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Abstract

Consider the problem of a group of agents trying to find a
stable strategy profile for a joint interaction. A standard ap-
proach is to describe the situation as a single multi-player
game and find an equilibrium strategy profile of that game.
However, most algorithms for finding equilibria are computa-
tionally expensive; they are also centralized, requiring that all
relevant payoff information be available to a single agent (or
computer) who must determine the entire equilibrium profile.
In this paper, we exploit two ideas to address these problems.
We consider structured game representations, where the in-
teraction between the agents is sparse, an assumption that
holds in many real-world situations. We also consider the
slightly relaxed task of finding an approximate equilibrium.
We present two algorithms for finding approximate equilib-
ria in these games, one based on a hill-climbing approach
and one on constraint satisfaction. We show that these al-
gorithms exploit the game structure to achieve faster compu-
tation. They are also inherently local, requiring only limited
communication between directly interacting agents. They can
thus be scaled to games involving large numbers of agents,
provided the interaction between the agents is not too dense.

1 Introduction
Consider a system consisting of multiple interacting agents,
collaborating to perform a task. The agents have to inter-
act with each other to make sure that the task is completed,
but each might still have slightly different preferences, e.g.,
relating to the amount of resources each expends in complet-
ing its part of the task.

The framework of game theory (von Neumann & Mor-
genstern 1944; Fudenberg & Tirole 1991) tells us that we
should represent a multi-agent interaction as a game, and
find a strategy profile that forms a Nash equilibrium (Nash
1950). We can do so using one of several algorithms for
finding equilibria in games. (See (McKelvey & McLennan
1996) for a survey.) Unfortunately, this approach is severely
limited in its ability to handle complex multi-agent interac-
tions. First, in most cases, the size of the standard game rep-
resentations grows exponentially in n. Second, for games in-
volving more than two players, existing solution algorithms
scale extremely poorly even in the size of the game represen-
tation. Finally, all of the standard algorithms are based on a
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centralized computation paradigm making them unsuitable
for our distributed setting.

We propose an approach that modifies both the represen-
tation of the game and the notion of a solution. Following
the work of LaMura (2000), Koller and Milch (2001), and
Kearns, Littman, and Singh (2001a), we use a structured
representations of games, that exploits the locality of inter-
action that almost always exists in complex multi-agent in-
teractions, and allows games with large numbers of agents
to be described compactly. Our representation is based
on the graphical game framework of Kearns, Littman, and
Singh (KLS hereafter), which applies to simultaneous-move
games. We wish to find algorithms that can take advantage
of this structure to find good strategy profiles effectively, and
in a decentralized way.

It turns out that this goal is much easier to achieve when
solving a relaxed problem. While philosophically satisfy-
ing, the Nash equilibrium requirement is often overly strin-
gent. Although agents arguably strive to maximize their ex-
pected utility, in practice inertia or a sense of commitment
will cause an agent to abide by an agreed equilibrium even
if it is slightly suboptimal for him. Thus, it often suffices to
require that the strategy profile form an approximate equi-
librium, one where each agent’s incentive to deviate is no
more than some small ε.

We present two techniques for finding approximate equi-
libria in structured games. The first uses a greedy hill-
climbing approach to optimize a global score function,
whose global optima are precisely equilibria. The sec-
ond uses a constraint satisfaction approach over a discretized
space of agent strategies; somewhat surprisingly, the algo-
rithm of KLS turns out to be a special case of this algorithm.
We show that these algorithms allow the agents to determine
a joint strategy profile using local communication between
agents. We present some preliminary experimental results
over randomly generated single-stage games, where we vary
the number of agents and the density of the interaction. Our
results show that our algorithms can find high-quality ap-
proximate equilibria in much larger games than have been
previously solved.

2 Graphical games
In this section, we introduce some basic notation and ter-
minology for game theory, and describe the framework of
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graphical games.
The conceptually simplest and perhaps best-studied rep-

resentation of game is the normal form. In a normal form
game, each player (agent) pi chooses an action ai from its
action set {ai1, ai2, ..., aiki}. For simplicity of notation, we
assume that k1 = k2 = ... = kn = k. The players are also
allowed to play mixed strategies θi = 〈θi1, θi2, ...θik〉 where
θij is the probability that pi plays aij . If the player assigns
probability 1 to one action — θij = 1 — and zero to the oth-
ers, it is said to be playing a pure strategy, which we denote
as rij . We use θ to denote a strategy profile for the set of
players, and define (θ−i, θ

′
i) to be the same as θ except that

pi plays θ′i instead of θi.
Each player also has an associated payoff matrix Mi that

specifies the payoff, or utility, for player i under each of the
kn possible combinations of strategies: Mi(a1, a2, ..., an) is
the reward for pi when for all j, pj plays aj . Given a profile
θ, we define the expected utility (or payoff) for pi as

Ui(θ) =
∑

i1,i2,...,in

θ1i1 . . . θninMi(a1i1 , a2i2 , . . . , anin).

Given a set of mixed strategies θ, one strategy per player,
we define the regret of pi with respect to θ to be the most
pi can gain (on expectation) by diverging from the strategy
profile θ:

Regi(θ) = max
θ′

i

(Ui((θ−i, θ
′
i)) − Ui(θ)).

A Nash equilibrium is a set of mixed strategies θ where each
player’s regret is 0. The Nash equilibrium condition means
that no player can increase his expected reward by unilater-
ally changing his strategy. The seminal result of game the-
ory is that any game has at least one Nash equilibrium (Nash
1950) in mixed strategies. An ε-approximate Nash equilib-
rium is a strategy profile θ such that each player’s regret is
at most ε.

A graphical game (Kearns, Littman, & Singh 2001a) as-
sumes that each player’s reward function depends on the ac-
tions of a subset of the players rather than on all other play-
ers’ actions. Specifically, pi’s utility depends on the actions
of some subset Pi of the other players, as well as on its own
action. Thus, each player’s payoff matrix Mi depends only
on |Pi| + 1 different decision variables, and therefore has
k|Pi|+1 entries instead of kn. We can describe this type
of game using a directed graph (V, E). The nodes in V
correspond to the n players, and we have a directed edge
e = (pi, pj) ∈ E from pi to pj if pi ∈ Pj , i.e., if j’s util-
ity depends on pi’s strategy. Thus, the parents of pi in the
graph are the players on whose action pi’s value depends.
We note that our definition is a slight extension of the defini-
tion of KLS, as they assumed that the dependency relation-
ship between players was symmetric, so that their graph was
undirected.

Example 1: Consider the following example, based on a
similar example in (Koller & Milch 2001). Suppose a road
is being built from north to south through undeveloped land,
and 2n agents have purchased plots of land along the road
— the agents w1, . . . , wn on the west side and the agents
e1, . . . , en on the east side. Each agent needs to choose what

to build on his land — a factory, a shopping mall, or a resi-
dential complex. His utility depends on what he builds and
on what is built north, south, and across the road from his
land. All of the decisions are made simultaneously. In this
case, agent wi’s parents are ei, wi−1 and wi+1. Note that
the normal form representation consists of 2n matrices each
of size 32n, whereas in the graphical game, each matrix has
size at most 34 = 81 (agents at the beginning and end of the
road have smaller matrices).

If we modify the problem slightly and assume that the pre-
vailing wind is from east to west, so that agents on the east
side are not concerned with what is built across the street,
then we have an asymmetric graphical game, where agent
wi’s parents are ei, wi−1, wi+1, whereas agent ei’s parents
are ei−1, ei+1.

3 Function Minimization
Our first algorithm uses a hill-climbing approach to find an
approximate equilibrium. We define a score function that
measures the distance of a given strategy profile away from
an equilibrium. We then use a greedy local search algorithm
that starts from a random initial strategy profile and gradu-
ally improves the profile until a local maximum of the score
function is reached.

More precisely, for a strategy profile θ, we define S(θ) to
be the sum of the regrets of the players:

S(θ) =
∑

i

Regi(θ).

This function is nonnegative and is equal to 0 exactly when θ
is a Nash equilibrium. It is continuous in each of the separate
probabilities θij but nondifferentiable.

We can minimize S(θ) using a variety of function min-
imization techniques that apply to continuous but non-
differentiable functions. In the context of unstructured
games, this approach has been explored by (McKelvey
1992). More recently, LaMura and Pearson (2001) have ap-
plied simulated annealing to this task. We chose to explore
greedy hill climbing, as it lends itself particularly well to
exploiting the special structure of the graphical game.

Our algorithm repeatedly chooses a player and changes
that player’s strategy so as to maximally improve the global
score. More precisely, we define the gain for a player pi as
the amount that global score function would decrease if pi

changed its strategy so as to minimize the score function:

Gi(θ) = max
θ′

i

[S(θ) − S((θ−i, θ
′
i))].

Note that this is very different from having the player change
its strategy to the one that most improves its own utility.
Here, the player takes into consideration the effects of its
strategy change on the other players.

Our algorithm first chooses an initial random strategy θ
and calculates Gi(θ) for each i. It then iterates over the
following steps:

1. Choose the player pi for which Gi(θ) is largest.
2. If Gi(θ) is positive, update θi := argmaxθ′

i
[S(θ) −

S((θ−i, θ
′
i))]; otherwise, stop.
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3. For each player pj such that Gj(θ) may have changed,
recalculate Gj(θ).
Notice that Regi(θ) depends only on the strategies of pi

and its parents in θ. Thus changing a player’s strategy only
affects the terms of the score function corresponding to that
player and its children. We can use this to implement steps
(2) and (3) efficiently. A somewhat laborious yet straight-
forward algebraic analysis shows that:
Proposition 2: The following optimization problem is equiv-
alent to finding Gi(θ) and the maximizing θ′i:

Maximize: Ui((θ−i, θ
′
i)) −

∑
j:i∈Pj

(yj − Uj((θ−i, θ
′
i)))

Subject to: θ′im ≥ 0 ∀m∑
m θ′im = 1

yj ≥ Uj(((θ−i, θ
′
i)−j , rjl)) ∀j, l

As the expected utility functions Uj are linear in the θ′im,
this optimization problem is simply a linear program whose
parameters are the strategy probabilities of player pi, and
whose coefficients involve the utilities only of pi and its chil-
dren. Thus, the player pi can optimize its strategy efficiently,
based only on its own utility function and that of its children
in the graph. We can therefore execute the optimization in
step (2) efficiently. In our asymmetric Road example, an
agent wi could optimize its strategy based only on its chil-
dren — wi−1 and wi+1; similarly, an agent ei needs to con-
sider its children — ei−1, ei+1 and wi.

To execute step (3), we note that when pi changes its strat-
egy, the regrets of pi and its children change; and when the
regret of pj changes, the gains of pj and its parents change.
More formally, when we change the strategy of pi, the lin-
ear program for some other player pj changes only if one of
the expected utility terms changes. Since we only have such
terms over pj and its children, and the payoff of a player is
affected only if the strategy at one of its parents changes,
then Gj(θ) will change only if the strategy of pj , or one of
its parents, its children, or its spouses (other parents of its
children) is changed. (Note the intriguing similarity to the
definition of a Markov blanket in Bayesian networks (Pearl
1988).) Thus, in step (3), we only need to update the gain
of a limited number of players. In our Road example, if
we change the strategy for wi, we need to update the gain
of: wi−1 and wi+1 (both parents and children); ei (only a
parent); and wi−2, wi+2, ei−1, and ei+1 (spouses).

We note that our hill climbing algorithm is not guaranteed
to find a global minimum of S(θ). However, we can use
a variety of techniques such as random restarts in order to
have a better chance of finding a good local minimum. Also,
local minima that we find are often fairly good approximate
equilibria (since the score function corresponds quite closely
to the quality of an approximate equilibrium).

4 CSP algorithms
Our second approach to solving graphical games uses a
very different approach, motivated by the recent work of
Kearns, Littman, and Singh (2001a; 2001b). They propose
a dynamic programming style algorithm for the special case
when the graphical game is a symmetric undirected tree.

Their algorithm has several variants. For our purposes,
the most relevant (KLS 2001a) discretizes each player’s set

of mixed strategies, so that the tables represent a discrete
grid of the players’ strategy profiles. Since this variant does
not explore the entire strategy space, it is limited to finding
approximate equilibria. (Two other variants (KLS 2001a;
2001b) compute exact equilibria, but only apply in the very
limited case of two actions per player.)

It turns out that the KLS algorithm can be viewed as ap-
plying nonserial dynamic programming or variable elimi-
nation (Bertele & Brioschi 1972) to a constraint satisfaction
problem (CSP) generated by the graphical game. In this sec-
tion, we present a CSP formulation of the problem of find-
ing Nash equilibria in a general graphical game, and show
how variable elimination can be applied to solve it. Unlike
the KLS algorithm, our algorithm also applies to asymmet-
ric and non-tree-structured games. We can also solve the
problem as a constrained optimization rather than a con-
straint satisfaction problem, potentially improving the com-
putational performance of the KLS approach.

Constraint Satisfaction There are many ways of formulat-
ing the ε-equilibrium problem as a CSP. Most simply, each
variable Vi corresponds to the player pi and takes values in
the strategy space of pi. The constraints Ci ensure that each
player has regret at most ε in response to the strategies of its
parents. (Recall that the each player’s regret depends only
its strategy and those of its parents.) Specifically, the “legal”
set for Ci is

{〈θi, (θj)j∈Pi〉 | Regi(θi, θPi) ≤ ε}.
This constraint is over all of the variables in Pi ∪ {i}.

The variables in this CSP have continuous domains,
which means that standard techniques for solving CSPs do
not directly apply. We adopt the gridding technique pro-
posed by KLS, which defines a discrete value space for each
variable. Thus, the size of these constraints is exponential in
the maximum family size (number of neighbors of a node),
with the base of the exponent growing with the discretization
density.

Variable elimination is a general-purpose nonserial dy-
namic programming algorithm that has been applied to sev-
eral frameworks, including CSPs. Roughly speaking, we
eliminate variables one at a time, combining the constraints
relating to that variable into a single constraint, that de-
scribes the constraints induced over its neighboring vari-
ables. We briefly review the algorithm in the context of the
constraints described above.

Example 3 : Consider the three-player graphical game
shown in Fig. 1(a), where we have discretized the strategy
space of V into three strategies and those of U and W into
two strategies. Suppose we have chosen an ε such that the
constraints for V and W are given by Fig. 1(b),(c) (the con-
straint for U is not shown). The constraint for V , for exam-
ple, is indexed by the strategies of U and V ; a ‘Y’ in the
table denotes that V ’s strategy has at most ε regret with re-
spect to U ’s strategy. Eliminating V produces a constraint
over U and W as shown in Fig. 1(d). Consider the (u2, w1)
entry of the resulting constraint. We check each possible
strategy for V . If V were playing v1, then V would not have
acceptable regret with respect to u2, and W ’s strategy, w1,
would not have acceptable regret with respect to v1. If V
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(a)

u1 u2

v1

v2 Y Y
v3 Y

u1 u2

v1 .6 .4
v2 .1 .2
v3 .5 0

(b) (e)
v1 v2 v3

w1 Y
w2 Y

v1 v2 v3

w1 .4 .1 .5
w2 .7 .4 .2

(c) (f)
u1 u2

w1 Y Y
w2 Y

u1 u2

w1 .1 .2
w2 .4 .2

(d) (g)

Figure 1: (a) A simple 3-player graphical game. (b) Con-
straint table for V . (c) Constraint table for W . (d) Con-
straint table after elimination of V . (e) Regret table for V .
(f) Regret table for W . (g) Regret table after elimination of
V .

were playing v3, V ’s strategy would be acceptable with re-
spect to U ’s, but W ’s would not be acceptable with respect
to V ’s. However, if V were playing v2, then both V and W
would be playing acceptable strategies. As there is a value
of V which will produce an acceptable completion, the en-
try in the corresponding table is ‘Y’. The (u1, w1) entry is
not ‘Y’ since there is no strategy of V which will ensure that
both V and W are playing acceptably.

In general, we can eliminate variables one by one, until
we are left with a constraint over a single variable. If the
domain of this variable is empty, the CSP is unsatisfiable.
Otherwise, we can pick one of its legal values, and execute
this process in reverse to gradually extend each partial as-
signment to a partial assignment involving one additional
variable. Note that we can also use this algorithm to find all
solutions to the CSP: at every place where we have several
legal assignments to a variable, we pursue all of them rather
than picking one.

For undirected trees, using an “outside-in” elimination or-
der, variable elimination ends up being very similar to the
KLS algorithm. We omit details for lack of space. How-
ever, the variable elimination algorithm also applies as is to
graphical games that are not trees, and to asymmetric games.
Furthermore, the realization that our algorithms are simply
solving a CSP opens the door to the application of alterna-
tive CSP algorithms, some of which might perform better in
certain types of games.

Note that the value of ε is used in the CSP algorithm
to define the constraints; if we run the algorithm with too
coarse a grid, it might return an answer that says that no
such equilibrium exists. Thus to be sure of obtaining an ε-
optimal equilibrium, we must choose the grid according to
the bound provided by KLS. Fortunately, the proof given is
not specific to undirected trees, and thus we are provided
with a gridding density (which is exponential only in the
maximum family size) which will guarantee we find a so-
lution. Unfortunately, the bound is usually very pessimistic
and leads to unreasonably fine grids. For example, in a 2-

action Road game (which is discussed in Section 6), to guar-
antee a 0.2-approximate equilibrium, the KLS discretization
would need to be approximately .0008, which means we
would need about 1250 grid points per strategy.

Cost Minimization
An alternative to viewing the regret bounds as hard con-

straints is to try to directly reduce the worst-case regret over
the players. This approach, which is a variant of a cost-
minimization problem (CMP), allows us to choose an arbi-
trary grid density and find the best equilibrium for that den-
sity. In our CMP algorithm, we replace the constraints with
tables which have the same structure but instead of contain-
ing ‘Y’ or being blank, they simply contain the regret of the
player under that set of strategies. More precisely, we have
one initial factor for each player pi, which contains one en-
try for each possible strategy profile (θi, θPi) for pi and its
parents Pi. The value of this entry is simply Regi(θi, θPi).
(As we discussed, regret only depends on the strategies of
the player and his parents.)

Example 4: Consider again the three-player graphical game
of Fig. 1(a). The regret tables for V, W are shown in
Fig. 1(e),(f). Eliminating V produces a table over U and
W , shown in Fig. 1(g). Consider the (u2, w1) entry of the
resulting table. We check each possible strategy for V . If
V plays v1, then V would have regret .4 with respect to u2,
and W ’s strategy, w1, would have regret .4 with respect to
v1; thus, we can only obtain a minimal regret of .4 when V
plays v1. If V plays v3, V would have regret 0, but W would
have regret .5, so the minimum regret over all players is .5.
Finally, if V plays v2, then V would have regret .2 and W
would have regret .1, for a minimum regret of .2. Thus, the
minimum value over all strategies of V of the lowest achiev-
able regret is .2.

More generally, our elimination step in the CMP algo-
rithm is similar to the CSP algorithm, except that now
the entry in the table is the minimum achievable value
(over strategies of the eliminated player) of the maximum
over all tables involving the eliminated player. More pre-
cisely, let F 1, F 2, . . . ,F k be a set of factors each contain-
ing pi, and let N j be the set of nodes contained in F j .
When we eliminate pi, we generate a new factor F over
the variables N = ∪k

j=1N j − {pi} as follows: For a
given set of policies θN , the corresponding entry in F is
minθi maxj F j [(θF , θi)Nj ]. Each entry in a factor F j cor-
responds to some strategy profile for the players in N j . In-
tuitively, it represents an upper bound on the regret of some
of these players, assuming this strategy profile is played. To
eliminate pi, we consider all of his strategies, and choose the
one that guarantees us the lowest regret.

After eliminating all of the players, the result is the best
achievable worst-case regret — the one that achieves the
minimal regret for the player whose regret is largest. The
associated completion is precisely the approximate equilib-
rium that achieves the best possible ε. We note that the CSP
algorithm essentially corresponds to first rounding the en-
tries in the CMP tables to either 0 or 1, using ε as the round-
ing cutoff, and then running CMP; an assignment is a solu-
tion to the CSP iff it has value 0 in the CMP.

U

V

W
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Finally, note that all of the variable elimination algorithms
naturally use local message passing between players in the
game. In the tree-structured games, the communication di-
rectly follows the structure of the graphical game. In more
complex games, the variable elimination process might lead
to interactions between players that are not a priori directly
related to each other. In general, the communication will
be along edges in the triangulated graph of the graphical
game (Lauritzen & Spiegelhalter 1988). However, the com-
munication tends to stay localized to “regions” in the graph,
except for graphs with many direct interactions between “re-
mote” players.

5 Hybrid algorithms
We now present two algorithms that combine ideas from the
two techniques presented above, and which have some of the
advantages of both.

Approximate equilibrium refinement
One problem with the CSP algorithm is the rapid growth

of the tables as the grid resolution increases. One solution
is to find an approximate equilibrium using some method,
construct a fine grid around the region of the approximate
equilibrium strategy profile, and use the CMP or CSP al-
gorithms to find a better equilibrium over that grid. If we
find a better equilibrium in this finer grid, we recenter our
grid around this point, shifting our search to a slightly dif-
ferent part of the space. If we do not find a better equilibrium
with the specified grid granularity, we restrict our search to
a smaller part of the space but use a finer grid. This process
is repeated until some threshold is reached.

Note that this strategy does not guarantee that we will
eventually get to an exact equilibrium. In some cases, our
first equilibrium might be at a region where there is a local
minimum of the cost function, but no equilibrium. In this
case, the more refined search may improve the quality of
the approximate equilibrium, but will not lead to finding an
exact equilibrium.

Subgame decomposition
A second approach is based on the idea that we can de-

compose a single large game into several subgames, solve
each separately, and then combine the results to get an equi-
librium for the entire game. We can implement this general
scheme using an approach that is motivated by the clique
tree algorithm for Bayesian network inference (Lauritzen &
Spiegelhalter 1988).

To understand the intuition, consider a game that is com-
posed of two almost independent subgames. Specifically, we
can divide the players into two groups C1 and C2 whose
only overlap is the single player pi. We assume that the
games are independent given pi, in other words, for any
j �= i, if pj ∈ Ck, then Pj ⊆ Ck. If we fix a strategy
θi of pi, then the two halves of the game no longer interact.
Specifically, we can find an equilibrium for the players in
Ck, ensuring that the players’ strategies are a best response
both to each other’s strategies and to θi, without consider-
ing the strategies of players in the other cluster. However,
we must make sure that these strategy profiles will combine
to form an equilibrium for the entire game. In particular,

all of the players’ strategies must be a best response to the
strategy profiles of their parents. Our decomposition guar-
antees this property for all the players besides pi. To satisfy
the best-response requirement for pi we must address two
issues. First, it may be the case that for a particular strategy
choice of pi, there is no total equilibrium, and thus we may
have to try several (or all) of his strategies in order to find
an equilibrium. Second, if pi has parents in both subgames,
we must consider both subgames when reasoning about pi,
eliminating our ability to decouple them. Our algorithm be-
low addresses both of these difficulties.

We decompose the graph into a set of overlapping clus-
ters C1, . . . ,C�, where each Cl ⊆ {p1, . . . , pn}. These
clusters are organized into a tree T . If Cl and Cm are two
neighboring clusters, we define Slm to be the intersection
Cl ∩ Cm. If pi ∈ Cm is such that Pi ⊆ Cm, then we say
that pi is associated with Cm. If all of a node’s parents are
contained in two clusters (and are therefore in the separator
between them), we associate it arbitrarily with one cluster or
the other.

Definition 5: We say that T is a cluster tree for a graphical
game if the following conditions hold:

• Running intersection: If pi ∈ Cl and pi ∈ Cm then
pi is also in every Co that is on the (unique) path in T
between Cl and Cm.

• No interaction: All pi are associated with a cluster.

The no interaction condition implies that the best response
criterion for players in the separator involves at most one of
the two neighboring clusters, thereby eliminating the inter-
action with both subgames.

We now use a CSP to find an assignment to the separators
that is consistent with some global equilibrium. We have
one CSP variable for each separator Slm, whose value space
are joint strategies θSlm

for the players in the separator. We
have a binary constraint for every pair of neighboring sepa-
rators Slm and Smo that is satisfied iff there exists a strategy
profile θ for Cm for which the following conditions hold:

1. θ is consistent with the separators θSlm
and θSmo .

2. For each pi associated with Cm, the strategy θi is an ε-
best response to θPi ; note that all of pi’s parents are in
Cm, so their strategies are specified.

It is not hard to show that an assignment θSlm
for the sep-

arators that satisfies all these constraints is consistent with
an approximate global equilibrium. First, the constraints as-
sert that there is a way of completing the partial strategy
profile with a strategy profile for the players in the clusters.
Second, the running intersection property implies that if a
player appears in two clusters, it appears in every separa-
tor along the way; condition (1) then implies that the same
strategy is assigned to that player in all the clusters where it
appears. Finally, according to the no interaction condition,
each player is associated with some cluster, and that cluster
specifies the strategies of its parents. Condition (2) then tells
us that this player’s strategy is an ε-best response to its par-
ents. As all players are playing ε-best responses, the overall
strategy profile is an equilibrium.

There remains the question of how we determine the ex-
istence of an approximate equilibrium within a cluster given

AAAI-02    349



strategy profiles for the separators. If we use the CSP algo-
rithm, we have gained nothing: using variable elimination
within each cluster is equivalent to using variable elimina-
tion (using some particular ordering) over the entire CSP.
However, we can solve each subgame using our hill climb-
ing approach, giving us yet another hybrid algorithm — one
where a CSP approach is used to combine the answers ob-
tained by the hill-climbing algorithm in different clusters.

6 Experimental Results
We tested hill climbing, cost minimization, and the approx-
imate equilibrium refinement hybrid on two types of games.

The first was the Road game described earlier. We tested
two different types of payoffs. One set of payoffs corre-
sponded to a situation where each developer can choose to
build a park, a store, or a housing complex; stores want to
be next to houses but next to few other stores; parks want
to be next to houses; and houses want to be next to exactly
one store and as many parks as possible. This game has pure
strategy equilibria for all road lengths; thus, it is quite easy
to solve using cost minimization where only the pure strate-
gies of each developer are considered. A 200 player game
can be solved in about 1 second. For the same 200 player
game, hill climbing took between 10 and 15 seconds to find
an approximate equilibrium with ε between .01 and .04 (the
payoffs range from 0 to 2).

In the other payoff structure, each land developer plays
a game of paper, rock, scissors against each of his neigh-
bors; his total payoff is the sum of the payoffs in these sep-
arate games, so that the maximum payoff per player is 3.
This game has no pure strategy equilibria; thus, we need to
choose a finer discretization in order to achieve reasonable
results. Fig. 2(a),(b) shows the running times and equilibria
quality for each of the three algorithms. Cost minimization
was run with a grid density of 0.2 (i.e., the allowable strate-
gies all have components that are multiples of 0.2). Since
each player has three possible actions, the resulting grid has
21 strategies per player. The hybrid algorithm was run start-
ing from the strategy computed by hill-climbing. The nearby
area was then discretized so as to have 6 strategies per player
within a region of size roughly .05 around the current equi-
librium. We ran the hybrid as described above until the total
size is less than .00001.

Each algorithm appears to scale approximately linearly
with the number of nodes, as expected. Given that the num-
ber of strategies used for the hybrid is less than that used
for the actual variable elimination, it is not surprising that
cost minimization takes considerably longer than the hybrid.
The equilibrium error is uniformly low for cost minimiza-
tion; this is not surprising as, in this game, the uniform strat-
egy (1/3, 1/3, 1/3) is always an equilibrium. The quality
of the equilibria produced by all three algorithms is fairly
good, with a worst ε value of about 10% of the maximum
payoffs in the game. The error of the equilibria produced
by hill climbing grows with the game size, a consequence
of the fact that the hill-climbing search is over a higher-
dimensional space. Somewhat surprising is the extent to
which the hybrid approach improves the quality of the equi-
libria, at least for this type of game.

We also tested the algorithms on symmetric 3-action
games structured as a ring of rings, with payoffs chosen at
random from [0, 1]. The results are shown in Fig. 2(c),(d).
For the graph shown, we varied the number of nodes on the
internal ring; each node on the inner ring is also part of an
outer ring of size 20. Thus, the games contain as many as
400 nodes. For this set of results, we set the gridding den-
sity for cost minimization to 0.5, so there were 6 strategies
per node. The reduced strategy space explains why the algo-
rithm is so much faster than the refinement hybrid: each step
of the hybrid is similar to an entire run of cost minimization
(for these graphs, the hybrid is run approximately 40 times).

The errors obtained by the different algorithms are some-
what different in the case of rings of rings. Here, refinement
only improves accuracy by about a factor of 2, while cost
minimization is quite accurate. In order to explain this, we
tested simple rings, using cost minimization over only pure
strategies. Based on 1000 trial runs, for 20 player rings, the
best pure strategy equilibria has ε = 0 23.9% of the time;
between ε ∈ [0, .05] 45.8% of the time; ε ∈ [.05, .1] 25.7%;
and ε > .1 4.6%. We also tested (but did not include results
for) undirected trees with random payoffs. Again, using a
low gridding density for variable elimination, we obtained
results similar to those for rings of rings. Thus, it appears
that, with random payoffs, fairly good equilibria often exist
in pure strategies.

Clearly the discretization density of cost minimization has
a huge effect on the speed of the algorithm. Fig. 2(e)&(f)
shows the results for CMP using different discretization lev-
els as well as for hill climbing, over simple rings of various
sizes with random payoffs in [0,1]. The level of discretiza-
tion impacts performance a great deal, and also noticeably
affects solution quality. Somewhat surprisingly, even the
lowest level of discretization performs better than hill climb-
ing. This is not in general the case, as variable elimination
may be intractable for games with high graph width.

In order to get an idea of the extent of the improvement
relative to standard, unstructured approaches, we converted
each graphical game into a corresponding strategic form
game (by duplicating entries), which expands the size of the
game exponentially. We then attempted to find equilibria us-
ing the available game solving package Gambit1 specifically
using the QRE algorithm with default settings. (QRE seems
to be the fastest among the algorithms implemented in Gam-
bit). For a road length of 1 (a 2-player game) QRE finds an
equilibrium in 20 seconds; for a road of length 2, QRE takes
7min56sec; and for a road of length 3, about 2h30min.

Overall, the results indicate that these algorithms can find
good approximate equilibria in a reasonable amount of time.
Cost minimization has a much lower variance in running
time, but can get expensive when the grid size is large. The
quality of the answers obtained even with coarse grids are
often surprisingly good, particularly when random payoffs
are used so that there are pure strategy profiles that are al-
most equilibria. Our algorithms provide us with a criterion
for evaluating the error of a candidate solution, allowing us
to refine our answer when the error is too large. In such
cases, the hybrid algorithm is often a good approach.

1
http://www.hss.caltech.edu/gambit/Gambit.html.
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(a) (c) (e)

(b) (d) (f)

Figure 2: Comparison of Algorithms as number of players varies: Dashed for hill climbing, solid for cost minimization, dotted
for refinement. Road games: (a) running time; (b) equilibrium error. Ring of rings: (c) running time; (d) equilibrium error.
CMP on single ring with different grid density and hill climbing in simple ring. Dashed line indicates hill climbing, solid lines
with squares, diamonds, triangles correspond to grid densities of 1.0 (3 strategies), 0.5 (6 strategies), and 0.333 (10 strategies)
respectively. (e) running time; (f) equilibrium error.

7 Conclusions

In this paper, we considered the problem of collaboratively
finding approximate equilibria in a situation involving multi-
ple interacting agents. We focused on the idea of exploiting
the locality of interaction between agents, using graphical
games as an explicit representation of this structure. We
provided two algorithms that exploit this structure to sup-
port solution algorithms that are both computationally effi-
cient and utilize distributed collaborative computation that
respects the “lines of communication” between the agents.
Both strongly use the locality of regret: hill climbing in
the score function, and CSP in the formulation of the con-
straints. We showed that our techniques provide good solu-
tions for games with a very large number of agents.

We believe that our techniques can be applied much more
broadly; in particular, we plan to apply them in the much
richer multi-agent influence diagram framework of (Koller
& Milch 2001), which provides a structured representation,
similar to graphical games, but for substantially more com-
plex situations involving time and information.
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