
FG-MPI: Fine-Grain MPI

User Guide

Humaira Kamal, Alan Wagner

The University of British Columbia

Email: {kamal,wagner}@cs.ubc.ca

May 5, 2014
Version: 1.0

Contents

1 Introduction 2

2 Installation 2

2.1 Installing from the binary package . 2
2.2 Installing from source code . 2

3 Mailing List 3

4 Writing FG-MPI Programs 3

4.1 A simple HelloWorld program . 4
4.2 Process deployment . 5

5 Example of a Program Using FG-MPI 6

5.1 A quick checklist in writing FG-MPI programs . 8

6 Limitations 8

7 Issues 9

7.1 Known Issues . 9
7.2 Unknown Issues . 9

8 Appendix 10

8.1 Prime sieve code example . 10
8.2 Routines specific to FG-MPI . 13

9 License 15

10 Acknowledgements 15

1

1 Introduction

Fine-Grain MPI (FG-MPI) [5, 6] extends the execution model of Message Passing Interface (MPI) to
allow for interleaved execution of multiple concurrent MPI processes inside an OS-process. FG-MPI
is integrated into the MPICH middleware and has a light-weight design based on coroutines that
can scale to millions of MPI processes on a node or across nodes on a cluster. FG-MPI provides the
ability to take advantage of finer-grain parallelism available on today’s multicore systems, while
maintaining MPI’s rich support for communication inside clusters. Its flexible process mapping
allows granularity of MPI programs to be adjusted through the command-line to better fit the
cache leading to improved performance. FG-MPI supports function-level concurrency which enables
design of novel algorithms and techniques to achieve scalable performance and match the number
of processes to the problem rather than the hardware.

2 Installation

2.1 Installing from the binary package

Download the Ubuntu binary package and install it by:

sudo dpkg --install fgmpi 1.0.0-1 amd64.deb

The above requires root access and will install in /usr/bin. Please be aware that it may overwrite
an existing version of mpich in /usr/bin. If you wish to install in a custom directory then see
“Installing from source code” (Section 2.2).

To list the package and check its status:
dpkg -l | grep fgmpi

To un-install the binary package, do the following:
sudo dpkg --remove fgmpi

and to purge the package completely:
sudo dpkg --purge fgmpi

2.2 Installing from source code

The installation steps for FG-MPI are the same as those listed in MPICH installation guide. They
are summarized below.

• Download the source code tar file from here.

• Extract the tar file.

tar xvzf fgmpi 1.0.0.tar.gz

Assume that the files are extracted in /home/user/fgmpi-src

• Create your install directory. Assuming that you wish to install in /home/user/fgmpi-install.

mkdir fgmpi-install

2

http://www.mpich.org/static/downloads/3.1/mpich-3.1-installguide.pdf
http://www.cs.ubc.ca/~humaira/code/fgmpi_1.0.0.tar.gz

• Create your build directory. Assuming that it is /home/user/fgmpi-build

mkdir fgmpi-build

cd fgmpi-build

• Specify your configure options. A basic configuration is:

/home/user/fgmpi-src/configure --prefix=/home/user/fgmpi-install

Other configure options that work with the mpich2-1.0.8p1 release may also be used with
FG-MPI.

• Build and install FG-MPI.

make

make install

• Update your path settings to add /home/user/fgmpi-install and do a quick installation check
by:

which mpicc

which mpiexec

By default, FG-MPI uses the hydra process manager and supports many, but not all, of the
mpiexec options applicable to mpich2-1.0.8p1. For help type:

mpiexec --help

3 Mailing List

A discussion mailing list is available for FG-MPI. In order to subscribe to it please send an email
to
majordomo@cs.ubc.ca containing the single line:

subscribe fgmpi-discuss

in the body of the email. There should be no signatures or HTML in the email. You will receive
an email asking for confirmation that the subscription request was made by you. Please follow
the instructions in that email and after that emails can be sent to fgmpi-discuss@cs.ubc.ca.
Welcome to the FG-MPI discussion group!

4 Writing FG-MPI Programs

The MPI routines used in writing an FG-MPI program are the same used in any standard MPI
program, without any special prefixes or suffixes. The only additional information required is at
MPI environment initiation time to specify the mapping of the co-located fine-grain MPI processes
to the functions they will be executing. Mapping of the MPI processes to functions is done through
a call to a function called FGmpiexec, as discussed in Section 4.1 below.

3

4.1 A simple HelloWorld program

We’ll start with a simple SPMD program where all the MPI processes are mapped to the same
helloworld function.

Listing 1 contains a boilerplate that is inserted at the top of the listing and a helloworld

function. This helloworld function looks exactly like a main function in a standard MPI pro-
gram. The boilerplate contains two user-defined functions; binding func and map lookup.
The binding func function takes the MPI COMM WORLD rank as input and maps it to the func-
tion pointer that the corresponding MPI process will be executing. The map lookup function
takes a string as its third parameter and uses it to select a binding function. The purpose of the
map lookup and binding func combination is to allow the ability to determine mapping of
processes at runtime in addition to compiled mappers. This allows experimentation with different
bindings of the MPI processes to functions without re-writing and re-compiling the program. Since
the mapping is localized to each OS-process, it is also possible to specify a different binding function
for each OS-process.
FGmpiexec initializes the FG-MPI runtime environment and assigns functions to the correspond-
ing MPI processes.

Listing 1: A simple SPMD FG-MPI program.

#include <stdio.h>

#include "mpi.h"

/******* FG-MPI Boilerplate begin *********/

#include "fgmpi.h"

int helloworld(int argc, char** argv); /*forward declaration*/

FG_ProcessPtr_t binding_func(int argc, char** argv, int rank){

return (&helloworld);

}

FG_MapPtr_t map_lookup(int argc, char** argv, char* str){

return (&binding_func);

}

int main(int argc, char *argv[])

{

FGmpiexec(&argc, &argv, &map_lookup);

return (0);

}

/******* FG-MPI Boilerplate end *********/

int helloworld(int argc, char** argv)

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello! I am rank %d of %d\n", rank, size);

MPI_Finalize();

return(0);

}

4

4.2 Process deployment

mpiexec is a common command-line utility for launching MPI processes and the mapping of
processes to cores and machines can be flexibly configured through a hostfile.

mpiexec -f hostfile -n Y program

Support for MPMD (Multiple Program Multiple Data) is through the colon notation along with
mpiexec to assign different executables to different processes.

mpiexec -f hostfile -n Y prog1 : -n Z prog2

FG-MPI adds another dimension by mapping multiple MPI processes to OS-processes. The
user can use mpiexec with the nfg flag to specify the number of MPI processes per OS-process
in addition to the n flag specifying the number of OS-processes.
For example, the command:

mpiexec -f hostfile -nfg X -n Y program

starts up X × Y MPI processes with X MPI processes inside each of the Y OS-processes. In the
current implementation, the co-located MPI processes are assigned ranks in consecutive blocks. In
the above example, the first OS-process will contain MPI processes of ranks [0 ... X − 1] and the
next one will have processes with ranks [X ... 2X−1] and so on. It is possible to specify a different
number of MPI processes in each OS-process using the colon notation.

mpiexec -nfg T -n U prog1 : -nfg V -n W prog2

: -nfg X -n Y prog3

One important feature of this approach is the flexibility of mapping co-located MPI processes
among OS-processes, from the one extreme of executing them all inside a single OS-process to
the other extreme of having only one MPI process per OS-process. The number of MPI processes
that can be launched per OS-process is limited only by the available memory on the system. The
mpiexec command is backward compatible, so omitting the nfg parameter equates one MPI
process with one OS-process.

The second level of mapping introduces new opportunities for executing MPMD programs,
where each of the co-located MPI processes invoke functions instead of main programs. We treat
SPMD as a special case of the MPMD program, where each process invokes the same function.
The boilerplate code in Listing 1 gives an example of a simple SPMD FG-MPI program. However,
the real flexibility of mapping comes from the ability to assign different functions for each MPI
process. Listing 2 gives a simple MPMD example where the odd numbered ranks are mapped to
ProcessA function and the rest to ProcessB function.

The str parameter of the map lookup function is not being used in the examples in Listings 1
and 2 and a single binding func is returned. The str parameter can be specified on the mpiexec
command line to allow selection of different binding functions at runtime.

5

Listing 2: An example of a simple MPMD mapping

/******* FG-MPI Boilerplate begin *********/

#include "fgmpi.h"

int ProcessA(int argc, char** argv); /*forward declaration*/

int ProcessB(int argc, char** argv); /*forward declaration*/

FG_ProcessPtr_t binding_func(int argc, char** argv, int rank){

if (rank % 2) return (&ProcessA);

else return (&ProcessB);

}

FG_MapPtr_t map_lookup(int argc, char** argv, char* str){

return (&binding_func);

}

int main(int argc, char *argv[])

{

FGmpiexec(&argc, &argv, &map_lookup);

return (0);

}

/******* FG-MPI Boilerplate end *********/

All the functions invoked by the MPI processes e.g., helloworld in Listing 1 and ProcessA
and ProcessB in Listing 2, are written as regular MPI applications beginning with MPI Init and
ending with MPI Finalize routines. The argc and argv arguments provided to these functions
are the same that are passed to the main function in a MPI program. In Section 5, we present the
complete code of a small application to demonstrate writing a program using FG-MPI.

5 Example of a Program Using FG-MPI

In this section we present the code of a small application to demonstrate writing a program using
FG-MPI. This application creates the sieve of Eratosthenes by composing several fine-grain MPI
processes to form a pipeline. A pipeline is a commonly used pattern in process-oriented environ-
ments for creating process networks within programs and is also used in dataflow applications. This
application demonstrates the use of two different mapping functions for composing the pipeline of
processes. These mappings can be selected on the command-line to allow experimentation with
load-balancing of processes without recompiling the code.

generator sieveElement sieveElement sieveElement lastElement

Figure 1: A pipeline of processes, where numbers generated by the generator are streamed
through the chain to be processed by each element.

As Figure 1 shows we have three types of MPI processes:

1. A generator process that generates odd numbers that are passed down the pipeline. The
generator keeps the prime number 2 for itself.

6

2. sieveElement process that keeps the first prime number it sees and filters the remaining
numbers by either discarding them or passing them to the next process in the chain.

3. A lastElement process that terminates the prime number generation at the end of the
sieve.

The number of prime numbers generated is equal to the length of the pipeline (i.e., the total number
of MPI processes in this application). For example, the following command will generate 40 prime
numbers.

mpiexec -nfg 10 -n 4 ./primeSieve

Listing 3 on page 10 shows the code for the three functions generator(), sieveElement() and
lastElement() bound to these processes. As discussed in Section 4.2 (page 5), map lookup

function takes a string as its third parameter and uses it to select a binding function. In this
example we provide two different binding functions:

1. sequential mapper that binds the generator to process rank 0, lastElement to the
highest rank in MPI COMM WORLD and the remaining processes are all of type sieveElement.
The pipeline is composed by specifying the previous and next neighbours of a process in the
chain (see who are my neighbors function on page 10). In this case we have a sequential
assignment where process of rank − 1 is the previous neighbour and process rank + 1 is the
next neighbour. Process rank i will generate the i + 1th prime number. Due to the packed
assignment of MPI process ranks inside OS-processes, this mapping is not the most efficient
since the processes appearing later in the pipeline do not become active until a large number
of primes are found. The random mapper binding function addresses this problem.

2. random mapper uses a technique similar to the shuffling of a deck of cards to create a random
chain sequence. It uses two user-defined parameters (seed and cuts) to randomize the next
and previous neighbours of a process. This allows a more even distribution among processes
and the parameters can be used for experimentation with load-balancing.

We also define two special constants MAP INIT ACTION and MAP FINALIZE ACTION that
can be used inside the binding functions. MAP INIT ACTION can be used by the user for any
initialization of structures or actions prior to the actual binding of functions to process ranks. An
example of this is in the random mapper binding function, where MAP INIT ACTION is used to
allocate a temporary array for storing the random permutation of ranks that is later read by all
the newly spawned processes when they start executing and call the who are my neighbors()

function. MAP FINALIZE ACTION can be used by the user in the binding function for any action
subsequent to the binding operation. Note that at this stage only the binding of functions to MPI
process ranks has been completed, but the processes have not executed yet.

The environment variable FGMAP is used to select a binding function on the mpiexec command
line. For example, the random function can be specified as follows.

mpiexec -nfg 10 -n 4 -genv FGMAP random ./primeSieve

<seed> <cuts>

Whereas, the following specifies the sequential binding function.

mpiexec -nfg 10 -n 4 -genv FGMAP seq ./primeSieve

7

It is possible to specify different scheduling policies in a similar manner. For example, FG-MPI
implements receive-side blocking where a receiver process is blocked from execution until a matching
message is received [2]. The blocking scheduler can be specified as follows (the round-robin (rr) is
the default scheduler if none is specified).

mpiexec -nfg 10 -n 4 -genv SCHEDULER block -genv FGMAP

random ./primeSieve <seed> <cuts>

5.1 A quick checklist in writing FG-MPI programs

• Remove any global or static variables in the program that are not read-only.

• Each fine-grain process should begin with MPI Init() and end with MPI Finalize().

• Do not call exit() at the end of the functions mapped to each fine-grain MPI process as
that will result in premature termination of the program. Use return() instead.

6 Limitations

FG-MPI is a research project and is not a complete implementation of the MPI Standard. The
current release is based off MPICH2 release mpich2-1.0.8p1 with some modules updated from
mpich2-1.2.1. FG-MPI supports the core MPI routines used for point-to-point communications,
collective operations and intra-communicator operations. FG-MPI does not currently support inter-
communicators, dynamic process management functionality and remote memory access operations.

We are currently working on a new version of FG-MPI based on the latest MPICH 3.1 version.
Since the release of mpich2-1.0.8p1 there have been several improvements to the MPICH middleware
in terms of scalability, communication algorithms and the MPI runtime environment and process
launching. We are integrating the existing FG-MPI functionality into the latest MPICH 3.1 version
to leverage these improvements and as well to be able to keep FG-MPI synchronized with MPICH
as it continues to evolve. We do not intent to enhance the current release of FG-MPI but rather
replace it with a newer version once we have integrated FG-MPI into MPICH 3.1. FG-MPI has
been used by a number of students at UBC for their research projects [7] and has proved to be
stable and robust. It has been predominately tested on Linux and Mac OS platforms. At present,
we offer best-effort email support for FG-MPI.

There are certain limitations that are inherent to implementation of MPI processes as user-level
non-preemptive threads that share the same address space. One limitation of multiple co-located
MPI processes is that global and static variables in the program can cause undesired side effects.
Such variables, are no longer private to the MPI process and now become shared variables with the
potential for read write conflicts. Since we are using non-preemptive threads access to these shared
variables will be atomic but the order in which they are accessed depends on the scheduler. Users
should be careful in using shared variables since the program is no longer purely message-passing
and it may limit the way in which processes are mapped to OS-processes.

In general one should remove the shared variables, unless they are read-only, from the code to
ensure the existing MPI program operates correctly in the FG-MPI runtime environment. The side
effects of using shared global variables and static variables is an issue that has been well studied
in other systems that allow multiple user-level threads per core. There are tools available for both
FORTRAN [8] and C [1] that re-factor the source code to privatize global variables.

One effect of non-preemptive scheduling is that a computationally intensive process may block
the progress of other co-located processes. We added a MPIX Yield routine that allows one process

8

to voluntarily yield to the scheduler. This can be used to balance the amount of computation and
communication in the application. Execution of blocking file I/O by one process is another operation
that can impede the progress of other co-located processes. One possibility is to structure the code
so that I/O system calls are placed in an OS-process of their own. This can help avoid blocking
other processes during I/O execution. Another scheme that is used for cooperative multitasking is
to wrap the I/O library function so that the process initiating the I/O operation yields control to
another process.

7 Issues

7.1 Known Issues

• MPI Group xxx routines are not supported in FG-MPI. We do, however, implement the
MPI Comm group routine. For translation of ranks of MPI processes in one communica-
tor to another, we provide an additional routine MPIX Comm translate ranks (see Ap-
pendix 8.2) that may be used instead of MPIX Group translate ranks. We discuss the
scalability issues with groups and our reasons for not supporting group operations in [3].

• Communicator operations such as creation, duplication etc. on MPI COMM SELF are not
currently supported.

• We have seen certain runs of the Cannon matrix multiplication program hang at times. We
believe this may be due to a communication race condition between OS-processes on a single
node in the current base version.

• The current release (fgmpi 1.0.0) of FG-MPI is based off mpich2-1.0.8p1, which uses all
to all communication during MPI environment initialization. This type of communication is
not scalable and has subsequently been fixed in later releases of MPICH. We ran into this
problem during our experiments on the WestGrid cluster [4] and had to patch it will a new
communication module. This patch is not part of the current release and therefore it will not
scale to the extent reported in [4].

• We have a vanilla implementation of MPI Finalize in that it executes a barrier to synchro-
nize among the processes and then returns. It needs to be extended to properly de-allocate
all the shared middleware structures. Since it is usually the last routine to be called before
the program terminates, it does not affect the program execution.

• Issues related to I/O are discussed in Section 6. We have not tested FG-MPI with MPI-IO /
ROMIO.

• FG-MPI does not currently support inter-communicators, dynamic process management func-
tionality and remote memory access operations.

7.2 Unknown Issues

• Interactions of pre-emptive threads e.g. pthreads with FG-MPI are not known. Our testing
has been limited to the case where only a single preemptive thread in an OS-process makes
calls to the MPI middleware.

If you notice any other issues with FG-MPI, please let us know and we’ll add them here.

9

8 Appendix

8.1 Prime sieve code example

Listing 3: An MPMD prime sieve program.

/∗∗
∗ S i e v e o f Era t o s t h ene s Prime Finder
∗ Alan Wagner 2011
∗ (1) s e q u e n t i a l mapper and (2) random mapper
∗ These mappers can be s e l e c t e d on command−l i n e , w i t h ou t
∗ re−comp i l i n g t h e code .
∗ Three f u n c t i o n s :
∗ g ene r a t o r () : g e n e r a t e s a l l odd numbers to pass i n t o t h e s i e v e
∗ s i e v eE l emen t () : k e ep s f i r s t number (a prime) , f i l t e r s t h e r e s t
∗ l a s tE l emen t () : t e rm ina t e s t h e s i e v e
∗ USAGE:
∗ mpiexec −n fg 4 −n 4 . / pr imeS ieve −− g en e r a t e s n f g ∗n primes (16)
∗
∗ FG−MPI use s a packed ass ignment , f o r example t h e p r e v i o u s use c r e a t e s
∗ 4 p r o c e s s e s a s s i g n e d as [0 . . 3] [4 . . 7] [8 . . 1 1] [1 2 . . 1 5] . The use above has
∗ 0 as t h e g ene ra t o r so t h a t p r o c e s s i g e n e r a t e s t h e i t h+1 prime .
∗ This mapping i s not t h e b e s t as n f g i s l a r g e s i n c e l a t e r p r o c e s s e s
∗ do not become a c t i v e u n t i l a f t e r a l a r g e number o f pr imes are found .
∗
∗ mpiexec −n fg X −n Y −genv FGMAP random ./ pr imeS ieve [seed] [c u t s]
∗
∗ i s a v e r s i o n t h a t c u t s t h e r i n g (as in a deck o f cards)
∗ t h e cha in to produce random l e n g t h s e quence s o f cha in to more e v en l y
∗ d i s t r i b u t e t h e p r o c e s s e s . Enough cu t s r e s u l t s in c omp l e t e l y random
∗ ass i gnment . These parameters a l l ow one to exper iment w i th t h e load−b a l an c i n g .
∗
∗ Other examples :
∗ mpiexec −n fg 100 −n 4 −genv SCHEDULER b l o c k −genv FGMAP random ./ pr imeS ieve [seed] [c u t s]
∗
∗ use s t h e r e c e i v e−s i d e b l o c k s c h e d u l e r (round−ro b in s c h e d u l e r (r r) i s
∗ t h e d e f a u l t s c h e d u l e r i f none i s s p e c i f i e d) .
∗
∗ TERMINATION: When the l a s t p r o c e s s r e c e i v e s t h e l a s t prime i t sends a STOP
∗ message to t h e g ene ra t o r t h a t then pa s s e s i t down the cha in t e rm ina t i n g t h e
∗ s i e v e p r o c e s s e s . A l l s t o p and th e l a s t p r o c e s s p r i n t s t h e t ime .
∗∗∗ ∗/
#inc lude <s t d i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t d i n t . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <a s s e r t . h>
#inc lude <mpi . h>

#de f i n e MAXINT 1000000
#de f i n e FALSE 0
#de f i n e TRUE !FALSE
#de f i n e DATATAG 111
#de f i n e STOP TAG 999

/∗ f o rward d e c l a r a t i o n s ∗/
i n t lastElement (i n t argc , char ∗∗argv) ;
i n t s ieveElement (i n t argc , char ∗∗argv) ;
i n t generator (i n t argc , char ∗∗argv) ;
i n t who are my neighbors (i n t rank , i n t s i z e , i n t ∗prevproc ptr , i n t ∗ nextproc pt r) ;

/∗∗∗∗∗∗∗ FG−MPI B o i l e r p l a t e b e g in ∗∗∗∗∗∗∗∗∗/
#inc lude "fgmpi.h"

/∗ f o rward d e c l a r a t i o n s ∗/
FG ProcessPtr t sequent ia l mapper (i n t argc , char∗∗ argv , i n t rank) ;
FG ProcessPtr t random mapper (i n t argc , char∗∗ argv , i n t rank) ;

FG MapPtr t map lookup (i n t argc , char∗∗ argv , char∗ s t r)
{

/∗ Two mapping f u n c t i o n s ∗/
i f (s t r && ! strcmp (st r , " random")) {

re turn (&random mapper) ;
} e l s e i f (s t r && ! strcmp (st r , "seq")) {

re turn (&sequent ia l mapper) ;
}

/∗ r e t u rn d e f a u l t mapper i f FGMAP environment v a r i a b l e i s not s p e c i f i e d ∗/
re turn (&sequent ia l mapper) ;

}

i n t main (i n t argc , char ∗argv [])
{

FGmpiexec(&argc , &argv , &map lookup) ;

re turn (0) ;
}
/∗∗∗∗∗∗∗ FG−MPI B o i l e r p l a t e end ∗∗∗∗∗∗∗∗∗/

10

i n t s ieveElement (i n t argc , char ∗∗argv)
{

i n t nextproc , prevproc ;
i n t rank , s i z e ;
MPI Status s t a tu s ;
MPI Init(&argc ,&argv) ;
MPI Comm rank(MPI COMMWORLD, &rank) ;
MPI Comm size (MPI COMMWORLD, &s i z e) ;
who are my neighbors (rank , s i z e , &prevproc , &nextproc) ;

u i n t 32 t num, myprime=0;

i n t notdone = TRUE;
whi le (notdone)

{
MPI Recv(&num,1 ,MPI INT , prevproc ,MPI ANY TAG,MPI COMMWORLD,& s ta tu s) ;
i f (s t a tu s .MPI TAG == DATATAG)

{
i f (myprime == 0)

{
myprime=num;
p r i n t f ("%u, " ,myprime) ;

}
e l s e i f (num % myprime)

{
/∗ Not d i v i s a b l e by t h i s prime ∗/
MPI Send(&num,1 ,MPI INT , nextproc ,DATA TAG,MPICOMMWORLD) ;

}
e l s e { ; }

} e l s e i f (s t a tu s .MPI TAG == STOP TAG)
{

notdone = FALSE;
/∗ Send the terminate TAG∗/
num=1;
MPI Send(&num,1 ,MPI INT , nextproc ,STOP TAG,MPICOMMWORLD) ;

} e l s e
{

f p r i n t f (s tder r , "ERROR ERROR bad TAG \n") ;
MPI Abort (MPI COMMWORLD, rank) ;

}
}

MPI Final ize () ;
r e turn 0 ;

}

i n t generator (i n t argc , char ∗∗argv)
{

i n t nextproc , prevproc ;
i n t rank , s i z e ;
MPI Init(&argc ,&argv) ;
MPI Comm rank(MPI COMMWORLD, &rank) ;
MPI Comm size (MPI COMMWORLD, &s i z e) ;
MPI Request r eques t ;
MPI Status s t a tu s ;
who are my neighbors (rank , s i z e , &prevproc , &nextproc) ;

u i n t 32 t myprime=2;
u in t 32 t num=myprime+1;
p r i n t f ("%u, " ,myprime) ;
/∗ Se t up a MPI Irecv to s t op t h e s i e v e ∗/
MPI Irecv(&num,1 ,MPI INT , prevproc ,STOP TAG,MPI COMMWORLD,& reques t) ;
whi le (num <= MAXINT)

{
i n t r e s u l t=FALSE;
MPI Send(&num,1 ,MPI INT , nextproc ,DATA TAG,MPICOMMWORLD) ;
num+=2;
MPI Test(&request ,& r e su l t ,& s ta tu s) ;
i f (r e s u l t == TRUE) break ;

}
num=0;
MPI Send(&num,1 ,MPI INT , nextproc ,STOP TAG,MPICOMMWORLD) ;
MPI Final ize () ;
r e turn 0 ;

}

i n t lastElement (i n t argc , char ∗∗argv)
{

i n t nextproc , prevproc ;
i n t rank , s i z e ;
MPI Init(&argc ,&argv) ;
MPI Comm rank(MPI COMMWORLD, &rank) ;
MPI Comm size (MPI COMMWORLD, &s i z e) ;
MPI Status s t a tu s ;
u i n t 32 t num, myprime=0;
who are my neighbors (rank , s i z e , &prevproc , &nextproc) ;

i n t notdone = TRUE;
whi le (notdone)

11

{
MPI Recv(&num,1 ,MPI INT , prevproc ,MPI ANY TAG,MPI COMMWORLD,& s ta tu s) ;
i f (s t a tu s .MPI TAG == DATATAG)

{
i f (myprime == 0)

{
myprime=num;
p r i n t f ("%u \n" ,myprime) ;
/∗ Send STOP TAG to g ene ra t o r ∗/
num=1;
MPI Send(&num,1 ,MPI INT , nextproc ,STOP TAG,MPICOMMWORLD) ;

}
} e l s e
{

/∗ Rece ived a STOP TAG ∗/
notdone = FALSE;

}
}

MPI Final ize () ;
r e turn 0 ;

}

FG ProcessPtr t sequent ia l mapper (i n t argc , char∗∗ argv , i n t rank)
{

i n t wor ld s i z e ;
MPI Comm size (MPI COMMWORLD, &wor ld s i z e) ;

i f ((rank == MAP INIT ACTION) | | (rank == MAP FINALIZE ACTION))
return (NULL) ;

i f (0 == rank) return (&generator) ;
i f (wor lds i ze −1 == rank) return (&lastElement) ;
r e turn (&sieveElement) ;

}

/∗ A temporary shared array t h a t h o l d s t h e random
permuta t ion o f t h e p r o c e s s e s c r e a t e d by random mapper .
This array i s on l y read by t h e co−l o c a t e d p r o c e s s e s
once to d i s c o v e r t h e i r p r e v i o u s and nex t n e i g h b o r s
and i s de−a l l o c a t e d a f t e r t h a t ∗/

i n t ∗proc = NULL;

FG ProcessPtr t random mapper (i n t argc , char∗∗ argv , i n t rank)
{

i n t f i r s t=FALSE;
i n t l a s t=FALSE;
i n t nfg , s i z e ;
MPI Comm size (MPI COMMWORLD, &s i z e) ;
MPIX Get co l l ocated s i ze (&nfg) ;

i n t cuts= (s i z e / nfg)−1;
i n t seed=0;

i f (rank == MAP INIT ACTION) {
i f (argc == 2) {

seed = ato i (argv [1]) ;
} e l s e i f (argc == 3) {

seed = ato i (argv [1]) ;
cuts = a to i (argv [2]) ;

} e l s e {
p r i n t f ("USAGE: primeSieve [seed] [cuts]\n") ;
e x i t (−1) ;

}
/∗ do th e cu t s and swaps ∗/
srand (seed) ;
i n t i ;
proc = malloc (s i z e o f (i n t)∗ s i z e) ;
i n t ∗procswap = c a l l o c (s i z e o f (i n t) , s i z e) ;
f o r (i =0; i<s i z e ; i++) proc [i] = i ;
f o r (i =0; seed && i<cuts ; i++){

i n t ik1 = rand () % s i z e ;
i n t ik2 = rand () % s i z e ;
i n t k1 = (ik1 < i k2 ? ik1 : ik2) ;
i n t k2 = (ik1 >= ik2 ? ik1 : ik2) ;
/∗ swap ∗/
i f ((k2−k1) != 0)
{

i f ((i % 2) == 0)
{

memcpy(procswap ,&(proc [k1]) , s i z e o f (i n t) ∗(k2−k1)) ;
memcpy(&(procswap [k2−k1]) , proc , s i z e o f (i n t)∗k1) ;
memcpy(&(procswap [k2]) ,&(proc [k2]) , s i z e o f (i n t) ∗(s i z e−k2)) ;

}
e l s e
{

memcpy(procswap , proc , s i z e o f (i n t)∗k1) ;
memcpy(&(procswap [s i z e −(k2−k1)]) ,&(proc [k1]) , s i z e o f (i n t) ∗(k2−k1)) ;
memcpy(&(procswap [k1]) ,&(proc [k2]) , s i z e o f (i n t) ∗(s i z e−k2)) ;

}
i n t ∗tmp=proc ; proc = procswap ; procswap=tmp ;

}
}
f r e e (procswap) ;

12

re turn (NULL) ;
}
i f (rank == MAP FINALIZE ACTION)

return (NULL) ;

a s s e r t (proc != NULL) ;

i f (proc [s i z e −1] == rank) { l a s t=TRUE; }
i f (proc [0] == rank) { f i r s t=TRUE; }

i f (f i r s t)
re turn (&generator) ;

e l s e i f (l a s t)
re turn (&lastElement) ;

e l s e
re turn (&sieveElement) ;

}

i n t who are my neighbors (i n t rank , i n t s i z e , i n t ∗prevproc ptr , i n t ∗ nextproc pt r)
{

i n t prevproc = −1, nextproc = −1;
char ∗mapstr = getenv ("FGMAP") ;

i f (mapstr && ! strcmp (mapstr , " random")){
s t a t i c i n t t ime s c a l l e d = 0 ;
i n t i ;
t ime s c a l l e d++;
a s s e r t (proc) ;
f o r (i =1; i<s i z e −1; i++) i f (proc [i] == rank) { prevproc = proc [i −1] ; nextproc = proc [i +1] ;

}
i f (proc [s i z e −1] == rank) { prevproc = proc [s i z e −2] ; nextproc = proc [0] ; }
i f (proc [0] == rank) { prevproc = proc [s i z e −1] ; nextproc = proc [1] ; }
i f (t ime s c a l l e d == s i z e){

f r e e (proc) ;
}

}
e l s e {

prevproc = (0==rank) ? s i z e −1 : rank−1;
nextproc = (s i z e−1==rank) ? 0 : rank+1;

}

∗ prevproc pt r = prevproc ;
∗ nextproc pt r = nextproc ;
re turn (0) ;

}

8.2 Routines specific to FG-MPI

Following is a list of the MPIX routines, introduced by FG-MPI, to provide additional functionality
related to co-located MPI processes. The boiler-plate code was described in Section 4.

MPIX_Yield

The calling processes performs a voluntary yield to the scheduler.
Prototype:

void MPIX_Yield(void)

MPIX_Usleep

The calling processes yields to the scheduler which blocks it for at least utime microseconds before
placing it back on the run queue.
Prototype:

int MPIX_Usleep(unsigned long long utime)

MPIX_Get_collocated_size

Determines the number of co-located MPI processes in an OS-process, as specified by nfg flag with
mpiexec.
Prototype:

13

int MPIX_Get_collocated_size(int *size)

size is the number of co-located MPI processes (integer)

MPIX_Get_collocated_startrank

Determines the smallest MPI COMM WORLD rank from among the co-located processes in an OS-
process.
Prototype:

int MPIX_Get_collocated_startrank(int *startrank)

startrank is the smallest rank (integer).

MPIX_Comm_translate_ranks

Translates the ranks of MPI processes in one communicator to another communicator.
Prototype:

int MPIX_Comm_translate_ranks(MPI_Comm comm1,

int n, int *ranks1,

MPI_Comm comm2, int *ranks2)

The input parameters are comm1 (communicator handle), n is the number of ranks in ranks1 and
ranks2 arrays (integer), comm2 (communicator handle). The output parameter is ranks2 which
is an array of corresponding ranks in comm2.

Following are zero-copy routines which allow passing of pointers to the data among co-located
MPI processes without making intermediate copies [2].

int MPIX_Zrecv(void ** buf_handle, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,

MPI_Status *status)

int MPIX_Zsend(void **buf_handle, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPIX_Izrecv(void ** buf_handle, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPIX_Izsend(void **buf_handle, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm,

MPI_Request *request)

14

9 License

FG-MPI is distributed under a BSD license. The copyright notice is available in the top-level
COPYRIGHT file included with the distribution.

10 Acknowledgements

We acknowledge the support of Intel Corporation Inc., Mitacs Canada, and NSERC for the ongoing
FG-MPI project.

References

[1] Elsa: An elkbound based C++ parser. Available from http://www.cs.berkeley.edu/

˜smcpeak/elkhound, accessed on March 17, 2014.

[2] Humaira Kamal. FG-MPI: Fine-Grain MPI. PhD thesis, The University of British Columbia,
July 2013.

[3] Humaira Kamal, Seyed M. Mirtaheri, and Alan Wagner. Scalability of communicators and
groups in MPI. In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 264–275, New York, NY, USA, 2010. ACM.

[4] Humaira Kamal and Alan Wagner. A Signpost on the Road to Exascale. Available
from http://archive.hpcwire.com/hpcwire/2013-01-15/british_columbia_

researchers_notch_milestone_in_pursuit_of_exascale_computing.html.

[5] Humaira Kamal and Alan Wagner. Added concurrency to improve MPI performance on mul-
ticore. In Parallel Processing (ICPP), 2012 41st International Conference on, pages 229 –238,
Sept. 2012.

[6] Humaira Kamal and Alan Wagner. An integrated fine-grain runtime system for MPI. Comput-
ing, 96(4):293–309, 2014.

[7] Fine-Grain MPI. A complete list of FG-MPI publications are available from http://www.

cs.ubc.ca/˜humaira/fg_publications.html, accessed on March 17, 2014.

[8] Photran. An Integrated Development Environment and Refactoring Tool for Fortran. Available
from http://www.eclipse.org/photran, accessed on March 17, 2014.

15

http://www.intel.com
http://www.mitacs.ca
http://www.nserc-crsng.gc.ca
http://www.cs.berkeley.edu/~smcpeak/elkhound
http://www.cs.berkeley.edu/~smcpeak/elkhound
http://archive.hpcwire.com/hpcwire/2013-01-15/british_columbia_researchers_notch_milestone_in_pursuit_of_exascale_computing.html
http://archive.hpcwire.com/hpcwire/2013-01-15/british_columbia_researchers_notch_milestone_in_pursuit_of_exascale_computing.html
http://www.cs.ubc.ca/~humaira/fg_publications.html
http://www.cs.ubc.ca/~humaira/fg_publications.html
http://www.eclipse.org/photran

	Introduction
	Installation
	Installing from the binary package
	Installing from source code

	Mailing List
	Writing FG-MPI Programs
	A simple HelloWorld program
	Process deployment

	Example of a Program Using FG-MPI
	A quick checklist in writing FG-MPI programs

	Limitations
	Issues
	Known Issues
	Unknown Issues

	Appendix
	Prime sieve code example
	Routines specific to FG-MPI

	License
	Acknowledgements

