not for training the model, but for gathering the training data itself, as one might need
to solve a large number of problems, in order to obtain a reliable sample of run-time
values. One way of countering this is offered bycensored sampling, a technique com-
monly used for lifetime distribution estimation (see, e.g., [8]), which allows to bound
the duration of each training experiment, and still exploitthe information conveyed by
runs that reach the censoring threshold.

This obviously has a cost, to be paid in terms of the precisionof the obtained model.
This cost can in principle be measured according to traditional statistical goodness-of-
fit tests, but if the sole purpose of the model is to set up a portfolio, or a restart strategy,
in order to gain on future performance, then the only quantity of practical interest is the
loss in performance induced by the censored sampling.

The main objective of this work is to analyze this trade-off between training time
and efficiency, in the case of optimal restarts. To this aim wepresent experiments with
a randomized version [4] of a well known complete SAT solver [9], on a benchmark
of graph coloring problems from SATLIB [10], on which heavy-tailed behavior can be
observed.

In the following, after some additional references (Sect. 2), censored sampling
(Sect. 3) and restart strategies (Sect. 4) are briefly introduced, followed by a description
(Sect. 5) and discussion (Sect. 6) of experimental results.

2 Previous work

As an extensive review of the literature on modeling run-time distribution is beyond the
scope of this paper, we will limit to a few examples. The behavior of complete SAT
solvers on solvable and unsolvable instances near phase transition have been shown to
be approximable by Weibull and lognormal distributions respectively [11]. Heavy-tailed
behavior is observed for backtracking search on structuredunderconstrained problems
in [3,4], but also in many other problem domains, such as computer networks [12].
Interesting hypothesis on the mechanism behind it are explored in [1]. The performance
of local search SAT solvers is analyzed in [13,14], and modeled in [15] using a mixture
of exponential distributions.

The literature on algorithm portfolios [5,7], anytime algorithms [16,17], and restart
strategies [18,6,19,20,12] provides many examples of the application of performance
modeling to resource allocation. In [21] we presented a dynamic approach, in which a
conditional model of performance is updated and progressively exploited during train-
ing. See also [22] for more references.

instance; and the RTD of a problem set, meaning the RTD of different runs of the random-
ized algorithm of interest, each run on a different instance, uniform randomly picked without
replacement from the set.



3 Censored sampling

Consider a “Las-Vegas” algorithm [6] runningk times on instances of a family of
problems, on which we believe that the algorithm will display a similar behavior. Be
T = {t1, t2, ..., tk} the set of outcomes of the experiments. In order to model the prob-
ability density function (pdf) of solution timet, we can choose a parametric function
g(t|θ), with parameterθ, and then express the likelihood ofT givenθ, as

L(T |θ) =
k∏

i=1

L(ti|θ) =
k∏

i=1

g(ti|θ) (1)

We can then search the value ofθ that maximizes (1), or, in a Bayesian approach, in-
troduce a priorp(θ) on the parameter, and maximize the posteriorp(θ|T ) ∝ L(T |θ)p(θ).

Type I censored sampling (see, e.g., [8]) consists in stopping experimental runs that
exceed a cutoff timetc, and replacing the corresponding multiplicative term in (1) with

Lc(tc|θ) =

∫
∞

tc

g(τ |θ)dτ = [1 − G(tc|θ)] (2)

whereG(t|θ) =
∫ t

0
g(τ |θ)dτ is the conditional cumulative distribution function

(CDF) corresponding tog. This allows to limit the computational cost of running the
experiments, while exploiting the information carried by unsuccessful runs. InType II
censored sampling, k experiments are run in parallel, and stopped after a desirednum-
beru of uncensored samples is obtained. In this way the fraction of censored samples
c = (k − u)/k is set in advance, while the censoring thresholdtc for the remaining
k − u runs is determined by the outcome of the experiments, as the ending time of the
u-th fastest experiment.

4 Optimal restart strategies

A restart strategy consists in executing a sequence of runs of a randomized algorithm,
in order to solve a same problem instance, stopping each runk after a timeT (k) if no
solution is found, and restarting the algorithm with a different random seed; it can be
operationally defined by a functionT : N → R

+ producing the sequence of thresholds
T (k) employed. Luby et. al [6] proved that the optimal restart strategy isuniform, i. e.,
one in which a constantT (k) = T is used to bound each run. They show that, in
this case, the expected value of the total run-timetT , i. e., the sum of runtimes of the
successful run, and all previous unsuccessful runs, can be evaluated as

E(tT ) =
T −

∫ T

0
F (τ)dτ

F (T )
(3)

whereF (t) is the cumulative distribution function (CDF) of the run-timet for an un-
bounded run of the algorithm, i. e., a function quantifying the probability that the prob-
lem is solved before timet. If such distribution is known, an optimal cutoff timeT ∗ can
be evaluated minimizing (3). Otherwise, they suggest a universal non-uniform restart



strategyU , with cutoff sequence{1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...},5 proving
that its computational performancetU is, with high probability, within a logarithmic
factor worse than theexpected total run-timeE(tT∗) of the optimal strategy.

5 Experiments

A model F̂ of the RTD on a set of problems can be obtained from censored and un-
censored runtime samples; the performance of the corresponding sub-optimal uniform
strategyT̂ , evaluated minimizing (3) witĥF in place of the realF , will depend on
the precision of the estimated̂F , which will in turn depend on the number of samples
used to estimate it, and the amount of censoring. If we fix the number of samples, and
vary the fraction of censored samples, we expect to observe atrade-off between the
time spent running the training experiments, from whose outcomesF̂ is estimated, and
the performance of the correspondingT̂ . It is precisely this trade-off that we intend to
analyze here.6

In order to do so, we set up a simple learning scheme. Given a set of problems,
and a randomized solvers, we first randomly pick a subset ofn problems. For each
problem, we startr runs of the algorithms, differing only for the random seed, for a
total of k = nr parallel runs. We control the duration of these “training” experiments
with Type II censored sampling (see Sect 3), fixing a censoring fractionc ∈ [0, 1) in
advance: as the first⌊(1 − c)k⌋ runs terminate, we stop also the remaining⌈ck⌉ runs.
The gathered runtime samples are then used to train a modelF̂ of the RTD, from which
a uniform strategŷT is evaluated, by minimizing (3) numerically. The performance of
T̂ is then tested on the remaining problems of the set. Varyingc, we can measure the
corresponding variations in training time, and in the performance ofT̂ on the test set.

The experiments were conducted using Satz-Rand [4], a version of Satz [9] in which
random noise influences the choice of the branching variable. Satz is a modified ver-
sion of the complete DPLL procedure, in which the choice of the variable on which
to branch next follows an heuristic ordering, based on first and second level unit prop-
agation. Satz-Rand differs in that, after the list is formed, the next variable to branch
on is randomly picked among the toph fraction of the list. We present results with
the heuristic starting from the most constrained variables, as suggested also in [9], and
noise parameter set to0.4.

The benchmark used (obtained from SATLIB [10]) consists of different sets of SAT-
encoded “morphed” graph-coloring problems [23] (100 vertices,400 edges,5 colors,
resulting in500 variables and3100 clauses when encoded as a CNF3 SAT problem):
each graph is composed of the set of common edges among two random graphs, plus

5 The sequence is composed of powers of2: when2j−1 is used twice,2j is the next. More
precisely,k = 1, 2, ..., T (k) := 2j−1 if k = 2j

− 1; T (k) := T (k − 2j−1 + 1) if 2j−1
≤

k < 2j
− 1

6 Note that a given problem set might contain instances which follow sensibly different RTDs:
in this case, the obtained model would capture the overall behavior of the algorithm on the
set, and the corresponding restart strategy would be suboptimal for each single instance. We
ignore this issue here, as we are only interested in comparing among different̂F , and not with
the realF .



fractionsp ∈ [0, 1] and1 − p of the remaining edges for each graph, chosen as to form
regular ring lattices. Each of the9 problem sets contains100 instances, generated with
a logarithmic grid of9 different values for the parameterp, from 20 to 2−8, to which
we henceforth refer with labels0, ..., 8. This benchmark is particularly interesting, as
the parameterp controls the amount of structure in the problem, and the heavy-tailed
behavior of Satz-Rand varies accordingly on the different sets.

For each problem set, we repeated the simple scheme described above, running
r = 20 copies of Satz-Rand on each ofn = 50 randomly picked training instances, and
evaluatingT̂ on the remaining50. The process was repeated for10 different levels of
the censored fractionc during training, fromc = 0 to c = 0.9. For practical reasons,
experiments withc = 0 were actually run with a very high censoring threshold7 (106):
only a few runs of Satz-Rand exceeded this value.

As for the model, we tried different alternatives, including Weibull,8 lognormal, and
the novel double and right-hand Pareto lognormal, introduced in [24] to model heavy
tailed distributions. The double Pareto-lognormal distribution (DPLN) describes the
distribution of the product of two independent random variables, one with lognormal
distribution, one with Double Pareto distribution, whose pdf can be written asγtβ−1

for t < 1 (left tail), andγt−α−1 for t > 1, γ = αβ/(α + β). The advantage of DPLN
is that it can adapt to both lognormal and heavy tailed distributions. We also tested
various mixtures of two distributions, with pdf of the formf(t|θ) = wf1(t|θ1) + (1 −
w)f2(t|θ2), with parameterθ = (w, θ1, θ2), w ∈ [0, 1].

The models were trained by maximum likelihood, as describedin Sect. 3. To com-
pare with a non-parametric approach, we repeated the experiments using the Kaplan-
Meier estimator [25], which can also account for censored samples. Among the para-
metric models, we obtained the best results with a mixture including one lognormal
and either one double-Pareto lognormal, or only the heavy-tailed component, the Dou-
ble Pareto distribution described above.

We present the results for this latter mixture, and for the Kaplan-Meier estimator.
All quantities reported are upper95% confidence bounds obtained from results of10
runs. In Figg. 1, 2, right column, we present the tradeoff between training cost, labeled
train, and restart performances on the test set, for the two models, respectively la-
beledlogndp andkme, at different values of the censoring fractionc. We also plot the
cost of the universal strategy, labeledU , on the test set (the performance on the train-
ing set is similar, as both are composed of50 randomly picked problem instances). For
the test time, we can appreciate some degradation of performance only for very heavy
censoring (c = 0.8, 0.9), for which the advantage in training time is negligible anyway.
Note that this does not mean that the accuracy of the model is unaffected: to highlight
this apparent contradiction, we also plotted, in left column, the value of aχ2 statistic

7 As we are also conducting experiments with parallel portfolios of heterogeneous algorithms,
and thus we need a common measure of time, we modified the original code of Satz-Rand
adding a counter, that is incremented at every loop in the code. The resulting time measure
was consistent with the number of backtracks. All runtimes reported are in millions of loop
cycles.

8 It is interesting to see that the Weibull distribution, reported in [11] as having a good fit on
satisfiable problems near the sat-unsat phase transition, has instead a very poor fit in this case.



of the parametric modellogndp.9 While for the uncensored estimate this is near or
below the95% acceptance threshold (indicated by the white bars in the plot), the value
of theχ2 test degrades rapidly even for low values ofc.

In Figg. 3 to 6 we display, on the top row, the average of the resulting censoring
thresholdtc, for different censoring fractionsc. This, along with the training cost, allows
to appreciate the tail behavior of Satz-Rand on the different problem set. On problem set
1, most runtimes have a similar value, and the remaining few are very large.tc is greatly
reduced by a modestc = 0.1, but further censoring does not decrease it much: the same
obviously applies to training cost. On problem set8, runtime values are spread along
two orders of magnitude. Increasingc has a more gradual impact ontc, and on training
cost. This situation varies gradually for intermediate problem sets. Problem0 is less
interesting, as all runs of Satz-Rand end in a similar time, and heavy tailed behavior
is not observed. The resulting plots are similar to problem1, without the heavy tail
effects. In the second row, we display the CDFF̂ estimated bydplogn, on a single
run, for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with a better
approximation of the realF of the set, the empirical Kaplan-Meier CDF evaluated on
200 uncensored runs for each problem (labeledreal). To further investigate the tail
behavior of Satz-Rand RTD, in the third row we display the log-log plot of its survival
function1 − F (x), where a Pareto tail (∝ t−α) is displayed as a straight line. In both
cases, one can visually appreciate the degradation of the model, induced by censored
sampling, especially for values oft larger thantc, which are not seen by the model. So
why the performance of the restart strategy is not affected?The fourth row of Figg. 3
to 6 seems to suggest an answer. It plots the expected cost (3)of a uniform restart
strategy, against the restart thresholdT , evaluated usingdplogn at different levels of
censoring. The comparison termreal is theactual performance of a restart strategy
T , evaluateda-posteriori on the same run: averaging this on multiple runs, one would
obtain an estimate of the realE(tT ) for the problem set. We can see that the estimated
and real cost differ greatly, but have a similar minimum: this allowsT̂ to be efficient
also with a poor̂F , obtained from a heavily censored runtime sample.

Fig. 7 plots the CDFF̂ obtained with the non-parametric Kaplan-Meier estimator.
This simple model proved similar in performance todplogn, also in the few cases
where this latter failed to converge (see again Figg. 1, 2).

For what concerns the universal restart strategyU , its performance on the test set is
consistently worse. Its advantage on the training set was predictable, as in our simple
scheme20 copies of Satz-Rand are run in parallel on each training problem, and obvi-
ously decreases withc: on sets7, 8, training cost is actually lower forc = 0.8, 0.9. We
expect to further reduce training cost, again with a low impact on test performance, by
simply running less parallel copies.

9 Measured as in [11], dividing theuncensored data intom bins (on a logarithmic scale), and
comparing the number of samplesoi in each bin to the oneei predicted by the fitted distri-
bution, according to the formulaχ2 =

P

i
[(oi − ei)/ei]

2. A high value indicates a poor fit:
the model passes the test with confidenceα if χ2 is lower than the1 − α quantile of theχ2

distribution withm − k degrees of freedom,k being the number of parameters in the model.



6 Discussion

There is only an apparent contradiction between the rapid degradation of the model,
following the increase in censored data, and the stability of the performance of the
estimated optimal restart strategy. Traditional statistical tests are in fact intended to
measure the fit of a pdf along the whole spectrum of possible values. The formula for
the restart performance (3) is instead based on thecumulative distribution function,
which is the integral of the pdf; and on its further integration up toT , which is usually
small. This means that the actual shape of a large portion of the distribution is irrelevant,
as long as its mass does not vary; while for values lower thanT , the integration involved
in the CDF acts as a “denoising” filter, making (3) more robustto loss of fit of the model.

From a more practical point of view, our experiments show that even a sub-optimal
restart strategy can have a relevant advantage over the universal. This advantage can
be obtained for an additional training effort, which can be greatly reduced by censored
sampling. On a larger test set, this initial training effortwould pay off quite rapidly.
Note also that there is no reason to stop the training process, as it is relatively cheap
compared to problem solving, and each restart can also be interpreted as a censored
sample.

We expect analogous results with any heavy-tailed randomized algorithm. This mo-
tivates us to further investigate methods to merge trainingand exploitation of models of
algorithm performance, as in [22]. Current research is aimed at a companion analysis
of the effect of censoring in the case of algorithm portfolios, and the combination of
universal and estimated optimal restart strategies, the latter based on censored and un-
censored samples gathered on a sequence of problems, the former limiting cost in the
initial phase, when the model is still unreliable, in alife-long learning fashion.
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Fig. 2. Problems5 to 8. Left: the trade-off between training cost (train) and test performances
of the parametric mixture lognormal-double Pareto (logndp), and the non-parametric Kaplan-
Meier estimator (kme), for different censoring fractionsc. U labels the performancetU of the
universal strategy on the test set. Right:log

10
of theχ2 statistics forlogndp (black), compared

to log
10

of the acceptance threshold (white).
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Fig. 3. Problems1 (left column) and2 (right column). From top to bottom: average censoring
thresholdtc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluateda posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 4. Problems3 (left column) and4 (right column).From top to bottom: average censoring
thresholdtc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluateda posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 5. Problems5 (left column) and6 (right column). From top to bottom: average censoring
thresholdtc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluateda posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 6. Problems7 (left column) and8 (right column). From top to bottom: average censoring
thresholdtc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluateda posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 7. Problems1 to 8, Kaplan-Meier estimator.


