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Abstract. MAX-SAT is a well-known optimisation problem that can be seen as
a generalisation of the propositional satisfiability problem. In this study, we in-
vestigate how the performance of stochastic local search (SLS) algorithms — a
large and prominent class of algorithms that includes, for example, Tabu Search,
Evolutionary Algorithms and Simulated Annealing — depends on features of the
underlying search space. We show that two well-known measures of search space
structure, the autocorrelation length of random walks and the so-called fitness dis-
tance correlation, reflect complementary factors underlying instance hardness for
high-performance SLS algorithms. While the autocorrelation measure is compu-
tationally cheap, the fitness distance correlation serves mainly as ana posteriori
measure for explaining performance. We also study the dependence of SLS per-
formance on features of the distribution of clause weights for individual instances
and show that, depending on the variance of the clause weight distribution, dif-
ferent search strategies seem to be suited best for dealing with the structure of the
respective search spaces.

1 Introduction and Background

The satisfiability problem in propositional logic (SAT) is the task to decide for a given
propositional formula whether it has a model. More formally, given a set of� clauses
���� � � � � ��� involving � Boolean variables��� � � � � ��, the SAT problem is to de-
cide whether an assignment of truth values to variables exists such that all clauses are
simultaneously satisfied. This problem plays a prominent role in various areas of com-
puter science, mathematical logic and artificial intelligence, as well as in many applica-
tions [4, 10, 2, 7].

MAX-SATis the following optimisation variant of SAT: Given a propositional for-
mula in conjunctive normal form (CNF), the (unweighted) MAX-SAT problem is to
find a variable assignment that maximises the number of satisfied clauses. Inweighted
MAX-SAT, each clause�� has an associated weight��, and the goal becomes to max-
imise the total weight of the satisfied clauses. Solving a given instance of a unweighted
or weighted MAX-SAT instance corresponds to finding a global optimum of the objec-
tive function that maps each variable assignment� to the number or total weight of the
clauses satisfied under�.
� to whom correspondence should be addressed



Both SAT and MAX-SAT are��-hard combinatorial problems which are mainly
solved using heuristic search methods. Stochastic local search (SLS) algorithms for
MAX-SAT are based on the idea of iteratively maximising the number of satisfied
clauses. SLS algorithms are among the state-of-the-art methods for solving SAT, and
by far the most effective methods for finding optimal or close-to-optimal solutions for
large and hard instances of MAX-SAT (see,e.g., [17]).

SAT and unweighted MAX-SAT can be seen as special cases of weighted MAX-
SAT, and in principle, the same SLS methods can be applied to all these closely re-
lated problems. It is well-known that the performance of SLS algorithms on a given
problem instance critically depends on the structure of the respective search space.3

This raises the question whether there are substantial differences in the structure of
the search spaces for SAT, unweighted MAX-SAT, and weighted MAX-SAT instances
which might require different SLS methods to be used in order to find optimal solutions
with minimal search cost.

In this work, we investigate the search space structure of various types of MAX-
SAT instances and its impact on the performance of ILS-HSS, a high-performance SLS
algorithm for MAX-SAT, whose performance we show to be highly correlated with
that of state-of-the-art algorithms for the problem instances studied here. We use two
well-known summary measures of search space structure: the autocorrelation length
(ACL) [20, 18, 19] of random walks and the fitness distance correlation (FDC) for local
optima [9]. Both measures are widely used for examining the search spaces of opti-
misation problems and are known to correlate with the hardness of problem instances
for SLS algorithms [1, 11, 12]. While the autocorrelation measure is computationally
cheap, the fitness distance correlation serves mainly as ana posteriorimeasure for ex-
plaining performance. We analyse (i) how these measures depend on the variance and
the granularity of the clause weights, (ii) how these measures correlate with ILS-HSS
performance between and within our test-sets and (iii) whether ACL and FDC reflect
the same search space features. Our results show that ACL reflects well the differences
of the instance hardness between test-sets with varying distributions of clause weights,
while FDC seems to be better for explaining hardness differences within test-sets from
a same instance distribution.

The remainder of this article is structured as follows. We first give a brief introduc-
tion to SLS algorithms for MAX-SAT and present ILS-HSS; next, we report the results
of our ACL and FDC analyses. Finally, we discuss the implications of our findings, and
we end with some concluding remarks and directions for further work.

2 SLS Algorithms for MAX-SAT

A large number of different SLS algorithms for MAX-SAT are known from the liter-
ature. Among these are SAMD (an early form of Tabu Search) and various forms of
Simulated Annealing [5]; GSAT with Random Walk, a randomised iterative improve-
ment algorithm [16]; GRASP [15]; the Discrete Lagrangian Method [21]; Guided Local
Search [13]; variants of WalkSAT, one of the most successful SLS algorithms for SAT

3 Following common practice, we use the the term ‘search space structure’ synonymously for
‘search landscape structure’.



(see,e.g., [8]); Ant Colony Optimisation [22]; Iterated Robust Tabu Search (IRoTS)
[17]; and many others. Of these, only IRoTS, GLS and a variant of WalkSAT called
Novelty� appear to reach state of the art performance on a diverse range of MAX-SAT
instances [7].

In this study we use an iterated local search (ILS) algorithm for MAX-SAT that
achieves excellent performance on the problem instances we considered. In general, it-
erated local search algorithms can be seen as performing a biased random walk in the
space of the local optima encountered by an underlying local search algorithm. This
walk is built by iteratively perturbing a locally optimal solution, then applying local
search to obtain another locally optimal solution, and finally using an acceptance crite-
rion for deciding from which of these solutions to continue the search. The underlying
local search algorithm used in our ILS algorithm for MAX-SAT, dubbed ILS-HSS, is a
tabu search algorithm with fixed tabu list length���� � �. The solution perturbation is
implemented by randomly flipping each variable with a probability of 0.4. If applying
perturbation and subsequent local search to a solution� results in an inferior solution
��, �� is accepted with a probability of 0.1; otherwise the next perturbation starts from
�. In case of a tie between� and��, each is chosen with probability 0.5. The algorithm
terminates when a given solution quality (i.e., number or total weight of unsatisfied
clauses has been reached), or a user-specified run-time limit has been exceeded, return-
ing the best variable assignment encountered during the search. (ILS-HSS can be seen
as a variant of IRoTS [17].)

3 Benchmark Sets and SLS Performance

For the computational experiments conducted in this study, we used test-sets of vari-
ous types of randomly generated MAX-SAT instances. These test-sets consist of both
weighted and unweighted Random 3-SAT instances with 100 instances in each set. The
first of these,rnd-u, is a set of unweighted MAX-SAT instances that were sampled
from the well-studied Uniform Random 3-SAT distribution [14] for 100 variables and
500 clauses, corresponding to the over-constrained region of Uniform Random-3-SAT.
The other five test-sets were obtained fromrnd-u by adding clause weights that were
randomly generated according to truncated and discretised normal distributions. In all
cases, the mean of the clause weight distribution was chosen as	 � ���, and the dis-
tribution was symmetrically truncated such that all clause weights are restricted to lie
in the interval��� �����. Symmetric truncation guarantees that the actual mean is close
to 	. Within this class of distributions, standard deviations
 � (before truncation) of
���� ��� and��� were used for generating our test-sets. For
 � � ���, test-sets for
three levels of clause weight granularity were generated by discretising all weights to
a grid� of size 1,10, and 100, respectively. For
 � � ��� and
� � ���, we used test-
sets with grid size one (high granularity) only. The resulting test-sets are summarised
in Table 1.

For evaluating the relative performance of SLS algorithms on our test-sets, we
measured run-length distributions (RLDs) for ILS-HSS on each individual problem
instance [6]. This was done by running ILS-HSS 1 000 times on every problem in-
stance from a given test-set, each time until a putative optimal solution for the respec-
tive instance was found. (Since for most of the MAX-SAT instances used in this study,



Name � �� �

rnd-u (unweighted)
rnd5-d100 500 100 100
rnd5-d10 500 100 10
rnd5-v100 500 100 1
rnd5-v200 500 200 1
rnd5-v500 500 500 1

Table 1. Test-sets of MAX-SAT instances with different standard deviation�� and granularity�
of clause weight distributions for this study. Each test-set contains 100 instances.

determining provably optimal solutions using state-of-the-art complete MAX-SAT al-
gorithms was found to be practically impossible due to prohibitively long run-times,
putatively optimal solutions were determined as described in [17].) We refer to the
mean of the RLD, that is, the average number of steps over the respective 1 000 runs, as
the ‘local search cost’ (��) for the given MAX-SAT instance.

In preliminary experiments, we determined that for the test-sets considered here, the
local search cost for ILS-HSS and other high-performance SLS algorithms for MAX-
SAT, such as Robust Tabu Search, Iterated Robust Tabu Search, and Novelty�/wcs+we
[17, 7], is relatively highly correlated (see Figure 1). Similar correlations in the per-
formance of these algorithms are observed between our various test-sets. Nevertheless,
especially for weighted MAX-SAT instances with highly variable clause weights, sub-
stantial performance differences are observed in some cases.

These observations suggest that to a large extent, the performance differences be-
tween the different test-sets as well as between different instances from the same test-set
are due to search space features that affect a wide range of different SLS algorithms for
MAX-SAT similarly; at the same time, there appear to be other features that have a
more algorithm-specific impact. (Intuitively, this is what one would expect, given that
all algorithms use the same objective function, but different search heuristics.) In the
following, we focus on the former type of search space features, and investigate the
fundamental question to which extent these features depend on the nature of the clause
weight distributions underlying a given set of MAX-SAT instances.

4 Autocorrelation Length (ACL) Analysis

The autocorrelation length (ACL) of a random walk� �� � � � � �� is defined based on the
autocorrelation series����	 
� ���, where� 
� ��� �

����

������� � ��	 � ����� � ��	� is
the autocovariance function with lag� [20], and�� the mean over� �� � � � � ��. Note that
�� � ����	 � �. ACL is defined as the lag� for which ����	 falls below���. (Slightly
different definitions can be found in the literature,e.g., ACL := ����������		, but for
these we have observed very similar results to those reported in the following.)

Intuitively, the ACL of a random walk through the search spaces of the given prob-
lem instances indicates how many random steps are required before the correlation be-
tween the objective function value at the current search position and the objective func-
tion value at the starting position of the walk becomes insignificant. High ACL values
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Fig. 1. Local search cost correlation between ILS-HSS and other SLS algorithms for MAX-
SAT on the rnd-u (unweighted) test-set. Left: ILS-HSSvs RoTS. Right: ILS-HSSvs
Novelty�/wcs+we. Along the diagonal lines, the two given algorithms require equal CPU time
(compensating for differences in CPU time per search step between the algorithms).

are an indication that search positions which are ‘Hamming-close’ tend to have roughly
similar objective function values; this is indicative of a relatively ‘smooth’ search space.
Conversely, low ACL values indicate that the search space is rather ‘rugged’ with many
uncorrelated local features. The latter type of search space structure should intuitively
be more difficult to deal with for SLS algorithms based on randomised improvement
strategies, such as the ILS algorithm considered here.

In this section, we examine how ACL is affected by changing the variance and gran-
ularity in the clause weights, and investigate the correlation between ACL and hardness
within each test-set.

ACL measurements. To generate the ACL data, we generated 100 conflict-directed
random walk trajectories for each instance (that is, during each local search step, an
unsatisfied clause was first selected, and then a random variable from the clause was
flipped), with a length of 10 000 steps each. The ACL of each of these trajectories was
calculated, and then all of the ACLs were averaged to obtain the ACL value for each
instance. Table 2 shows the mean ACL over all instances in each test-set. The ACL data
was also analysed for a correlation with�� (cf. Table 3).

Influence of variability and granularity of clause weights on ACL. As shown in
Table 2, ACL depends strongly on the variability and granularity of clause weights:
average ACL decreases with increasing variability and granularity, indicating that the
(weighted) objective function values over the respective search spaces tend to be most
rugged for instances with high variability and fine granularity in the clause weights.
Variability in clause weights appears to have a more pronounced effect on average ACL
than granularity.

Correlation of ACL and local search cost over different test-sets. As can be seen
from Table 2, the variation in average ACL (where the average is over different random
walks for the same problem instance) between different problem instances from the



Test-Set Mean ACL ����� Mean��� (ILS-HSS)

rnd-u 41.76 0.09 1 652
rnd5-d100 40.89 0.09 3 380
rnd5-d10 40.85 0.09 4 099
rnd5-v100 40.69 0.09 4 162
rnd5-v200 38.46 0.09 8 576
rnd5-v500 36.09 0.10 13 772

Table 2. Mean ACL over all instances in each test-set, compared with the mean��� (i.e., the
mean number of steps required by each algorithm to find an optimal solution for a given problem
instance). The column labelled����� shows the coefficient of variation within each test-set.

Test-Set � 	 


rnd-u -1.26 50.60 -0.278
rnd5-d100 -1.15 49.90 -0.228
rnd5-d10 -1.05 49.29 -0.189
rnd5-v100 -0.98 48.56 -0.181
rnd5-v200 -1.45 51.07 -0.344
rnd5-v500 -0.41 39.84 -0.103

Table 3. Correlation analysis of ACLvs ���; � and	 are the slope and intercept, respectively, of
the regression line,
 is the correlation coefficient (statistically significant if shown in bold).

same test-set is very low. This is in contrast with the high variability in local search cost
observed within these test-sets (see Figure 1). However, our ACL data suggests a inverse
relationship between average ACL and average local search cost. This is consistent
with the intuition that SLS algorithms based on (randomised) greedy descent strategies
should have more difficulties to find optimal or high-quality solutions in rugged search
spaces full of local features, most of which do not provide useful guidance [1].

Correlation of ACL and local search cost within test-sets. To investigate whether the
observed correlation is solely due to the differences in the syntactical features of the
respective instances (i.e., to due to the differences in their clause weights), or whether
it reflects a deeper dependency between ACL and local search cost, we analysed the
same correlation for the instances within each individual test-set. The results shown in
Table 3 indicate a weak negative correlation between average ACL and average local
search cost per instance within each test-set. Although the correlation is generally too
weak to be statistically significant, it is present for all test-sets and is consistent with the
negative correlation of local search cost and ACL observed over multiple test-sets.4

5 Fitness Distance Correlation (FDC) Analysis

FDC is defined as the correlation between the ‘fitness’ of local minima states, and the
‘distance’ from those local minima states to the closest global optimum [9]. In this

4 Correlations were measured using the Pearson correlation coefficient
, and their significance
was assessed based on a standard test statistic for
 (which, for the sample sizes used here, is
approx. t-distributed); in our tables, correlations that are statistically significant at� � ����
are shown in boldface.



Test-Set Mean FDC ����� Mean��� (ILS-HSS)

rnd-u 0.416 0.44 1 652
rnd5-d100 0.343 0.51 3 380
rnd5-d10 0.354 0.47 4 099
rnd5-v100 0.358 0.49 4 162
rnd5-v200 0.362 0.47 8 576
rnd5-v500 0.379 0.45 13 772

Table 4. Mean FDC over all instances in each testset, compared with the mean���.

study, we define the fitness of a variable assignment search position as the difference
between its objective function value and the optimal objective function value for the
respective problem instance. We define the distance between two states as the Hamming
distance between the states. The FDC coefficient is then defined as

�fdc��� �	 
�
������ �	


��	 � 
��	
�

����	 � ���	� � ����	� � ����	�
�
�����	� � ����	��

�
�����	� � ����	��

�

where������ �	 denotes the covariance of the fitness-distance pairs����	� ���		 over
all variable assignments�; 
��	 and
��	 are the respective standard deviations of
the fitness and the distance values for all�; and����	�, �� ���	�, ����	 � ���	� denote
the averages of���	, � ���	, and���	 � ���	, respectively, over all assignments�. By
definition, we have that�� � �fdc��� �	 � �. A significantly positive FDC coefficient
indicates that, on average, with increasing solution quality the search is also getting
closer to an optimal solution, and therefore the objective function can be expected to
effectively guide the local search.

FDC measurements. FDC coefficients for each problem instance in our test-sets were
determined as follows. First, we constructed a set� of putatively optimal solutions.5

Second, we ran ILS-HSS on the given instance, recording every local minimum (LMIN)
state encountered during the search along with the fitness of the state, until a putatively
optimal solution was encountered. (LMIN states correspond to assignments which can-
not be improved by a single variable flip.) This process was repeated until a minimum
of 50 000 LMIN states had been found. We then computed the Hamming distance be-
tween each of these LMIN states and its Hamming-closest element of�, and output
the respective fitness-distance pair. Finally, the FDC coefficient was calculated as the
correlation coefficient over these sets of fitness-distance pairs.

Influence of variability and granularity of clause weights on FDC. The results re-
ported in Table 4 indicate that, with the exception of our set of unweighted instances,
there are small, but systematic differences in FDC depending on the variablity and gran-
ularity of clause weights: Mean FDC values increase monotonically with granularity
and variability of clause weights. Compared to the respective ACL results, the variation
of FDC values within each test-set is considerably higher (as reflected in the higher

5 Since measuring exactly was computationally intractable for the instance types and sizes
used here, we determined putatively optimal solution qualities as described in [17] and ap-
proximated for each instance using the set of unique solutions of that quality obtained from
many runs of a high-performance SLS algorithm for MAX-SAT.



Test-Set FDCvs��� ACL vsFDC
� 	 
 � 	 


rnd-u -0.12 1.31 -0.593 0.02 -0.22 0.319
rnd5-d100 -0.13 1.38 -0.553 0.01 -0.15 0.254
rnd5-d10 -0.12 1.23 -0.486 � 0.01 0.20 0.085
rnd5-v100 -0.13 1.39 -0.506 0.01 0.13 0.118
rnd5-v200 -0.08 1.07 -0.405 � 0.01 0.20 0.087
rnd5-v500 -0.07 0.97 -0.334 � 0.01 0.21 0.091

Table 5. Correlation analysis of FDCvs��� (left side) and of ACLvsFDC (right side).

coefficient of variation). These results indicate a positive correlation between FDC val-
ues and mean local search cost — a counterintuitive finding, since we would expect
that strong fitness-distance correlations (i.e., high FDC values) should make a prob-
lem instance easier for an SLS algorithm such as ILS-HSS, which is essentially based
on a (randomised) iterative improvement strategy. One possible explanation for this
somewhat surprising result is that ruggedness effects (as captured by our ACL analysis)
might dominate the impact of FDC for these test-sets.

Correlation between FDC and local search cost within test-sets. Our analysis of the
correlation between FDC and mean local search cost per instance within each test-set
revealed a different picture: Table 5 shows that there is a significant negative corre-
lation, which is consistent with the previously discussed, expected impact of FDC on
local search cost. This correlation seems to weaken with increasing granularity and
variability of clause weights, which is probably due to the fact that for these types of
instances, ILS-HSS finds significantly less high-quality local minimum states than for
the much easier instances from the test-sets with low granularity and low clause weight
variability. However, the correlations between FDC and mean local search cost within
our test-sets are all statistically significant and much stronger than the correlations be-
tween ACL and mean local search cost within test-sets.

Correlation between ACL and FDC within test-sets. Our experimental results indi-
cate that both ACL and FDC are correlated to some extent with mean local search cost.
This raises the question whether both of these measures merely reflect the same fac-
tors underlying the hardness of a problem instance for ILS-HSS, or whether they are
complementary. It seems that ACL better captures the significant differences in local
search cost between test-sets, while within each test-set, search cost was much stronger
correlated with FDC on a per-instance basis. This is further supported by the results of a
correlation analysis between ACL and FDC within each test-set, shown in Table 5. The
correlation between ACL and FDC is very weak and, except for the sets of unweighted
and low granularity instances, statistically insignificant, though consistently positive for
all test-sets. The latter observation is interesting, because it indicates that there appears
to be a slight tendency (within the test-sets) for instances with more rugged search
spaces to have a lower fitness-distance correlation. However, the weakness of this cor-
relation and the qualitative differences in our observations regarding ACL and FDC
suggests that both measures reflect different relevant aspects of search space structure.



6 Conclusions and Future Work

The results presented in this study show that autocorrelation length (ACL) and fitness-
distance correlation (FDC) are useful for predicting and explaining the hardness of
MAX-SAT instances for various stochastic local search algorithms. Our empirical re-
sults show that ACL and FDC capture different factors underlying local search cost.
While ACL reflects the significant differences in instance hardness between test-sets
with varying distributions of clause weights, FDC seems better suited for explaining
the search cost differences within test-sets of instances sampled from the same distribu-
tion. ACL and FDC are also complementary in the sense that they both correlate with
instance hardness, but the correlation between them is rather weak; hence, a combina-
tion of both measures has a higher predictive and explanatory power than either ACL
or FDC alone. Furthermore, experimental results not included here indicate that FDC
actually correlates better with local search cost than the number of optimal solutions
for test-sets of instances with very high variance in the clause weights. This comes as
a surprise considering the dominance of number of solutions on local search cost for
unweighted SAT instances [3].

This work raises a number of interesting questions and suggests various avenues
for further research. First and foremost, it would be very interesting to further explore
the performance differences observed between different SLS algorithms for MAX-SAT,
such as ILS-HSS, RoTS and Novelty�/wcs+we, and to analyse these for possible corre-
lations with the measures of search space structure investigated here. Secondly, it may
be possible to use computationally cheap measures of search space structure, such as
ACL, to predict the run-time of specific SLS algorithms for MAX-SAT, and to select
the algorithm that is expected to solve a given instance most efficiently. Further di-
rections for extending this research include an analysis of the impact of problem size
(i.e., number of variables and clauses) on the results reported here; an investigation of
search space features of structured MAX-SAT instances (as obtained,e.g., from encod-
ings of other combinatorial problems into MAX-SAT) and their differences to those of
the Random-3-SAT considered here; and a more detailed analysis of other search space
characteristics (e.g., the plateau and basin structure of a given search landscape) that
explain some of the observed variation in local search cost that cannot be explained by
global measures such as ACL and FDC.

Overall, we strongly believe that insights gained from a thorough understanding of
the search space characteristics and their dependence on syntactic features of MAX-
SAT instances as well as their impact on the performance of SLS algorithms for MAX-
SAT will provide the key to further improving the efficiency of these algorithms, and
hence the state-of-the-art in MAX-SAT solving.
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