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Abstract. Fine-Grain MPI (FG-MPI) supports function-level paral-
lelism while staying within the MPI process model. It provides a runtime
that is directly integrated into the MPICH2 middleware and uses light-
weight coroutines to implement an MPI-aware scheduler. Our key ob-
servation is that having multiple MPI processes per OS-process, with
a runtime scheduler can be used to simplify MPI programming and
achieve performance without adding complexity to the program. The
performance part of the program is now outside of the specification of
the program in the runtime where performance can be tuned with few,
if any, changes to the code.

Keywords: MPICH2, Function-level Parallelism, Fine-Grain, MPI-aware
Scheduler, MPI Runtime.

1 Introduction

MPI has the reputation of being difficult to program [6]. Although some of the
difficulties may be inherent to message passing, many of the popular parallel
languages used on multicore processors also use message-passing. However, one
notable difference between MPI and these parallel languages is the granularity
of MPI processes. Processes in MPI are coarse grain and programmed to make it
easy to match the number of processes to the available hardware, whereas many
parallel languages support finer grain to match processes to the structure of the
program. By fine grain we mean function-level parallelism where processes may
have tens of instructions rather than the thousands of instructions in coarse grain
program-level parallelism. One can have function-size programs in MPI but it
is not done because over-subscribing processes to nodes is inefficient due to the
context switch time between OS-level processes and because the OS scheduler is
unaware of the cooperative nature of the processes. There are also OS limitations,
even with lighter-weight OS processes, when there are too many processes on a
node.

We introduced Fine-Grain MPI (FG-MPI) to investigate the extent to which
function-level parallelism can be supported while staying within the MPI pro-
cess model [8,9]. To this end, FG-MPI augments the MPI middleware inside
each OS-process with a runtime that supports hundreds and thousands of finer-
grain MPI processes inside an OS-process. There are more MPI processes than
cores and we still can match the number of OS-processes to number of cores to
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maximize the parallelism, but now we can map multiple MPI processes to each
OS-process. There is still “over-subscription”, but it is now the FG-MPI runtime
and scheduler that is managing the MPI processes inside each OS-process. This
makes it possible to support the added concurrency that results when functions
are processes.

When writing FG-MPI programs we noticed that we did not need to rely as
much onnon-blocking communication.Non-blocking communicationmakes it pos-
sible to have multiple outstanding messages that increases asynchrony and allows
one to overlap communication with computation. This can reduce the idle time
that results when processes are stuck waiting for a message to arrive. To avoid
idle time the programmer tries to post messages as soon as possible, overlap that
with some computation while periodically checking for new messages to process
as well as posting new ones. Optimizing the messaging in this manner to reduce
idle time and increase “slackness” breaks the cohesion of the program structure,
adds complexity, and is less portable with respect to performance. Our key ob-
servation is that having multiple processes per OS-process with an MPI-aware
scheduler provides an alternativeway to achieve the performancewithout the com-
plications to the program.The runtime scheduler acts as an abstractiondevice that
the programmer can use to replace the hand-coded message scheduling parts of
their program.As a result, the program is easier to understand and the performance-
oriented aspect is outside of the specification of the program in the runtime where
performance can be tuned with few, if any, changes to the code.

In the paper we describe two main design issues in FG-MPI that made it
possible to support this MPI runtime model: (a) the use of coroutines and non-
preemptive threads, (b) the integration of FG-MPI into existing middleware
(MPICH2) rather than a layer running on top of MPI (Section 2). In Section 3, we
describe the design of the scheduler and how it interacts with the MPI progress
engine. Finally in Section 4, we give an example of using FG-MPI to re-structure
a typical use of non-blocking communication and also compare the performance
of the scheduler one to the hand-coded one.

Our hope is that the FG-MPI design and its proof of concept in a working
system may provide a way for other MPI implementations to augment MPI
to support this fine-grain model. Secondly we hope, by way of illustration in
this paper, that extending MPI’s runtime model to fine-grain can make MPI
programming easier and a better overall solution that can seamlessly scale from
multicore inside the box to multiple machines and cores outside of the box.

2 FG-MPI Runtime

One major decision in the design of FG-MPI and the support of multiple MPI
processes within an OS-process was the use of coroutines as a basis for non-
preemptive scheduling of the processes.1 Our system uses a modular approach
and is capable of making use of different coroutine libraries through a con-
figuration option. We currently support Toernig’s coroutine library, and PCL

1 MPI processes sharing the same address space are referred to as collocated processes.
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(Portable Coroutine Library). Capriccio [13] and other systems had shown that
coroutine-based threads have fast context-switching time, low communication
and synchronization overhead and scale to support large numbers of threads.
The benefits of coroutines at the language level are well-known and they are
supported in many languages (Python, Lua) including parallel languages used
on multicore (Erlang, Go Language). Cooperative multithreading can be diffi-
cult in general but for MPI the messaging-passing and calls to the middleware
provide a natural yield point.

With regards to implementation, having non-preemptive processes was cru-
cial. Since only one collocated process is active, it was possible to share the
middleware without using locks and ensure that the middleware is in a con-
sistent state between scheduling points. There have been previous attempts at
pre-emptive thread-based MPI implementations [5,11], but they have remained
largely incomplete due to the complexity of managing synchronization primi-
tives and challenges in scaling. The challenges and overheads of thread-safety of
MPI middleware are well known [2,12] and it is an important problem but the
use of coroutines circumvents the need for locks to support multitasking and the
guaranteed atomicity made it easier to reason about the state of the middleware.

The second major design decision was integration of FG-MPI directly into
MPI rather than an attempt to design a new implementation of MPI or to use
coroutines and layer it on top of MPI. Adaptive MPI is an implementation of
MPI that supports fine-grain processes, however, AMPI [7] implements the MPI
library on top of Charm++ rather than directly into an existing MPI. This re-
quires their own implementation of MPI and the Charm++ runtime also needs
a communication layer. This can result in an MPI sandwich, with MPI running
on top of Charm++ which in turn runs over MPI. In FG-MPI, all MPI commu-
nication directly invokes the corresponding lower level MPI implementation of
the call in the middleware, whereas in the layered approach only a subset of the
MPI communication in the lowest layer is used. More importantly, a scheduler
layered on top of MPI would be MPI-aware but operates independently from the
lower level MPI progress engine. The result is multiple independent control loops
and schedulers, where it is difficult to coordinate their activities with regards to
the scheduling of asynchronous and synchronous messages.

We integrated FG-MPI into MPI by extending the MPICH2 middleware.
Figure 1 shows the integration of FG-MPI in the layered modular architecture of
MPICH2. The MPICH2 ADI3 layer represents the data structures and functions
that are provided by an implementation. Representation in this layer is in terms
of MPI requests/messages and the functions for manipulating those requests.
One of the main considerations in FG-MPI was to support large amounts of
concurrency through scalable sharing of MPI structures among the coroutines.
To this end, a large number of MPI storage structures such as posted receive
queues, unexpected messages queues, communicator and request pools are shared
by the coroutines (see Figure 2). Other structures that are integral to MPI are
communicators and groups and their scalability and sharing is essential to FG-
MPI. In past work [8] we discuss in detail how we share these structures and
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Fig. 1. FG-MPI Architecture. Shading shows the layers of MPICH2 that were aug-
mented in the FG-MPI implementation. Figure adapted from [1].

scale to hundreds and thousands of MPI processes. FG-MPI uses the Nemesis
CH3 channel, which is a highly optimized communication subsystem that pro-
vides multi-network support [3] including fast shared memory communication
between processes on the same node.

MPICH2 is optimized for OS-process level communication, and one interesting
problem that arose as a result was that the message match header did not need to
contain the rank of the destination process, as it is implicit from the OS-process
identifier. In FG-MPI, since there may be multiple MPI processes inside the
OS-process, the destination rank of the process is necessary to de-multiplex the
message from the OS-process network point of attachment to the MPI process.
As a result we had to extend the message match header as well as increase the
packet header size to include the destination rank. Communication in Nemesis
is tuned for better cache performance and although we have not done a low-level
comparison we have not noticed any performance differences at the application
layer as a result of our extension.

Inside the middleware we maintain two separate tables: (a) connection rout-
ing table (point of attachments) and (b) process name table (MPI COMM WORLD

ranks).2 This separates the namespace of the point of attachment from that of
the ranks. We emphasize the separation of these two namespaces because it is
an example of the importance of naming in a distributed system [10]. Separating
the namespace for the point of attachment and ranks is required to de-couple
MPI processes from the hardware. Although we have not yet considered process
mobility, it greatly simplifies that as well. The issue of naming also arises with
respect to mapping where it is easier to map processes when the rank is used as
a semantically pure identifier rather than an integer range from 0 to N − 1.

Based on this experience we believe this type of integration is possible with
other implementations of MPI. Finally note that FG-MPI extends MPICH2 and
the FG-MPI runtime is only set-up when there is more than one MPI process in
an OS-process.

2 We do not support MPI-2 dynamics.
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Fig. 2. FG-MPI Runtime System. Shaded regions show the middleware structures
shared among the collocated MPI processes.

3 Integrated MPI Scheduler

Wemaintain a run queue and a blocked queue for collocated MPI processes inside
each OS-process. Scheduling events inside the middleware invoke the scheduler,
which according to the scheduling policy, blocks the current process or adds it
back onto the run queue, and chooses the next process to resume. We provide a
scheduler framework that allows us to add new policies as the need may arise.
The selection of the scheduler is provided as a command line option to mpiexec.
The most interesting aspect of the scheduler is its integration into the MPI
middleware and interaction with events occurring inside the progress engine.

As Figure 2 shows, many of the key data structures in the middleware, such as
the message queues, request pools and communicator pool, are shared among all
of the collocated MPI processes. In FG-MPI, communication can be both internal
(among collocated processes) and external (between non-collocated processes)
and supports the different types of MPI calls such as blocking, non-blocking etc.
When a process makes an MPI call it will progress its request as far as possible.
For example, if it is a send request, it may match a pre-posted receive from
another collocated process and complete its call, or it may initiate a communi-
cation transfer over the external link to a receiver in another address space. A
message arriving at the message matching layer may complete a pending request
or this may be an unexpected message, which will be queued until a matching
receive request arrives. Most importantly, however, since the state of the progress



178 H. Kamal and A. Wagner

engine is shared, MPI processes can cooperatively progress pending messages for
other collocated processes and notify the scheduler. The scheduler, based on the
notification may add processes to the run queue.

Another example of cooperation is that of a pre-posted receive request for
which a ready-to-send (RTS) arrives to initiate the long message handshake.
It is possible that the MPI process, which posted that receive request, is not
currently executing, but a clear-to-send (CTS) can be sent by the currently
executing process on its behalf.

Internal communication is optimized to take advantage of a single address space,
as well it is an opportunity for the scheduler, depending on the type of communica-
tion, to block one process until the communication can be completed after which
both processes can proceed. For collocated processes, the scheduler follows a nat-
ural order where a send message schedules the corresponding receive process that
can continue to progress the message chain. The communication among collocated
processes involves a single memcpy, avoiding any intermediate system copies. Simi-
larly for external events, once a message is received and completed the correspond-
ing MPI process is scheduled to continue advancing the computation. As well, for
collectives such as barrier, that last collocated process completing the barrier can
gang-schedule all of the processes in the barrier since they can all proceed.

In many cases we have found that even a very basic round-robin (RR) sched-
uler which keeps all the processes on the run queue is adequate [9]. Because the
scheduling overhead is relatively small, as long as the collocated processes are
easy to keep busy, the RR scheduler works well. One more additional advan-
tage of the RR scheduler is that it is deterministic and gives more predictable
executions. This is one of the nice properties of introducing a scheduler over
preemptive threads (either pthreads or OS-threads) where the programmer has
less control on when processes are de-scheduled. The deterministic property of
RR has also proven useful as a tool for debugging programs.

It is not sufficient to have only RR since there are simple cases where RR
does extremely poorly. For example, consider the simple ring program, the for-
ward communication of messages works well when it is the same order as the
scheduling order, however, communication in the reverse direction is slow due to
re-scheduling delay of all of the processes on the run queue. This was our mo-
tivation for introducing a scheduling framework rather than one or more fixed
policies. The policy ultimately depends on the application where ideally pro-
cesses on the critical execution path are scheduled first. Finally, note that the
scheduling policy is local to an OS-process and does not have to be global.

One interesting problem that arises with the scheduler, that allows blocking
of MPI processes, is deadlock. Deadlock can occur, for instance, when all of the
collocated processes are blocked waiting for a external event. One alternative is
simply not to block all processes or to simply keep one or more processes on the
queue. Deciding on whether or not to block a process depending on the state of
other collocated processes is complicated. There are a large number of MPI calls
and different scenarios that would need to be considered and analyzed. However,
there is a simple very scalable solution to this problem.
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We introduced a progress coroutine in our runtime that comes into existence
the first time an MPI process blocks on a receive. Once created, the progress
coroutine remains on the run queue. When called, this coroutine executes the
progress-loop in the middleware and progresses pending incoming and outgoing
messages. Whenever there is a receive that could be matched by a message from
a remote process it ensures that we poll the external link for more data and on
arrival of such a message wakes up the blocked process. As well, as discussed
above, a clear-to-send (CTS) may be sent by the progress coroutine for a pre-
posted receive. A progress coroutine avoids the checking that would have been
necessary when blocking processes and also provides an easy way to measure the
idle time and “slackness” during runtime.

4 Programmability and Non-blocking Communication

As mentioned in Section 1, non-blocking communication adds to the program-
ming complexity of MPI programs. Consider the program in Listing 1.1 showing
a simple use of non-blocking communication, which tries to post as many mes-
sages as possible to keep the process busy.

int main ( int argc , char ∗argv [ ] )
{ . . .

MPI Irecv ( . . . , r e cvRequests ( 2 ) ) ;
do {

compute loca l ( . . . ) ;
MPI Waitany (2 , recvRequests , . . . , r e cvStatus ) ;
switch ( recvStatus−>tag ) {
case tag1 :

compute A ( ) ;
MPI Send ( . . . ) ;
MPI Irecv ( . . . , r e cvRequests ( 1 ) ) ;

case tag2 :
compute B ( ) ;
MPI Send ( . . . ) ;
MPI Irecv ( . . . , r e cvRequests ( 1 ) ) ;

}
}while ( . . . ) ;

. . .
}

Listing 1.1. Scheduling communication and computation by non-blocking operations

As previously described there are three main parts to the program: (a) allocating
and managing message request buffers, (b) checking for message completions and
then processing the messages, (c) a compute part that may or may not depend
on the messages send and received. What are complexities in the above listing:

(i) The compute and communication parts of the code are interleaved and the
programmer needs to balance the computation with the polling of the link
via the middleware.

(ii) The user needs to manage the request buffers for the multiple outstanding
messages. The programmer also needs to be aware of all the different types
of outstanding messages and how messages are matched. This often results
in the use of MPI ANY SOURCE and MPI ANY TAG.
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As shown in Listing 1.2 with FG-MPI we can re-organize the program into
three smaller processes: compute local(), process A() and process B(). The
FGmpiexec call binds the MPI process ranks to concurrent functions through a
user-specified binding func and initiates the runtime.

int main ( int argc , char ∗argv [ ] ){
FGmpiexec(&argc , &argv , &b ind ing func ) ;
return ( 0 ) ;

}
int proce ss A ( int argc , char∗∗ argv ){

do{
MPI Recv ( . . . , tag1 , . . . ) ;
compute A ( ) ;
MPI Send ( . . . ) ;

}while ( . . . ) ;
}
int proce ss B ( int argc , char∗∗ argv ){

do{
MPI Recv ( . . . , tag2 , . . . ) ;
compute B ( ) ;
MPI Send ( . . . ) ;

}while ( . . ) ;
}
int compute loca l ( int argc , char∗∗ argv ){

do{
. . .
i f ( . . . ) MPIX Yield ( ) ;

}while ( . . . ) ;
}

Listing 1.2. Defining MPI processes as concurrent functions all mapped to the same
OS-process. Each MPI process also calls MPI Init and MPI Finalize.

As opposed to Listing 1.1, there are no non-blocking requests and associated
structures in Listing 1.2 and no need to remember that the posted requests have
to be checked for completion. Listing 1.1 has requests that are global over the
entire program and no clear demarcation between different types of requests.
FG-MPI places all of corresponding computation and communication code per-
taining to one activity into one process. This makes it easier to read and easier
to change the code.

The purpose of the control loop in Listing 1.1 is to schedule different parts
of the code based on the message events from MPI Waitany(). In the FG-MPI
version of the code there is no MPI Waitany(). The control loop is now handled
by the FG-MPI scheduler rather than having to be hand-coded into the program.
In Listing 1.2, should process A() now require we receive two messages rather
than one, we only need to add another MPI Recv(), however, for Listing 1.1
there are questions as to whether we need to introduce another case and tag and
how it might be matched.

In both listings it is important that the compute local() code invoke the
progress engine sufficiently often to not unduly delay the remaining computation
and communication. In Listing 1.2, MPIX Yield() can be appropriately placed
when needed to provide an explicit de-scheduling point that automatically re-
sumes at the proper place. Changing the rate at which the network is polled in
Listing 1.1 requires reorganizing the computation, which is not as easy.
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Fig. 3. Performance comparison of non-blocking code using MPI Waitany with
functional-level concurrency in FG-MPI. Number of OS-Processes is same in both
cases. In FG-MPI, the MPI processes are evenly distributed across the OS-Processes.

Expressing additional concurrency in the program gives us the opportunity
to exploit it, however, it does require structuring the code and mapping MPI
processes to functions as we now have the MPMD (Multiple Program Multiple
Data) process model. We have two levels of mapping in FG-MPI. The first level
specifies how OS-processes are mapped to the cores and nodes and the number
of MPI processes mapped to each OS-process. This is done through an nfg

(number of f ine-grain) flag to the standard mpiexec command. The second level
defines MPI processes as functions and this is done through a call to FGmpiexec

in main(). Although we have an extra-level of mapping, this is outside of the
application code and gives us more flexibility in mapping to OS-processes and
nodes. As well, we can match the OS-processes to the cores to minimize the
effect of OS-noise and not rely on the OS scheduler, which introduces yet another
control loop that is unaware of the cooperative nature of MPI processes. Finally,
FG-MPI extends MPI so the programmer can manage as little or as much of the
non-blocking communication as they wish.

We created a benchmark program, similar to the codes in Listings 1.1 and 1.2,
to evaluate the overhead of introducing more MPI processes in FG-MPI. This
benchmark introduced asynchrony on a much larger scale than shown in the two
listings and the total amount of computation and communication increased with
the number of OS-processes. In Figure 3, we compare the FG-MPI code with
multiple MPI processes per OS-process with the non-blocking MPI code. Our
results show that even with the introduction of more than 24,000 fine-grain MPI
processes compared to 156 coarse-grain processes, the performance remains the
same. As we increase beyond this to more than 43,000 processes, there is a small
overhead of 8.7%. A real-world example from the CoSMoS [4] project that uses
FG-MPI and models emergent behaviour through thousands of MPI processes
was presented in past work [9].
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5 Conclusions

Our runtime scheduler, through direct integration in MPICH2, is reactive to
MPI events occurring inside the progress engine and its light-weight design en-
ables definition of MPI processes as functions that can be flexibly mapped to
OS-processes, cores and nodes. This relieves the programmer from scheduling
computation and communication inside the application and focus on “what”
needs to be scheduled rather than “how” to manage it.
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