
Scalability of Communicators and Groups in MPI

Humaira Kamal
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada
kamal@cs.ubc.ca

Seyed M. Mirtaheri
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada
mirtaher@cs.ubc.ca

Alan Wagner
Dept. of Computer Science

University of British Columbia
Vancouver, BC, Canada
wagner@cs.ubc.ca

ABSTRACT

As the number of cores inside compute clusters continues
to grow, the scalability of MPI (Message Passing Interface)
is important to ensure that programs can continue to exe-
cute on an ever-increasing number of cores. One important
scalability issue for MPI is the current implementation of
communicators and groups. Communicators and groups are
an integral part of MPI and play an essential role in the
design and use of libraries. It is challenging to create an
MPI implementation to support communicators and groups
to scale to the hundreds of thousands of processes that are
possible in today’s clusters. In this paper we present the de-
sign and evaluation of techniques to support the scalability
of communicators and groups in MPI.

We have designed and implemented a fine-grain version of
MPI, called FG-MPI based on MPICH2, that allows thou-
sands of full-fledged MPI processes inside an operating sys-
tem process. Using FG-MPI we can create hundreds and
thousands of MPI processes, which allowed us to imple-
ment and evaluate solutions to the scalability issues asso-
ciated with communicators. We describe techniques to al-
low for sharing of group information inside processes, which
required a re-definition of the context-id and the design of
scalable operations to create the communicators. A set plus
permutation framework is introduced for storing group in-
formation that makes use of a variety of different representa-
tions. We also propose a set, instead of map, representation
for MPI group objects that takes advantage of our frame-
work. Performance results are given for the execution of a
MPI benchmark program with upwards of 100,000 processes
with communicators created for various groups of different
sizes and types.

1. INTRODUCTION
As the size of clusters grows, there is increased interest

in the scalability of MPI (Message Passing Interface) appli-
cations. There are now several machines on the TOP500
list [21] with more than 200,000 cores. As MPI is the dom-

c©ACM, 2010. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in 19th ACM International Sympo-
sium on High Performance Distributed Computing, VOL, ISS, (June 2010)
http://doi.acm.org/10.1145/nnnnnn.nnnnnn
.

inant model used for parallel programming in high perfor-
mance computing [6], MPI applications remain one of the
main targets of large cluster machines and there is the need
to scale them to execute with hundreds and thousands or
even millions of MPI processes. Many of the scalability is-
sues associated with MPI were highlighted in a recent paper
by Balaji et al [4] entitled “MPI on a million processors”.
The focus of this paper is to address scalability issues of
MPI middleware related to groups and communicators.

MPI groups and communicators are among the more chal-
lenging scalability issues associated with the MPI middle-
ware. Information about ranks inside a group or commu-
nicator is normally stored in list form using an array [10].
The space requirement using this approach is thus linear
with respect to the number of MPI processes and unsuit-
able for large scale systems. For one million processes the
standard array for ranks to store a single group may require
up to 4 Mbytes. The memory consumed by groups is espe-
cially critical on machines like the BlueGene machine with
nodes having only 512 Mbytes per processor, but in general
since the use of many groups and communicators in MPI
programs is common it can easily become an issue on any
large machine.

Starting in 2008, we began implementing a version of MPI
called Fine-grain MPI (FG-MPI) [16]. FG-MPI uses non-
preemptive cooperating fibers (i.e., coroutines) to support
thousands of MPI processes inside an operating system (OS)
process. These processes are all full-fledged MPI processes,
each with their own MPI rank, that communicate using MPI
middleware. FG-MPI is a fine-grain version of MPICH2 [3]
and extends the process-based model of MPICH2 to multi-
ple MPI processes inside an OS process while maintaining
MPICH2’s support for intra-node and inter-node communi-
cation. By decoupling MPI processes from that of an OS
process, it is possible to vary the number of MPI processes
to match the problem rather than the machine. It is also
possible, with sufficient memory, to scale up the number of
processes to arbitrarily large numbers of MPI processes. The
scalability of FG-MPI makes it possible to use the system to
investigate scalability issues associated with MPI and MPI
middleware. Using FG-MPI we were able to explore different
designs and experimentally test and evaluate the scalability
of these solutions inside an MPI implementation without the
need for a large cluster.

This paper makes the following contributions with regards
to the scalability of groups and communications inside MPI.
We investigate techniques for sharing the group map inside
communicators. Although our use of this technique was in-



side a process, the same approach can be extended to sharing
group information amongst processes inside a machine. The
technique we developed required a re-definition of context-
ids and a new scalable algorithm for creating communica-
tors. We introduce a framework for the use of various com-
pact representations of the group map inside the communi-
cator. A key element of this framework is the decomposition
of the group map into a set and permutation. The repre-
sentations investigated include compression, implicit repre-
sentations based on Binary Decision Diagrams (BDDs), and
succinct data structures. We experimentally investigate the
time/space trade-offs of these representations for the type
of groups structures that arise in MPI programs. Using a
benchmark program that we designed we investigate the lim-
itations with respect to the number of communicators, the
size of their group, and the overhead for messaging in us-
ing the proposed framework on an MPI world varying from
thousands to over 100,000 processes. To support scalability
of MPI groups we propose to define a group as a set rather
than a mapping. Not only does this provide an intuitive view
of groups but it can lead to much smaller representations
for groups and takes advantage of the set and permutation
framework we introduce. We describe the small changes to
MPI needed to support this view of groups. These changes
allow the use of sets while maintaining the ability to map
MPI processes as needed.

In Section 2 we give an overview of FG-MPI. In Section 3
we discuss the space requirements for communicators and
groups. Section 4 describes the changes necessary in FG-
MPI to support the sharing of the group information for
MPI communicators among fine-grain MPI processes. Sec-
tion 5 introduces our set and permutation framework used to
minimize the amount of memory needed to store the group
mapping. In Section 6 we compare the representations used
by the framework in terms of space and time and discuss
strategies with different space/time trade-offs that emerge
from our experiments. Section 7 describes the definition of
a group as a set rather than a mapping. In Section 8 we
evaluate the system using an MPI benchmark and present
the space and time results of creating different sizes and
numbers of communicators and messaging among its group
members. Conclusions appear in Section 9.

2. FINE-GRAIN MPI
FG-MPI is a fine-grain version of MPICH2 to support

multiple MPI processes inside each OS process [16]. As
shown in Figure 1, MPI processes may reside in the same OS
process or spread across several OS processes on the same
machine or distributed across different machines. To avoid
any ambiguity with the term “process”, we refer to an MPI
process as a “proclet” and reserve the term process for an
operating system’s process. Proclets inside a process non-
preemptively yield to a scheduler that schedules the next
runnable proclet for execution. The proclet scheduler is de-
rived from Capriccio [22], a user-level thread library, based
on a very efficient coroutine library [20] with very low con-
text switching overhead.

Proclets are full-fledged MPI processes each with its own
unique rank in the MPI environment and communicates us-
ing the standard MPI message passing routines. If a proclet
blocks on a communication operation during a call to the
MPI middleware, it yields to another proclet through the
scheduler. Within an OS process, the proclets share middle-

Machine M1

Process X Process Z

n
e
m

e
s
is

 n
e
m

e
s
is

 

Machine M2

Process Y Process W

scheduler

scheduler

MPI middleware

MPI middleware

MPI middleware

MPI middleware

3

4 5 76

10 1198

1312 14

210

scheduler

scheduler

Figure 1: An example of an FG-MPI system with
two machines, two processes per machine, and 15
proclets. Proclets use the Nemesis communication
subsystem for communication between processes on
the same machine or different machines.

ware communication structures such as the unexpected mes-
sage queue, the posted receive queue as well as the communi-
cation channel endpoints for sending/receiving messages to
other proclets outside of its own address space. As a result,
a communication call by one proclet will progress messages
for other proclets sharing its address space, which ensures
we perform as much communication as possible for every call
to the middleware. Proclets use the Nemesis [8] communica-
tion subsystem for sending/receiving messages to proclets in
other address spaces on the same machine or different ma-
chines. Nemesis uses efficient low-latency, lock-free shared
memory queues for communication between processes on the
same machine, and provides multi-network support for com-
munication between machines.

FG-MPI extends the hierarchical communication struc-
ture of MPI to another level where now in addition to com-
munication between proclets on different machines and com-
munication between proclets in different processes on the
same machine, there is also communication between pro-
clets inside the same process (see Figure 1). We call proclets
inside the same process “collocated proclets”. The hierarchi-
cal structure of an MPI execution can be characterized in
terms of C, the maximum number of proclets (coroutines)
per process in the system, P , the maximum number of pro-
cesses per machine, and M , the number of machines. The
notation [C, P, M ] is used to classify different sizes of sys-
tems for the purpose of discussing their scalability. Notice
that C and P are defined as the maximum proclets per pro-
cess and process per machine to give upper bounds on time
and space with respect to the total number of proclets. In
general the number of proclets per process or processes per
machine can vary as shown in Figure 1. Even though all
processes do not have 4 proclets, according to the definition
it is a [4, 2, 2] system. The standard “one MPI process per
process” model corresponds to a [1, P, M ] system.

This notation allows us to discuss scalability in terms
of the communication hierarchy and different trade-offs in
space and communication time. Given N = C×P ×M pro-
clets in a [C, P, M ] system, one goal was to reduce the non-
scalableO(N2), space and communication time toO(CP 2M2)
Although this may not be directly applicable to a [1, P, M ]
system, similar techniques used to reduce C2 to C can like-
wise be used for P . In our case C denotes coroutines inside
processes, but more generally the notation may be useful



for representing systems with threads or multiple connec-
tion endpoints [11].

3. COMMUNICATORS AND GROUPS
Communicators and groups are an essential part of MPI

and exist to support the development of higher level li-
braries [12]. A communicator is an opaque object and every
communication routine in MPI takes a communicator as a
parameter. Communicators divide the communication into
disjoint communication contexts such that a message sent in
one context can only be received by a routine with a commu-
nicator in the same context. Every proclet inside a commu-
nicator is assigned a rank from 0 to the group size minus one.
In particular, since all new communicators are derived from
the pre-defined communicator MPI_COMM_WORLD, the group
of all proclets, every proclet in a system with N proclets is
assigned a “world” rank from 0 to N − 1.

In order to route messages to their destination a commu-
nicator needs to know the location of the destination proclet.
In a [1, P, M ] system the endpoint of a communication is a
process and, as done in MPICH2, one can store the infor-
mation about the destination as an array of pointers map-
ping group rank to a communication endpoint object. In
FG-MPI, since the communication endpoints are no longer
processes but proclets inside processes, we use a proclet’s
world rank to uniquely identify the destination of a message.
When a message is sent in FG-MPI we add the world rank of
the destination proclet and the Nemesis endpoint associated
with the process to the message. Using the endpoint object
Nemesis routes the message to the correct process and the
middleware inside the process uses the world rank as part of
the MPI matching criteria to deliver the message to the cor-
rect receive buffer. Most implementations of MPI store the
mapping from group rank to destination proclet as an array
for every destination, thus a group of size O(N) requires
O(N2) space in total. Given that in general MPI programs
may contain many groups of various sizes the amount of
space consumed by group maps becomes prohibitive.

The space consumed by group maps becomes all the more
challenging as one attempts to scale up the number of MPI
processes to one million. For example, consider a [1000, 100, 10]
system with one million proclets. Assuming that we can op-
timally encode each destination using

˚

lg(106)
ˇ

= 20 bits, a
new communicator which re-maps MPI_COMM_WORLD requires
2.5 MBytes of storage per proclet, 2.5 GBytes per process
and 250 GBytes per machine and 2.5 TBytes in total! The
techniques in this paper reduce the memory requirements
for this example to 2.5 GBytes in total, and possibly signif-
icantly less depending on the mapping.

It is reasonable to expect that the size of systems will con-
tinue to grow and a [1, 8, 200000] system will soon exist, if
it does not already. This was a motivation for the “million
process MPI” paper [4] and systems with more than 100,000
cores already exist [21]. At this point, and even on many
smaller systems, the memory saving techniques will be es-
sential in order to use MPI and to take advantage of the
benefits of communicators. Although we do not have access
to a system of this scale, we are able to implement and eval-
uate these techniques inside FG-MPI for [C, P, M ] systems
of this scale.

The first step to reduce the space requirements for com-
municators is to share the group map among collocated pro-
clets. In a [C, P, M ] system with N = C × P ×M proclets,

this allows us to reduce the space requirements from O(N2)
to O(N × P ×M). In Section 4, we discuss the issues and
optimizations involved in sharing of data structures among
proclets. The second strategy, which benefits all [C, P, M ]
systems, is to reduce the N factor. In Section 5 memory
reduction techniques using different storage representations
are discussed.

4. SHARING THE GROUPMAP
The two main routines for creating intracommunicators1

in MPI are MPI_Comm_split and MPI_Comm_create. Com-
municators are created with respect to an outer communi-
cator, where the new communicator or communicators is a
subset of the proclets of the outer communicator. These rou-
tines are collective operations over the proclets in the outer
communicator. The routines return with a local handle to
the new communicator, which contains several fields (a) a
pointer to the proclet group map, and (b) a context iden-
tifier. The group map identifies the members of the group
associated with the communicator. The context identifier
(context-id) is a fixed sized field inside the communicator
that must match on all communications using the commu-
nicator. As long as the context-id of a communicator for
a proclet is unique, the proclet cannot mistakenly receive a
message sent to it using a different communicator. In this
way libraries and the MPI middleware can use context-ids
as a scoping mechanism.

To enable sharing the group map structure among the col-
located proclets belonging to the new communicator, a hash
table is used to coordinate the allocation of memory for the
structure. Consider Figure 2 showing two processes X and

text

Process X

Comm World

0 1

Process Y

3
2

4 5

Comm A

0 

1

2 3

0 1 2 3

4 52 3

0 1 2 3

4 52 3

0:3
X Y

4:5

0:3
X Y

4:5

Global Hash Table

Global Hash Table

LID ,LBI

LID,LBI

Figure 2: The sharing of the proclet group inside
communicator A with 6 proclets inside two processes
X and Y of one machine M.

Y inside one machine where proclets {2, 3, 4, 5} are creating
communicator A. One of the proclets inside each process
creates the group map structure and stores a pointer to the
structure inside the global hash table. Subsequently, the
other collocated proclets belonging to the same communi-
cator use this hash table to lookup the group map pointer

1At present we consider only intra and not inter communi-
cators.



and cache the pointer inside its own communicator struc-
ture during the communicator creation operation. For send-
ing messages, a proclet accesses the group map to find the
world rank of the destination to put in the message envelope
and then finds the process endpoint in the world rank table
to route the message to the appropriate process.

An important precondition to the use of the hash table is
that all collocated proclets belonging to the same new com-
municator need to have the same key to lookup the shared
group map pointer in the global hash table. Furthermore,
these keys need to be different for different communicators.
Given that a context-id has to be created as part of the
communicator and the properties of a context-id is similar
to that of a key, we chose to generate a context-id that can
serve both purposes.

During a communicator create routine, the context-id for
a new communicator A is constructed from a combination of
a leader identifier (LID) and leader bit index (LBI) denoted
by 〈LID, LBI〉 where

• LID is the world rank of a representative chosen from
the group underlying A, and

• LBI is an integer, uniquely chosen for every LID.

For LBI , every proclet maintains a bitmap of size 2k where
a one in location i of the bitmap signifies the use of that
position, the bit is zero otherwise. For a given LID, LBI is
the index of a free position in the bitmap which is then set
to one. The context-id is constructed by concatenating the
L bits needed to represent a world rank and k bits needed to
represent LBI . In our implementation we set k = 6 and L =
21, which allows for a world size of 221 (millions of proclets)
where each proclet can be chosen leader for as many as 64
communicators2. Context-id 〈LID, LBI〉 is globally unique
since LID and LBI are equal only when they belong to the
same communicator. Since 〈LID, LBI〉 is globally unique
it is also process unique and therefore can be used as a key
for sharing the group mapping for the communicator.

The pseudo-code for MPI_Comm_split is given in Proce-
dure 1. The routine uses a leader-based approach where one
proclet (the root) in the outer communicator gathers and
then distributes the necessary information to all the other
proclets. In line 4 the color and key information is gathered
to the root. We also gather the bitmap information into B,
which is used later in Line 10. The gathered data, together
with rank of the proclets stored in S, is sorted by color, key
and rank. Proclets belonging to the same color class be-
long to the same new communicator. In lines 4 to 16, the
root computes the context-id. Although any bitmap with
an unset bit can be chosen, we balance the choice of leader
by finding the one that has been chosen the least number of
times. We use the CID value to also define a local leader for
each group. The root uses the world rank array to determine
when proclets are collocated and for each group, and for each
process it choses a local leader. Finally, in lines 17 to 25,
we distribute the context-id and group information to all
the proclets. All proclets receive the context-id, but since
the group information is shared, we distribute the group

2The reason for the choice of 21 and 6 bits is that MPICH2
uses 5 bits in the context-id for other purposes [2], and 21
bits and 6 bits allows for millions of proclets with a reason-
able sized number of leader bits, while still fitting into a 32
bit word.

Procedure 1 MPI_Comm_split(comm,color,key,ncomm)

Let: Let N be the size of comm and rank 0 the root.
1: if root then
2: // Arrays to store Colors, Keys and Bitmaps
3: Allocate C[N ], K[N ], and B[N ]
4: MPI Gather([C, K, B], root)
5: if root then
6: Allocate S[N ] // initially S[i]=i
7: Sort S, C, K, B with respect to C, K and rank.
8: for each color class Ci do
9: Find k in B with the fewest number of bits set

10: LBI ← first unset bit in B[k]
11: Allocate CID[N ] // info for context-id
12: for each j in the color class Ci do
13: if S[k] is the first collocated proclet for group

then
14: CID[j]← {S[k], LBI,LEADER = yes}
15: else
16: CID[j]← {S[k], LBI,LEADER = no}
17: MPI Scatter({CID,group-rank,group-size,local-

leader},root)
18: Create 〈LID, LBI〉 from CID values
19: if root then
20: for each color class Ci do
21: MPI Send(group membership info to local leaders)

22: else if local leader of a group for a process then
23: MPI Recv(group membership info from root)
24: else
25: yield to wait for local leader
26: Use 〈LID, LBI〉 to create or get pointer to group map

map only to the local leaders as identified in the context-id
information. The remaining proclets yield and are not re-
scheduled until after the local leader has created the group
map. For comm of size N , it takes O(N lg N) time to sort the
data at the root, O(N) communications, and O(N) space.

The pseudo-code for MPI_Comm_create is given in Proce-
dure 2. The main difference between the routines is that

Procedure 2 MPI_Comm_create(comm,group,ncomm)

Require: Let G be group map from parameter group and
N be the size of comm.

1: if I am rank 0 of G then
2: Allocate B[|G|] where B[0]← bitmap of rank 0
3: for each i = 1 to |G| − 1 do
4: MPI Recv(B[i], from rank i in G)
5: else
6: MPI Send(bitmap, to rank 0 in G)
7: if I am rank 0 of G then
8: Find k in B with the fewest number of bits set
9: LBI ← first unset bit in B[k], LID← k

10: for each i = 1 to |G| − 1 do
11: MPI Send({〈LID, LBI〉, group rank}, rank i in G)
12: else
13: MPI Recv({〈LID, LBI〉, group rank}, rank 0 in G)
14: Use 〈LID, LBI〉 to create or get pointer to group map.

in MPI_Comm_create each proclet knows the group infor-
mation. As well, since MPI 2.2, the group parameter to
MPI_Comm_create can differ which can result in multiple



communicators. Because proclets already have the group in-
formation, the only information missing is the context-id. In
lines 1 to 6 rank 0 of the group gathers the bitmap informa-
tion from the rest of the group members. Rank 0 computes
〈LID, LBI〉, and in lines 7 to 13 sends the context-id infor-
mation back to the group members. Because there can be
more than one group, we cannot use collectives, and instead
use explicit sends and receives to the group elements. For
multiple groups, all of the groups can be actively sending
and receiving messages at the same time since the groups
are non-overlapping. In line 14 the proclet with smallest
group rank uses it to create the group map and the remain-
ing proclets will simply cache a pointer to their group map.

4.1 Discussion
The context-id as currently used in MPICH2 cannot be

used as a key to share the group map for FG-MPI. In MPICH2
the context-id is directly generated from a bitmap of size 2k

that is allocated for each proclet at start-up with all bits
initially set to one3. A new context-id is generated by per-
forming a bitwise AND in MPI_Allreduce, where all proclets
in the outer communicator of the operation obtain the re-
sult of the bitwise AND operation where a one bit in the ith

position is an available context-id. As long as all proclets
agree on which bit to choose, the lowest set bit [13], then
they will all agree on the same k-bit value to use to generate
the context-id. Notice, that in the case of MPI_Comm_split

every new communicator receives the same context-id. This
is sufficient to ensure “safe” communication because the un-
derlying groups for the new communicators are all disjoint,
thus the context-id is guaranteed to be unique for all the
communicators of which it is a member. But, because all of
the new communicators have the same context-id, it cannot
be used as a key to share the group map for each separate
communicator. For FG-MPI we require that the context-id
for communicators with members inside the same process be
unique.

The definition of the context-id also affects the number
of the communicators that can be created. In the case of
MPICH2, a proclet can be a member of at most 2k commu-
nicators, independent of the size of the world. As well, the
limit on the number of context-ids can only be increased by
increasing k, which essentially doubles the size of the bitmap
and the amount of data for MPI_Allreduce. The context-
id we have defined can be created as long as there is one
proclet in the new communicator that has not been a leader
2k times. Thus, the opportunity to create new context-ids
grows with the size of the group which in turn depends on the
size of the world. The difference is, in our case, the number
of context-ids scales with the size of MPI_COMM_WORLD and k
does not need to scale.

The other major difference in communicator creation is
the use of leader-based communication where one proclet
(the root) in the outer communicator gathers and then dis-
tributes the necessary information to all the other proclets.
This avoids the“ALL”type collectives, like Allgather, which
in the worst case consumes O(N2) for an outer communica-
tor G of size N . An advantage of MPICH2’s context-id is
that it can be generated with a single MPI_Allreduce opera-
tion, and in the case of MPI_Comm_create no further commu-
nication is needed. However, in the case of MPI_Comm_split,

3MPICH2 uses k=11, allowing the context ID to fit into 16
bits. The size of the bitmap is 2 Kbits.

this is possible only after an earlier MPI_Allgather opera-
tion which temporarily requires O(N2) space. This is a good
example of the trade-offs between communication time and
space where originally a [C, P, M ] system uses O(C2P 2M2)
communications andO(C2P 2M2) space now takesO(CPM)
communication andO(CP 2M2) space. The same techniques
can be used to extend group sharing to processes, but it
would incur some additional shared memory synchroniza-
tion overheads.

The use of leaders is a key part of the design of FG-MPI.
Not only does it avoid the scalability problems for creating
communicators, leaders played an important role in defining
location-aware collectives that can take advantage of the hi-
erarchical communication structure in a [C, P, M ] system.
In the next section we discuss different strategies for com-
pact representations of the map structure that were used to
reduce the overall memory consumption.

5. MAPPINGMEMORY REDUCTION
The second technique to reduce the memory needed to

store communicators is to use an efficient and compact rep-
resentation to store the proclet group map. Although shown
in Figure 2 as an array, we extended MPICH2 to use the
framework shown in Figure 3 to store the proclet group map.
The storage scheme depends on the properties of the map.

Composite

Communicator Map
(Group Rank to World Rank)

Unordered

Set

AND

Compressed
(Burrows Wheeler Transform)

Permutation

(Wavelet Tree)

Implicit
(Binary Decision Diagrams)

Bitmap

Array

Ordered

Implicit
(Range/Stride)

Map

Figure 3: Set and Permutation Framework: an
AND-OR diagram of the representations used for
storing the mapping from group rank to world rank.
Rectangles with rounded edges are properties and
the boxes are the data structures. The branches are
OR unless specifically marked as AND.

The idea is to provide an open framework with a portfolio
of representations from which to implement strategies with
respect to different space and time trade-offs. The frame-
work in Figure 3 distinguishes between simple map repre-
sentations and between ordered and unordered groups. We
separate out map representations because, as described in
Section 6, arrays give the best time and using compression



is often best with respect to space. However there are more
interesting trade-offs when one distinguishes between groups
using a default ordering and those groups for which the user
has defined a particular non-default ordering. For proclet i,
let gidA(i) denote the group rank of i with respect to com-
municator A, and let wid(i) be the world rank of i. For
communicator A, The default ordering, or ordered map, is
the map where for all i and j in A

gidA(i) < gidA(j) if and only if wid(i) < wid(j).

Formally in the literature, the default map is called an or-
dered set (i.e., dictionary) and maps not satisfying the pre-
vious property are called unordered [5]. In MPI this is the
default map in the sense that for many applications it suf-
fices to specify the group and it is not necessary to order
the mapping in one specific way. When the mapping is an
ordered set then given gid(i), we need to return the gid(i)th

smallest wid(i) in the set. On ordered sets, this operation
is called SELECT and its inverse is called RANK.

Further details about the representations in Figure 3 are
given in following sections: range/stride representation in
Section 5.1, Binary Decision Diagrams in Section 5.2, bit-
maps in Section 5.3, Burrows-Wheeler Transform in Sec-
tion 5.4, and Wavelet Tree with Runs in Section 5.5. Later
in Section 6 we describe strategies build on top of the frame-
work that attempt to minimize space, minimize time, and
one that judiciously trades off time and space. Both the
framework and strategies are designed to allow the frame-
work to be extended with more representations and new
strategies.

5.1 Range and Stride Representations
One simple type of group consists of a simple range or

stride. A simple range and stride can be represented as the
following function

wid(i) = gidA(i)× S1 + S2

mapping gidA(i), ranging from 0 to group size minus one,
to its wid(i) value. In the formula S1 is the stride and S2 is
the offset from zero. Storing a communicator using a range
representation is ideal since it only requires constant space
and constant time to perform SELECT.

A Range/Stride representation can arise from the use of
MPI_Comm_create where the group parameter is the result of
MPI_Group_range_incl and MPI_Group_range_excl group
management operations. In general, these operations or se-
quences of them result in a collection of ranges and not one
as required for our range representation.

5.2 Binary Decision Diagrams
For many explicit representations the space requirements

can be large even when we are able to store them close to
their information theoretic lower bound. Implicit represen-
tations on the other hand can take a advantage of specific
patterns in the data to obtain very compact representations.
Sets can be represented as a boolean function through a
Binary Decision Diagram (BDD) [7]. BDDs are boolean
function representations that are widely used in practice for
circuit design and scale to millions of nodes. We extracted
a subset of the BDD routines from the BuDDy package by
Jørn Lind-Nielsen [1] and integrated the data structures and
operations into our framework.

We construct our group as a boolean function that returns
true (1) if the input is a member of the group and false (0)
otherwise. The input to create this function is the set of
binary representations of wid(i) for all the members in the
group, where each bit is a binary variable. Since in our case
the group map is static, once the BDD is created we extract
the paths that lead to true and discard the graph structure.
Paths can be represented as a sequence of nodes where each
node is either 0, 1, or X (don’t care), thus requiring 2 bits
per node. Paths are of length ⌈lg(N)⌉ and therefore p paths
require at most 2p ⌈lg(N)⌉ bits.

The algorithm for SELECT finds the gidA(i)th smallest
fully specified path from the ordered collection of paths ex-
tracted from the BDD. The algorithm proceeds iteratively
from the first node in the set of all paths down to the last
node (i.e. the (⌈lg(N)⌉−1)th node). On each step, it uses the
current rank (initially set to gidA(i)) to determine whether
or not the wid(i) is in a path with bit 0 or 1 (don’t cares
are split half and half). Depending on the value of gidA(i),
we discard the paths with a 0 or those with 1, appropriately
adjust the value of gidA(i), and repeat the operation for the
next node on the remaining paths 4. The algorithm returns
the gidA(i)th wid(i) in at most O(p× lg N) steps. The num-
ber of paths left at each step of the algorithm depends on the
size of the BDD as well as on the number of X’s encountered,
which can result in costly SELECT times. We avoid this
situation by limiting the working memory size for the BDD
and the total count of the number of paths, and creating the
BDD only when the limits have not been exceeded.

Figure 4 shows a range-of-ranges example for using a BDD
to represent a 2D sub-mesh of a 3D mesh with over one mil-
lion nodes. The BDD shown in Figure 4-(b) is all that is
required to store the sub-mesh. We have assumed a stan-
dard ordering where X[j] denotes bit j in the binary repre-
sentation of the wid(i). The sub-mesh is defined by a range

(a) (b)

128

64

128

(0,0,0) (0,0,127)

(63,0,0)

(0,127,0)

X[12]

X[11]

X[10]

X[9]

X[8]

X[7]

X[6]

01

Figure 4: (a) A 220 node 3D mesh with a 213 2D
sub-mesh defined by varying dimensions X and Y,
for a fixed value of Z. (b) The BDD representation
of the sub-mesh.

or ranges and as Figure 4-(b) shows the resulting BDD is
small. Only 5 bytes are needed to store the paths for this
sub-mesh of size 213 in a mesh of size 220.

4Due to space limitations the full algorithm has been omit-
ted.



5.3 Bitmap Representation
The bitmap representation uses a bit array to store the

ordered group map, where we set the wid(i)th bit to one
whenever wid(i) is in the group. The bit-array requires
the size of MPI_COMM_WORLD bits, independent of the size
of the group. One simple heuristic is to store the bit-array
starting from the first bit set up to the last bit set. Thus
wid(largest) − wid(smallest) − 1 bits are needed to store
the array.

A disadvantage of using bitmaps is that SELECT is a
linear time operation. To alleviate this problem we store
the cumulative total number of set bits in blocks of 1,000
items in an auxiliary structure. A binary search is performed
on the auxiliary structure to determine the block contain-
ing the gid(i)th set bit. Within a block, a linear search
is used to find the bit, when possible, we use the popcnt

assembly instruction to count the number of set bits in a
32 or 64 bit register5. The auxiliary structure adds only
⌈(first−last−1)/1, 000⌉ integers and and its size is small
in comparison to the bitmap. Although there are asymptot-
ically faster structures, for set sizes of one million the simple
above-mentioned scheme performs well and uses small addi-
tional space. There is a rich literature on compressing bit-
maps and there are a variety of bitmap representations that
could be used to further improve the performance [19]. The
framework can be easily extended to include other encoding
schemes.

5.4 Burrows-Wheeler Transformation
One alternative for reducing the amount of storage for

cases such as large unordered maps is to compress the group
array of wid(i)s. Our framework uses functions from the
bzip2 library that uses Burrows-Wheeler transform (BWT) [9]
and Huffman coding [18]. Even though originally BWT was
designed to compress text, certain bit patterns in the numer-
ical data such as ranges and sequences increase the chance
of recurring characters after which BWT based compression
techniques perform reasonably well. The block compres-
sion nature of BWT lets us perform SELECT efficiently.
Blocks of 1,000 wid(i)s are compressed and SELECT is im-
plemented by simply uncompressing the ⌈gidA(i)/1, 000⌉th

block. The SELECT operation takes the same amount of
time irrespective of group size, world size and the location
of the item, however, the operation is relatively slow be-
cause the entire block needs to be decompressed. As an
optimization we cache the last decompressed block, which
greatly reduces the time for selecting the same widA(i) or
when iterating over all members of a group.

Further enhancements to this compression technique is
possible using recent improvements in the computation of
BWT by Okanohara and Sadakane [14], notably an approach
with linear time complexity [17].

5.5 Wavelet Tree Representation
To store unordered group maps we take the set represen-

tation and add a permutation(π) of the default ordering of
the set to the required ordering of the gidA(i). The amount
of storage needed for the permutation depends on the group
size not on the world size. We use a succinct data structure

5The popcnt instruction is part of Intel’s Streaming SIMD
extensions version SSE4.2 and SSE4a implemented in the i7
and it is part of AMD’s Advanced Bit Manipulation instruc-
tions in the “Barcelona” processor.

called Wavelet Tree on Runs [5] that compresses the permu-
tation and provides fast computation of π(i) and π−1(i).

There are a wide range of algorithms available to encode
permutations. Jérémy and Gonzalo [5] have studied several
techniques to compress a permutation and suggested three
solutions: Wavelet Tree on Runs (WTR), Stricter Runs and
Shuffled Sequences. WTR which is based on the reverse of
the merge sort algorithm, takes advantage of ordered sub-
sequences in π performs π(i) and π−1(i) in Ω(1 + log ρ)
time using n⌈lg ρ⌉(1 + o(1)) + Ω(lg(n)) bits, where ρ rep-
resents number of runs in the permutation [5]. A run is a
largest monotonically increasing subsection of the permuta-
tion. The algorithm performs a Hu-Tucker algorithm [15]
on runs and encodes the result in a binary trie.

WTR is optimized to compress permutations with less
number of runs. This property is particularly interesting
since there are few MPI group manipulation functions that
increase the number of runs. Since groups are derived from
MPI_COMM_WORLD, which is monotonically increasing, and most
of the group management functions keep the ordering of the
originating groups, permutations with small number of runs
are more probable. While the Stricter Runs and Shuffled
Sequences techniques support more sophisticated structures
they are not as probable as WTR for a typical MPI applica-
tion and their potential memory overhead render them less
useful than WTR for our application. Before creating the
WTR representation we first calculate the number of runs
and only use WTR when the number of runs is less than a
preset limit to avoid an explosion in the working memory.

6. IMPLEMENTATIONANDEVALUATION
The framework is implemented as an independent mod-

ule that hides all the internals of the different representa-
tions. The API includes routines to create and destroy the
group map along with SELECT operation. We assume
that the array group representation is used as initial input
to the module. There is also a routine for configuring differ-
ent strategies that implement various time/space trade-offs.
The three strategies we have defined attempt to optimize
space, time, and a hybrid one that is a balance between
the two. Each OS process could choose a strategy based on
the characteristics of the machine and the same group map
could use different strategies in different processes.

In Section 6.1 and 6.2 we give the results for experiments
comparing the time and space requirements for various or-
dered and unordered group maps and discuss the strategies
that emerge from the experiments. The experiments were
conducted on a wide variety of different groups including
those used to exercise a particular representation as well as
the type of groups that arise from the group management
operations in MPI. For illustrative purposes we focus on
groups derived from a MPI world of size 220, which exceeds
one million proclets. All experiments were conducted on an
Intel R©CoreTM i7 2.67 GHz workstation with 6 Gbytes of
memory using a standalone implementation of the frame-
work module in FG-MPI. From our experiments we have se-
lected ones that best illustrate the rationale for having the
different representations and their influence on our choice of
hybrid strategy.

6.1 Ordered Groups
Table 1 compares the space and time requirements for sev-

eral different ordered groups. For each group and represen-



Group : Size Set Type Total bpg S-All S-One
(KB) (bits) (msecs) (µs)

1: 999,999 MPI_COMM_WORLD, one rank randomly removed

array 3906 32 8.58 0.009
T1 bwt 857 7 154.2 139.790
T2 ,S, ST bdd 0.55 0.004 293.2 0.289

bm 122 1 488.4 0.540
bmp – – 100.8 0.169

2: 500,000 10,0000 ordered ranges of size 50

array 1953 32 4.29 0.007
T1 bwt 526 9 82.2 150.562
S bdd 110 1.8 1588.0 45.829
T2, ST bm 122 2 173.9 0.410

bmp – – 51.0 0.167

3: 749,999 {all odd ranks} ∪ {0 . . . 499, 999}

array 2930 32 6.43 0.009
T1 bwt 597 6.5 109.0 131.647
S, T2, ST bdd 0.41 0.004 181.9 0.243

bm 122 1.3 320.4 0.491
bmp – – 76.9 0.164

4: 463,040 Upper half with prime numbers removed

array 1809 32 3.98 0.009
T1 bwt 534 9.5 80.408 158.331

bdd 871 15 148.4 337.964
S, T2, ST bm 61 1.08 247.0 0.580

bmp – – 46.0 0.160

5: 10,000 4-D sub-grid of 6-D grid, [*,10,*,10,*,*]

array 39 32 0.10 0.010
bwt 14 12 2.5 149.405

S, ST bdd 4 3 10.2 1.032
T1-2 bm 111 91 1.8 0.229

bmp – – 1.0 0.150

6: 10,000 4-D sub-grid of 6-D grid, [10,10,*,*,*,*]

S, ST r/s 0.13 0.10 0.16 0.016
array 39 32 0.10 0.010

T1 bwt 13 10 1.4 126.963
T2 bdd 0.30 0.24 1.5 0.156

bm 1.3 1.1 4.7 0.487
bmp – – 0.9 0.113

7: 10,000 wid(i) = 2 × gidA(i) + 600000 where x <> 8849

array 39 32 0.09 0.009
bwt 9.43 7.72 2.03 138.906

S, T1-2, ST bdd 0.38 0.31 1.83 0.190
bm 5.00 4.10 1.84 0.219
bmp – – 0.99 0.130

8: 1,500 Randomly choose 1,500 items from [0,999999]

ST array 5.99 32 0.01 0.009
T1-2, S bwt 5.78 31.55 0.03 0.015

bdd 12 65 14.5 759.165
bm 122 667 0.20 0.178
bmp – – 0.1988 0.1656

Table 1: Space and time costs for different ordered
groups using BDD, BWT, Bitmaps (BM), Bitmaps
with popcnt (BMp), and Range/Stride (R/S). An-
notations on the left show row with best Space (S),
best SELECT time for All items (T1) and best SE-
LECT time for One item (T2) for {BWT, BDD,
BM} and choice for the hybrid strategy (ST).

tation we report space in terms of the total amount of space
and, to allow comparison between different group sizes, the
average number of bits per group member (bpg). For time,
we compare the different representations with respect to two
types of access patterns. First, the total time required to it-
erate though the entire group map, Select-All (S-All), which
is the overhead for a collective operation, assuming a simple

implementation on top of the point-to-point send/receive.
Second, the select time for one member, Select-One (S-One),
which is the overhead for a send operation. The S-One time
is computed as the average over a 1,000 randomly selected
group destinations. In reporting the time for bitmaps we
also give the time on architectures supporting the popcnt

operation. The annotations (see Table 1) show the best rep-
resentation for space, time for S-All and S-One among the
non-array representations and the representation chosen by
the hybrid strategy.

As Table 1 shows, for time, an array is always the fastest.
A simple range, because of cache hits, can potentially do
better but even with 10,000 elements the array access is
faster. A good trade-off when popcnt is available is BMp.
It significantly speeds up BM and, except for R/S or when
the array is smaller (e.g., Group 8), does well in terms of
space.

For space, the best representation varies and a bpg value
or estimate can be calculated and used to choose the best
representation. The strategy chooses between (a) bgp value
returned by BDD create, if successful, (b) bpg for a group A
of size M , calculated by

bpg = (max {wid(i)} −min {wid(i)} − 1) /M (1)

where max {wid(i)} and min {wid(i)} are the largest and
smallest wid(i), respectively, in group A, and (c) bpg esti-
mate for BWT calculated as lgN , for a world of size N . As
Table 1 shows the one giving the best space varies between
BDD {1, 2, 3, 5, 7}, BM {4}, R/S {6}, and BWT {8}. Al-
though BDD appears to do well it depends on the specific
patterns and it is easy to construct groups such as Group 4
and 8 where it does poorly. Notice that BM does well for
dense groups, Group 4, but not for sparse groups such as
Group 8 where our heuristic fails to reduce the bpg. BDDs
also give the most variation for S-All and S-One times. S-
One time tends to increase with increased BDD size (higher
bpg) while S-All time increases with the number of X’s in
the path structure.

The hybrid strategy (ST) chooses BDD {1, 3, 5, 7}, BM
{2, 4}, R/S {6} and array {8}. This is similar to the space
optimized strategy, except we avoid BWT and choose BM
and an array over a BDD in some cases. Since the select time
for BDD is so dependent on the path structure, a BDD is
only chosen when bpg is small (<5) and significantly smaller
than bpg for BM. In the case of groups 4 and 8, BDD create
would fail (we removed the limits for these tests).

6.2 Unordered Groups
Table 2 compares the space and time requirements for

several different unordered groups. As for ordered groups,
array always gives the best performance for time, but for
space the best representation varies. The amount of space
required for WTR depends directly on the number of runs
and as shown by Group 2, the worst case, WTR fails when
the number of runs exceeds the predefined limit. The best
representation is found by calculating bpg for each represen-
tation and choosing the one with the smallest bpg, which
succeeds.

The ST strategy uses the same criteria for choosing the ap-
propriate set representation. The only major change is that
because WTR adds both space and time, an array is chosen
more often and as shown in Group 4, when compression is
sufficiently good, BWT is chosen. Although the use of WTR



Group : Size Set Type Total bpg S-All S-One
(KB) (bits) (msecs) (µs)

1: 1,000,000 World, 1 item removed (50 pairwise-shuffling)

array 3906 32 8.58 0.009
T1 bwt 864 7.08 153.5 142.080
S, T2, ST wtr+bdd 812 6.65 1142.9 1.534

wtr+bm 934 7.65 1489.1 1.988
wtr+bmp – – 1089.5 1.586

2: 1,000,000 MPI_COMM_WORLD randomly permuted

ST array 3906 32 8.58 0.009
S,T1-2, bwt 3346 27 320.5 306.926

wtr ∞ – – –

3: 500,000 10,000 blocks randomly permuted

array 1953 32 4.29 0.009
T1 bwt 431 7.07 76.5 139.132
S,T2,ST wtr+r/s 304 4.98 350.6 0.967

wtr+bdd 304 4.98 424.4 1.128
wtr+bm 365 5.98 593.0 1.529
wtr+bmp – – 399.8 1.159

4: 10,000 Monotonically decreasing group

array 39 32 0.09 0.009
S, ST bwt 12 10 1.4 125.473
T2 wtr+r/s 556 456 13.2 1.681
T1 wtr+bdd 556 456 016.0 1.994

wtr+bm 557 457 17.9 2.220
wtr+bmp – – 14.0 1.785

Table 2: Space and time costs for different un-
ordered groups, BWT or a composite structure with
a set (R/S, BDD, BM, BMp) and permutation
(WTR). Annotated as in Table 1.

can save considerable amount of space, the combination of
permutation and set can lead to considerable variation in
communication costs. One interesting technique we have
not evaluated is the persistent communication mechanism
in MPI to allow the user to amortize select time over several
communications to the same destination. Similarly, because
the ALL and send times are part of message start-up costs,
the impact of select is less for large messages.

7. GROUPMANAGEMENT OPERATIONS
MPI also provides an opaque structure for groups with

routines to create groups and operations to add and re-
move members. The sole purpose of groups is as input to
MPI_Comm_create, which is one way to create a new commu-
nicator. Proclets can extract the underlying group from a
communicator by MPI_Comm_group and then use a sequence
of group operations to construct a new group, which can
be used to create a communicator with MPI_Comm_create.
One could use colors and keys with MPI_Comm_split, but
MPI_Comm_create has the advantage that since the group is
defined locally the group information does not need to be
distributed (see Procedure 2 in Section 4).

Three scalability issues related to groups are as follows.
First, since the group operators do not modify their input
but return a new object each time, without careful man-
agement of the group objects, a sequence of operations can
result in several large objects. Second, there are operations
such as MPI_Group_incl and MPI_Group_excl with an ar-
ray as a parameter where the array could conceivable grow
large [4]. As a consequence, although groups operations are
all local, typically the same operations are performed in all
the intended group members, which results in a system-wide

spike in the use of memory that remains until the shared
communicator is created and the group object is freed.

A third issue related to the succinct representation of
groups is that the order of the parameters to the operations
can easily result in unordered lists from two ordered lists.
For example, given group A = [0, 1, 2] and B = [1, 2, 3], then
MPI_Group_union(A,B,&C) results in C = [0, 1, 2, 3], while
MPI_Group_union(B,A,&C) results in C = [1, 2, 3, 0]. Theo-
retically, unordered collections (maps) require more storage
than ordered ones (sets). These issues relate to the MPI
standard and not its implementation, and group manage-
ment is on the list of items to be by reviewed by the MPI
Forum for MPI 3.0.

Building on our set and permutation framework to scale
communicators, we propose making the following change to
the definition of a group to improve its scalability. The
suggested change is to modify the definition of a group from
a mapping to a simple set. In the remainder we first discuss
consequences of such a change including the modifications
needed to the MPI standard. Second, we discuss the benefits
of this change as it relates to our work on communicators.

7.1 Groups as Sets
As a set, it is no longer possible to define a re-mapping of

the ranks of a group. However, for those cases where a re-
mapping is needed it can be accomplished by the following
operation, once the group has become a communicator,

MPI_Comm_split(comm, 0, newrank, *newcomm).

This routine produces a new communicator that maps the
current rank of proclet in comm to newrank. This opera-
tion can be efficiently supported by the framework since,
for the non-map representations, we already have the set
and only need to add the permutation (WTR). We can even
avoid copying the set by keeping reference counts so that
both comm and newcomm can share the set. This optimiza-
tion to MPI_Comm_split could be supported by adding a
MPI_PERMUTE constant to the MPI standard for use as the
color parameter to signal it is a permutation of the existing
set.

Existing code that does the re-mapping with group oper-
ations needs to be modified and, because MPI_Comm_group

now returns a set rather than map, code which depends on
returning a map needs to be modified. A final consequence
to this change is that for unordered groups MPI_Comm_trans
late_ranks cannot be used to translate the rank of a proclet
in one group to that of another. This could be supported by
adding MPI_Comm_translate_ranks and MPI_Comm_compare,
that are similar to their group counterparts except that they
operate on communicators rather than group objects. Like
their group counterparts they are local operations. The
use of MPI_IDENT for MPI_Group_compare would need to be
deprecated since all groups use the default ordering. Rou-
tines MPI_Group_translate_ranks and MPI_Group_compare

are still useful for obtaining ranks and comparing the un-
derlying sets.

In terms of a composite representation, the translation of
gidA(i) in communicator A is

gidB(i) = π−1

B (RANKB(SELECTA(πA(gidA(i)))))

in communicator B, since SELECTA(πA(gidA(i))) =
SELECTB(πB(gidB(i))) where RANK and SELECT are
inverses. For a world of size N this operation requiresO(log N)



queries for RANK and almost constant time for π−1 in the
WTR representation. Although the log N queries makes
translation relatively costly, the operation is local, not re-
quired very often, if necessary could be cached and finally
bulk translations can save time by using iterators.

7.2 Implementation of Groups
Our original motivation for investigating BDDs was be-

cause of the group management routines in MPI. The BDD
package BuDDY has efficient implementations for the union,
intersection and difference of two groups which can result
in compact representations for many sets. BBD operations
have the advantage that their size is proportional to the in-
put sizes for simple boolean operations. As well, one nice
feature of the BuDDy package is that the underlying BDD
operations share the underlying BDD graph structure and
thus may avoid the problem of returning new objects for
each group operation. It may even be possible to extend
this copying to other proclets and maintain one combined
BDD per process.

Chaarawi and Gabriel [10] have investigated more gen-
eral range representations to reduce the storage needed for
groups and communicators. The technique underlying their
approach was to store a group operation in terms of its dif-
ference from its input. Thus the resulting group can be effi-
ciently stored as a sequence of updates to the membership.
The BuDDy package has the same ability and maintains
a common graph to store a set boolean expressions, which
achieves the same goal as [10] in compactly storing the result
of a sequence of operations. Unlike [10], we do not couple
the group representation to that of the communicator, but
rather at communicator creation time extract the path in-
formation from the BDD to obtain a more compressed static
structure. The approach in [10] was tailored to ranges and
strides whereas unfortunately, as shown in Table 1, the size
of BDD’s depends on the values of S1 and S2, which can
grow very large for some strides.

8. EXPERIMENTS WITH FG-MPI
In this section we investigate the overhead of creating dif-

ferent sizes and numbers of communicators and messaging
among their group members. Our test setup consists of two
4-core workstations connected by a local area network. One
of the machines is an Intel R© CoreTM i7 workstation run-
ning at 2.67 GHz and the other is Intel Xeon E5530 at
2.4 GHz. Both machines have 6 GB of memory and run
Ubuntu version 9.04 (Linux kernel 2.6.28-15-Generic) with
hyper-threading enabled.

8.1 Communicator Creation and Messaging
We have designed an MPI benchmark to evaluate the cre-

ation of different numbers and sizes of communicators and
the messaging time among the group members using a vari-
ety of parameters such as the size of the groups, the group
map representation, the size of the outer communicator for
communicator creation and the distribution of proclets to
processes.

We designed a number of experiment sets to evaluate the
above parameters both in terms of space and time. The re-
sults for these experiments are shown in Figure 5. In these
experiments the MPI_WORLD_COMM size is 110,0006 proclets

6We have encountered a problem in the receive path of our

which are evenly distributed over 16 OS processes, with 6875
proclets in each process and 8 processes on each of two ma-
chines. Each of the data points reported in the figure is the
mean value of at least three independent runs.

Each class of experiments given in Sections 8.1.1, 8.1.2 and
8.1.3 investigates one property of the system, while keeping
the other parameters constant. The distribution of proclets
to processes is kept similar within each experiment class,
but differs across different experiment sets. Thus, it is not
possible to directly compare the results between different
experiment sets.

The saving on space using our map framework versus the
array is also reported for each experiment set. This denotes
the total amount of space saved by using our framework,
for 8 communicators in a system of 16 OS processes across
two machines. Sharing of group map among collocated pro-
clets is enabled for both our framework and the array map,
therefore, that effect is factored out. As Figure 5 shows, our
framework does better than arrays in terms of space for all
cases.

Apart from the saving on space, we report three different
times in Figure 5: The time to create a communicator of
the indicated size, the point to point communication time
of 10,000 messages communicated among randomly chosen
sender and receiver pairs inside a group, and the time to
perform ten collective gather operations by rank 0 in the
group. The time for the point to point communication time
of 10,000 random messages includes the time for synchro-
nization at the end of messaging.

8.1.1 Experiment set A

In this set three different group sizes were evaluated while
keeping the group map representation, the size of outer com-
municator and the distribution of proclets to processes the
same. Experiment set A1 creates a group of size 10,000, A2
creates a group of size 50,000 and A3 creates a group of size
100,000. The group in all three cases is a monotonically de-
creasing stride. Based on this group, the framework selects
BWT as the underlying map. Set A shows the ability to cre-
ate different sized communicators from small to large with-
out a corresponding overhead in terms of space and time.
If we look at the communicator creation times, the results
for A1, A2 and A3 show the scalability of MPI_Comm_split

routine with respect to the size of the group. Since in
MPI_Comm_split, the group map is only sent to the lead-
ers, we avoid an expensive communication operation to all
group members and that number is dependent on the num-
ber of leaders and does not increase with the size of the
group. In all our experiment sets, the group members are
evenly distributed over MPI_WORLD_COMM, which was done to
avoid concentration of group proclets inside any OS process
or machine. In this case the number of leaders is equal to
the number of OS processes. The time for creation of A1,
A2 and A3 thus shows little variation because it is largely
dependent on the size of the outer communicator.

The time to perform collective gather operations also scales
well as we increase the group size from 10,000 to 100,000 tak-
ing 1.9 seconds for A1, 2.54 seconds for A2 and 3.14 seconds
for A3 using BWT map.

The framework using BWT is designed for large group
sizes and as we increase the group size, the saving on space

system for world sizes greater than 110,000. Thus we only
report on world sizes of up to 110,000.



A1 A2 A3 B1 B2 B3 C1 C2 C3
0.0

1.0

2.0

3.0

4.0

5.0

8.0
T

im
e

 (
S

)

 

 

Total Space Saving:
3.33 MB
Group Size: 10 K

Total Space Saving:
16.83 MB
Group Size: 50 K

Total Space Saving:
32.07 MB
Group Size: 100 K

Total Space Saving:
41.09 MB
Group Size: 100 K

Total Space Saving:
41.26 MB
Group Size: 100 K

Total Space Saving:
42.66 MB
Group Size: 100 K

Total Space Saving:
4.03 MB
Group Size: 10 K
World Size: 20 K

Total Space Saving:
3.4 MB
Group Size: 10 K
World Size: 50 K

Total Space Saving:
1.67 MB
Group Size: 10 K
World Size: 100 K

≈

Time to Create a Communicator

Time to Create a Communicator with Array

Total Time for 10,000 Random Messages

Total Time for 10,000 Random Messages with Array

Total Time for 10 Collective Operations

Total Time for 10 Collective Operations with Array

Figure 5: Space and time comparison of communicator creation and messaging for different experiment sets.

also becomes more efficient. This is apparent in the space
numbers reported in Figure 5.

For random point-to-point communication, BWT shows
additional lookup overhead compared to arrays, but the
times are still competitive. Use of cache in BWT imple-
mentation reduces the average lookup time, but in case of a
cache miss the overhead to decompress a block adds to the
lookup time.

8.1.2 Experiment set B

In this set three different map representations were evalu-
ated while keeping the remaining parameters the same. Ex-
periment B1 uses an unordered range with 2 runs, B2 uses
a stride with one item randomly removed and B3 is a range
of ranges. The group size in all cases is 100,000. Based on
these group maps, the framework selects WTR+stride for
B1, bitmap for B2 and BDD for B3. As the results show,
the characteristics of the representations are quite different
and it points to the challenge in selecting the best trade-off
for different groups.

The communicator creation time using BDD is quite large
compared to all other representations. This was expected
since finding the smallest BDD graph is an NP-hard problem
and the BuDDy implementation could be improved. The ex-
periment shows substantial saving of space compared to the
corresponding array map representation for the given group
size of 100,000 for all the representations. BDD provides
the highest savings (42.66 MB) in terms of space. BDD is
expected to do even better in terms of space as the size of
group grows large.

Although the array shows the best results for point-to-
point messaging due to its constant lookup time in nearly all
the experiments, we see that the messaging time for B1 using
WTR+stride does better than the array map. This is be-
cause the amount of space required to store a WTR+stride
is small and fits in the system’s cache, which is not the case
for the large array. B2, on the other hand, has a larger
overhead in terms of lookup time, but it wins on the space
compared to arrays.

8.1.3 Experiment set C

In this set the size of the outer communicator was varied
while keeping the remaining parameters same. Experiment
set C1 uses an outer communicator (MPI_COMM_WORLD) of size
20,000, C2 of size 50,000 and C3 of size 100,000. The group

map in every case is a union of a range and a stride and
the size of the group being created in each case is 10,000.
For this group, the framework selects bitmap for storing the
group map. As expected, the results show that the size of the
outer communicator has a direct effect on the communicator
creation time. For all the times reported, the results show
good scalability from world sizes of 20,000 to 100,000 and
the effect of increasing the total number of proclets in our
system.

Bitmap, as expected, has a higher lookup and communi-
cator creation time compared to arrays. We see that C1
shows a larger saving on space compared to C3, The reason
for this is that as we increase the MPI_COMM_WORLD size, the
bitmap becomes sparser and hence less space efficient.

8.2 Large Number of Communicators
Using our benchmark program, we also tested creation of

a large number of communicators. Our system comprised
of two machines, with 16 OS processes evenly distributed
on the two machines and 6250 proclets in each process. Our
empirical results showed that the system scaled well and the
maximum number of communicators that could be created
were limited only by MPICH2’s configuration parameters.
For efficiency reasons, there are parameters in MPICH2 to
control the allocation of a pool of communicators. These
parameters were not changed for the following experiment
which creates a large number of large communicators.

We ran a test where MPI_Comm_split was used to split
MPI_COMM_WORLD of size 100,000 into 100 communicators of
size 1000 each. This operation was performed repeatedly in
a loop and we successfully created 4,100 context-ids inside
a process before the system exhausted the communicator
memory pool.

9. CONCLUSIONS
We have implemented and evaluated scalable techniques

for groups and communicators using FG-MPI, a fine-grain
version of MPI that scales to over one hundred thousand
MPI processes. We explored two different techniques for
reducing the storage requirements for communicators in-
side MPI. The first idea was the sharing of the group map
among collocated proclets. Although not directly applica-
ble to “one process per processor” type MPI systems the
technique and the algorithms developed can be applied to



share the group map among processes on the same machine.
Sharing the group map led to an introduction of a new defi-
nition of context-id as well as location-aware algorithms for
MPI_Comm_split and MPI_Comm_create. A major part of the
design of FG-MPI was also the de-coupling of MPI processes
from OS-processes that led to maps from group identifiers to
their world identifiers, which made it possible to implement
the framework introduced in second part of the paper.

The framework we introduced for concise representations
of the group map was based on the observation that a map-
ping can be decomposed into a set and permutation. This
decomposition allows us to use a compact set representation
for the usual case where a specific mapping is not required
and only adds a permutation when needed. The use of sets
allowed us to consider implicit representation such as BDDs
that we believe are well-suited for the types of group oper-
ations used to construct communicators. We incorporated
operations from the widely-used BuDDy BDD package, and
further optimized the final representation by only storing the
resulting paths. In addition for unordered maps we incor-
porated Wavelet Trees on Runs, a state-of-the-art succinct
data structure, well-suited when there are monotonically in-
creasing runs in the map, which is likely the case in MPI. As
a final catch all, we added BWT (i.e., bzip2) compression so
that in memory constrained environments some compression
is possible when there is no discernible pattern. We investi-
gated time and space trade-offs between the representations
to design strategies on top of the framework.

Building on our set and permutation approach we pro-
posed changes to the definition of a group in MPI. It is a
relatively minor change but allows groups to benefit from set
compression techniques that can be stored in less space than
general maps. We also proposed the use of BDDs because of
their support for binary operations along with their ability
to store multiple results in a single graph, thus sharing the
graph structure inside a proclet.

Acknowledgements: We would like to thank Jérémy Bar-
bay and Carlos Bedregal for their kind contribution and
sharing of the Wavelet Tree on Runs library.

10. REFERENCES

[1] BuDDy - A Binary Decision Diagram Package,
http://vlsicad.eecs.umich.edu/BK/Slots/cache/

www.itu.dk/research/buddy/index.html.

[2] Argonne National Laboratory. Communicators and
Context IDs. Available from
http://wiki.mcs.anl.gov/mpich2/index.php/

Communicators_and_Context_IDs.

[3] Argonne National Laboratory. MPICH2: A high
performance and portable implementation of MPI
standard. Available from http://www.mcs.anl.gov/

research/projects/mpich2/index.php.

[4] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
S. Kumar, E. L. Lusk, R. Thakur, and J. L. Träff.
MPI on a million processors. In PVM/MPI, pages
20–30, 2009.

[5] J. Barbay and G. Navarro. Compressed
representations of permutations, and applications. In
S. Albers and J.-Y. Marion, editors, 26th Intl. Symp.
on Theoretical Aspects of Computer Science (STACS),
pages 111–122, Dagstuhl, Germany, 2009.

[6] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein,
J. K. Hollingsworth, F. Shull, and M. V. Zelkowitz.
Understanding the high-performance-computing
community: A software engineer’s perspective. IEEE
Softw., 25(4):29–36, 2008.

[7] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on
Computers, 35:677–691, 1986.

[8] D. Buntinas, W. Gropp, and G. Mercier. Design and
evaluation of Nemesis, a scalable, low-latency,
message-passing communication subsystem. In Proc.
of the Sixth IEEE Intl. Symp. on Cluster Computing
and the Grid (CCGRID), pages 521–530, Washington,
DC, USA, 2006. IEEE Computer Society.

[9] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
124, Digital Equipment Corp., 1994.

[10] M. Chaarawi and E. Gabriel. Evaluating sparse data
storage techniques for mpi groups and communicators.
In ICCS ’08: Proceedings of the 8th international
conference on Computational Science, Part I, pages
297–306, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] E. D. Demaine, I. Foster, C. Kesselman, and M. Snir.
Generalized communicators in the message passing
interface. IEEE Trans. Parallel Distrib. Syst.,
12(6):610–616, 2001.

[12] W. Gropp, E. Lusk, and A. Skjellum. Using MPI (2nd
ed.): Portable parallel programming with the
message-passing interface. MIT Press, Cambridge,
MA, USA, 1999.

[13] W. D. Gropp and R. Thakur. Issues in developing a
thread-safe MPI implementation. In PVM/MPI, pages
12–21, 2006.

[14] W.-K. Hon, K. Sadakane, and W.-K. Sung. Breaking a
time-and-space barrier in constructing full-text
indices. SIAM J. Comput., 38(6):2162–2178, 2009.

[15] T. C. Hu and A. C. Tucker. Optimal computer search
trees and variable-length alphabetical codes. SIAM
Journal on Applied Mathematics, 21(4):514–532, 1971.

[16] H. Kamal and A. Wagner. FG-MPI: Fine-grain MPI
for multicore and clusters. In 11th IEEE Intl.
Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC) held in conjunction
with IPDPS-24, April 2010.

[17] D. Okanohara and K. Sadakane. A linear-time
burrows-wheeler transform using induced sorting. In
SPIRE, pages 90–101, 2009.

[18] J. Seward. bzip2 and libbzip2, version 1.0.5 a program
and library for data compression. Available from
http://www.bzip.org/.

[19] M. Stabno and R. Wrembel. RLH: Bitmap
compression technique based on run-length and
huffman encoding. Info. Sys., 34(4-5):400 – 414, 2009.

[20] E. Toernig. Coroutine library. Available from
http://www.goron.de/~froese/coro/coro.html.

[21] TOP500. Top 500 supercomputing sites. Available
from http://www.top500.org/.

[22] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet
services. In SOSP ’19, pages 268–281, New York, NY,
USA, 2003. ACM.


