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Prologue

Today, stochastic local search (SLS) algorithms belong to the standard methods for solving
hard combinatorial problems from various areas of Arti�cial Intelligence (AI) and Opera-
tions Research (OR). Some of the most successful and powerful algorithms for prominent
problems like SAT (the Satis�ability Problem in Propositional Logic), CSP (the Constraint
Satisfaction Problem), TSP (the Traveling Salesperson Problem), or QAP (the Quadratic
Assignment Problem), are based on stochastic local search. Many stochastic local search
methods like stochastic hill-climbing, Tabu Search, and Simulated Annealing can be generi-
cally applied to a broad range of combinatorial decision and optimisation problems, includ-
ing problems from practically important application areas, like planning and scheduling.
Other prominent and successful algorithmic schemes, like Evolutionary Algorithms or Ant
Colony Optimisation, are also based on the concept of stochastic local search.

In AI, the success story of stochastic local search is tightly linked to its application to SAT.
SAT is a conceptually simple combinatorial decision problem which plays a prominent role
in complexity theory, because of its status as the prototypical NP-complete problem. All
NP-complete problems can be polynomially translated into SAT { these reductions are
often used in the context of NP-completeness proofs. However, recent successes in e�-
ciently solving SAT-encoded planning problems using modern SLS algorithms suggest that
SAT-reductions might provide a practically viable way for solving hard combinatorial prob-
lems from application domains. SAT has a number of advantages over other NP-complete
problems. Its conceptual simplicity facilitates the development and implementation of SLS
algorithms, including hardware realisations. Furthermore, SAT encodings are often well-
known and easily realised. Finally, SLS algorithms for SAT can typically be generalised to
CSP, which allows somewhat more concise and natural representations, in a rather straight-
forward way. One of the big advantages of SLS algorithms is the fact that, di�erent from
most systematic search methods, the algorithms for solving decision problems can equally
well be used to solve the related optimisation problems.

Considering these arguments, the research presented in this thesis focusses mainly on SLS
algorithms for SAT. However, most of the methods and models we developed and used
are not restricted to SAT, but merely applied to SAT as an exemplary problem domain.
For this reason, two of the main contributions of this work, the novel methodology for
empirically evaluating Las Vegas algorithms (Chapter 2 and the GLSM model for local
search (Chapter 3), are presented in a more general context before they are applied to

1



2 Prologue

SAT. Interestingly, we found substantial evidence that the characterisation results regarding
the behaviour of some prominent SLS algorithms for SAT (Chapter 5) also apply to SLS
algorithms for other combinatorial problems, like CSP.

Since the early 1990s, when simple SLS algorithms where shown to outperform the best
systematic algorithms for SAT on a number of domains, SLS algorithms have become in-
creasingly popular in AI. The general interest in SLS algorithms is documented by a growing
body of research. Studies on SLS algorithms play an important role at all major AI con-
ferences, such as the International Joint Conferences on Arti�cial Intelligence (IJCAI), the
European Conferences on Arti�cial Intelligence (ECAI), and the conferences of the Ameri-
can Association for Arti�cial Intelligence (AAAI). Furthermore, research on SLS algorithms
is regularly presented at more specialised AI conferences, such as the International Confer-
ences on Principles and Practice of Constraint Programming (CP) and the Conferences on
Uncertainty in Arti�cial Intelligence (UAI). There is also a substantial number of articles on
SLS algorithms in prestigious journals, like the Arti�cial Intelligence Journal or the Journal
on Arti�cial Intelligence Research. SLS algorithms are also prominent in the Operations
Research community, which began to study and apply them extensively before they became
as popular in AI as they are today. Generally, stochastic local search can be considered as
a young, but prominent and rapidly evolving research area in computer science in general
and within AI in particular.

The research described in this thesis has been done between spring 1996 and autumn 1998 at
the Computer Science Department of the Darmstadt University of Technology (Technische
Universit�at Darmstadt, TUD) in Darmstadt, Germany. This work is based on my earlier
experience with local search algorithms for SAT which I acquired during my M.Sc. studies
(German: Diplomstudiengang) and builds on research issues which evolved in the context of
my master's thesis (German: Diplomarbeit). A signi�cant part of the work was done during
a one-year research visit at the Laboratory for Computational Intelligence at the Computer
Science Department of the University of British Columbia (UBC) in Vancouver, Canada
which was made possible by a scholarship from the German National Merit Foundation
(Studienstiftung des Deutschen Volkes).

The results of this Ph.D. thesis have partly been presented at international conferences and
in research colloquia at TUD and UBC. Furthermore, some of the methods and results
presented in Chapters 2 and 5, although original work of the author, appeared in joint
publications with Thomas St�utzle (TUD). Speci�cally, a part of Chapter 2 was presented
at the 14th Conference for Uncertainty in Arti�cal Intelligence [HS98a]; some of the results
presented in Chapter 5 are covered in a journal article which is currently under preparation
and also appear in a poster presentation at the Fourth International Conference on Principles
and Practice of Constraint Programming [HS98b].

This thesis was written in English to make its results directly accessible to the interna-
tional scienti�c community and to allow its being reviewed by Prof. Bart Selman (Cornell
University, USA), one of the leading experts in the �eld of stochastic local search.
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Outline of the Thesis

The thesis is divided into nine major sections: this Prologue, Chapters 1{7, and an Epilogue.
Each of the Chapters 1{7 begins with a short introduction and ends with a discussion of
related work and a summary of its main results and contributions. Thus, the individual
chapters, although their contents are closely related to each other, are self-contained to
a certain degree. This structure reects the fact that each chapter focusses on di�erent
research issues and methodological approaches. It has been chosen to facilitate selective
reading of this thesis, as in the case of a reader who is mainly interested in the speci�c
subtopic covered by one of the chapters.

In Chapter 1, we give the background and motivation for the work presented in this thesis.
The stage is set by giving a brief introduction to AI problems, logic, and search; then,
we discuss systematic versus local search and informally introduce stochastic local search
methods. Next, we introduce and discuss the concept of generic problem solving using SAT
as an intermediate problem domain, and stochastic local search methods for solving these
problems. This is followed by an introduction into NP-complete and NP-hard problems
and the methods used for solving these in practice. Based on formal de�nitions of the syntax
and semantics of Propositional Logic, we then de�ne the tightly related Satis�ability and
Validity problems and discuss their complexity. Finally, we formally introduce the �nite
discrete Constraint Satisfaction problem and discuss its relation to SAT.

Chapter 2 covers the empirical methodology which is later used for evaluating stochas-
tic local search algorithms and for characterising their behaviour. The previously existing
methodology in this �eld su�ers from several weaknesses, which can lead to misinterpreta-
tions and false conclusions. We discuss these weaknesses and develop a novel methodology
for empirically evaluating stochastic local search algorithms in the more general framework
of Las Vegas Algorithms. Our new approach allows a considerably more detailed analysis
of these algorithms' behaviour without requiring additional overhead in data aquisition. At
the same time, it is not restricted to local search algorithms or particular problem domains,
but can be applied to any algorithm of Las Vegas type.

Chapter 3 introduces the GLSM (Generalised Local Search Machine) model, a novel formal
framework for local search algorithms based on the concept of an extended non-deterministic
�nite state machine. This new model is based on the intuition that adequate local search
algorithms are usually obtained by combining simple search strategies. The GLSM model
allows the adequate representation of most modern SLS algorithms for SAT and other com-
binatorial problems; additionally, it provides conceptually simple ways for extending and
re-combining these into new, hybrid local search schemes and facilitates their implementa-
tion. In the context of this work, GLSM models are used for formalising SLS algorithms
for SAT (Chapter 4), for improving their behaviour (Chapter 5), and, to some extent, for
analysing the search space structure their performance depends on (Chapter 6). However,
these applications merely indicate the full power of the GLSM model and its extensions.

The main topic of Chapter 4 is a comprehensive comparison of several modern SLS al-
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gorithms for SAT, including some of the latest and most successful SAT algorithms. We
formalise and discuss these algorithms, which are instances of the GSAT and WalkSAT ar-
chitectures, within the GLSM framework and empirically evaluate their performance using
a newly compiled suite of benchmark problems. This benchmark suite comprises test-sets
sampled from random problem distributions as well as SAT-encoded instances from other
problem domains. Our comparative performance study shows that while some algorithms
are clearly dominated by others, there is no single best algorithm. Instead, there is a group of
algorithms the performance ranking of which depends on the problem domain and instance
size. Nevertheless, we show that essentially the same problem instances tend to be hard
for all algorithms considered here. Therefore, it makes sense to assume an intrinsic hard-
ness of problem instances. Surprisingly, the top-performing algorithms show an exceedingly
poor performance for a number of problem instances from di�erent domains. This indicates
that the corresponding local search processes su�er from early stagnation, which severly
compromises their performance, especially for hard structured problem instances.

In Chapter 5, we analyse SLS behaviour in more detail, using theoretical argument as well
as empirical methodology for characterising the behaviour of several prominent algorithms
of the WalkSAT and GSAT families. For the �rst time, we prove that while GWSAT is
approximately complete (i.e., for arbitrarily long runs, the probability of solving a soluble
problem instance approaches one), this does not hold for modern WalkSAT variants, like
WalkSAT+tabu, Novelty, and R-Novelty. This explains the stagnation behaviour observed
for these algorithms in Chapter 4. Based on this result, we show how to extend these
algorithms such that approximately complete behaviour is achieved. This leads to new
variants of Novelty and R-Novelty for which we observe signi�cantly improved performance.
We also develop a functional characterisation of the empirically observed SLS behaviour.
This model shows that when applied to hard problem instances from various domains, all
the algorithms we analysed exhibit approximately exponential run-time distributions. This
novel and rather surprising result has interesting implications regarding the e�ectivity of
using random restarts and suggests a novel interpretation of SLS behaviour. As another
consequence, these algorithms can be optimally parallelised by using multiple independent
runs, a particular simple and attractive parallelisation scheme. We also discuss the more
general portfolio approach and its potential bene�ts in the context of SLS algorithms for
SAT.

In Chapter 6, the main objective is to improve our understanding of SLS behaviour by
analysing features of the search spaces underlying the local search process. While some
of our analyses re�ne and extend previous work, such as the inuence of the number of
solutions on SLS performance, others are based on features which have not been studied
before, such as the distribution of objective function values across the search space or local
minima branching along SLS trajectories. Our analysis shows that, while the number of
solutions has a dominating inuence on SLS performance, other factors, such as the standard
deviation of the objective function and the branching of local minima have also signi�cant
e�ects. Regarding the structure of local minima regions, we show that these resemble brittle
canyon structures rather than compact basins, which explains the e�ectivity of simple escape
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mechanims like random walk. Interestingly, the local minimum branching is considerably
lower for SAT-encoded instances from other domains than for randomly generated instances.
Our analysis does not explain all the observed performance di�erences, but it improves on
the previous understanding of SLS behaviour. While we focus on SLS algorithms for SAT,
the same empirical methodology can be used to study search space structure and its inuence
on SLS performance for other domains of combinatorial problems.

Chapter 7 provides an initial investigation of the inuence of encoding strategies on search
space structure and SLS performance. Based on two case studies, covering Constraint
Satisfaction Problems (CSPs) and the Hamilton Circuit Problem (HCP), we exemplify how
some of the methods developed before (in particular, in Chapters 4{6) can be applied in this
context. We study di�erent SAT-encodings for CSP and HCP and analyse the di�erences
between compact encodings, (which minimise the search space size) and sparse encodings,
as well as the e�ects of eliminating symmetric solutions. Furthermore, for CSP, we compare
the performance of state-of-the-art SLS algorithms for SAT applied to SAT-encoded CSP
instances with the performance of conceptually related SLS algorithms for CSP, which are
directly applied to the un-encoded problem instances. While the scope of our investigation
is too limited to produce de�nitive answers to the problems we address, our results suggest
some testable hypotheses on the e�ectivity of encoding strategies and the generic problem
solving approach from Chapter 1. Furthermore, our study demonstrates how the techniques
developed for the evaluation of SLS performance and the analysis of search space structure
can be used for studying the impact of SAT-encodings on search space structure and SLS
behaviour.

The work concludes with an Epilogue, where we summarise its main contributions and point
out open questions as well as directions for further research.
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Chapter 1

Introduction: Logic, Search,
and NP-hard Problems

The aim of this introductory chapter is to give the background and motivation for the work
presented in this thesis. After a brief general introduction to Arti�cial Intelligence and the
types of problems arising in this �eld of computer science, we discuss and compare the con-
cepts of systematic and local search. We then present the model of generic problem solving
which provides the motivation for the major part of the topics investigated in this thesis.
Next, we give a short introduction to NP-complete and NP-hard problems, after which we
introduce two fundamental NP-hard problems, the satis�ability problem in propositional
logic (SAT) and the constraint satisfaction problem (CSP), which form the basis for a ma-
jor part of this thesis. Finally, we give some pointers to the literature related to the topics
covered here and conclude with a short summary.

1.1 AI Problems, Logic, and Search

Within computer science, a relatively young and still rapidly growing academic discipline
with a vast impact on a signi�cant part of our modern societies, some of the most intriguing
problems can be found in a �eld called Arti�cial Intelligence (AI), or Intellectics1 . The
general goal of AI is to realise intelligent behaviour in machines, an idea which by far
predates the construction of the �rst universal computers. Since this basic motivation is
tightly correlated with general questions regarding human intelligence, cognition, and the
workings of the mind, AI problems are often, if not always, closely related to disciplines
other than computer science, such as Psychology, Philosophy, and Neurobiology.

Some of the most prominent problems in AI are in the areas of language understanding, the-

1This name has been coined by Wolfgang Bibel, it refers to the discipline uniting traditional AI and
certain areas of cognitive science [Bib80].

7
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orem proving, game playing, pattern recognition, and musical composition. Unfortunately,
most of these tasks involve computationally very hard problems and despite quite impres-
sive successes in many areas of AI, today still most general AI problems lack completely
satisfactory and feasible solutions. Like all problems in computer science, AI problems can
be categorised in two major types: representational problems and computational problems.
While the former problem type involves �nding a suitable representation or formalisation
of a problem from some domain, the latter type is about �nding algorithms to solve these
problems. Of course, both types of problems are closely related, since usually solving a real-
world problem involves both �nding a suitable representation and devising an algorithm to
solve the formalised problem. Moreover, the construction and implementation of problem
solving algorithms often critically depends on the problem being represented in a suitable
way, just as certain representations almost naturally lead to speci�c algorithms.

In AI, problems are often represented in the framework of formal logics. A formal logic L is
given by a formal language which speci�es the syntax of logical expressions, and a mapping
of these expressions to a system of truth values specifying the semantics of L. Examples
for formal logics which are used and studied in AI are propositional logic, �rst-order logic,
second and higher order logics, modal logics, temporal logics, and action logics. Sentences
which are true in a given logical system are called theorems. Theorems can be proven
semantically, using formal reasoning outside the logical system. Alternatively, syntactical
prove mechanisms called calculi can be used for establishing truth or falsehood of logical
sentences. A logical calculus is a formal system consisting of a set of axioms, which are
elementary true sentences, and a set of rules, which de�ne truth preserving transformations
of sentences. Calculi are the basis for the automatisation of logic. However, not for every
logical system semantical truth can be characterised by a calculus, i.e., for certain logical
systems, there are semantically true sentences which cannot be algorithmically proven.
In these logics, theoremhood is undecidable. First-order logic is of this type, while for
propositional logic the validity of sentences can be decided algorithmically.

Many AI problems, particularly the ones arising in the context of formal logics, are decision
problems, where solutions are characterised by a set of conditions which have to be satis�ed
in order to solve the problem. Classical theorem proving is usually formulated as a decision
problem. Here, the solutions are the proofs of the given formula within a given proof system
(or calculus). However, problems from application domains are often rather optimisation
than decision problems. Optimisation problems can be seen as generalisations of decision
problems, where the solutions are additionally valued by an objective function. There are
two types of optimisation problems, a maximisation and a minimisation variant. For these
problems, the goal is to �nd optimal solutions, i.e., solutions with maximal resp. minimal
value of the objective function. The theorem proving example from above can be formulated
as an optimisation problem, if we take the proof length as the objective function and modify
the problem goal to �nding minimal length proofs. As we will see in the course of this work,
many algorithms for decision problems can be extended to optimisation problems in a rather
natural way. However, this is not always the case, since for many optimisation problems
�nding valid solutions is not very hard, whereas �nding optimal or near-optimal solutions
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is computationally very expensive.

In many cases, decision and optimisation problems in AI can be characterised as search
problems, i.e., problems which involve some sort of searching through a number of solution
candidates or partial solutions while trying to �nd an actual, valid (and maybe optimal) so-
lution for the given problem instance. Many problems from game playing, theorem proving,
and other areas of AI can be formulated as search problems in this sense. Note, however,
that algorithms for solving search problems need not always be classical search algorithms.
Actually, the search aspect does not not even have to be explicitly represented in such al-
gorithms. Nevertheless, the abstract notion of search is fundamental for many AI problems
and algorithms. As mentioned before, many AI problems are computationally very hard.
Using the search metaphor, this is usually reected by the fact that for a given problem
instance, the set of solution candidates or partial solutions which de�nes the space in which
the search takes place, is very large and no algorithmic methods for e�ectively �nding actual
solutions in these huge search spaces are known. A very typical situation is given in the
case of problems where the time complexity of �nding solutions grows exponentially with
the problem size, while to decide whether a solution candidate is an actual solution can
be done in polynomial time. It is in this situation, where algorithms based on the search
metaphor are most frequently applied.

1.2 Systematic versus Local Search

Search methods can be roughly classi�ed into two categories: systematic and local search.2

Systematic search algorithms traverse the search space of a problem instance in a systematic
manner which guarantees that eventually either a solution is found, or, if no solution exists,
this fact is determined with certainty. This typical property of algorithms based on sys-
tematic search is called completeness. On the other hand, local search initialises the search
process in some point of the search space and then procedes by iteratively moving from
the present location to a neighbouring location, where the decision on each step is based
on local knowledge only. Even if the local decisions are made in a rather systematic way,
typically local search algorithms are incomplete, i.e., even if the given problem instance
has a solution, they are not guaranteed to �nd it eventually. Also, local search methods
can visit the same location within the search space more than once. Actually, they are
frequently prone to getting stuck in some part of the search space which they cannot escape
from without special mechanisms like a complete restart of the search process or some other
sort of diversi�cation steps.

It might appear that, due to their incompleteness, local search algorithms are generally
inferior to systematic methods. But as will be shown later, this is not quite true. Firstly,
many problems are constructive by nature, it is known that they are solvable and what is
required is actually the generation of a solution rather than just deciding whether a solutions

2Systematic search often exploits structural features of the problem representation and may thus also be
referred to as \structural search"
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does exist. This holds in particular for optimisation problems, like the Traveling Salesperson
Problem (TSP) where the actual problem is to �nd a solution of su�cient optimality, but
also for underconstrained decision problems which are quite common.

Secondly, in a typical application scenario often the time to �nd a solution is limited.
Examples for such real-time problems can be found in virtually all application domains.
Actually one might argue that almost every real-world problem involving interaction with
the physical world, including humans, has real-time constraints. (Common examples are
robot motion planning and decision making, most game playing situations, and speech
recognition for natural language interfaces.) In these situations, systematic algorithms
often have to be aborted after the given time has been exhausted, which | of course
| renders them incomplete. This is particularly problematic for systematic optimisation
algorithms which search through spaces of partial solutions; if those are aborted usually no
solution candidate is available, while in the same situation local search algorithms typically
o�er the best solution found so far.3 Ideally, algorithms for real-time problems should
be able to deliver reasonably good solutions at any point during their execution. For
optimisation problems this typically means that run-time and solution quality should be
positively correlated, for decision problems one could imagine to guess a solution when a
time-out occurs, where the accuracy of the guess should increase with the run-time of the
algorithm. This so-called any-time property of algorithms is usually di�cult to achieve, but
in many situations the local search paradigm seems to be better suited for devising any-time
algorithms than systematic search models.

As a matter of fact, systematic and local search algorithms are somewhat complementary in
their applications. A nice example for this can be found in [KS96], where a fast local search
algorithm is used for �nding actual solutions for planning problems the optimality of which is
proven by means of a systematic algorithm. As we will discuss later in more detail, di�erent
views of the same problem may in certain cases, particularly if reasonably good solutions
are required within a short time using parallel computation and the knowledge about the
problem domain is very limited, call for local search algorithms. In other cases, usually
if exact or optimal solutions are required, time constraints are less important and some
knowledge about the problem domain can be exploited, systematic search will be the better
choice. Finally, there is some evidence that for certain problem classes, local and systematic
search methods are most e�ective on di�erent subclasses of instances. Unfortunately, to date
the general question on when to prefer systematic and when local search methods remains
mainly open.

Often, local search algorithms make heavily use of stochastic mechanisms, such as prob-
abilistic tie-breaking heuristics. These algorithms are called stochastic local search (or
SLS) algorithms, and have been used for many years now in the context of combinato-
rial optimisation problems. Among the most prominent algorithms of this kind we �nd the
Lin-Kernighan algorithm [LK73] for the Traveling Salesperson Problem, as well as general
methods like Tabu Search [Glo89], and Simulated Annealing [KJV83]. Lately it has be-

3However, it should be noted that, though quite uncommon so far, local search algorithms can be also
designed in such a way that they are searching in a space of partial solutions.
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come evident that stochastic local search algorithms can also be very successfully applied
to the solution of NP-complete decision problems such as the Graph Colouring Problem
(GCP) [HD87, MJPL90, MJPL92] or the Satis�ability Problem in propositional logic (SAT)
[SLM92, GW93a, Gu94]. The latter is particularly interesting for AI research because it is
not only one of the basic problems arising in a (rather simple) context of logic-based ap-
proaches, but it can also be used in the context of a generic problem solving approach where
basic problems from other domains, such as Blocks World Planning or Graph Colouring, are
solved by encoding them into SAT and subsequently solving the encoded instances using
stochastic local search techniques. Recent research results indicate that this approach is
viable for at least some problem domains [KS96, JKS95] and consequently today there is
considerable interest, not only in the AI community, in the questions connected with it and
the research in this areas.

1.3 Generic Problem Solving Using Stochastic Local Search

Much of the interest in e�cient algorithms for rather abstract but syntactically simple
problems, like the satis�ability problem in propositional logic (SAT), is based on the notion
of generic problem solving. There are two variants of this indirect approach, the weaker of
which relies on the assumption that general techniques can be identi�ed which are e�ective
for dealing with a broad range of problem classes. If this is correct, developing and studying
algorithms on syntactically simple problems is a very reasonable approach. The stronger
variant assumes that it is possible to solve problems by transforming them into some domain
for which an e�ective universal solver is available. The solutions that are thus obtained are
then back-transformed into the original problem domain which yields the desired solutions
for the problem at hand.

This approach of generic problem solving relies on a number of assumptions. First of all,
the domain the problems are transformed into (the intermediate domain) has to provide
su�cient expressive power, i.e., a signi�cant number of interesting problem classes have to
be representable in this domain. Next, the complexity of the transformations between the
domains has to be su�ciently low compared to the complexity of �nding a solution, other-
wise the overhead involved in this indirect approach might easily outweigh its advantages.
Finally, the most crucial assumption is the existence of a su�ciently general solver in the
intermediate domain.

One could argue, that these assumptions are critical in the sense that at least for some of
them there is some doubt on whether they can be met in practice. There is a number of
domains, which are su�ciently expressive to represent a wide variety of interesting problem
classes. For some of these, like SAT and CSP, e�cient transformations have been found
for many problem classes [SW93] such that there is some indication that the extra costs of
encoding/decoding are almost negligible when compared to the costs of �nding solutions. It
is, however, not clear whether there are su�ciently universal solvers for these intermediate
domains and how these are a�ected by the choice of problem encoding. Very probably there
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Figure 1.1: Generic problem solving by transformation.

will be a tight link between the problem encoding and a given algorithm's performance.
But even assuming that one could �nd an intermediate-domain algorithm which achieves
reasonable performance on some encoding for a su�ciently broad range of problems, it is still
not clear whether �nding suitable encodings is actually less di�cult than devising specialised
algorithms for the original application domains. Consequently, the crucial problem with the
generic problem solving approach is to �nd an intermediate-domain algorithm and a number
of su�ciently e�cient and simple encoding strategies which together show a reasonable
performance on a broad range of interesting problem domains.

On the other hand, the advantages of the generic solving approach are obvious. First of all,
no specialised solver is needed for the original problem domain. Also, many domains bene�t
from improvements of intermediate-domain solvers. Thus, it pays o� to invest signi�cant
e�ort in improving intermediate-domain solvers, and even special hardware support could
be an e�ective way of speeding up these solvers [HM97]. The weak variant of the generic
problem solving approach is widely accepted in AI and to date, many problem solving
techniques are known which can be successfully applied to a variety of problem domains.
The strong variant, however, is less commonly accepted. Nevertheless, recent results for
solving SAT encoded problems using stochastic local search techniques give some indication
that even the strong variant of generic problem solving might be feasible in practice.

There are several reasons for regarding SAT as a promising intermediate domain. First of all,
SAT is NP-complete which means that every NP-complete problem can be polynomially
reduced to SAT. Thus, reasonable e�cient transformations between SAT and other NP-
complete decision problems exist. Since the class of NP-complete decision problems covers
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a wide range of interesting application problems, SAT is expressive enough for acting as an
intermediate domain. The second advantage of SAT is its conceptual simplicity. Because
the syntax as well as the semantics of SAT is very simple, especially when restricted to CNF
formulae, SAT o�ers substantial advantages for devising and evaluating algorithms.

So if SAT appears to be a reasonable choice for the intermediate domain, why should one
consider SLS algorithms as SAT solvers? First, as mentioned before, SLS algorithms have
been found to be competitive with or even superior to systematic search for both native SAT
problems as well a broad range of SAT encoded problems from other domains. Furthermore,
most popular SLS algorithms for SAT are relatively easy to implement because they are
conceptually quite simple. Finally, most of these SLS algorithms can be parallelised in
a rather straightforward way. On the other hand, there are some disadvantages of SLS
algorithms to be mentioned. First, typical SLS algorithms are incomplete, i.e., they are not
guaranteed to �nd an existing solution. Then, these algorithms are highly non-deterministic
which sometimes is seen as a problem by itself (for example, when it comes to the reliability
and reproducibility of results). But a more important drawback of this property is the
fact that these algorithms have been found extremely di�cult to analyse and consequently
to date, there is almost no theoretical understanding of their behaviour. Nevertheless, the
advantages, especially the superior performance that could be achieved for di�erent types of
SAT problems, seem to outweigh these drawbacks such that SLS algorithms are considered
to be among the most promising methods for solving large and hard satis�ability problems.

1.4 NP-Complete and NP-Hard Problems

Today, the theory of computational complexity is a well-established �eld with considerable
impact on other areas of computer science. In the context of this work, complexity theory
plays a certain role, because the primary �eld of application of stochastic local search
algorithms is a class of computationally very hard problems, for which no e�cient, i.e.,
polynomial time, algorithms are known. Moreover, todate a majority of the experts in
complexity theory believe that for principal reasons the existence of e�cient algorithms for
these problems is impossible.

The complexity of an algorithm is de�ned on the basis of formal machine models. Usually,
these are idealised, yet universal models, designed in a way which facilitates formal reasoning
about their behaviour. One of the �rst, and still maybe the most prominent of these models
is the Turing machine. For Turing machines and other formal machine or programming
models, computational complexity is de�ned in terms of the space and time requirements
of computions.

Complexity theory usually deals with whole problem classes (generally countable sets of
problem instances) instead of single instances. For a given algorithm or machine model,
the complexity of a computation is characterised by the functional dependency between
the size of an instance and the time and space required to solve this instance. For reasons
of analytical tractability, many problems are formulated as decision problems, and time
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and space complexity are analyzed in terms of the worst asymptotic behaviour. Given a
suitable de�nition of the computational complexity of an algorithm for a speci�c problem
class, the complexity of the problem class itself can be de�ned as the complexity of the best
algorithm on this problem class. Because generally time complexity is the more restrictive
factor, problem classes are often categorised into complexity classes with respect to their
asymptotic worst case time complexity.

Two particularly interesting complexity classes are P , the class of problems that can be
solved by a deterministic machine in polynomial time, and NP , the class of problems which
can be solved by a nondeterministic machine in prolynomial time. Of course, every problem
in P is also contained in NP , basically because deterministic calculations can be emulated
on a nondeterministic machine. However, the question whether also NP � P , and conse-
quently P = NP, is one of the most prominent open problems in computer science. Since
many extremely application relevant fundamental problems are in NP , but possibly not
in P (i.e., no polynomial time deterministic algorithm is known), this so-called P = NP-
Problem is not only of theoretical interest. For these computationally hard problems, the
best algorithms known so far have exponential time complexity. Therefore, for growing
problem size, the problem instances become quickly intractable, and even the tremendous
advances in hardware design have little e�ect on the size of the problem instances solvable
with state-of-the-art technology in reasonable time. Well-known examples ofNP-hard prob-
lems include the Propositional Satis�ability Problem (see also below), the Graph Colouring
Problem, the Knapsack Problem, the Traveling Salesperson Problem, scheduling problems,
and time table problems, to name just a few [GJ79].

Many of these hard problems fromNP are closely related to each other and can be translated
into each other in polynomial deterministic time (polynomial reduction). A problem, which
is at least as hard as any other problem in NP (in the sense that each problem in NP can be
polynomially reduced to it) is called NP-hard. Thus, NP-hard problems in a certain sense
can be regarded as at least as hard as every problem inNP. But they do not necessarily have
to belong to the class NP themselves, as their complexity might be actually much higher.
NP-hard problems which are contained in NP are called NP-complete; in a certain sense,
these problems are the hardest problems in NP.

One fundamental result of complexity theory states that it su�ces to �nd a polynomial time
deterministic algorithm for one single NP-complete problem to prove that NP = P . This
is a consequence of the fact, that all NP-complete problems can be encoded into each other
in polynomial time. Today, most computer scientists believe that P 6= NP; however, so
far all e�orts of �nding a proof for this inequality have been unsuccessful and there is some
indication that today's mathematical methods might be too weak to solve this fundamental
problem.

Many practically revelant problems from application domains, such as scheduling and plan-
ning problems, are NP-complete and therefore generally not e�ciently solvable today (and
maybe, if NP 6= P , not e�ciently solvable at all). However, being NP-complete or NP-
hard does not mean for a problem that is impossible to practically solve it e�ciently. Prac-
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tically, there are at least three ways of dealing with these problems:

� Try to �nd an application relevant subclass of the problem which can be e�ciently solved.

� Use e�cient approximation algorithms.

� Use stochastic approaches.

Regarding the �rst strategy, we have to keep in mind that NP-hardness is a property of
a whole problem class P , whereas in practice, often only instances from a certain subclass
P 0 � P occur. And of course, P 0 does not have to be NP-hard in general, i.e., while for P
an e�cient algorithm might not exist, it might still be possible to �nd an e�cient algorithm
for the subclass P 0.

If, however, the problem at hand is an optimisation problem which cannot be narrowed
down to an e�ciently solvable subclass, another option is to accept approximations of
the solution instead of trying to compute optimal solutions. This way, in many cases the
computational complexity of the problem can be su�ciently reduced to make the problem
practically solvable. In some cases, allowing a comparatively small margin from the optimal
solution makes the problem deterministically solvable in polynomial time. In other cases,
the approximation problem remains NP-hard, but the reduction in computational e�ort is
su�cient to �nd acceptable solutions of practically occurring problem instances.

Sometimes, however, even reasonably e�cient approximation schemes cannot be devised or
the problem is a decision problem, to which the notion of approximation cannot be applied
at all. In these cases, one further option is to focus on probabilistic rather than determin-
istic algorithms. At the �rst glance, this idea has quite an appeal: After all, according to
the de�nition of the complexity class NP, at least NP-complete problems can be e�ciently
solved by nondeterministic machines. But this, of course, is of little practical use, since for
an actual probabilistic algorithm this means only, that there is a chance, however small,
that it can solve the given problem in polynomial time. In practice, the success probability
of such an algorithm can be arbitrarily small. Nevertheless, in numerous occasions, prob-
abilistic algorithms have been found to be considerably more e�cient on NP-complete or
-hard problems than the best deterministic methods available. In other cases, probabilistic
methods and deterministic methods complement each other in the sense, that for certain
types of problem instances one or the other have been found to be superior. Among the
most fundamental and best known problems from this category are the satis�ability prob-
lem in propositional logic (SAT) and the constraint satisfaction problem (CSP), which are
formally introduced in the next sections.

1.5 Propositional Logic and Satis�ability (SAT)

Propositional logic is based on a formal language over an alphabet comprising propositional
variables, truth values and logical operators. Using logical operators, propositional variables



16 CHAPTER 1. INTRODUCTION: LOGIC, SEARCH, AND NP-HARD PROBLEMS

and truth values are combined into propositional formulae which represent propositional
statements. Formally, the syntax of propositional logic can be de�ned by:

De�nition 1.1 (Syntax of Propositional Logic)

S = V [ C [ O [ f(; )g is the alphabet of propositional logic, with V = fxi j i 2 Ng
denoting the countable in�nite set of propositional variables, C = f>;?g the set of
truth values and O = f:;^;_g the set of propositional operators.

The set of propositional formulae is characterised by the following inductive de�nition:

� the truth values > and ? are propositional formulae;

� each propositional variable xi 2 V is a propositional formula;

� if F is a propositional formula, then :F is also a propositional formula;

� if F1 and F2 are propositional formulae, then also (F1 ^ F2) and (F1 _ F2) are
propositional formulae. 2

Assignments are mappings from propositional variables to truth values. Using the standard
interpretations of the logical operators on truth values, assigments can be used to evaluate
propositional formulae. This way, we can de�ne the semantics of propositional logic:

De�nition 1.2 (Semantics of Propositional Logic)

The variable set Var(F ) of formula F is de�ned as the set of all the variables appearing
in F .

A variable assignment of formula F is a mapping B : Var(F ) 7! C of the variable
set of F to the truth values. The complete set of assignments of F is denoted by
Assign(F ).

The value ValB(F ) of formula F under assignment B is de�ned by induction on the
syntactic structure of F :

� F � > =) ValB(F ) = >

� F � ? =) ValB(F ) = ?

� F � xi 2 V =) ValB(F ) = B(xi)

� F � :F1 =) ValB(F ) = :ValB(F1)

� F � F1 ^ F2 =) ValB(F ) = ValB(F1)^ ValB(F2)

� F � F1 _ F2 =) ValB(F ) = ValB(F1)_ ValB(F2)

The truth values > and ? are also known as verum (true) and falsum (false), resp.;
the operators : (negation), ^ (conjunction), and _ (disjunction) are de�ned by the
following truth tables:
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:
> ?
? >

^ > ?
> > ?
? ? ?

_ > ?
> > >
? > ? 2

Because the variable set of a propositional formula is always �nite, the complete set of
assignments for a given formula is also �nite. More precisely, for a formula containing n

variables there are exactly 2n variable assignments.

Considering the values of a formula under all possible assignments, the fundamental notions
of validity and satis�ability can be de�ned in the following way:

De�nition 1.3 (Satis�ability & Validity)

A variable assignment B is a model of formula F , exactly if ValB(F ) = >; in this case
we say that B satis�es F .

A formula F is valid , if it is satis�ed by all its variable assignments. Valid formulae
are also called tautologies.

If for a formula F there exists at least one model, F is satis�able. 2

Now, we can formally de�ne the Satis�ability Problem (SAT) and the Validity Problem
(VAL) for propositional logic.

De�nition 1.4 (The SAT and VAL problems)

For the Satis�ability Problem (SAT) in propositional logic, the goal is to decide for a
given formula F , whether or not it is satis�able.

For the Validity problem (VAL) in propositional logic, the goal is to decide for a given
formula F , whether or not it is valid. 2

For SAT, there are two variants of the problem, the decision variant and the model �nding
variant. In the decision variant, only a yes/no decision for the satis�ability of the given
formula is required, while for the model �nding variant, in case the formula is satis�able,
a model has to be found. Note that there is a simple relationship between SAT and VAL:
For each formula F , F is valid if and only if :F is not satis�able, i.e., a formula is valid
exactly if its negation has no model. For that reason, decision procedures for SAT can be
used to decide VAL and vice versa. This, however, does not hold for incomplete procedures,
such as the SLS algorithms for SAT discussed in this work. Since these cannot determine
whether a given formula is not satis�able, they cannot be used for establishing validity.

Often, problems like SAT and VAL are studied for syntactically restricted classes of for-
mulae. Imposing syntactical restrictions usually facilitates theoretical studies and can also
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be very useful for simplifying algorithm design. Normal forms are syntactically restricted
formulae such that for an arbitrary formula F there is always at least one normal form for-
mula F 0. Thus, each normal form induces a subclass of propositional formulae which is as
expressively powerful as full propositional logic. Because for certain syntactically restricted
classes of formulae it is not proven whether or not they are normal forms in that sense,
we will use the term \normal form" in a more general sense here, covering reasonably ex-
pressively powerful subclasses of propositional logic which are characterised by syntactical
restrictions. Some of the most commonly used normal forms are subsumed by the following
de�nition.

De�nition 1.5 (Normal forms)

A literal is a propositional variable (called a positive literal) or its negation (called a
negative literal). Formulae of the syntactic form c1^c2^: : :^cn are called conjunctions,
while formulae of the form d1 _ d2 _ : : :_ dn are called disjunctions.

A propositional formula F is in conjunctive normal form (CNF), if it is a conjunction
over disjunctions of literals. The disjunctions are called clauses. A CNF formula F is
in k-CNF, if all clauses of F contain exactly k literals.

A propositional formula F is in disjunctive normal form (DNF), if it is a disjunction
over conjunctions of literals. In this case, the conjunctions are called clauses. A DNF
formula F is in k-DNF, if all clauses of F contain exactly k literals.

A CNF formula F is Horn, if every clause in F contains at most one unnegated vari-
able. 2

SAT is the prototypical NP-complete problem. Historically, it was the �rst problem for
which NP-completeness was established [Coo71]. NP-completeness of SAT can directly
be proven by encoding the calculations of a Turing machine M for an NP problem into a
propositional formula the models of which correspond to the accepting computations ofM .
Furthermore, it is quite easy to show that SAT is NP-complete when restricted to CNF or
even 3-CNF formulae [Rei90]. At the other hand, SAT is decidable in linear time for DNF,
for Horn formulae [DG84], and for 2-CNF [Coo71].

As outlined above, VAL is equivalent to the complement of SAT. Therefore, VAL is co-NP-
complete. While the same holds for VAL on DNF formulae, VAL is polynomially decidable
on CNF formulae. Note that to date, it is unknown, whether co-NP is di�erent from NP.
In an intuitive sense, the VAL problem could actually be harder than SAT because while
a solution for SAT can be veri�ed in polynomial (actually linear) time, it is not clear how
this should be generally done for a solution of VAL.
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1.6 Constraint Satisfaction Problems (CSP)

A constraint satisfaction problem (CSP) is a problem de�ned by a set of variables each of
which can take a number of values from some domain and a set of constraining conditions
involving one or more variables. Depending whether the variable domains are discrete or
continous, �nite or in�nite, di�erent types of CSPs can be de�ned. In the context of this
work, we restrict our attention mainly to �nite discrete CSPs. This problem class can
formally be de�ned as follows:

De�nition 1.6 (Finite discrete CSP)

A constraint satisfaction problem can be de�ned as a triple P = (X;D; C), where
X = fx1; : : : ; xng is a �nite set of n variables, D = fD1; : : : ; Dng a set of domains
and C = fC1; : : : ; Ckg a �nite set of constraints. Each constraint Cj is a relation
Cj � Xj1 � � � � �Xj#j

on #j variables.

P is a �nite discrete CSP, if all the Di are discrete and �nite.

A variable assignment for P is a vector A = (d1; : : : ; dn) containing exactly one value
di 2 Di for each variable xi.

If A denotes the set of all possible assignments for P , then S 2 A is a solution of P
exactly if it simultaneously satis�es all constraints in C, i.e., if for S = (s1; : : : ; sn)
and all Cj 2 C, Cj � Xj1 � � � � �Xj#j

we have (sj1 ; : : : ; sj#j
) 2 Cj . 2

Of course, for this type of CSP the set of all possible assignments is �nite. As SAT, the
class of �nite discrete CSPs is NP-complete. This can be proven quite easily as there is
a close relation between propositional SAT and �nite discrete CSPs: SAT on CNF formu-
lae corresponds directly to a �nite discrete CSP where all the domains contain only the
boolean values >;? and each constraint contains exactly all the satisfying assignments of
one particular clause. Vice versa, each �nite discrete CSP can be directly transformed into
a SAT instance, where each propositional variable represents a particular assignment of one
CSP variable and each constraint is represented by a number of clauses. Note, however,
that this type of direct encoding does generally not yield a CNF formula, but a formula
in CDNF (conjunctive disjunctive normal form, i.e., a conjunction over disjunctions over
conjunctions of literals) which can then be transformed into CNF.

Although CSP appears to be more adequate for the representation of hard combinatorial
problems than SAT, SAT is a syntactically considerably simpler domain, and therefore
designing and analysing algorithms tends to be easier for SAT than for CSP. At the same
time, most SLS algorithms for SAT can be generalised to CSP in a straightforward way, and
techniques which are working well for SAT tend to show good performance on CSP as well.
Consequently, concepts and algorithms for SAT solving are in many respects more advanced
than the corresponding CSP development, as can be seen in the recent literature. Mainly
for this reason, we focus on SAT instead of CSP in the context of this thesis. Nevertheless,



20 CHAPTER 1. INTRODUCTION: LOGIC, SEARCH, AND NP-HARD PROBLEMS

CSP is an important and interesting problem class; and, as we will see later, it is particularly
useful as an intermediate step when transforming problems from other domains into SAT.

1.7 Related Work

Due to the introductory nature of this chapter, there is a huge body of literature related
to the concepts presented here. Introductions to AI problems and search methods can be
found in any modern or classis textbook on AI (such as [PMG98, RN95, Gin93, Nil80],
etc.); for details on heuristic search, see also [Pea84]. For reference purposes, the Ency-
clopedia of Arti�cial Intelligence [Sha92] provides information on most AI concepts and
approaches. An introduction to automated deduction and theorem proving can be found,
e.g., in [Bib92]. The generic problem solving approach is folklore in AI as well as in computer
science in general; it is, however, tightly related to general issues of knowledge representa-
tion (see see [Bib93] for further references). For a detailed discussion of complexity theory,
NP-completeness, and NP-hard problems, see [GJ79] or [Rei90]; Constrained Satisfaction
problems and solving techniques are described in [Mac92]. Regarding stochastic local search
methods for SAT and CSP, seminal studies are [SLM92], [Gu92], and [MJPL90]. Most of
the literature on SLS algorithms for AI problems can be found in journals or the proceed-
ings of the major AI conferences, as mentioned in the Prologue; the appropriate references
are given in throughout this work, especially in the related work sections of the succeeding
chapters.

1.8 Conclusions

In this chapter, we gave a brief introduction to AI problems. We distinguished various
types of problems, representational versus computational, and decision versus optimisation
problems. As we have argued, many important problems in AI are formalised in the context
of logics, and can be interpreted as search problems. We introduced and briey discussed two
algorithmic approaches for solving these problems, systematic and local search algorithms,
and reported some of the successes which could recently be achieved using stochastic local
search techniques.

We then outlined a generic approach for solving hard problems by transforming them into
an intermediate domain and solving them using stochastic local search methods. This
technique has recently been successfully applied to some problem domains, yet, as of this
writing, it is not clear whether these results can be achieved for a larger number of inter-
esting problems. However, the overall approach of solving problems by mapping them onto
alternate representations is widely used in computer science in general, and AI in partic-
ular. The propositional satis�ability problem (SAT) seems to be a good candidate for an
intermediate domain, since it has su�cient expressive power for covering a large class of
interesting problems. At the same time, even when compared to tightly related problems
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like CSP, SAT has the advantage of being syntactically and conceptionally very simple |
which facilitates the development and analysis of algorithms.

Like many AI problems, SAT is NP-hard, thus there is little hope for �nding algorithms
with better than exponential worst-case behaviour. However, there is still the chance that
interesting or application relevant subclasses of these problems are algorithmically tractable.
But as we argued, even if for a particular problem this is not the case, transforming problems
into SAT and solving them using general SAT algorithms could still be advantageous, e.g.,
because improving these algorithms pays o� for a potentially large number of domains.

Certainly, the concept of generic problem solving by transformation into and solving within
an intermediate domain is very elegant. The practical viability of this approach is suggested
by the recent impressive successes which are mainly based on the dramatic improvements
in SLS techniques for solving hard SAT instances. Thus, within the AI community there is
a strong and continuously growing interest in topics like the design and analysis of modern
SAT algorithms, SAT encodings, and their applications. These issues are investigated in
the remainder of this thesis; while the question, whether generic problem solving using SAT
encodings and SLS algorithms for SAT is a viable solution strategy for a large number
of hard application problems, remains open, we are convinced that the results presented
in the subsequent chapters can be regarded as important contributions to the analysis,
improvement, and understanding of the overall approach.
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Chapter 2

Empirical Analysis of
Las Vegas Algorithms

In this chapter, we introduce a novel methodology for empirically investigating the behaviour
of stochastic local search algorithms. We use this methodology later for the empirical
analysis of SLS-Algorithms for SAT; here, it is developed in the more general context of Las
Vegas Algorithms. After motivating the need for a more adequate empirical methodology
and providing some general background on Las Vegas Algorithms, we introduce our new
method which is based on characterising run-time distributions of algorithms on single
problem instances. As we will show, our novel approach facilitates the evaluation and
comparison of Las Vegas Algorithms; speci�cally, it can be used for obtaining optimal
parameterisations and parallelisations. We then point out some pitfalls which arise by
using inadequate empirical methodology and show how these are avoided when using our
approach. Finally, we extend our methodology to optimisation problems. The chapter
concludes with an overview of related work and a short resume of the main ideas and
results.

2.1 Motivation and Background

Las Vegas Algorithms (LVAs) are nondeterministic algorithms for which, if a solution is
found, its correctness is guaranteed. However, it is not guaranteed that for a soluble problem
instance, such an algorithm eventually �nds a solution. Because of its nondeterministic
nature, the run-time of a Las Vegas Algorithm is a random variable.

Las Vegas Algorithms are prominent not only in the �eld of Arti�cial Intelligence but also
in other areas of computer science and Operations Research. Because of their inherent ran-
domness, stochastic local search (SLS) algorithms (cf. Chapter 1) are particular instances
of LVAs. In the recent years, SLS algorithms have become quite prominent for solving both
NP-complete decision problems and NP-hard combinatorial problems. These algorithms,

23



24 CHAPTER 2. EMPIRICAL ANALYSIS OF LAS VEGAS ALGORITHMS

such as Tabu Search [Glo89, Glo90, HJ90], WalkSAT [SKC94], the Min-Conicts Heuristic
[MJPL92], Simulated Annealing [KJV83], Genetic Algorithms [Hol75, Gol89], Evolution
Strategies [Rec73, Sch81], Ant Colony Optimisation algorithms [DMC96], etc., have been
found to be very successful on numerous problems from a broad range of domains. But also
a number of systematic search methods, like some modern variants of the Davis Putnam
algorithm for propositional satis�ability (SAT) problems, make use of non-deterministic
decisions (like randomised tie-breaking rules) and can thus be characterised as Las Vegas
Algorithms.

However, due to their non-deterministic nature, the behaviour of Las Vegas Algorithms
is usually di�cult to analyse. Even in the cases where theoretical results do exist, their
practical applicability is often very limited. This is, for example, the case for Simulated
Annealing, which is proven to converge towards an optimal solution under certain conditions
which, however, cannot be met in practice. On the other hand, theoretical results for
algorithms which could be shown to be very e�ective in practice are usually very limited,
as is the case for some of the most successful variants of tabu search. Given this situation,
in most cases analyses of the run-time behaviour of Las Vegas Algorithms are based on
empirical methodology. In a sense, despite dealing with algorithms which are completely
known and can be easily understood on a step-by-step execution basis, computer scientists
are in a sense in the same situation here as, say, an experimental physicist observing some
non-deterministic quantum phenomenon or a microbiologist investigating bacterial growth
phenomena.

The methods that have been applied for the analysis of Las Vegas (and particularly SLS)
algorithms in AI, however, are rather simplistic. In most cases, the performance of the
algorithms being tested is characterised by measuring basic statistics over a number of
runs on a given problem instance, like the mean, median and/or standard deviation of
the run-time. Run-times are often reported as CPU-times or, sometimes, using basic step
counts for a particular algorithm scheme [AO96], rarely a combination of both. Quite often,
the algorithms are evaluated on a set of problem instances drawn from some randomised
problem distribution, like Random-3-SAT [MSL92, CA96], randomly generated constraint
satisfaction problems (CSPs) [Smi94], or randomly generated graph colouring problems
[MJPL92, HW94b]. Quite frequently, when comparing algorithms on such problem classes,
the sets are generated using a given generator algorithm instead of being �xed, widely used
test sets.

At the �rst glance, all these methods seem to be quite admissible, especially since the results
are usually consistent in a certain sense. In the case of SLS algorithms for SAT, for instance,
advanced algorithms like WalkSAT [SKC94] usually outperform older algorithms (such as
GSAT [SLM92]) on a large number of problems from both randomised distributions and
structured domains. The claims which are supported by empirical evidence are usually
quite simple (like \algorithm A outperforms algorithm B"), and the basic methodology, as
described above, is both easy to apply and powerful enough to get the desired results.

Or is it really? Recently, there has been some severe criticism regarding the empirical
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testing of algorithms [Hoo94, Hoo96a, McG96]. It has been pointed out that the empirical
methodology that is used to evaluate and compare algorithms does not reect the standards
which have been established in other empirical sciences for quite a time. Also, it was argued
that the empirical analysis of algorithms should not remain at the stage of collecting data,
but should rather attempt to formulate hypotheses based on this data which, in turn, can
be experimentally veri�ed or refuted. Up to now, most work dealing with the empirical
analysis of Las Vegas algorithms in AI has not lived up to these demands. Instead, recent
studies still use basically the same methods that have been around for years, often investing
tremendous computational e�ort in doing large scale experiments [PW96] in order to ensure
that the basic descriptive statistics thus collected are su�ciently stable. At the same time
more fundamental issues, such as the question whether the particular type of statistical
analysis that is done (usually estimating means and standard deviations) is adequate for
the type of evaluation that is intended, are often somewhat neglected or not addressed at all.
Therefore, a more adequate methodology for the empirical analysis of Las Vegas algorithms
is needed as a basis for application, investigation, and further development.

2.1.1 Las Vegas Algorithms

Formally, an algorithm A is a Las Vegas algorithm (LVA) if it has the following properties:

� If for a given problem instance �, algorithm A returns a solution s, s is guaranteed to
be a valid solution of �.

� On each given instance �, the run-time of A is a random variable RTA.

According to this de�nition, Las Vegas algorithms are always correct, while they are not
necessarily complete, i.e., even if a given problem instance has a solution, a Las Vegas algo-
rithm is generally not guaranteed to �nd it. Since completeness is an important theoretical
concept for the study of algorithms, we classify Las Vegas algorithms into the following
three catogories:

� complete Las Vegas algorithms are those, which can be guaranteed to solve each problem
instance for which a solution exists within run-time tmax , where tmax is an instance-
dependent constant. Let Ps(RTA;� � t) denote the probability that A �nds a solution
for a soluble instance � in time � t, then A is complete exactly if for each � there exists
some tmax such that Ps(RTA;� � tmax) = 1.

� approximately complete Las Vegas algorithms solve each problem instance for which a
solution exists with a probability converging to 1 as the run-time approaches 1. Thus,
A is approximately complete, if for each soluble instance �, limt!1 Ps(RTA;� � t) = 1.

� essentially incomplete Las Vegas algorithms are Las Vegas algorithms which are not
approximately complete (and therefore also not complete), i.e., for which there exists a
soluble instance �, for which limt!1 Ps(RTA;� � t) < 1.
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Examples for complete Las Vegas algorithms in AI are randomised systematic search meth-
ods like Satz-Rand [GSK98]. Many of the most prominent stochastic local search methods,
like Simulated Annealing or GSAT with Random Walk, are approximately complete, while
others, such as basic GSAT, the Min-Conicts Heuristic, and most variants of Tabu Search
are essentially incomplete.

In literature, approximate completeness is often also referred to as convergence. Conver-
gence results are established for a number of SLS algorithms, such as Simulated Annealing
[KJV83], or Genetic Algorithms [B�ac94]; another class of complete Las Vegas algorithms
which is less well known in AI, are certain learning automata schemes [NT89]. Interestingly,
completeness can be enforced for most SLS algorithms by providing a restart mechanism,
as can be found in GSAT [SLM92], and selecting the starting con�gurations in a systematic
way. However, both forms of completeness are mainly of theoretical interests, since the
time limits for �nding solutions are far too large to be of practical use. For SLS algorithms,
essential incompleteness is usually caused by the algorithm getting trapped in local minima
of the search space they are operating on. Modern SLS algorithms provide methods, like
restart, random walk, probabilistic tabu-lists, etc., to escape from these local minima and
thus achieve approximate completeness.

Since most relevant Las Vegas algorithms are either complete or approximately complete,
or can at least be easily modi�ed to achieve (approximate) completeness as indicated above,
we assume for the following that the Las Vegas algorithms we are dealing with are at least
approximately complete unless explicitly mentioned otherwise. Consequently, we know that
each run of the algorithm terminates after some time, or, in other words, the algorithm never
gets stuck.

2.1.2 Application Scenarios

Before even starting to evaluate any algorithm, it is crucial to �nd the right evaluation
criteria. Especially for Las Vegas algorithms, since their run-time is non-deterministic, there
are fundamentally di�erent criteria for evaluating their run-time behaviour, depending on
the characteristics of the environment they are supposed to work in. Thus, we classify
possible application scenarios in the following way:

Type 1: There are no time limits, i.e., we can a�ord to run the algorithm as long as it
needs to �nd a solution. Basically, this scenario is given whenever the computations are
done o�ine or in a non-realtime environment where it does not really matter how long we
need to �nd a solution. In this situation we are interested in the expected run-time of the
algorithm which can be estimated from averaging over a number of test runs.

Type 2: There is a time limit for �nding the solution such that the algorithm has to
provide a solution after a time of tmax, while solutions which are found later are of no use.
In real-time applications, like robotic control or dynamic scheduling tasks, tmax can be very
small. In this situation we are not so much interested in the expected time for �nding a
solution but in the probability that after a time of tmax a solution has been found.
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Type 3 The usefulness or utility of a solution depends on the time which was needed to
�nd it. Formally, if utilities are represented as values in [0; 1], we can characterise these
scenarios by specifying a utility function U : R+ 7! [0; 1], where U(t) is the utility of �nding
a solution after time t. As can be easily seen, types 1 and 2 are special cases of type 3
which can be characterised by utility functions which are either constant (type 1) or step
functions U(t) = 1 for t � tmax and U(t) = 0 for t > tmax (type 2).

Based on these application types, we now discuss the criteria for evaluating the perfor-
mance of Las Vegas algorithms in each scenario, respectively. While in the case of no time
limits being given (type 1), the mean run-time might su�ce to roughly characterise the
run-time behaviour, in real-time situations (type 2) it is basically meaningless. An ade-
quate criterion for type 2 situation with time-limit tmax is P (RT � tmax), the probability
of �nding a solution within the given time-limit. For type 3, the most general scenario,
the run-time behaviour can only be adequately characterised by the run-time distribution
function rtd : R 7! [0; 1] de�ned as rtd(t) = P (RT � t) or some approximation of it. The
run-time distribution (RTD) speci�ed by this distribution function completely and uniquely
characterises the run-time behaviour of a Las Vegas algorithm. Therefore, given this infor-
mation, other criteria, like the mean run-time, its standard deviation, median, percentiles,
or success-probabilities P (RT � t0) for arbitrary time-limits t0 can be easily obtained.

In some sense, type 3 is not only the most general class of application scenarios, but these
scenarios are also the most realistic. The reason for this is the fact that real-world problem
solving usually involves time-constraints which are less strict than in type 2. Instead, at
least within a certain interval, the value of a solution gradually decreases over time. In
particular, this situation is given when taking into account the costs (like CPU time) for
�nding a solution. As an example, consider a situation where hard combinatorial problems
have to be solved online, using extremely expensive hardware in a time-sharing mode.
Even if the immediate bene�t of �nding a solution is invariant over time, the costs for
performing the computations will diminish the �nal payo�. Two common ways of modelling
this e�ect are constant or proportional discounting, i.e., to use utility functions of the form
U(t) = maxfu0�ct; 1g or U(t) = e��t, respectively [PMG98]. Based on the utility function,
the weighted solution probability U(t) � P (RT � t) can be used as a performance criterion.
If U(t) and P (RT � t) are given, optimal cuto� times t� which maximise the weighted
solution probability can be determined as well as the expected utility for a given time t0.
These evaluations and calculations require detailed knowledge of the underlying run-time
distributions.

2.2 RTDs and RLDs

As we have argued in the previous section, characterising their run-time distributions is
a good basis for empirically studying the behaviour of LVAs. In practice, the empiri-
cal RTDs are determined by running the respective algorithm A for k times on a given
problem instance up to some (very high) cuto� time and recording for each successful
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Figure 2.1: Run-time data of WalkSAT, applied to a hard Random-3-SAT instance for
approx. optimal noise setting, 1,000 tries; left: bar diagramm of rt(i), the vertical axis
indicates the CPU-time; right: corresponding RTD; the run-times are measured in CPU-
seconds on a Sun SPARC 20 machine.

run the time required to �nd a solution. For the empirical studies presented in this
work, we chose k between 200 and 1,000 in order to get reasonable estimates. The em-
pirical run-time distribution is the cumulative distribution associated with these obser-
vations. More formally, let RT(j) denote the run-time for the jth successful run, the
cumulative empirical RTD is de�ned by bP (RT � t) = #fjjRT(j) � tg=k. For essen-
tially incomplete algorithms, we report the success-rate k0=k, where k0 is the number of
successful runs. For su�ciently high run-times, this approximates the asymptotic maxi-
mal success probability of A on the given problem instance �, which is formally de�ned
as bps� := limt!1 Ps(RTA;� � t). Furthermore, we �lter out the unsuccessful runs and
characterise the behaviour of A in the successful cases using the conditional empirical RTD
de�ned by bPc(RT � t) = #fjj run j successful ^ RT(j) � tg=k0.

Figure 2.1 (left) shows the raw data from running a state-of-the-art SLS algorithm for SAT
on a hard problem instance with 100 variables; each vertical line represents one try of the
algorithm and the height of the lines corresponds to the CPU time needed. The right side
of the same �gure shows the corresponding RTD as a cumulative probability distribution
curve (t; bPc(RT � t)); note that an extreme variability in run-time can be observed. We
will see later that this is typical for SLS algorithms when applied to hard combinatorial
problems like SAT.

2.2.1 CPU-times vs Operation Counts

Often, run-times are measured and reported as CPU-time for some concrete implementation
and run-time environment (machine and operating system). But it has been argued that
it is more advisable, especially in the context of comparative studies, to measure run-
times using operation counts [AO96]. This way, an abstraction from the inuence of the
implementation and run-time environment is achieved, which facilitates comparing empirical
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Figure 2.2: RTDs (left) and RLDs (right) for WalkSAT, applied to three Random-3-SAT
instances with varying di�culty, using approx. optimal noise setting, 1,000 tries.

results across various platforms. At the same time, by reporting typical CPU-times for the
relevant operations, concrete run-times can be easily calculated for a given implementation
and run-time environment.

To make a clear distinction between actual CPU-times and abstract run-times measured in
operation counts by referring to the latter as run-lengths. If the CPU-time per operation
is roughly constant (as is the case for most SLS algorithms), run-times measured in CPU-
time and run-lengths measured in basic operations are related to each other by scaling
with a constant factor. Otherwise, to obtain a reasonable characterisation of the run-time
behaviour, a more complex cost-model has to be used for weighting the di�erent types of
operations (or steps) which comprise the run-length. In the case of SLS algorithms for SAT
and CSP, it is very natural and quite common to use local search steps as basic operations.
Thus, run-times are measured in terms of local search steps instead of absolute CPU-
times. In the following, the RTDs which are thus obtained will be called RLDs (run-length
distributions).

Figure 2.2 shows RTD and RLD data for the same experiments (solving hard SAT instances
with a state-of-the-art SLS algorithm). Note that, when comparing the RTDs and the
corresponding RLDs in a semi-log plot, both distributions always have the same shape. This
indicates that the CPU-time per step is roughly constant. However, closer examination of
the example reveals that the CPU-time per step is not constant for the three instances; the
reason for this is the fact that the hard problem was solved on a faster machine than the
medium and easy instances. Using RLDs instead of RTDs abstracts from these machine
speci�c aspects of experimental results.

2.2.2 Empirical Evaluation Based on RLDs

When analysing or comparing the behaviour of Las Vegas algorithms, the empirical RLD
(or RTD) data can be used in di�erent ways. In our experience, graphic representations
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Figure 2.3: RLD for WalkSAT on a hard Random-3-SAT instance for approx. optimal noise
parameter setting; median vs. mean.
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Figure 2.4: Same RLD data as above as a semi-log (left) and log-log (right) plot.
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mean stddev stddev/mean min max median

57,606.23 58,953.60 1.02 107 443,496 38,911

Q0:25 Q0:75 Q0:1 Q0:9 Q0:75=Q0:25 Q0:9=Q0:1

16,762 80,709 5,332 137,863 4.81 25.86

Table 2.1: Basic descriptive statistics for the RLD given in Figures 2.3 and 2.4; Qx is the
x-percentile, while the percentile ratios Qx=Q1�x are measures for the variability of the
run-length data.

of empirical RLDs provide often a good starting point. As an example, Figures 2.3 and
2.4 show the RLD for the hard problem instance from Figure 2.2 in three di�erent views.
Compared to standard representations, semi-log plots (as shown in Figure 2.4, left), give a
better view of the distribution over its whole range; this is especially important, since SLS
algorithms show often RLDs with extreme variability. Also, when using semi-log plots to
compare RLDs, uniform performance di�erences characterised by a constanct factor can be
easily detected, as they correspond to a simple translation along the horizontal axis (for an
example, see Figure 4.12, page 92, the curves for GWSAT and WalkSAT). On the other
hand, when examining the behaviour of an algorithm for extremely short runs, log-log plots
(as shown in Figure 2.4, right) are very useful.

While these graphical representations of RLDs are well suited for investigating and describ-
ing the qualitative behaviour of Las Vegas algorithms, quantitative analyses are usually
based on the basic descriptive statistics of the RLD data. For our example, some of the
most common standard descriptive statistics, like the empirical mean, standard deviation,
minimum, maximum, and some percentiles, are reported in Table 2.1. Note again the huge
variability of the data, as indicated by the large standard deviation and percentile ratios.
The latter, like the normalised the standard deviation (stddev/mean), have the advantage
of being invariant to multiplication of the data by a constant, which { as we will see later
{ is often advantageous when comparing RLDs.

Generally, it should be noted that for directly obtaining su�ciently stable estimates for
statistics, basically the same number of test-runs have to be performed then for measuring
reasonable empirical RLDs. Thus, measuring RLDs does not cause a computational over-
head in data aquisition when compared to measuring only averages and empirical standard
deviations. At the same time, arbitrary percentiles and other descriptive statistics can be
easily calculated from the RLD data.
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Figure 2.5: Same RLD data as in Figure 2.3 and best-�t approximation by an exponential
distribution.

Functional Characterisation of RLDs

But of course, an RLD-based approach can go considerably beyond an empirical evaluation
on the basis of basic descriptive statistics. One of the particularly attractive method-
ological approaches is the direct characterisation of run-time distributions using functional
approximations. In this work, we make strong use of continuous distribution functions and
statistical goodness-of-�t tests for characterising the behaviour of Las Vegas algorithms like
stochastic local search for SAT and CSP. The main reason for using continuous distribution
functions for characterising an essentially discrete behaviour, especially in the context of
RLDs, is that these are mathematically easier to handle: by abstracting from the discrete
nature of the RLDs, a more uniform characterisation is facilitated.

Coming back to the example from Figure 2.4, one might notice that the RLD resembles an
exponential distribution. This leads to the hypothesis that on the given problem instance,
the algorithm's behaviour can be characterised by an exponential RLD. The validity of
this hypothesis can be tested using the �2-test, a goodness-of-�t test well-known from
statistical literature. In our example, we �rst �t the RLD data with a cumulative exponential
distribution function of the form ed[m](x) = 1� exp(x=m), using the Marquart-Levenberg
algorithm (as realised in C. Gramme's Gnu�t software) to determine the optimal value for
the parameter m. This approximation is depicted in Figure 2.5. Then, the goodness-of-
�t test gives a �2 value of 26.24, which means that the approximation passed the test at
a standard signi�cance level � = 0:05. Therefore, our distribution hypothesis has been
con�rmed for the given example.

Generally, the actual run-time distribution of a given Las Vegas algorithm depends on the
problem instance. Thus, it should be clear that, in the �rst place, RLDs should be esti-
mated and characterised on single problem instances. Often, however, one is interested in
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Figure 2.6: Correlation between hardness of problem instances and �2 values from testing
RLDs of individual instances versus a best-�t exponential distribution for a test-set of 1,000
Random-3-SAT instances with 100 variables and 430 clauses each. The horizontal lines
indicate the acceptance thresholds for the 0.01 and 0.05 acceptance levels of the �2-test.

an algorithm's performance on a family or distribution of problem instances. The more
general type of analysis required in this situation can be easily based on the methodology
used for single problem instances. We do this by formulating hypotheses on the type of
RLDs which can be observed when applying a Las Vegas algorithm to sets or distributions
of problem instances. These hypotheses can be empirically tested by estimating the pa-
rameters of the respective generic distribution functions for individual instances and using
statistical goodness-of-�t-tests, like the well-known �2-test [Roh76] to ensure the validity of
the corresponding functional approximations.

Following this approach, it is also possible to characterise the di�erences between problem
instances within the same distribution, or to analyse and adequately describe the scaling
of LVA behaviour dependent on problem size. As we will see, such characterisations have
very direct consequences for important issues like parallelisation or optimal parameteri-
sation of Las Vegas algorithms. At the same time, they suggest novel interpretations of
LVA behaviour which, as in the case of stochastic local search in this work, contributes do
improving our understanding of these algorithms. Thus, by using our RLD-based method-
ology, an experimental approach of testing Las Vegas algorithms along the lines proposed
by Hooker [Hoo96a] can be undertaken.

As an example for this kind of methodology, we extend our example from Figure 2.5. Before,
we veri�ed the hypothesis that for the given problem instance, the performance of WalkSAT,
a modern SLS algorithm for SAT, could be charactised by an exponential RLD. Now, we
generalise this hypothesis by assuming, that for a whole problem distribution, WalkSAT's
behaviour can be characterised by exponential run-time distributions. Concretely, we test
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Figure 2.7: RLDs for two SLS algorithms (LVA A and LVA B) for the propositional satis-
�ability problem on a hard Random-3-SAT instance (the two RLDs cross over at ca. 420
steps), see text for a detailed discussion.

this hypothesis for a test-set of Random-3-SAT instances with 100 variables and 430 clauses.1

Fitting the data for the individual instances with exponential distributions and calculating
the �2 as outlined above, we get the result shown in Figure 2.6, where we plot the median
values of the RLDs against the corresponding �2 values: although, for most instances, the
distribution hypothesis is rejected, we observe a clear correlation between the hardness of
the instances and the �2 values; and for almost all of the hardest instances, the distribution
hypothesis passes the test. Thus, although our original generalised hypothesis could not be
con�rmed, it could be easily modi�ed to match the results of our analysis.2

Comparing LVA performance based on RLDs

RLDs also provide a good basis for comparing the behaviour and performance of Las Vegas
algorithms. Comparing two Las Vegas algorithms is relatively straight-forward if a dom-
inance relation holds between them, i.e., one of them consistently gives a higher solution
probability than the other. Formally, this can be captured by the concept of domination,
de�ned in the following way: LVA A dominates LVA B if 8t : P (RTA � t) � P (RTB � t)
and 9t : P (RTA � t) > P (RTB � t). In practice, such a dominance relation cannot always
be observed, which makes the comparison substantially more di�cult. This situation is
characterised by the occurrence of cross-overs between the corresponding RLDs, indicating,

1Random-3-SAT is a syntactically restricted subclass of SAT; the distribution we use here corresponds
to the phase transition for Random-3-SAT, a region where particularly di�cult problem instances can be
found. Details on this will be given in Chapter 4.

2The result indicated here will be further investigated in Chapter 4.
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that which of the two algorithms gives better performance, i.e., higher solution probabilities,
depends on the time-limit.

As an example for this, consider the situation presented in Figure 2.7 in which RLDs
for two speci�c SLS algorithms (LVA A and LVA B) are plotted. LVA B is approximately
complete w.r.t. the given problem instance and its performance monotonically improves with
increasing run-length (as can be seen from the decreasing distance between the RLD and the
projected optimal exponential distribution ed[1800]). LVA A is essentially incomplete, the
success probability converges to ca. 0.08. For very short runs we also observe \convergent
behavior": Apparently for both algorithms there exists a minimal (sample size dependent)
number of steps (marked s1 and s2 on the x-axis) below which the probability for �nding
a solution is negligible. Interestingly, both curves cross in one speci�c point at ca. 420
steps; i.e., without using restarts, LVA A gives a higher solution probability than LVA B for
shorter runs, whereas LVA B is more e�ective for longer runs. Yet, for LVA A an optimal
cuto� value of ca. 170 steps exists. Thus, repeated execution of LVA A for a reasonably
well chosen cuto� time, after which the algorithm is restarted, gives a much higher solution
probability as actually observed when running the algorithm for a long time. In fact, if the
optimal cuto� parameter is chosen, one more point of interest is at ca. 500 steps (marked s3
on the horizontal axis): for a lower number of steps as s3, using independent runs of LVA A
with optimal cuto� value one improves upon the performance of LVA B, while past s3 LVA
B is strictly superior to LVA A. Observations like this can generally be exploited to enhance
the overall performance; in particular, any-time behaviour can be achieved by combining
suitably parameterised SLS algorithms into algorithm portfolios (cf. Chapter 5).

Deriving Optimal Parameterisations from RLD Data

As shown in the example above, run-time distributions can be used for determining optimal
parameters for Las Vegas algorithms. In particular, given the RLD data, it is relatively
easy to decide whether restarting the algorithm after a �xed cuto�-time will improve per-
formance, and if so, to derive optimal cuto�-times.

To decide wether restart should be used, we simply compare the observed RLD with an
exponential distribution. As it is well-known that for exponentially distributed run-times,
due to the properties of the exponential distribution [Roh76], we get the same solution
probability running an algorithm once for time t or p times for time t=p. Therefore, if
the observed RLD is exponential, restart will neither improve nor worsen the algorithms
performance. As a consequence, in this case, we can run the individual tries in parallel on
di�erent processors and obtain an optimal speedup (this issue will be further discussed in
Chapter 5).

If, however, the observed RLD is steeper than an exponential distribution, the probability
of �nding a solution within a given time interval increases when running the algorithm for
a longer time (cf. LVA B in Figure 2.7). In this a case, restarting the algorithm after
some �xed cuto� time would result in a loss of performance; consequently, when using
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multiple independent tries parallelisation, the speedup will generally be suboptimal. On
the other side, if the run-time distribution of an algorithm is less steep than an exponential
distribution, by restarting this algorithm its performance can be improved, as illustrated for
algorithm LVA A in Figure 2.7. In this case, an optimal cuto� time RT opt can be identi�ed
in the following way:

m0 = minfm j 9x > 0 : ed[m](x)� rt(x) = 0g (2.1)

RT opt = minfx j x > 0 ^ ed[m0](x)� rt(x) = 0g (2.2)

Generally, there are two special cases to be considered. Firstly, we might not be able to
determine m0 because the set over which we minimise in the �rst equation has no minimum.
In this case, it can be shown that the optimal cuto� is either equal to zero (if the in�mum
is equal to zero), or it is equal to +1, i.e., no restart should be used at all. Secondly, if
m0 exists it might still not be possible to determine RT opt, because the set in the second
equation does not have a minimum. In this case, obviously there are arbitrary small common
points of ed[m0] and rt, such that the optimal cuto� would be equal to zero. In practice,
the cases with an optimal cuto� of zero will hardly occur, since they would only occur for
algorithms which can solve a problem with some probability > 0 for arbitrary small run-
times. The case with RT opt =1 corresponds to the RLD being generally steeper than an
exponential distribution.

Thus, if an optimal cuto� exists it can be easily determined from the RLD data. In this case,
multiple independent tries parallelisation results in super-optimal speedup compared to the
sequential case; this situation is given for many greedy local search algorithms like GSAT
which easily get stuck in local minima. Generally, this demonstrates how the RLD-based
methodology facilitates the analysis and improvement of Las Vegas algorithms.

2.3 Pitfalls of Inadequate Methodology

While in the last section, we discussed the bene�ts of an RLD-based empirical method-
ology for analysing, comparing, and improving the behaviour of Las Vegas algorithms, in
this section we point out pitfalls which arise when using inadequate methodology. In par-
ticular, we identify two types of problematic methodology and show how in each of these
cases, erroneous or inadequate conclusions are obtained. We give theoretical and empirical
justi�cations for our arguments and highlight our criticism based on selected examples.

2.3.1 Problem Type 1: Super�cial Analysis of Run-time Behaviour

In many studies, the evaluation or comparison of Las Vegas algorithms is solely based on
average run-times, or averages and standard deviations, while nothing is known about the
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type of their run-time distributions. One problem with this method is that these statistics
alone give only a very imprecise impression of the run-time behaviour. Thus, analysing and
reporting only means and possibly variances is a very wasteful use of the empirical data
when compared to the RLD-based approach which, as detailed before, essentially uses the
same data as required for estimating stable means and standard deviations.

Before we demonstrate this, let us briey recapitulate how the mean run-time of a Las Vegas
algorithm is estimated in practice. First, the algorithm is executed n times on a given
problem instance with some cuto� time RT max. Then, if k of these runs are successful
and RT i is the run-time of the ith successful run, the expected run-time is estimated by
averaging over the successful runs and accounting for the expected number of runs required
to �nd a solution:3

bE(RT) = 1

k

kX
i=1

RT i +
n� k

k
�RT max (2.3)

Now, to see the di�erence in precision when using means, means plus standard deviations,
and functional approximations of the RLDs, consider the design of an algorithm for a type
2 application scenario (as de�ned in Section 2.1) and the speci�c question of estimating the
cuto� time RT max for solving a given problem instance with a probability p. If only the
mean run-time E(RT) is known, the best estimate we can obtain for RT max is given by
the Markov inequality [Roh76] P (RT � t) � E(RT)=t:

RT max = E(RT)=(1� p) (2.4)

If also the standard deviation �(RT) is taken into account, and under the condition that
RT has a �nite variance, we can use the Tchebichev inequality P (j RT � E(RT) j � �) �
�2(RT)=�2 to obtain a better estimate:

RT max = �(RT)=
p
1� p+E(RT) (2.5)

If, however, we know that the run-time of a given Las Vegas algorithm is exponentially
distributed,4 we get a much more accurate estimate.

In the following example, we see the drastic di�erences between these three estimates. For
a given Las Vegas algorithm applied to some problem the mean run-time and the stan-
dard deviation are 100 seconds each, a situation which is not untypical, e.g., for stochastic
local search algorithms for SAT. We are interested in the run-time required for obtaining

3This method is equivalent to the one used in [PW96], where a more detailed derivation of this estimate
can be found.

4As we will discuss later, assuming an exponential RLD is not as far-fetched as it might seem, since
we found that these can be observed for a number of modern stochastic local search algorithms on various
problem classes.
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Figure 2.8: RLDs for two di�erent Las Vegas algorithms on the same problem instance.
Note the crossover of the two RLDs. By executing independent tries of LVA 1 using the
optimal cuto� value, compared to LVA 2 for all run-lengths a speedup by a constant factor
is achieved. A detailed discussion is given in the text.

a solution probability of 0.99. If nothing is known about the run-time distribution, we
have to use the Tchebichev inequality and get an estimate of 1,100 sec. Assuming that
the run-time is exponentially distributed, we get an estimate of 460 sec. If, on the other
hand, even the standard deviation is unknown, we can only use the Markov inequality and
estimate the run-time required for a solution probability of 0.99 as 10,000 sec! Intuitively,
this is hardly surprising { just imagine some wildly di�erent probability distributions having
identical mean and standard deviation. The unspeci�c estimates based on the Markov and
Tchebichev inequalities, of course, have to take into account all possible actual RLDs and
therefore have to be quite inaccurate when compared to the precise estimates obtained from
detailed knowledge of the actual RLD.

Parameter Dependencies

Another problem with numerous studies from recent literature on stochastic local search is
the tacit assumption that several parameters of the considered algorithms can be studied
independently. In speci�c cases, it is known that this assumption does not hold [HS96,
SSS97]. For the evaluation of Las Vegas algorithms in general, it is crucial to be aware of
possible parameter dependencies, especially those involving the cuto� time RT max which
plays an important role in type 2 and 3 application scenarios. By applying an RLD-based
methodology, such parameter dependencies can be easier detected and characterised than
when using basic descriptive statistics only. The following example shows, how basing the
comparison of two Las Vegas algorithm's performance on expected run-times alone can lead
to erroneos conclusions, because parameter dependencies are not taken into account.
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Figure 2.9: Same as Figure 2.8 using log-log representation. Note how for extremely short
runs the relative di�erence in performance between LVA 1 and LVA 2 decreases again, while
the performance of both algorithms rapidly deteriorates.

Figure 2.8 shows the RLDs of two di�erent Las Vegas algorithms LVA 1 and LVA 2 for the
same problem instance. The same data is shown as a log-log plot in Figure 2.9, giving a
better view on the algorithm's behaviour for short runs. As can be easily seen, LVA 1 is
essentially incomplete with an asymptotic solution probability approaching ca. 0.09, while
LVA 2 is approximately complete. Now note the crossing of the two RLDs at ca. 120 steps.
For smaller cuto� times, LVA 1 achieves considerably higher solution probabilities, while
for greater cuto� times, LVA 2 shows increasingly superior performance. Consequently, if
comparing only estimated run-times as described above, the result entirely depends on the
cuto� chosen for conducting the experiments. Thus, when being not aware of the cross-
over in the RLDs, there is a considerable risk of misinterpretation, as this comparison will
suggest a (non-existing) dominance relation for almost all chosen cuto�-times.

Furthermore, we can easily observe that the RLD of LVA is less steep than an exponential
distribution. Therefore, as argued in Section 2.2.2, using restart or multiple independent
parallel runs of the algorithm, its performance can be considerably improved. Inn particular,
using the optimal cuto� time of ca. 57 steps, ideally, the exponential run-time distribution
marked \ed[744]" can be obtained, which realises a speedup of ca. 24% compared to LVA
2. Thus, the performance of LVA 2 is not only superior to that of LVA 1 for small cuto�
times, but based on the RLDs, it is possible to modify algorithm LVA 1 such that its overall
performance dominates that of LVA 2.

As this example demonstrates, basing the comparison of Las Vegas algorithms on expected
run times is in the best case imprecise, in the worst case it leads to erroneous conclusions.
The latter case occurs, when the two corresponding RLDs have at least one intersection.
Then, obviously, the outcome of comparing the two algorithms depends entirely on the
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cuto� time RT max which was chosen for the experiment. While in reality, one of the two
algorithms is superior for small RT max but is outperformed by the other candidate for
large RT max, a comparison based on the mean run-times obtained for one speci�c RT max

value will give the incorrect impression that one algorithm is generally superior to the other.
This fallacy arises especially in situations, where one or both of the candidate algorithms
are not approximately complete. Then, while one algorithm might quickly converge to a
lower asymptotic success probability, the other might be less e�ective in the initial phase of
the search, but later on reach a higher asymptotic success probability. As we will show in
Chapter 4, this situation can be often observed in practice.

2.3.2 Problem Type 2: Inhomogeneous Test-sets

Often, Las Vegas algorithms are tested on sets of randomly generated problem instances.
For analysing a Las Vegas algorithm's behaviour on such a test-set, on each instance, a
number of runs is performed and evaluated. Then, the �nal performance measure is usually
obtained by averaging over all instances from the test set.

This last step, however, is potentially extremely problematic. Since the run-time behaviour
on each single instance is characterised by an RLD (as discussed above), averaging over
the test set is equivalent to averaging over these RLDs. Since in general, averaging over a
number of distributions yields a distribution of a di�erent type, the practice of averaging
over RLDs (and thus the averaging over test sets) is quite prone to producing observations
which do not reect the behaviour of the algorithm on the individual instances, but rather
a side-e�ect of this method of evaluation.

We exemplify this for Random-3-SAT near the phase-transition, a problem class which has
been used in many studies of stochastic local SAT procedures, such as GSAT or GSAT with
random walk [SLM92, GW95] (the problem class itself will be discussed in more detail in
Chapter 4). Practically, Random-3-SAT test-sets are obtained by generating a number of
sample instances and, as typical SLS algorithms for SAT are incomplete, �ltering out insol-
uble instances using a complete SAT algorithm. By measuring the median run-lengths for
each problem instance from a typical randomly generated and �ltered test set, we obtain
a distribution over the median hardness of the problems as shown in Figure 2.10. Since
the median run-lengths were determined using 1,000 runs per instance, they are very sta-
ble which leaves the random selection of the instances as the main source of noise in the
measured distribution.

Our own experimental studies have shown that some of the most popular SLS algorithms
for SAT, such as WalkSAT [SKC94] or Novelty [MSK97], show approximately exponential
RLDs. Speci�cally, under certain conditions, the RLDs on single instances from Random-
3-SAT instance distribution can be well approximated by exponential distributions ed[m],
where m is the number of local search steps required to solve the problem with probability
0.5, i.e., the median of the RLD; these results will be presented in detail in Chapter 5 of
this work.
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Figure 2.10: Distribution of median run-length for WalkSAT (noise=55/100) over a test set
of 100 satis�able Random-3-SAT formualae (unforced). Note the huge variance, especially
for the hardest 10% of the test-set.

Now we assume that we average over two exponential RLDs with di�erent median values
m1; m2. Since the family of exponential distributions is not closed under averaging, this
produces a combined distribution d1;2 which is not exponentially distributed. For this
combined distribution, shown in Figure 2.11, obviously an optimal cuto� time exists, which
can be determined as detailed in Section 2.2.2. For the single RLDs, however, since they
are exponential, optimal cuto�s does not exist (cf. Section 2.2.2). Thus, when averaging
over RLDs, observations (here: existence of an optimal cuto�) can be made, which do not
apply for any of the individual instances but are rather an e�ect of the averaging itself.

At the �rst glance, this might sound a bit paradoxical, but there is a perfect interpretation
for this observation: when averaging over the RLDs, we do not distinguish between the
probability of solving one or the other instance. Using the \optimal" cuto� inferred from
the average RLD then simply means that solving the easier instance with a su�ciently
high probability compensates for the very small solution probability for the harder instance
going along with using this cuto�. So somehow, solving the easier instance gets priority
over solving the harder instance. Under this interpretation, the \optimal" cuto� can be
considered meaningful. Assuming, however, that in practice the goal in testing LVAs on test
sets sampled from andom problem distributions is to get a realistic impression of the overall
performance, including hard instances, the \optimal" cuto� inferred from the averaged RLD
is substantially misleading.

Of course, a similar argument holds when averaging over test sets containing more than two
instances. In Figure 2.11, we show the averaged RLD for the whole test set the hardness
distribution of which is plotted in Figure 2.10. Obviously, here as well a \pseudo-optimal"
cuto� can be observed, and the interpretation is exactly the same as in the two instance
case. By increasing the size of the test-set, this situation is not changed, since it can
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Figure 2.11: Average RLD for Walksat (noise=55/100, very large cuto�) on Random-3-SAT
distr, 100 variables, 430 clauses; the virtual optimal cuto� at ca. 750 steps can be observed
because the averaged RLD is not exponentially distributed (inhomogeneous test-set).

be theoretically shown that averaging over exponential distributions with di�erent median
values, one will not obtain another exponential distribution, i.e., always \pseudo-optimal"
cuto� times will be observed.

The above discussion shows, that by averaging over test sets, generally in the best case one
observes knowingly a bias for solving certain problems, the practical use of which seems
rather questionable. But far more likely, being not aware of these phenomena, the obser-
vations thus obtained are misinterpreted and lead to erroneous conclusions. One could,
however, imagine a situation in which averaging over test sets is not that critical. This
would be given if the test sets are very homogeneous in the sense that the RLDs for each
single instance are roughly identical. Unfortunately, this sort of randomised problem dis-
tributions seems to be very rare in practice. Certainly, Random-3-SAT is not homogeneous
in this sense, and at least the authors are currently not aware of any su�ciently complex
homogenous randomised problem distribution for SAT or CSP.5

The fundamental problem with averaging over random problem distributions is the mixing
of two di�erent sources of randomness in the evaluation of algorithms: the nondeterministic
nature of the algorithm itself, and the random selection of problem instances. Assuming
that in the analysis of Las Vegas algorithms one is mostly interested in the properties of
the algorithm, at least a very good knowledge of the problem distribution is required for
separating the inuence of these inherently di�erent types of randomness.

5There is, however, some indication, that certain randomised classes of SAT encoded problems from other
domains, such as compactly encoded subclasses of the Hamilton Circuit Problem [Hoo96c], are signi�cantly
more homogeneous than Random-3-SAT.
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2.4 Extension to Optimisation Problems

Many problems occurring in practical contexts are optimisation problems rather than de-
cision problems, i.e., there is a notion of solution quality which, independently from the
way a solution was obtained, characterises its value or usefulness. Las Vegas algorithms for
optimisation problems (optimisation LVAs) are de�ned exactly as in the case of decision
problems; only now, both run-time RT and solution quality SQ are random variables. Thus,
for �xed solution quality sq0, the run-time RT is a random variable, and for �xed run-time
rt0 the solution quality SQ is a random variable.

Often, for a given optimisation problem �nding valid solutions is relatively easy, while
�nding optimal or near-optimal valid solutions might be extremely hard. We therefore
make the assumption that for each instance of an optimisation problem there exists always
a valid solution and Las Vegas algorithms for solving such an optimisation problem always
return a valid solution. In this case, the optimisation problem � is tightly related to the
following family of decision problems: given a problem instance � and a desired solution
quality q0, is there a solution s of � such that the solution quality q(s) is at most q0, i.e.
(for a minimisation problem), 9s : s solves � ^ q(s) � q0. If the optimal solution q� is
known, it is often more elegant to use relative solution qualities r(s) = q(s)=q�(s), such
that r(s) = 1 always characterises optimal solutions. In the following, we will use relative
solution qualities unless explicitly indicated otherwise.

Interestingly, many LVAs for decision problems have been directly derived from optimisation
LVAs; and vice versa, most LVAs for decision problems can be extended into optimisation
LVAs in a natural and simple way. This merely reects the close correspondence between
certain decision problems and their optimisation variants which will be discussed later in
this work. Good examples for LVAs which can be analogously applied to decision and
optimisation problems can be found in the stochastic local search domain; some of the most
popular SLS algorithms, like Simulated Annealing, Tabu Search, Genetic Algorithms, or
Ant Colony Optimisation belong to this category.

2.4.1 Norms of Behaviour

With respect to the related decision problems introduced in above, the behaviour of a Las
Vegas algorithm can be analysed using the methodology introduced before. Formally, we
�rst extend the de�nitions of the norms of behaviour introduced in Section 2.1.1:

� A Las Vegas algorithm A is q0-complete for a problem class �, if for each soluble instance
� 2 � it can be guaranteed to �nd a solution s with quality q(s) � q0 within run-time
tmax, where tmax is an instance-dependent constant. Let Ps(RTA;� � t; SQA;� � q0)
denote the probability that A �nds a solution of quality � q0 for a soluble instance �

in time � t, then A is complete exactly if for each � there exists some tmax such that
Ps(RTA;� � tmax ; SQA;� � q0) = 1.



44 CHAPTER 2. EMPIRICAL ANALYSIS OF LAS VEGAS ALGORITHMS

� A Las Vegas algorithm A is approximately q0-complete for a problem class �, if for each
soluble instance � 2 � its probability for �nding a solution s with quality q(s) � q0

converges to 1 as the run-time approaches 1. Thus, A is approximately q0-complete, if
for each soluble instance �, limt!1 Ps(RTA;� � t; SQA;� � q0) = 1.

� A Las Vegas algorithm A is essentially q0-incomplete for a problem class �, if it is not
approximately q0-complete, i.e., if there exists a soluble problem instance �, for which
limt!1 Ps(RTA;� � t; SQA;� � q0) < 1.

With respect to �nding optimal solutions, we use the terms complete, approximately com-
plete, and essentially incomplete synonymously for q0-complete, approximately q0-complete,
and essentially q0-incomplete, where q0 is the optimal solution quality for the given problem
instance.

2.4.2 Application Scenarios

As for the application scenarios discussed in Section 2.1.2, the situation is similar as for
decision problems; only now, there is the solution quality as an additional factor to be
considered. Generally, there will be a tradeo� between run-time and solution quality. This
trade-o� will strongly depend on the speci�c requirements of the application situation: while
in some cases run-time does not matter but solution quality is essential, other scenarios will
impose tight restrictions on run-time, whereas solution quality is relatively less important.
But since we are dealing with probabilistic algorithms, the situation is actually even more
complex: for a given time-limit t0, one might have to decide whether to prefer an algorithm
with a high mean solution quality but a relatively large standard deviation over another
algorithm which produces slightly less optimal solutions in a more consistent way. This
becomes very obvious when generalising type 3 application scenarios (cf. Section 2.1.2) to
optimisation problems: the utility of a solution now depends on its quality and the time
needed to �nd it. Compared to the decision problem case, there is an additional degree
of freedom in choosing the utility function U(t; q) : R+ � R 7! [0; 1], and the nature of
the utility function to be used will generally reect application speci�c tradeo�s between
solution time and solution quality.

Therefore, for optimisation problems it seems to be even more important to avoid making
implicit assumptions on the application scenario by prematurely reducing the data from
empirical testing of Las Vegas algorithms to some basic statistics of the bivariate distri-
bution Ps(RT; SQ). This distribution characterises uniquely and completely the behaviour
of a Las Vegas optimisation algorithm; running experiments is equivalent to sampling this
distribution.
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Figure 2.12: Left: development of mean solution quality and standard deviation for an SLS
optimisation algorithm on a hard minimisation problem; right: quali�ed RLD for the same
algorithm and problem instance.

2.4.3 Quali�ed RTDs and RLDs

Formally, a quali�ed RTD is a bivariate probability distribution characterising the two-
dimensional random variable (RTA;� ; SQA;�) which models the run-time behaviour of Las
Vegas optimisation algorithm A. The most natural and e�ective way of empirically approxi-
mating quali�ed RTDs is by measuring solution quality traces over multiple runs of the algo-
rithm. This is most e�ectively done by recording the run-time and solution quality whenever
during a run a solution is found, the quality of which strictly improves on the best solution
found so far in this run. More formally, let k be the number of runs and let sq(t; j) denote
the quality of the best solution found in run j until time t. Then the quali�ed (cumulative
empirical) run-time distribution is de�ned by bP (RT � t0; SQ � q0) = #fjjsq(t0; j) � q0g=k.
Again, to avoid the type of problems which arise in the context of averaging over test-sets
(cf. Section 2.3), the quali�ed RTDs are based on single problem instances.

Like in the case of Las Vegas algorithms for decision problems, these RTDs describe the
behaviour of the algorithm uniquely and completely. Therefore, all kinds of basic descriptive
statistics can be easily obtained from the RTD data. Popular choices are mean and standard
deviation of the solution quality for a given run-time (cuto� time) as well as mean, standard
deviation, and percentiles of the run-time required for obtaining a given solution quality.
Beyond these simple descriptive statistics, the two types of marginal distributions of the
quali�ed (bivariate) RTD o�er a good basis for characterising the run-time behaviour of
optimisation LVAs: the �rst of these corresponds to the standard RTDs for the related
decision problems discussed before and describe the distribution of the run-times needed
for obtaining a speci�c solution quality. The other type of marginal distributions are solution
quality distributions (SQDs) for a �xed run-time. Furthermore, when dealing with SQDs,
it is often interesting to report and analyse their time-dependent basic statistics, like SQ(t),
the function characterising the development of the mean solution quality over time.

Figure 2.12 (left) shows for a SLS optimisation algorithm on a particular instance of a
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Figure 2.13: Left: marginal SQDs for the quali�ed RLD from Figure 2.12; right: marginal
RLDs for the same quali�ed RLD.

run-length mean stddev stddev/mean min max median Q25 Q75 Q1 Q90

100 438.21 19.64 0.04 397 491 439 425 452 411 460
1,000 253.83 9.81 0.04 232 278 253 247 261 240 267

10,000 214.55 5.19 0.02 201 230 214 211 218 207 221
100,000 203.22 3.31 0.02 195 209 204 201 206 198 207

Table 2.2: Basic SQD statistics for di�erent run-lengths (same data as Figure 2.13, left).

minimisation problem the development of solution quality and standard deviation over
time. From this type of evaluation, which is often used in the literature, we can easily see
that in the given example the algorithm behaves in a very desirable way: with an increasing
number of local search steps, the mean solution quality improves monotonically while the
standard deviation of the solution quality decreases. Thus, for longer runs the algorithm
tends to �nd better solutions in a more consistent way. However, this view of the algorithm's
behaviour is rather simplistic compared to the complete quali�ed RLD shown in Figure 2.12
(right). Here, the contours of the three dimensional quali�ed RLD surface projected into
the run-length / solution quality plane reect the tradeo� between run-time and solution
quality: for a given probability level, better solution qualities require longer runs, while
vice versa, shorter runs yield lower quality solutions. The change in slope indicates the
di�erences in variance of the run-time and solution quality distributions.

Details can be easier seen when examining the corresponding marginal distributions shown
in Figure 2.13. The marginal SQDs (left) reect the behaviour observed before, although
they provide more information, like the fact that the solution quality distributions are
consistently unimodal, which cannot be seen from the development of mean solution quality.
Also, based on the marginal SQD data, other basic statistics, such as percentiles and their
distances or ratios, can be easily obtained. For our example, some of these statistics can be
seen in Table 2.2. Note, how the mean as well as the 10% to 90% percentiles (Q10 to Q90)
and the median monotonically decrease for growing run-lengths.
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Figure 2.14: Two marginal RLDs for an SLS optimisation algorithm on a hard minimisation
problem; for each curve, a di�erent optimal cuto� time can be observed (the optimal cuto�
is located where the RTD meets the corresponding exponential distribution).

A di�erent view on the same data is given by the marginal RLDs, shown on the right
side of Figure 2.13. Note that when tightening the solution quality bound, the marginal
RLDs get less steep. This reects the fact that for obtaining better solutions, not only the
mean run-time increases, but also its variance. Thus, the quali�ed RLD data, which is the
basis for these marginal distributions, provides a much more detailed picture of an SLS
optimisation algorithm's behaviour than more established methods for evaluation based on
simple solution quality statistics or their development over time.

2.4.4 Evaluating Optimisation LVAs

The methodology for evaluating and comparing optimisation LVAs is basically the same as
for decision LVAs. Key techniques, as the approximation of empirical RTDs using continu-
ous probability distribution functions, can be analogously applied to the optimisation case.
However, directly dealing with bivariate quali�ed RTDs can be di�cult. Therefore, it is
usually more feasible to do functional approximations of the marginal RTDs and SQDs or
time-dependent SQD statistics. In this case, the methodology for �nding optimal approxi-
mations and testing their goodness-of-�t is exactly the same as for decision LVAs.

Again, the question of �nding optimal cuto� times or optimal parallelisations is of consid-
erable interest when analysing a given optimisation Las Vegas algorithm. Only here the
problem is more complex than in the case of decision LVAs, where an optimal cuto� could
be easily de�ned in an intuitive way. Consider a situation where an optimisation LVA A
exhibits marginal RLDs for solution qualities q1; q2 as shown in Figure 2.14. Here, depend-
ing on the desired solution quality, two di�erent optimal values for the cuto� time can be
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derived. Thus, generally the optimal cuto� can be regarded as a function of the desired
solution quality rather than as a single value. Consequently, in most cases there is a trade-
o� between solution quality and run-time; one has to choose between optimal behaviour
(i.e., maximal probability) for short run-times while accepting lower quality solutions, and
maximal probability for �nding high-quality solutions while accepting long run-times.

Similiar considerations hold for comparing optimisation LVAs. The concept of domination
which we introduced in Section 2.2.2 can be analogously applied to the optimisation case:
For minimisation LVAs A and B, A dominates B if for any given time t and any solution
quality q, A has a higher probability than B for �nding a solution of quality � q in time
� t, i.e., 8t; q : P (RTA � t; SQA � q) � P (RTB � t; SQB � q) and 9t; q : P (RTA �
t; SQA � q) > P (RTB � t; SQB � q). But often, for two given algorithms no such
dominance relation holds; instead the two quali�ed RTDs have at least one intersection. In
this situation, analogously to the decision problem case, switching between the algorithms
can enhance overall performance. However, for optimisation problems there is considerably
more room for tradeo�s. For example, algorithm A might give a better mean solution
quality up to some time limit t0, while for t > t0, B will produce better solutions on average.
But although for t < t0 A seems to be superior to B, B could still be better than A when just
comparing the probabilities for �nding high quality solutions within short runs. Formally,
in this situation for all t < t0, the mean solution quality for algorithm B would be lower than
for A, while, e.g., when comparing the 0.1 percentiles of the corresponding SQDs, B would
be superior to A. In situations like this, it depends entirely on the application scenario:
sometimes, only high quality solutions are useful { then, in our example, algorithm B would
be preferable. If, however, all solutions have to be used and average solution quality counts,
A would be preferable for t < t0.

When evaluating and comparing optimisation algorithms, very often the application scenario
is unknown or unspeci�ed. Our considerations and examples have shown that for such
general empirical analyses, it is extremely important to get a most comprehensive view of
an algorithm's run-time behaviour, since by prematurely reducing the data to speci�c simple
descriptive statistics, like the development of mean or standard deviation of the solution
quality over time, important aspects of run-time behaviour are neglected. As for decision
LVAs, the RTD-based methodology gives a considerably more detailed and realistic view of
the algorithms' behaviour while not requiring a signi�cant overhead in data aquisition.

2.5 Related Work

The term Las Vegas Algorithm was originally introduced by Laszlo Babai [Bab79]; it was
�rst embraced by European researchers and only later picked up by Americans. The lit-
erature on Las Vegas algorithms is relatively sparse Some interesting theoretical work on
the parallelisation of Las Vegas algorithms has been done by Michael Luby and Wolfgang
Ertel [LE93]. They discuss parallelisation schemes for algorithms with known and unknown
run-time distributions. Closely related is a theoretical analysis of optimal strategies for
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selecting cuto� times presented by Luby, Sinclair, and Zuckerman in [LSZ93]. For the case
of a Las Vegas algorithm with known run-time distribution they theoretically derive an
optimal strategy based on restarting the algorithm after a �xed cuto� time which can be
exactly determined from the RTD. They also derive an optimal strategy for selecting opti-
mal cuto� times in the case where the RTD is unknown. One might argue that this case
is more realistic, since usually when solving a problem the characteristics of the particular
instance are not known a priori . While in the most general case, this is undoubtedly true,
it is not unusual to assume that for certain problem classes, general properties which hold
for the whole problem class can be determined by studying a small number of instances
[Min96]. In the case of known RTDs or distribution types, signi�cantly better strategies
for selecting cuto� times can be devised than in the case of unknown RTDs. Therefore,
it is advantageous to study the run-time behaviour of a Las Vegas algorithms on speci�c
problem classes and to use this information for improving the algorithm's peformance.

To our best knowledge, SLS algorithms for SAT or related problems have not been investi-
gated in the more general context of Las Vegas Algorithms before. There is some work on
the empirical analysis of complete search algorithms for SAT and CSP on randomly gener-
ated instances from Random-3-SAT and binary CSPs. Kwan shows that for random CSPs
from the under- and overconstrained regions the run-time behaviour of modern complete
algorithms cannot be characterised by normal distributions [Kwa96]. Frost, Rish, and Vila
use continuous probability distributions for approximating the run-time behaviour of com-
plete algorithms applied to randomly generated Random-3-SAT and binary CSPs from the
phase transition region [FRV97]. In [RF97], this approach is extended to cost distributions
for unsolvable problems from the overconstrained region. All these investigations concen-
trate on the cost distribution for a sample of instances from a �xed random distribution.
In this approach, two sources of randomness are mixed: the randomness which is inherent
to the algorithm and the variation in the characteristics of problem instances which are
randomly drawn from a random problem distribution. In Section 2.3 we pointed out some
pitfalls of this approach, which are avoided using our methodology.

Run-time distributions have been used for other problem domains, but again, this approach
was mainly applied to complete algorithms. One exception is the work of Taillard, who
reports exponential RTDs for a Tabu Search based algorithm for the Job-Shop Scheduling
problem [Tai94]. In earlier work, the same author used a similar approach to improve on
the best known solutions of small Quadratic Assignment Problems [Tai91]. Taillard also
points out that for certain types of run-time distributions restarting the given algorithm
can be used to obtain higher solution probabilities. Similar results are reported by Hogg
and Williams, who investigate the behaviour of a backtracking algorithm for the Graph
Colouring problem based on the Brelaz heuristic6 [HW94a]. They use RTDs in the context
of parallelisation and �nd that the obtainable speed-up strongly depends on the actual
RTDs. Recently, a similar approach was used by Gomes and Selman, who tried to design
algorithm portfolios using backtracking algorithms based on the Brelaz heuristic for solving a

6Since the Brelaz heuristic involves random tie-breaking, backtracking algorithms using this heuristic are
Las Vegas algorithms, even if they are deterministic in any other respect.
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special kind of CSP [GS97b]. Using run-time distributions it was found that one algorithm
dominated all others. Consequently, using the optimal portfolio would contain only this
algorithm. Closer examination of the RTDs showed that these can be approximated by
\heavy-tailed" distributions, a fact which can be exploited for improving the performance
of these heuristics by using restart [GSC97]. Latest results from this line of research indicate
that a similar approach can be used for improving state-of-the-art complete SAT algorithms
(like Satz [LA97]) [GSK98]. There is some evidence that the randomised algorithms thus
obtained might be the best complete SAT algorithms which are currently known.

Finally, it should be noted that run-time distribution also have been observed occasionally
in the Operations Research literature, where Las Vegas algorithms, speci�cally local search
algorithms, play a prominent role for solving many hard problems. However, this kind of
approach has been limited to concrete examples and speci�c application aspects.

2.6 Conclusions

In this chapter, we introduced a novel approach for the empirical analysis of Las Vegas Al-
gorithms. Our method is based on measuring and analysing run-time distributions (RTDs)
for individual problem instances. Based on a classi�cation of application scenarios for Las
Vegas Algorithms, we have shown that in general, only RTDs provide all the information re-
quired to adequately describe the behaviour of the algorithm. We demonstrated, how based
on functional approximations of RTDs for individual problem instances, the behaviour of
Las Vegas Algorithms can be adequately characterised even for sets or distributions of
problem instances. This way, our re�ned methodology can be used to obtain interesting
characterisations for the run-time behaviour of some of the most popular stochastic local
search algorithms in recent AI research (this issue will be further elaborated in Chapter 5).
Generally, compared to the methodology which is commonly used for empirical analyses
for LVAs in AI, our approach gives a considerably more detailed and realistic view of the
behaviour of these algorithms. At the same time it does not require an additional overhead
in data aquisition, but only uses the collected data in a more e�cient way.

Furthermore, we have shown how methods which have been commonly used in AI literature
on stochastic local search can lead to misinterpretations and erroneous conclusions. In
particular, we identi�ed and discussed two pitfalls which are commonly arising in the context
of an inadequate empirical methodology: super�cial analysis of the run-time behaviour
and averaging over inhomogeneous test-sets. As we have shown, by using our RTD-based
methodology, these fallacies are e�ectively avoided. Finally, we demonstrated how the RTD-
based empirical methodology can be generalised to Las Vegas Optimisation Algorithms in
a straightforward way.

Although run-time distributions have been observed occasionally before, their use has been
limited to concrete examples and speci�c application aspects. Our improved and re�ned
empirical methodology is considerably more general; we believe that it will prove to be very
useful for analysing the run-time behaviour of Las Vegas Algorithms in general, and SLS
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algorithms in particular. In the past, even the most successful applications of Las Vegas
Algorithms in various areas of AI have been based on a fairly limited understanding of their
behaviour. It appears to be not too bold to assume that using a more adequate empirical
methodology will be the basis for improving the understanding of these algorithms and thus
facilitate further successes in the development and application of this type of algorithms.

In the following chapters of this work, we will use the methodology developed here as a
basis for analysing and comparing the behaviour of SLS algorithms for SAT. As we will
see, it is crucial for obtaining many interesting results (particularly the ones presented in
Chapter 5) of theoretical as well as practical interest.
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Chapter 3

Generalised Local Search
Machines

In this chapter, we introduce a novel formal framework for stochastic local search algo-
rithms, the Generalised Local Search Machines (GLSM) model. The underlying idea is
that adequate SLS algorithms are obtained by combining simple (pure) search strategies
using a control mechanism; in the GLSM framework, the control mechanism is essentially
realised by a non-deterministic �nite state machine (FSM). This model provides a uniform
framework capable of representing most modern SLS algorithms in an adequate way; it
facilitates representations which clearly separate between search and search-control. As a
consequence, the GLSM model can be very useful in developing and testing new, hybrid
SLS algorithms. Furthermore, it o�ers analytical advantages, as well-known concepts from
FSM theory can be applied to analyse SLS algorithms and search control mechanisms.

Here, we will mainly concentrate on general aspects of the GLSM model, while concrete
GLSM realisations of SLS algorithms will be discussed in the following chapters. After
a short introduction to local search algorithms, we introduce the basic GLSM model and
de�ne its semantics. Then, we establish the relation between the general scheme of local
search and the GLSM model. Next, we discuss several structural GLSM types, transitions
types, and state types. Finally, we will address extensions of the basic GLSM model, such
as cooperative, evolutionary, and learning GLSMs. The chapter ends, as usual, with a brief
overview of related work and a conclusion summarising its main contents.

3.1 Local Search Algorithms

Generally, local search algorithms are working in the following way: After initialising the
search process at some point of the given problem instance's search space, the search itera-
tively moves from one position to a neighbouring position where the decision on each step is
based on information about the local neighbourhood only. Thus, the following components

53
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are required to de�ne a local search procedure for a problem class � applied to a given
problem instance � 2 �:

� the search space S� of P which is a set of positions a 2 S� (also called locations or states)

� a set of solutions S 0 � S�

� a neighbourhood relation N � S� � S� on S�

� an initial distribution init : S� 7! R for selecting the initial search positions

� a step function step : S� 7! (S� 7! R) mapping each position onto a probability distri-
bution over its neighbouring states, for specifying the local search steps.

Often, local search algorithms make use of an objective function f : S� 7! R, mapping each
search space position onto a real number in such a way, that the global optima correspond
to the solutions. Without loss of generality, in this work we will always assume that the
solutions correspond to the global minima of the objective function. This objective function
can also be used to de�ne the step function. For optimisation problems, the values of the
objective function usually correspond to the quantity which is optimised. This way, in the
context of local search, decision problems and optimisation problems can be treated quite
analogously; only for the former, the result of the local search algorithm is generally useless
if it is not a global minimum, while for optimisation problems, suboptimal solutions (usually
local minima) can be useful on their own.

Examples for local search algorithms are stochastic local hill-climbing [MJPL90, MJPL92,
SLM92], steepest descent, Simulated Annealing [KJV83], Tabu Search [Glo89, Glo90], it-
erated local search [MOF91, Joh90], Evolutionary Algorithms [Rec73, Sch81], and Ant
Colony Optimisation algorithms [DMC96]. These algorithms are applied to a variety of
hard combinatorial optimisation and decision problems, like Satis�ability in Propositional
Logic (SAT), Constrained Satisfaction Problems (CSPs), the Travelling Salesperson Prob-
lem (TSP), scheduling and planning problems, etc.

Note that for NP-complete problems like SAT or CSP, the search space is typically ex-
ponentially larger than the problem size. However, for a problem like SAT, local search
algorithms are not restricted to operate on a search space de�ned by a set of candidate
solutions (i.e., assignments in the SAT case). It is also possible to use search spaces con-
sisting of a set of partial solutions (for SAT, partial assignments) which contain the actual
solution candidates as a subset. Also for SAT, local search methods need not operate on
assignments at all; instead, they could, for example, use the set of all resolution proofs of
a given formula as a search space and thus be used to solve the complementary UNSAT or
the equivalent VAL problem.

Modern local search algorithms are often a combination of several pure strategies, like
steepest descent and random walk, tabu search and random restart, or the search and
diversi�cation phases in iterated local search. This suggests that these algorithms operate
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on two levels: at a lower level, the pure search strategies are executed, while activation of
and transitions between di�erent strategies is controlled at a higher search control level.
The GLSM model which we introduce in the following section is based on this distinction
between search strategies and search control.

3.2 The Basic GLSM Model

Intuitively, a Generalised Local Search Machine (GLSM) for a given problem class � is a
�nite state machine (FSM) each state of which corresponds to a simple local search strategy
for instances of �. The machine starts with an initial state s0 and executes one step of the
local search method associated with the current state. Then, according to a transition
relation �, a new state is selected in a nondeterministic manner. This is iterated until
either (1) a solution for the given problem instance is found or (2) a given maximal number
ms of local search steps have been performed without satisfying condition (1). Note, that
in this model the machine has no �nal states. Although it would be possible, and maybe
more elegant from a theoretical point of view, to base the model on the notion of absorbing
�nal states, this requires the introduction of additional states and transition types, which
is avoided here for the sake of simplicity.

A GLSM is formally de�ned as a tuple M = (S; s0;�; �S; ��; �S; ��) where S is a set of
states and s0 2 S the initial state. � � S � S is the transition relation for M ; �S and ��
are sets of state-types and transitions types resp., while �S : S 7! �S and �� : � 7! ��
associate the corresponding types to states and transitions. We call �S(s) the type of state
s and ��((s1; s2)) the type of transition (s1; s2), respectively. The number ms 2 N which
speci�es an upper bound on the number of steps, i.e., state transitions, is not part of
this de�nition because it is considered rather a parameter controlling the execution time
behaviour than a structural aspect of the model.

It is useful to assume that �S ; �� do not contain any types which are not associated with
at least one state or transition of the given machine (i.e., �S ; �� are surjective). In this
case, we de�ne the type of machine M by �M := (�S ; ��). However, we allow for several
states of M having the same type (i.e., �s need not be injective). Note, that we do not
require that each of the states in S can be actually reached when begining in state s0; as
we will shortly see, it is generally not trivial to decide this reachability. Thus, however, by
adding unreachable states, the type of a given machine can be extended in an arbitrary way
such that for any two GLSMs M1;M2, one can always �nd functionally equivalent models
M 0

1;M
0

2 of the same type (i.e., �M 0

1
= �M 0

2
).

The semantics of a GLSM M are de�ned by specifying an interpretation for its state- and
transition types and then introducing a function ��M : N 7! D(�), where N denotes the set
of natural numbers and D(�) a distribution over the positions of search space � which is
underlying the local search strategies for the given problem instance. Note that in the actual
search process, there is only one position at each given instant. However, to capture the
non-determinism of the search process, we have to use distributions over positions instead
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Figure 3.1: 3-state GLSM

when formalising the semantics of a GLSM. Intuitively, ��M (n) determines the distribution
over search space positions of the overall local search process realised by M at time n; it is
therefore called the search trajectory of M .

Before giving a formal de�nition of the general semantics here, we demonstrate the speci�-
cation and application of the GLSM concept by giving several examples. However, it should
be noted that the speci�c semantics of a given GLSM always depends on the given prob-
lem class � and the set of local search strategies which are used as interpretations of the
state-types in �S . For the sake of simplicity, we will assume here that di�erent state-types
are always interpreted by di�erent local search strategies (i.e., the interpretation function
for state-types is injective).

We will usually specify GLSMs by giving a graph representation for the �nite state machine
part (as it is commonly used in FSM theory) and additionaly labelling the states and
transitions with their resp. types. As long as the meaning is clear from the context, we
use the same symbol for denoting a state and its type. The initial state is marked by an
ingoing arrow without a source. This is demonstrated for a small example in Figure 3.1;
the corresponding machine is de�ned as

M = (fS0; S1; S2g; S0;�; �S; ��; �S ; ��)

with
� = f(S0; S1); (S1; S2); (S2; S1); (S1; S1); (S2; S2)g
�S = fS0; S1; S2g
�� = fPROB(p)jp 2 Rg

�S(Si) = Si; i 2 f1; 2; 3g
��((S0; S1)) = PROB(1:0)
��((S1; S2)) = PROB(p1)
��((S2; S1)) = PROB(p2)
��((S1; S1)) = PROB(1� p1)
��((S2; S2)) = PROB(1� p2)

The generic transition types PROB(p) correspond to unconditional, probabilistic transitions
with an associated transition probability p. For simplicity's sake, we omit the transitions
between a state and itself in the diagrammatic representation, using the default assumption,
that whenever no other transition is selected, the next state is identical to the current state.

Thus the semantics of this small example can be intuitively described in the following man-
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ner: For a given problem instance �, the local search process is initialised by setting the
machine to its initial state S0 and executing one local search step corresponding to state
type S0. With a probability of 1.0, the machine then switches to state S1, executing one
step of the local search strategy corresponding to state type S1. Now, with a probability of
p1, the machine switches to state S2, performing one local search step of type S2; otherwise
it remains in S1 and does an S1-step. When in S2, an analogous behaviour is observed; re-
sulting in a local search process which repeatedly and nondeterministically switches between
S1 and S2 steps. However, only once in each run of the machine, an S0 step is performed,
and that is at the very begin of the local search process. As described above, the local
search process terminates when either a solution for the given problem instance is found
or a given number ms of local search steps has been performed without �nding a solution.
Note, that if a solution is found, the machine terminates in the state in which the solution
was discovered.

3.3 GLSM Semantics

To formally de�ne the semantics of a GLSM as described above, we assume that the seman-
tics of each state type � are already de�ned in form of a trajectory �� : � 7! D(�), where
� denotes the set of positions in the search space induced by the given problem instance,
and D(�) the set of distributions over �. Intuitively, �� determines for each position in the
search space the resulting position after one � -step has been performed.

We further need the functions �s : ��S 7! D(S) which model the direct transitions between
states of the GLSM. These are de�ned on the basis of the transitions from a given state s
and their respective types.

The �s(a; s) are given by the speci�c transition types of �((s; s0));
for �((si; sk)) = PROB(pi;k), �s(a; si) = D00

s with D00

s (sk) = pi;k.

Remark: To facilitate a concise formulation of the de�nitions, we often use the functional
form of discrete probability distributions; thus for D = f: : : ; (e; p); : : :g, D(e) is equal to p
and denotes the probability of event e.

The direct state transition functions �s can be generalised into functions �0s : D(�)�D(S) 7!
D(S), mapping state distributions onto distributions of seachspace positions instead of a
single, �xed positions.

�0s(D;Ds) = D0

s

with D0
s(sk) =

P
a2�;s2SD

00
s (sk) �D(a) �Ds(s)

where D00

s = �s(a; s).

Based on the functions �� and �s, we next de�ne the direct search transition function
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� : ��S 7! D(�) which determines for a given search space position and a state distribution
the search position distribution after one step of the GLSM.

�(ak; s) = D00

with D00(aj) = P (go from state s to s0) � P (in state s0 go from ak to aj).

P (go from state s to s0) = D0
s(s)

where D0

s = �s(ak; s)

P (in state s0 go from ak to aj) = D0

a(aj)
where D0

a = ��(s0)(ak)

Again, this is generalised into the corresponding function �0 : D(�)�D(S) 7! D(�).

�0(D;Ds) = D0

with D0(ak) =
P

a2�;s2SD
00(ak) �D(a) �Ds(s)

where D00 = �(a; s).

Finally, we inductively de�ne the state and search position trajectories ��s : N 7! D(S) and
�� : N 7! D(�). The interlocked inductive de�nitions reect the operation of a GLSM,
where in each step, the next search space position and the next state are determined based
on the current state and position. The initial search space position a0 2 S can be arbitrarily
chosen, since usually the state distribution determined in the �rst step does not depend on
a0.

�� and ��s are de�ned inductively by:
��(0) = D0 with D0(a0) = 1; 8ak 2 S � fa0g : D0(ak) = 0
��(t+ 1) = �0(��(t); ��s(t))

��s(0) = s0
��s(t+ 1) = �0s(�

�(t); ��s(t))

Remark: To keep the de�nitions simple and concise, we did not consider the termination
condition here (cf. Section 3.2); however, this can be easily incorporated into the semantics
of the individual search states.

Actual GLSM trajectories

Based on the semantics de�ned above, it is quite simple to de�ne the notion of an ac-
tual search trajectory �� : N 7! � which determines a sequence of search space positions
visited by a given GLSM when actually being executed. Note, that due to the inher-
ent non-determinism of GLSMs, generally each actual search trajectory will only be ob-
served with a certain probability. To formally de�ne ��, we use a function draw(D) which
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for each probability distribution D, randomly selects an element e0 from its domain such
that P (draw(D) = e0) = D(e0). Based on this, we de�ne functions � : � � S 7! � and
�s : � � S 7! S which for each given position and state, randomly determine the position
and state after one step of the GLSM:

�(a; s) = draw(�0(a; s))
�s(a; s) = draw(�0s(a; s))

Assuming that the given GLSM is started in state s0 and at search position a0, we now
de�ne the actual position and state trajectory by another double induction:

�� : N 7! � and ��s : N 7! S are de�ned inductively by:
��(0) = a0
��(t + 1) = �(��(t); ��s(t))

��s(0) = s0
��s(t + 1) = �s(�

�(t); ��s(t))

Note the similarity between these de�nitions and the ones for �� and ��s ; the only di�erence is
in the use of the draw function to randomly select elements from the underlying probability
distributions.

3.4 GLSMs and Local Search

The GLSM model has been introduced to provide a generalisation of the standard local
search scheme presented in Section 3.1. Each GLSM, however, still realises a local search
scheme and can therefore be described using the components of such a scheme. The notions
of search space and solution set are not part of the model. This is mainly because both are
not only problem- but actually instance-speci�c, they thus form the environment in which
a given GLSM operates. Consequently, to characterise the behaviour of a GLSM when
applied to a given instance, both the machine de�nition and this environment are required.
The initial distribution is also not an explicit part of the GLSM model. The reason for this
is the fact that the initial state, which is part of the model, can be easily used to generate
arbitrary initial distributions of search space positions. The general local search scheme's
step function is what is actually realised by the states of the GLSM and the �nite control
mechanism as given by the state transition relation.

The remaining component of the general local search scheme, the neighbourhood relation,
generally does not have a direct representation in the GLSM model. This is because for
a GLSM, each state type can be based on a di�erent neighbourhood relation. However,
for each GLSM as a whole, a neighbourhood relation can be de�ned by constructing a
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Figure 3.2: Sequential (left) and alternating (right) 1-state+init GLSM.

generalised relation which contains the neighbourhood relation for each state type as a
special case.

Taking a slightly di�erent point of view, each GLSM state represents a local search algorithm
of its own. While all these share one search space and solution set, they generally di�er in
their neighbourhood relations and step functions. In this case, however, initial distributions
for the individual local search algorithms are not needed since they are de�ned by the
context in which a GLSM state is activated.

3.5 Machine Types

One of the major advantages of using the GLSM model for characterising hybrid local search
schemes is the clear distinction between search control and the actual search strategies
thus facilitated. Abstracting from state and transition types, and thus concentrating on
the structure of the search control mechanism alone, GLSMs can be categorised into the
following structural classes:

1-state machines This is the minimal form of a GLSM. Since initialisation of the local
search process has to be realised using a GLSM state, 1-state machines realise a very basic
form of local search which basically only picks search space positions without doing actual
local search. Consequently, the practical relevance of this machine type is extremely limited.
It can, however, be used for analytical purposes, e.g. as a reference model when evaluating
other types of GLSMs.

1-state+init machines These machines have one state for search initialisation and one
working state, realising the search strategy. There are two sub-types of these machines:
1-state+init sequential machines visit the initialisation state only once, while alternating
machines might visit it again in the course of the search process, causing re-initialisations.
As we will see in Chapter 4, most of today's popular SLS algorithms for SAT can be modelled
by machines of this type.

2-state+init sequential machines This machine type has three states, one of which is
an init state that is only visited once while the other two are working states. However, once
the machine has switched from the �rst of these to the second, it will never switch back to
the former again. Thus, each trajectory of such a machine can be partitioned into three
phases: one initialisation step, a number of steps in the �rst working state and a number
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Figure 3.3: Sequential (left) and alternating (right) 2-state+init GLSM.
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Figure 3.4: Sequential (left) and alternating (right) k-state+init GLSM.

of steps in the second working state.

2-state+init alternating machines Like the 2-state+init sequential machine, this ma-
chine type has one initialisation state and two working states. Here, however, arbitrary
transitions between all states are possible. An interesting sub-type of these machines is
given by the special case in which the initial state is only visited once, while the machine
might arbitrarily switch between the two working states. Another sub-type that might be
distinguished is a uni-directional cyclic machine model which allows the three states to be
visited only in one �xed order.

Of course, the categorisation can be easily continued in this manner by successively increas-
ing the number of working states. However, as we will later see, to describe state-of-the-art
stochastic local search algorithms, usually three-state-machines are su�cient. We therefore
conclude this categorisation with a brief look at two potentially interesting cases of the
k-state+init machine types:

k-state+init sequential machines As a straightforward generalisation of the sequential
2-state+init machines, in this machine type we have k+1 states which are visited in a linear
order. Consequently, after a machine state has been left, it will never be visited again.

k-state+init alternating machines These machines allow arbitrary transitions between
the k + 1 states and may therefore re-initialise the search process and switch between
strategies as often as desired. Some special cases worth noting are the uni- and bi-directional
cyclic machine models which allow to switch between states in a cyclic manner. In the
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Figure 3.5: Uni-directional (left) and bi-directional (right) cyclic k-state+init GLSM.

former case, the cyclic structure can be traversed only in one direction, in the latter case
the machine can switch from any state to both its neighbouring states.

This categorisation of machines according to their structure is useful for characterising the
structural aspects of the search control as realised by the GLSM model. Of course, this is a
very high-level view of GLSMs which can be re�ned in many ways, but nevertheless in the
context of this work it will prove to be useful for capturing some fundamental di�erences
between various stochastic local search schemes.

3.6 Transition Types

In re�ning the structural view of GLSMs given above, we next focus on transition types. As
mentioned before, properties of the transition types are used as a basis for de�ning GLSM
semantics. Here, we will introduce transition types in terms of a hierarchy of increasingly
complex (or expressive) types and de�ne the semantics in terms of the state transition
functions �s for each transition type.

Unconditional deterministic transitions, DET

This is the most basic transition type; DET transitions from state si to state sk cause,
when the GLSM is in state si, always an immediate transition into state sk . Formally,
if �((si; sk)) = DET, this behaviour is captured by �s(a; si) = D00

s with D00

s (sk) = 1 for
arbitrary a 2 �. Note that because D00

s is a probability distribution, the above condition
implies D00

s (s) = 0 for all states s 6= sk .

The use of this transition type is fairly limited, because it causes a state with such a tran-
sition as its source to be left immediately after being entered. This obviously implies that
for each state there can be only one transition leaving it. Consequently, using exclusively
DET transitions, one can only realise a very limited class of GLSM structures. However,
at least for the transition leaving the initial state, DET transitions are frequently used in
practically occurring GLSMs.
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Unconditional probabilistic transitions, PROB(p)

A PROB(p) transition from the actual state is executed with probability p. Thus, DET tran-
sitions are actually equivalent to a special case of this transition type, namely to PROB(1).
For the moment, we can therefore assume without loss of generality that all transition types
in a given GLSM are of type PROB. To de�ne the semantics of this transition type, we
consider an arbitrary GLSM state si and assume that the set of transitions leaving si is
given as ft1; : : : ; tng. If further �(tj) = PROB(pj), we can de�ne the semantics of PROB
transitions by �s(a; si) = D00

s with D00

s (sk) = p0 for arbitrary a 2 � where p0 is given by
�((si; sk)) = PROB(p0). Note that to guarantee that D00

s is a probability distribution, andPn
j=1 pj must be equal to one.

Note that by using PROB(0) transitions we can restrict ourselves to fully connected GLSMs,
where for each pair of states (si; sk), a transition of type PROB(pik) is de�ned. This allows
a more uniform representation of this class of GLSMs which in turn will facilitate both
theoretical investigations and practical implementations of this GLSM type. Furthermore,
the behaviour of these GLSMs can be easily modeled using Markov processes [C� in75], which
facilitates their analysis, as well-known techniques for studying Markov processes can be
directly applied.

Conditional probabilistic transitions, CPROP(C; p)

While until now we have focused on transitions the execution of which only depends on the
actual state, the next generalisation from PROB(p) introduces context dependent transi-
tions. A CPROP(C; p) transition from state si to state sk is executed with a probability
proportional to p only when a condition predicate C is satis�ed. If C is not satis�ed, all
transitions CPROP(C; p) from the current state are blocked, i.e., they cannot be executed.
For practical reasons, the condition predicates C will depend on local information only; this
includes information on the current search space position, its immediate neighbourhood,
the number of local search steps performed up to this point, and, possibly, some simple
statistics on these. We will see later some predicates which can be practically used. Gener-
ally, the crucial condition restricting the choice of condition predicates C is that these have
to be e�ciently computable (when compared to the cost for executing local search steps).

Obviously, PROB(p) transitions are equivalent to CPROB(>; p) conditional probabilistic
transitions, where > is the predicate which is always true. Without loss of generality, we
can therefore assume that for a given GLSM all transitions are of type CPROB(C; p). To
de�ne the semantics of this transition type we consider the actual GLSM state si. As si is
the actual state, we have all the local information to decide the condition predicates of all
transitions leaving si. Since in this situation only a non-blocked transition can be executed,
i.e., a transition for which C is satis�ed and therefore equivalend to > in the given situation,
we can now de�ne the semantics like in the case of PROB(p) transitions. To this end, we
assume that the set of non-blocked transitions leaving si is given as ft1; : : : ; tng, and for
�(tj) = CPROB(Cj; pj), Cj currently satis�ed, we de�ne �s(a; si) = D00

s with D
00

s (sk) = p0=c
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> always true
tcount(k) total number of local search steps � k

mcount(k) total number of local search modulo k = 0
lmin current local search position is local minimumw.r.t. its direct neighbours

obf(x) current objective function value � x

: impr(k) objective function value could not be improved within last k steps

Table 3.1: Some examples for simple condition predicates.

for arbitrary a 2 � where p0 is given by �((si; sk)) = CPROB(C0; p0) and c =
Pn

j=1 pj is the
normalisation factor which ensures that D00

s is a probability distribution.

An important special case of conditional transitions are conditional deterministic transitions.
These occur, if for a given GLSM state si, from all the transitions leaving it at most
one transition is not blocked. One way to obtain deterministic GLSMs using conditional
transitions is to make sure that by their logical structure, the condition predicates for
the transitions leaving each state are mutually exclusive (or non-overlapping). Generally,
depending on the nature of the condition predicates used, the decision whether a conditional
transition is deterministic or not can be very di�cult. For the same reasons it can be di�cult
to decide for a given GLSM with conditional probabilistic transitions, whether a particular
state is reachable from the initial state.

For practically using GLSMs with conditional transitions it is important to make sure that
the condition predicates can be evaluated in a su�ciently e�cient way. There are two kinds
of condition predicates, the �rst of which is based on the search space position and/or its
local neighbourhood. The other, however, is based on search-control aspects alone, like the
time that has been spent in the current GLSM state, or the overall run-time. Of course,
these two kinds of conditions can also be mixed. Some concrete examples for condition
predicates can be seen in Table 3.1. Note that all these predicates are based on only local
information and can thus be e�ciently evaluated during the search.

Usually, for each condition predicate, a positive as well as a negative (negated) form will
be de�ned. Using propositional connectives like \^" or \_", these simple predicates can
be combined into complex predicates. However, it is not di�cult to see that every GLSM
using complex condition predicates can be reduced to an equivalent GLSM using only sim-
ple predicates by introducing additional states and/or transitions. Thus, using complex
condition predicates can generally be avoided without restricting the expressive power of
the model.

Transition actions

After discussing a hierarchy of increasingly general transition types, we now introduce an-
other conceptual element into the context of transitions: transition actions. Transition
actions are associated with the individual transitions and are executed whenever the GLSM
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executes the corresponding transition. At this point, the motivation for adding this notion
to the GLSM model might not be obvious. However, as we will see, there are some situa-
tions in which transition actions provide an adequate method of modelling SLS algorithms.
One such case is the manipulation of global search parameters, like adapting the length of
a tabu list or a noise parameter.

Generally, transition actions can be added to each of the transition types de�ned above,
while the semantics of the transition (in terms of �s) is not a�ected. If T is a transition
type, by T : A we denote the same transition type with associated action A. The nature of
the actions A has to be such that they neither directly a�ect the state of the GLSM, nor
its search space position. Instead, the actions generally can be used for

� modifying global parameters of one or more state types,

� realisation of input / output functionality in actual GLSM realisations,

� communication between GLSMs in cooperative GLSM models.

By introducing an action NOP without any e�ects we obtain uniform GLSMs in which all
transitions have associated actions. Note, however, that we do not need multiple actions
(i.e., sequences or sets of actions which are associated with the same transition), because
by introducing copies of a transition's destination state the (intuitive) semantics of multiple
actions can be emulated.

From a minimalist point of view, of course, even simple transition actions are not strictly
required because they, too, can be emulated by embedding the corresponding actions into
the search strategies associated with the GLSM states. This, however, means to mix con-
ceptually di�erent notions, namely the local search strategies and the actions which are
rather part of the search control mechanism that is represented by the modi�ed �nite state
machines underlying the GLSM model. Because here our main motivation is to devise
an adequate representation of SLS algorithms, if the notion of transition actions occurs
naturally, we prefer to rather model them explicitly in the way outlined above.

3.7 State Types

At this point, the only component for specifying concrete GLSMs which is still missing
are state types. As outlined above, for formally specifying the semantics of a GLSM, the
semantics of the individual state types are required to be speci�ed in the form of a trajectory
�� : � 7! D(�). For practical purposes, however, state types will usually be rather de�ned
in a procedural way, usually by using some form of pseudo-code. In some cases, more
adequate descriptions of complex state types can be obtained by using other formalisms,
such as decision trees. Concrete examples for various state types will be give in Chapter 4,
where we show how existing local search algorithms for SAT can be represented as GLSMs.
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Here, we want to concentrate on some fundamental distinctions between certain state types.
One of these concerns the role of the state within the general local search scheme presented
in Section 3.1. Since we are modelling the search initialisation and local search steps using
the same mechanism, namely GLSM states, there is a distinction between initialisation
states and search step states. An initialisation state is usually di�erent from a search step
state in that it is left after one corresponding step has been performed. Also, while search
step states correspond to moves in a restricted local neigbourhood (like ipping one variable
in SAT), one initialisation step can lead to arbitrary search space positions (like a randomly
chosen assignment of all variables of a SAT instance). Formally, we de�ne an initialising
state type as a state type � , for which the local search position after one � -step is independent
of the local search position before the step; the states of an initialising type � are called
initialising states. Generally, each GLSM will have at least one initialising state, which is
also its initial state. A GLSM can, however, have more than one initialising state and use
these states for dynamically restarting the local search process.

If for a given problem there is a natural common neighbourhood relation for local search,
we can also distinguish single-step states from multi-step states. For the SAT problem, most
local search algorithms use a neighbourhood relation where two variable assignments are
direct neighbours if they di�er in exactly one variable's value. In this context, a single-
step state would ip one variable's value in each step, whereas a multi-step state could ip
several variables per local search step. Consequently, initialising states are an extreme case
of multi-step states, since they can a�ect all variable's values at the same time.

3.8 Extensions of the Basic GLSM Model

In this section we discuss various extensions of the basic GLSM model. One of the strengths
of the GLSM model lies in the fact that these extensions arise quite naturally and can be
easily realised within the basic framework. However, in the context of this work none of the
extensions proposed here has been studied in detail, with the exception of the homogeneous
cooperative model discussed later in this section. The main reason for this lies in the
fact that in the context of SAT and CSP, the existing state-of-the-art SLS algorithms are
conceptually fairly simple but nevertheless very powerful. Consequently, as we will see later,
improvements of these algorithms can be achieved using simple GLSM techniques, but this
requires a rather detailed understanding of their behaviour. The extensions as outlined in
the following are of a more complex nature, but at the same time can be applied to all
domains for which local search techniques are available.

Learning via dynamic transition probabilities

One of the features of the basic GLSM model with probabilistic transitions is the fact that
the transition probabilities are static, i.e., they are �xed when designing the GLSM. An
obvious generalisation, along the lines of learning automata theory [NT89], is to let the
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transition probabilities evolve over time as the GLSM is running. The search control in this
model corresponds to a variable structure learning automaton. The environment such a
dynamic GLSM is operating in, is given by the objective function induced by an individual
problem instance or a class of objective functions induced by a class of instances. In the �rst
case (single-instance learning), the idea is to optimise the control strategy on one instance
during the local search process. The second case (multi-instance learning), is based on the
assumption that for a given problem domain (or sub-domain), all instances share certain
features to which the search control strategy can be adapted.

The modi�cation of the transition probabilities can either be realised by an external mech-
anism (external adaption control), or within the GLSM framework by means of specialised
transition actions (internal adaption control). In both cases, suitable criteria for transition
probability updates have to be developed. Two classes of such criterias are those based on
trajectory information, and those based on GLSM statistics. The latter category includes
state occupancies and transition frequencies, while the former comprises primarily basic
descriptive statistics of the objective function value along the search trajectory, possibly
in conjunction with discounting of past observations. The approach as outlined here cap-
tures only a speci�c form of parameter learning for a given parameterised class of GLSMs.
Conceptually this can be further extended to allow for dynamic changes of transition types
(which is equivalent to parameter learning for a more general transition model, such as
conditional probabilistic transitions).

Concepts and methods from learning automata theory can be used for analysing and charac-
terising dynamic GLSMs; basic properties, such as expedience or optimality can be easily de-
�ned. We conjecture, however, that theoretically proving such properties will be extremely
di�cult, as the theoretical analysis of standard SLS behaviour is already very complex and
limited in its results. Nevertheless, we believe that based on empirical methodology, it
should be possible to devise and analyse dynamic GLSMs.

Cooperative GLSM models

Another line of extending the basic GLSM model is to apply several GLSMs simultaneously
to the same problem instance. In the simplest case, such an ensemble consists of a number
of identical GLSMs and there is no communication between the individual machines. We
call this the homogenous cooperative GLSM model without communication; its semantics are
conceptually equivalent to executing multiple independent tries of an individual GLSM. In
Chapter 5 we will use this scheme in the context of e�ciently parallelising SLS algorithms
for SAT. It is particularly attractive for parallelisation, because it is very easy to implement,
involves virtually no communications overhead, and can be almost arbitrarily scaled.

The restrictions of this model can be relaxed in two directions. One is to allow ensembles
of di�erent GLSMs. This heterogeneous cooperative GLSM model without communication
is particularly useful for modelling robust combinations of various SLS algorithms, each
of which shows superior performance on certain types of instances, when the features of
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the given problem instances are not known a priori. This approach has been recently
studied in the context of complete algorithms for hard combinatorial problems [GS97a]; in
this context the heterogenous ensembles were called algorithm portfolios. Generally, this
cooperative model has almost the same advantages as its homogeneous variant; it is easy
to implement and almost free of communication overhead.

Another generalisation is to allow communication between the individual GLSMs of a co-
operative model. This communication can be easily realised by means of transition actions
(e.g., send and receive); possible communication schemes include using a blackboard, syn-
chronous broadcasting, and one-to-one message passing in a �xed network topology. These
di�erent variants of cooperative GLSMs with communication are more di�cult to design and
to realise, since issues like preventing and detecting deadlocks and starvation situations gen-
erally have to be considered. Furthermore, the communication between individual GLSMs
usually involves a certain amount of overhead. This overhead has to be amortised by the
performance gains which can be achieved by using this model in a given application situa-
tion. These gains may be realised in terms of speedup when applied to a speci�c problem
class, but also in terms of increased robustness w.r.t. di�erent problem types.

Generally, one way of using communication to improve the performance of cooperative
GLSMs is to propagate search space positions with low objective function values (or other
attractive properties) within the ensemble such that individual GLSMs which detect that
they are not doing particularly well can pick up these \hints" and restart their local search
from there. This can be easily realised as a homogeneous cooperative GLSM with commu-
nication. In such a model, the search e�ort will be more focussed on exploring promising
parts of the search space than in a cooperative model without communication. Another
general scheme uses two types of GLSMs, analysts and solvers. Analysts do not attempt
to �nd solutions but rather try to analyse features of the search space. The solvers try
to use this information to improve their search strategy. This architecture is an instance
of the heterogeneous cooperative GLSM model with communication. It can be extended
in a straightforward way to allow for di�erent types of analysts and solvers, or several
independent sub-ensembles of analysts and solvers.

Evolutionary GLSM models

From the cooperative GLSM models discussed in the previous section it is only a short step
to evolutionary GLSMs. These are cooperative models where the number or type of the
individual GLSMs may vary over time; these population dynamics can be interpreted as
another form of learning. As for the learning GLSMs described earlier, we can distinguish
between single-instance and multi-instance learning and base the dynamic adaption process
on similar criteria. In the conceptually most simple case, the evolutionary process only
a�ects the composition of the cooperative ensemble: machines which are doing well will
spawn o� numerous o�spring replacing individuals showing inferior performance. This
mechanism can be applied to both, homogeneous and heterogeneous models for single-
instance learning. In the former case, the selection is based on the trajctory information of
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the individual machines and achieves a similar e�ect as described above for the homogeneous
cooperative GLSM with communication: The search is concentrated on exploring promising
parts of the search space. When applied to heterogeneous models, this scheme allows to
realise self-optimising algorithm portfolios, which can be useful for single-instance as well
as multi-instance learning.

This scheme can be further extended by introducing mutation, and possibly cross-over
operators. It is also possible to combine evolutionary and indivual learning by evolving
ensembles of learning GLSMs. And �nally, these models can also allow communication
within the ensemble. Thus, combining di�erent extensions we arive at very complex and
potentially powerful GLSM models; while these are very expressive, in general they will also
be extremely di�cult to analyse. Nevertheless, their implementation is quite simple and
straightforward and an empirical approach for analysing and optimising their behaviour
seems viable enough. We expect that such complex models, which allow for a very exible
and �ne-grained search control, will be most e�ective when applied to problem classes which
contain a lot of structural features. There is little doubt that, to some extent, this is the
case for most real-world problem domains.

Continuous GLSM models

The basic GLSM model and all extensions thereof discussed until here model local search
algorithms for solving discrete decision or optimisation problems. But of course, the model
can easily be applied to continuous problems; the only changes required are to use continuous
local search strategies for the GLSM state types instead of discrete ones. Although our
experience and expertise is mainly limited to discrete combinatorial problems, we assume
that the GLSM model's main feature, the clear distinction between simple search strategies
and search-control, is also a useful architectural and conceptual principle for continuous
optimisation algorithms.

3.9 Related Work

The main idea underlying the GLSM model, namely to realise adequate algorithms as a
combination of several simple strategies, seems to be common lore. However, our appli-
cation of this general metaphor to local search algorithms for combinatorial decision and
optimisation problems using suitably extended �nite state machines for search control, is to
our best knowledge novel and original. The GLSM model is partly inspired by Amir Pnueli's
work on hybrid systems [MMP92] and Thomas Henzinger's work on hybrid automata; the
latter uses �nite state machines to model systems with continuous and discrete components
and dynamics [ACHH93, Hen96] and is therefore conceptually related to the GLSM model.

The GLSM de�nition and semantics are heavily based on well-known concepts from au-
tomata theory (for a general references, cf. [Har78, RS97]). However, when using condi-
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tional transitions or transition actions, the GLSM model extends the conventional model of
a �nite state machine. In its most general form, the GLSM model bears close resemblance
to a restricted form of Petri nets [Kri89], where only one token is used. Of course, the same
type of search control mechanism could be represented using formal systems other than a
FSM-based formalism. First of all, other types of automata, such as pushdown automata or
Turing machines could be considered. However, we feel that the FSM model, one of the sim-
plest types of automata, is powerful enough for representing most interesting search-control
strategies we found in the local search literature. Furthermore, it is our impression that it
leaves enough room for extension, while being analytically more tractable than more com-
plex automata models. Finally, FSMs o�er the potential advantage of being implementable
in hardware in a rather straightforward way, which might be interesting in the context
of applying local search algorithms to time-critical problems (cf. [HM97]). Summarising
these arguments, the use of FSMs for formalising the search-control mechanism seems to
be su�cient and adequate. Of course, formalisms equivalent to the FSM model, such as
rule-based descriptions, could be chosen instead. While this could be easily done and might
be advantageous in certain contexts (such as reasoning about properties of a given GLSM),
we �nd that the automaton model provides a slightly more intuitive and easier-to-handle
framework for designing and implementing local search algorithms, the nature of which is
mainly procedural.

The GLSM model allows to adequately represent existing algorithmic frameworks for local
search, such as GenSAT [GW93a] or iterated local search [MOF91, Joh90]. These frame-
works are generally more speci�c and more detailed than the GLSM model; however, they
can be easily realised as generic GLSMs without losing any detail of description. This is
done by using structured generic state types to capture the more speci�c aspects of the
framework to be modeled. The same technique will be used in Chapter 4 to model modern
SLS algorithms for SAT, such as WalkSAT or R-Novelty. In these cases, the structure of
the simple search strategies can be represented by decision trees which are associated with
the state types. While the GLSM model can be used to represent any local search algo-
rithm, many of these do not really make use of the search control mechanism it provides.
Note, however, that some of the most successful local search algorithms for various problem
classes (such as R-Novelty for SAT [MSK97], hrts for MaxSAT [BP96], and iterated local
search schemes for TSP [MOF91, Joh90, JM97]) rely on search control mechanisms of the
type provided by the GLSM model.

The various extensions of the basic model discussed in this chapter are closely related to
established work on learning automata [NT89], parallel algorithm architectures [J�aj92], and
evolutionary algorithms [B�ac94]. While most of the proposed extensions have not been im-
plemented and empirically evaluated so far, they appear to be promising, especially when
taking into account our results on homogeneous cooperative GLSM models reported in
Chapter 5 and recent work on multiple independent tries parallelisation [Sho93, GSK98],
algorithm portfolios [GS97a], and learning local search approaches for solving hard combi-
natorial problems [BM98, Min96].



3.10. CONCLUSIONS 71

3.10 Conclusions

Based on the intuition that adequate local search algorithms are usually obtained by combin-
ing several simple search strategies, in this chapter we introduced and discussed the GLSM
model. This framework formalises the search control using a �nite state machine (FSM)
model, which associates the pure search strategies with the FSM states. FSMs belong to
the most basic and yet fruitful concepts in computer science; using them to model local
search control o�ers a number of advantages. First, FSM-based models are conceptually
simple; consequently, they can be implemented easily and e�ciently. At the same time, the
formalism is expressive enough to allow for the adequate representation of a broad range
of modern local search algorithms (this will be exempli�ed in Chapter 4, where GLSM-
realisations of several state-of-the-art SLS algorithms for SAT are given). Secondly, there
is a huge body of work on FSMs; many results and techniques can be directly applied to
GLSMs which is especially interesting in the context of analysing and optimising GLSMs.
And �nally, in our experience, the GLSM model facilitates the development and design of
new, hybrid local search algorithms. In this context, both conceptual and implementational
aspects play a role: due to the conceptual simplicity of the GLSM model and its clear rep-
resentational distinction between search strategies and search control, hybrid combinations
of existing local search algorithms can be easily formalised and explored. Using a generic
GLSM simulator, which is not di�cult to implement, new hybrid GLSM algorithms can be
realised and evaluated in a very e�cient way.

As we have shown, based on a clean and simple de�nition of a GLSM, the semantics of the
model can be formalised in a rather straightforward way. We then discussed the tight rela-
tion between the GLSM model and a standard generic local search scheme. By categorising
GLSM types according to their structure and transition types, we demonstrated how the
general model facilitates the systematic study of search control mechanisms. Finally, we
pointed out several directions into which the basic GLSM model can be extended. Most of
these are very natural generalisations, such as continous or cooperative GLSMs; however,
these proposed extensions demonstrate the scope of the general idea and suggest numerous
routes for further research.

In the context of this work, GLSMs will be used for formalising, realising, and analysing SLS
algorithms for SAT. In Chapter 5 we will show how by applying minor modi�cations to these
GLSMs, some of the best known SAT algorithms can be further improved. In Chapter 6,
we will use very simple GLSMs as probes for analysing the search space structure of SAT
instances. While these applications demonstrate the usefulness of the GLSM model, they
hardly exploit its full power. Most modern SLS algorithms can be represented by very simple
GLSMs; the fact that the most e�cient of them are structurally slightly more complex than
others suggests that further improvements can be achieved by developing more complex
combinations of simple search strategies. While some of our results presented in Chapter 5
support this hypothesis, its general validity remains to be shown by developing novel hybrid
GLSM algorithms for di�erent domains.
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Chapter 4

SLS Algorithms for SAT

In this chapter, we give an overview of some of the most relevant SLS algorithms for SAT and
analyse their behaviour when applied to a number of benchmark problems. We present and
discuss these algorithms in the context of the GLSM model, which provides a convenient
and uniform framework especially suited for adequately representing some of the more
recent schemes, like R-Novelty. Using the GLSM model as a unifying framework enables
us to present these algorithms in a systematic way, showing more clearly the relations and
di�erences between some of the most prominent SLS algorithms. We then present a detailed
comparative study of these algorithms' performance based on the methodology developed
in Chapter 2. The benchmark set we use in this context contains instances from randomised
distributions as well as SAT-encoded problems from the Graph Colouring, the Blocks World
Planning, and the newly developed All-Interval-Series domains. Our empirical analysis
gives a very detailed picture of the algorithms' performance and reveals some interesting
di�erences between the problem domains.

4.1 Introduction

Stochastic local search approaches for SAT became prominent in 1992, when indepen-
dently Selman, Levesque, and Mitchell [SLM92] as well as Gu [Gu92] introduced algorithms
based on stochastic local hill-climbing which could be shown to outperform state-of-the-art
systematic SAT algorithms like ASAT [DABC93] on a variety of hard subclasses of SAT
[BKB92, SKC94]. Since then, numerous other SLS schemes for SAT have been proposed. To
date, state-of-the-art SLS algorithms can solve hard SAT problems up to several thousand
variables, including SAT-encoded problems from other domains.

All algorithms considered here are model �nding algorithms for CNF formulae. The under-
lying state space is always de�ned as the set of all assignments for the variables appearing
in the given formula. Local search steps generally modify at most the value assigned to
one of the propositional variables appearing in the formula; such a move is called a variable
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ip. The objective function is always de�ned as the number of clauses which are unsatis�ed
under a given variable assignment; thus, the models of the given formula are always the
global minima of this function. The general idea for �nding these is to perform stochastic
hill-climbing on the objective function, starting from a randomly generated initial assign-
ment.

The main di�erence between the individual algorithms lies in the strategy used to select the
variable to be ipped next. This is generally done based on a scoring function which is used
to preselect a number of variables from which then at most one is chosen to be ipped. In
the following, we focus on two families of algorithms, the GSAT and WalkSAT architectures,
which provided a substantial driving force for the development of SLS algorithms for SAT
and have been extremely succesful when applied to a broad range of problems from di�erent
domains. Another important reason for choosing these algorithms is the fact that extremely
e�cient implementations are available, which is of crucial importance for the empirical
studies we conducted. However, there are other successful SLS algorithms for SAT some of
which will be briey discussed in the \Related Works" section of this chapter.

4.2 The GSAT Architecture

The GSAT algorithm was introduced in 1992 by Selman, Levesque, and Mitchell [SLM92].
It is based on a rather simple idea: Using the number of clauses which are unsatis�ed under
the current assignment as the objective function, GSAT tries to minimise this function by
greedy hill-climbing in the space of variable assignments. The neighbourhood relation used
for GSAT is de�ned in such a way that two assignments are neighbours if and only if they
di�er in the value of exactly one variable, i.e., their Hamming distance is equal to one.
Variable selection in GSAT and most of its variants is based on the score of a variable x
under the current assignment a; this is de�ned as the di�erence between the number of
clauses unsatis�ed by a and the assignment obtained by ipping x in a.

4.2.1 Basic GSAT

The basic GSAT algorithm works as follows. Starting at a randomly selected initial assign-
ment, in each local search step, one of the variables with maximal score is ipped. If there
are several variables with maximal score, one of them is randomly selected. If after a number
maxSteps of these local search steps no solution was found, GSAT restarts the local search
by selecting a new, randomly chosen initial assignment followed by local search. If after
maxTries of such tries still no solution was found, the algorithm is aborted unsuccessfully.

GSAT can be conveniently modelled by a 1-state+init GLSM (cf. Section 3.5) using con-
ditional deterministic transitions. The init state RI of this GLSM just selects a random
assignment:

If F is the given formula, for all assignments a 2 Assign(F ), we de�ne �RI(a) := D,
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Figure 4.1: GLSM realising GSAT; transition condition C � mcount(maxSteps).

function RI(a) is

for 1 � i � n do

a0(i) := draw(f>;?g);
end for;

return (a0);
end RI;

function GD(a) is

A0 := fa0 j N (a; a0)g;
s0 := max(fscore(a0) j a0 2 A0g);
A00 := fa0 2 A0 j score(a0) = s0g;
a0 := draw(A00);
return (a0);

end GD;

Figure 4.2: GLSM states for realising basic GSAT.

where 8a0 2 Assign(F ) : D(a0) = 2�n and n = #Var(F ) is the number of propositional
variables appearing in F .

The local search state GD models the basic local search steps in GSAT and can be de�ned
in the following way: If � is the given formula and a the current assignment, then let A0 =
fa0 j N(a; a0)g be the set of assignments which are neighbours of a and s0 = max(fscore(a0) j
a0 2 A0g) the maximal score within this set. Now, we de�ne A00 = fa0 2 A0 j score(a0) = s0g,
the set of neighbouring assignments with maximal score. Based on A00, we �nally de�ne the
state semantics for state type GD:

For all a 2 Assign(F ), we de�ne �GD(a) := D, where for all a0 2 Assign(F ), D(a0) =
1=#A00 if a0 2 A00, and D(a0) = 0, otherwise.

Now, the GSAT algorithm is obtained by connecting these states in such a way, that RI
is always directly followed by GD, while we switch from GD to RI after maxSteps steps.
This is achieved by introducing a deterministic transition with condition > from RI to GD,
and a deterministic transition with condition C � mcount(maxSteps) from GD to RI (cf.
Figure 4.1). According to our convention from Chapter 3, we do not explicitly specify the
self-transitions (GD,GD) and (RI,RI) since they are uniquely determined by the remaining
transitions.

Note that the above de�nition of the state types is mathematically precise and reects the
requirements of GLSM semantics, as introduced in Chapter 3, Section 3.3. At the same time,
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function RW(a) is

C 0 := the set of all currently unsatis�ed clauses;
c0 := draw(C0);
V 0 := Var(c0);
x := draw(V 0);
a0 := a with x ipped;
return (a0);

end RW;

Figure 4.3: GLSM state for realising random walk.

however, it is often cumbersome to use this kind of de�nition, while procedural de�nitions
are more concise. Using the draw function from Chapter 3, Section 3.3, the two GSAT
states can be de�ned as shown in Figure 4.2. Although these procedural descriptions can
be implemented in a rather straightforward way, they are generally very ine�cient. The
same holds, of course, for the equivalent purely procedural representation, as it can be found
in [SLM92] and many subsequent studies. When implementing GSAT this way, the local
search is drastically slowed down, when compared to Kautz' and Selman's implementation
which is commonly used when comparing GSAT with other SAT algorithms. The key to
e�ciently implementing GSAT is to evaluate the complete set of scores only once at the
beginning of each try, and then after each ip to update only those scores which were
possibly a�ected by the ipped variable. Details on these implementation issues for GSAT
and related algorithms can be found in [Hoo96b].

4.2.2 GSAT with Random Walk (GWSAT)

An important extension of the basic GSAT algorithm is GSAT with RandomWalk (GWSAT)
[SKC94]. Here, besides the GD steps, (as de�ned above) a second type of local search steps,
the so-called random walk steps, are introduced. In a random walk step, �rst a currently un-
satis�ed clause c0 is randomly selected. Then, one of the variables appearing in c0 is ipped,
thus e�ectively forcing c0 to become satis�ed. The basic idea of GWSAT is to decide for
each local search step with a �xed probability wp whether to do a standard GSAT step or
a random walk step.

We model GWSAT as a 2-state+init GLSM, which is obtained by extending the GSAT
GLSM by a new state type RW, the de�nition of which is shown in Figure 4.3. Between the
GD state and the RW state we introduce a pair of probabilistic transitions with probabilities
wp and 1-wp respectively; for technical reasons these have to be conditioned such that
whenever a restart is due, they cannot be executed. To be precise, we also have to replace
the transitions between RI and GD such that the overall structure shown in Fig. 4.4 is
obtained.
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Figure 4.4: GLSM realising GWSAT; transition types: Tr � CPROB(C; 1) with condition
C � mcount(maxSteps);Tw � CPROB(:C;wp);Tg � CPROB(:C; 1� wp).

4.2.3 GSAT with Tabu Search (GSAT/TABU)

Another important extension of basic GSAT is achieved by introducing a tabu list with
maximal length tl [MSG97]. Upon initialisation of the local search, this list is empty. After
each local search step, the ipped variable is added to the head of this tabu list. If by
doing so the maximal length tl is exceeded, the tail element is removed from the list. When
selecting a variable x to ip, the variables in the tabu list are not considered such that
e�ectively, after x is ipped, it becomes clamped to its current value for the next tl steps.

Formally, GSAT/TABU is realised just as GSAT with the GD state being replaced by a
GDT state which implements the modi�ed local search steps using the tabu list. Note that
in the GLSM model, the tabu list is a global data structure which is initialised either within
the initialisation state (a modi�ed RI state), or using a transition action reset-tabu for the
transition leading from the standard RI into the GDT state.

Like HSAT [GW93b], another GSAT variant where the local search steps make use of history
information, GSAT/TABU shows generally superior performance when compared to plain
GSAT. It has also been claimed that GSAT/TABU outperforms GWSAT [SSS97]; however,
in the light of the results presented in this and the following chapter, this is generally not
true.

4.3 The WalkSAT Architecture

The WalkSAT architecture is based on ideas �rst published by Selman, Kautz, and Cohen
in 1994 [SKC94] and was later formally de�ned as an algorithmic framework by McAllester,
Selman, and Kautz in 1997 [MSK97]. It is based on a 2-stage variable selection process
focused on the variables ocurring in currently unsatis�ed clauses. For each local search step,
in a �rst stage a currently unsatis�ed clause c0 is randomly selected. In a second step, one of
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function WS(a) is

% stage 1: clause selection:

C 0 := the set of all currently unsatis�ed clauses;
c0 := draw(C0);
% stage 2: variable selection:

s0 := max(fscoreb(x) j x 2 Var(c0)g);
if s0 = 0 then

V 0 := fx 2 Var(c0) j scoreb(x) = s0g;
else

with probability wp do

V 0 := Var(c0);
otherwise

V 0 := fx 2 Var(c0) j scoreb(x) = s0g;
end with;

end if;

x := draw(V 0);
a0 := a with x ipped;
return (a0);

end WS;

Figure 4.5: GLSM state for realising basic WalkSAT.

the variables appearing in c0 is then selected and ipped to obtain the new assignment. Thus,
while the GSAT architecture is characterised by a static neighbourhood relation between
assignments with Hamming distance one, using this procedure, WalkSAT algorithms are
e�ectively based on a dynamically determined subset of the GSAT neighbourhood relation.
Another major di�erence between GSAT and the original WalkSAT algorithm is the scoring
function used to choose the variable within the selected clause. While in GSAT, the score of
a variable x is de�ned as the di�erence in the number of unsatis�ed clauses before and after
ipping it, WalkSAT counts only the number of clauses which are broken | i.e., which are
currently satis�ed, but will become unsatis�ed by the ip. We denote the negative value of
this score by scoreb(x);1 however, as we will see, WalkSAT variants are based on di�erent
scoring functions.

4.3.1 WalkSAT

WalkSAT, as originally introduced in [SKC94], is characterised by the following variable
selection scheme: If there is a variable with scoreb(x) = 0 in the clause c0 selected in stage
1, i.e., if c0 can be satis�ed without breaking another clause, this variable is ipped. If no
such variable exists, with a certain probability wp the variable with maximal scoreb value
is selected; in the remaining cases, one of the variables from c0 is randomly selected.

1We use the negative value for technical reasons; this way, as for GSAT, maximal scores are most desirable
when selecting the variable to be ipped.
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Figure 4.6: Decision tree representation for GLSM state WS; condition Cw � 9x 2 Var(c0) :
scoreb(x) = 0, where c0 is the selected clause.

The WalkSAT algorithm can be modelled as a 1-state+init GLSM, using the same GLSM
model as for GSAT, where the GD state is replaced by a suitably de�ned WS state which
can be de�ned as shown in Figure 4.5. This procedural description can be represented
more adequately using a probabilistic decision tree (cf. Figure 4.6). Conceptually as well
as historically, WalkSAT is quite closely related to GWSAT. However, there is a number
of signi�cant di�erences between both algorithms, which in combination account for the
generally superior performance of WalkSAT. First of all, there is a very obvious di�erence
in GLSM structure: The GLSM representing GWSAT has one more state. On the other
hand, WalkSAT's WS state is considerably more complex than both the GD and the RW

states constituting GWSAT.

While both algorithms use the same kind of random walk steps, WalkSAT executes them
in a conditional probabilistic way, namely only when there is no greedy step that would
not break any currently satis�ed clause. In GWSAT, however, random walk steps are done
in an unconditional probabilistic way. From this point of view, WalkSAT is greedier, since
random walk steps, which usually increase the number of unsatis�ed clauses, are only done
when each variable occurring in the selected clause would break some clauses when ipped.
The 2-stage selection scheme that was already used in GWSAT's RW state is also used in
WalkSAT's WS state, which can actually be seen as a re�ned version of RW. Because for
WalkSAT, the �rst stage of the selection process (selecting an unsatis�ed clause) is purely
random, and clauses are typically rather short, even for small walk probabilities, WalkSAT
will generally be less greedy than GWSAT in the sense, that the former chooses from a
signi�cantly reduced set of neighbours.
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Finally, WalkSAT uses a di�erent scoring function than GWSAT: while the latter is based
on the total di�erence in the number of unsatis�ed clauses caused by a local search step,
the former counts only the clauses which are broken. Here, in some sense, GWSAT shows a
greedier behaviour: In its GD state, it would prefer a variable which breaks some clause but
compensates for this by �xing some other clauses, while in the same situation, WalkSAT
would select a variable whith a smaller total score, but breaking also a smaller number of
clauses.

4.3.2 WalkSAT Variants

There are three variants of WalkSAT which we want to address here briey. The �rst one,
called WalkSAT/G [MSK97, PW96], is di�erent from WalkSAT as introduced above, in
that it uses the same scoring function as GSAT. Furthermore, a di�erent variable selection
process is used in the second stage of each step: with a �xed probability wp, WalkSAT/G
chooses a random variable from the selected clause, otherwise the best variable (according
to its scoring function), is chosen. Note that this variant is very closely related to GWSAT;
actually, the only di�erence is the two-stage selection process where the unconditional choice
between walk and greedy steps is made in the local context of the selected clause. The sec-
ond variant, WalkSAT/B di�ers from WalkSAT/G only in its scoring function, which is
scoreb just as for WalkSAT. These two variants are of interest, because they are conception-
ally in some sense \between" GWSAT and WalkSAT. Interestingly, the same relation holds
for their performance on standard benchmark problem classes: Generally, WalkSAT is supe-
rior to WalkSAT/B, which in turn shows better performance than WalkSAT/G. GWSAT's
performance is roughly in between WalkSAT/G's and WalkSAT/B's.2

A third variant, which is called WalkSAT/TABU [MSK97], combines features of Walk-
SAT/G and GSAT/TABU. Like for GSAT/TABU, a constant length tabu list of variables
is used. According to the two level variable selection scheme which is generally used for
WalkSAT algorithms, it may however happen that all variables appearing in the selected
clause are tabu. In this case, no variable is ipped (a so-called null-ip). Like in the case
of GSAT, adding tabu search to the basic WalkSAT algorithm results in a signi�cantly
improved performance, as we will show in Section 4.5.

4.3.3 Novelty

The Novelty algorithm, as introduced in [MSK97], is one of the latest SLS algorithms
for SAT. Conceptually, it combines features of WalkSAT/G with a history-based variable
selection mechanism in the spirit of HSAT [GW93b]. Novelty, too, is based on the intuition,
that repeatedly ipping back and forth the same variable should be avoided. Interestingly,
Novelty uses a di�erent scoring function from WalkSAT: like GSAT, it selects the variable

2Although to our best knowledge direct comparisons have never been done, this can be conjectured
indirectly from the data given in [MSK97] and the experimental results reported later in this chapter.
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Figure 4.7: Decision tree representation for GLSM state NOV; condition Cn � \best var

does not have minimal age"; \best" and \second-best" relate to GSAT-score of variables.

to be ipped within the selected clauses based on the di�erence in the number of unsatis�ed
clauses caused by the corresponding local search step. Additionally, like for tabu search
variants, the number of local search steps which have been performed since it was last
ipped (also called the variable's age) is taken into consideration.

In Novelty, after an unsatis�ed clause has been chosen, the variable to be ipped is selected
as follows. If the variable with the highest score does not have minimal age among the
variables within the same clause, it is always selected. Otherwise, it is only selected with a
probability of 1-wp; in the remaining cases, the variable with the next lower score is selected.
In Kautz' and Selman's implementation, if there are several variables with identical score,
always the �rst of them is chosen. Novelty can be realised as a GLSM exactly like WalkSAT,
where only the WS state is replaced by a NOV state which captures the variable selection
mechanism as de�ned by the decision tree given in Figure 4.7.

Note that for wp > 0, the age-based variable selection of Novelty probabilistically prevents
ipping the same variable over and over again; at the same time, ips can be immediately
reversed with a certain probability if a better choice is not available. Generally, the Nov-
elty algorithm is signi�cantly greedier than WalkSAT, since always one of the two most
improving variables from a clause is selected, where WalkSAT may select any variable if no
improvement without breaking other clauses can be achieved. Because of this property, it
is to be expected that Novelty might get into trouble when applied to formulae with longer
clauses, where selecting only among the best two variables in a given clause can lead to
situations where the algorithm gets stuck in local minima of the objective function. Also,
Novelty is more deterministic than WalkSAT and GWSAT, since its probabilistic decisions
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Figure 4.8: Decision tree representation for GLSM state RNOV; condition Cn � \best var

does not have minimal age"; condition Cr � \score di� between best and second best var"

> 1; \best" and \second-best" relate to GSAT-score of variables; p1 = maxf1 � 2p; 0g,
p2 = minf2� 2p; 1g.

are more limited in their scope and take place under more restrictive conditions.3 On one
hand side, this often leads to a signi�cantly improved performance of Novelty when com-
pared to WalkSAT. On the other hand, as we will see later, Novelty occasionally gets stuck
in local minima which severely compromises its performance.

4.3.4 R-Novelty

R-Novelty, also introduced in [MSK97], is a variant of Novelty which is based on the intu-
ition that, when deciding between the best and second best variable (w.r.t. the same score
function as for Novelty), the actual di�erence of the respective scores should be taken into
account. The exact mechanism for choosing a variable from the selected clause can be seen
from the decision tree representation given in Figure 4.8. Note that the R-Novelty heuristic
is quite complex { as reported in [MSK97], it was discovered by systematically testing a
large number of WalkSAT variants.

3Interestingly, di�erent from WalkSAT, the Novelty strategy for variable selection within a clause is
deterministic for both wp = 0 and wp = 1.
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Figure 4.9: GLSM realising R-Novelty; transition types: Tr � CPROB(Cr; 1), Tw �
CPROB(Cw ^ :Cr; 1), Td � CPROB(:Cr; 1), Twr � CPROB(Cr; 1) with conditions
Cr � mcount(maxSteps), Cw � mcount(100).

R-Novelty's variable selection strategy is even more deterministic than Novelty's; in partic-
ular, it is completely deterministic for wp 2 f0; 0:5; 1g. Since the pure R-Novelty algorithm
gets too easily stuck in local minima, a simple loop breaking strategy is used: every 100
steps, a variable is randomly chosen from the selected clause and ipped. Thus, R-Novelty is
a hybrid strategy which can be modelled using the 2-state+init GLSM shown in Figure 4.9.
However, it is questionable whether one random walk step every 100 steps is su�cient for
e�ectively escaping from local mininima. Despite being more determinstic than the other
WalkSAT variants, the R-Novelty algorithm is still very sensitive with respect to the wp pa-
rameter. Although there is some indication that R-Novelty shows superior performance on
several problem classes [MSK97], it is not clear whether this algorithm generally improves
on Novelty.

4.4 The Benchmark Set

The benchmark suite we are using as a basis for the empirical evaluation of SLS algorithms
for SAT comprises three di�erent types of problems: test-sets sampled from Random-3-
SAT, a well-known random problem distribution; test-sets obtained by encoding instances
from a random distribution of hard Graph Colouring instances into SAT; and SAT-encoded
instances from two problem domains which are of a certain practical interest, the Blocks
World Planning problem, and the All-Interval-Series problem. All these benchmark in-
stances are hard in general and di�cult to solve for SLS algorithms. For the SAT-encoded
problems, the hardness of the instances is inherent rather than just induced by the encoding
scheme that was used for transforming them into SAT. The SAT-encodings used here are
mostly very simple and well-known from the literature. In the following, we will introduce
the benchmark problems and give some background on them as well as a description of
how they were generated. All benchmark instances are available from the SATLIB website
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(www.informatik.tu-darmstadt.de/AI/SATLIB).

4.4.1 Uniform Random-3-SAT

Uniform Random-3-SAT is a family of SAT instance distributions obtained by randomly
generating 3-CNF formulae in the following way: For an instance with n variables and k
clauses, each of the k clauses is constructed from 3 literals which are randomly drawn from
the 2n possible literals (the n variables and their negations) such that each possible literal
is selected with the same probability of 1=2n. Clauses are not accepted for the construction
of the problem instance if they contain multiple copies of the same literal or if they are
tautological (i.e., they contain a variable and its negation). Each choice of n and k thus
induces a distribution of Random-3-SAT instances. Uniform Random-3-SAT is the union of
these distributions over all n and k. Generally, Random-3-SAT instances can be satis�able
or unsatis�able. Since in the context of SLS algorithms for SAT it makes no sense to
include insoluble instances in a benchmark suite, the insoluble instances have to be �ltered
out using a complete algorithm. As complete SAT algorithms have usually considerable
higher run-times than (incomplete) SLS algorithms, this approach for generating benchmark
instances is computationally very expensive, especially when dealing with larger problem
sizes. Therefore, both the size of the instances and the number of instances in the test-sets
are e�ectively limited by the complete algorithms used for �ltering.

One particularly interesting property of uniform Random-3-SAT is the occurrence of a
phase transition phenomenon, i.e., a rapid change in solubility which can be observed when
systematically increasing (or decreasing) the number k of clauses for �xed problem size n
[MSL92, KS94]. More precisely, for small k, almost all formulae are satis�able; at some
critical k = k�, the probability of generating a satis�able instance drops sharply to almost
zero. Beyond k�, almost all instances are unsatis�able. Intuitively, k� characterises the
transition between a region of underconstrained instances which are almost certainly sol-
uble, to overconstrained instances which are mostly insoluble. For Random-3-SAT, this
phase transition occurs approximately at k� = 4:26n for large n; for smaller n, the criti-
cal clauses/variable ratio k�=n is slightly higher [MSL92, CA93, CA96]. Furthermore, for
growing n the transition becomes increasingly sharp.

The phase transition would not be very interesting in the context of evaluating SLS algo-
rithms, did not empirical analyses show that problem instances from the phase transition
region of uniform Random-3-SAT tend to be particularly hard for both systematic SAT
solvers [CKT91] and SLS algorithms [Yok97]. Striving for testing their algorithms on hard
problem instances, many researchers used test-sets sampled from the phase transition region
of uniform Random-3-SAT (see [GW93b, MSG97, MSK97] for some examples). Although
similar phase transition phenomena have been observed for other subclasses of SAT, includ-
ing uniform Random-k-SAT with k � 4, these have never gained the popularity of uniform
Random-3-SAT. Maybe, one of the reasons for this is the prominent role of 3-SAT as a
prototypical and syntactically particularly simple NP-complete problem.



4.4. THE BENCHMARK SET 85

test-set instances clause-len vars clauses

uf50-218 1,000 3 50 218
uf100-430 1,000 3 100 430
uf200-860 100 3 200 860

Table 4.1: Uniform Random-3-SAT test-sets.
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Figure 4.10: Hardness distributions for Random-3-SAT test-sets. The x-axis shows the
median search cost (number of local search steps) for WalkSAT per instance.

For evaluating and characterising the behaviour of SLS algorithms, in this and the following
chapters we use three test-sets from the phase transition region of uniform Random-3-SAT.
The characteristics of these test-sets are shown in Table 4.1. Due to limited computational
resources, the test-sets uf200-860 consists of only 100 instances, while the other test-sets
contain 1,000 instances each.

To give an impression of the variability of the hardness of the problem instances across
the test-sets, we measured the median number of local search steps (median search cost)
for each instance, using WalkSAT with an approximately optimal4 noise parameter as a
reference algorithm. As we will see in Section 4.5, there is a notion of intrinsic hardness to
which this measure correlates strongly. Figure 4.10 shows the cumulative distributions of
the median search cost per instance (measured in local search steps) across the 50, 100, and
200 variable test-sets. For each problem instance, the median search cost was determined
from an RLD obtained by running WalkSAT with an approximately optimal noise parameter
(walk probability) of wp = 0:55 for 1,000 tries. By using an extremely high cuto� parameter
(i.e., maxSteps) we could ensure that each instance was solved in every single try. This is

4As an optimality criterion we used the expected number of steps required for �nding a solution.
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test-set mean median stddev stddev/mean

uf50-218 429.56 277 479.71 1.12
uf100-430 2,507.5 1,433 3,580.3 1.43
uf200-860 106,440 10,032 664,100 6.24

Table 4.2: Random-3-SAT test-sets, basic statistics for hardness distributions.

possible, because WalkSAT with the given noise parameter (i.e., wp or tl, resp.) shows
approximately complete behaviour on all instances.

As can be seen from Figure 4.10, there is a huge variability between the instances of each
test-set (see also Table 4.2). In particular, the long tails of these distributions show that a
substantial part of the problem instances for each test-set is dramatically harder than the
rest of the test-set. For increasing problem sizes, this phenomenon becomes more prominent,
indicating that for larger instances there is a considerably higher variability in the median
search cost, especially among the hardest instances from each test-set. This can also be
seen from the normalised standard deviations as given in Table 4.2.

In some of the empirical studies following later in this work, we use the instances corre-
sponding to the minimum, median, and maximum of these hardness distributions; these
are referred to as the \easy", \medium" (med), and \hard" hardness instances from the
underlying test-set.

4.4.2 Graph Colouring

The Graph Colouring problem (GCP) is a well-known combinatorial problem from graph
theory: Given a graph G = (V;E), where V = fv1; v2; :::; vng is the set of vertices and
E � V � V the set of edges connecting the vertices, �nd a colouring C : V 7! N, such that
neighbouring vertices always have di�erent colours. There are two variants of this problem:
In the optimisation variant, the goal is to �nd a colouring with a minimal number of colours,
whereas in the decision variant, the question is to decide whether for a particular number
of colours, a couloring of the given graph exists. The two variants are tightly related, as
optimal colourings can be found by solving a series of decision problems, using, for instance,
binary search to determine the minimal number of colours. In the context of SAT-encoded
Graph Colouring problems, we focus on the decision variant.

The Graph Colouring problem can be easily reformulated as a CSP: The colouring of each
vertex of the given graph is represented by a constraint variable; the domain of these
variables is Zk = f0; 1; 2; : : : ; k� 1g, where k is the number of colours; and for each pair of
vertices connected by an edge there is a constraint ensuring that they are coloured di�erently.
This is formalised in the following way:
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test-set instances vertices edges colours vars clauses

at30-60 100 30 60 3 90 300
at50-115 1,000 50 115 3 150 545
at100-239 100 100 239 3 300 1,117

Table 4.3: SAT-encoded Graph Colouring test-sets (at random graphs).

For a given graph G = (V;E) and k 2 N, GCP(G; k) is represented by the CSP
(X;D; C), where X = fc0; : : : ; c#V�1g, for all i, Dci = Zk, and C consists of the
constraints5 ci = x ^ cj = y () :E(vi; vj) _ x 6= y _ i = j (i; j 2Zn).

This CSP representation can be transformed into the SAT domain by using a straightforward
encoding [Ben96]: Each assignment of a value to a single CSP variable is represented by a
propositional variable; each constraint is represented by a set of clauses; and two additional
sets of clauses ensure that valid SAT assignments assign exactly one value to each CSP
variable:

For a given graph G = (V;E) and k 2 N, GCP(G; k) is represented as a SAT instance
by the CNF formula over the propositional variables ci;x (where i 2 Zn and x 2 Zk)
consisting of the following sets of clauses:

(1) :ci;x _ :cj;x (i; j 2Zn; i 6= j;:E(vi; vj); x 2Zk)
(2a) :ci;x _ :ci;y (i 2Zn; x; y 2Zk; x 6= y)
(2b) ci;0 _ ci;1 _ : : : _ ci;k�1 (i 2Zn)

We used Joe Culberson's random graph generator6 for generating three sets of 3-colourable
at graphs (see Table 4.3). The connectivity (edges/vertex) of these graphs is adjusted
in such a way that the instances have maximal hardness (in average) for graph colouring
algorithms like the Brelaz heuristic [MJPL92].

As for Random-3-SAT, we analysed the median search cost for WalkSAT with approximately
optimal noise parameter setting to characterise the variability in hardness for local search
across the Graph Colouring test-sets. The basic descriptive statistics of the cumulative
hardness distributions are reported in Table 4.4. Although we observe a large variability in
the hardness of problem instances across the test-sets, it is somewhat lower for the more
structured Graph Colouring instances than for Random-3-SAT (as can be seen by comparing
the normalised standard deviations). Also, there is no clear indication that the variability
in hardness increases with growing problem size, as in the case of Random-3-SAT.

5For clarity's sake, we are using a di�erent notation here than in De�nition 1.6; however, both are
equivalent and can be easily transformed into each other.

6available from http://web.cs.ualberta.ca/~joe/Coloring/index.html, Joe Culbersons's Graph Col-
oring Page.
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test-set mean median stddev stddev/mean

at30-60 615.52 417.22 674.80 1.10
at50-115 3,913.76 3,132.93 2,779.63 0.71
at100-239 44,900.75 31,728.92 39,845.72 0.89

Table 4.4: Graph Colouring test-sets, basic statistics for hardness distributions.

Like in the case of Random-3-SAT, we will sometimes use the single instances corresponding
to the minimum, median, and maximum of these hardness distributions; these are referred
to as the \easy", \medium" (med), and \hard" hardness instances from the underlying
test-set.

4.4.3 Blocks World Planning

The Blocks World is a very well-known problem domain in AI research. The general scenario
in Blocks World Planning comprises a number of blocks and a table. The blocks can be
piled onto each other, where the downmost block of a pile is always on the table. In our
examples of Blocks World Planning, taken from [KS96], there is only one operator which
moves the top block of a pile to the top of another pile or onto the table. Given an initial
and a goal con�guration of blocks, the problem is to �nd a sequence of operators which,
when applied to the initial con�guration, leads to the goal situation. Such a sequence is
called a (linear) plan. Blocks can only be moved when they are clear, i.e., no other block
is piled on top of them, and they can only be moved on top of blocks which are clear or
onto the table. If these conditions are satis�ed, the move operator always succeeds. As in
the case of Graph Colouring, there is an optimisation and a decision variant of the Blocks
World Planning problem: In the optimisation variant, the goal is to �nd a shortest plan,
whereas in the decision variant, the question is to decide whether a plan of a given length
exists. Again, the two variants are tightly related, as shortest plans can be found by solving
a series of decision problems. As all SAT-based approaches to Blocks World Planning, we
focus on the decision variant.

A linear encoding strategy is used for translating Blocks World Planning instances into
CNF formulae. The encoding is based on the following predicates:

� clear(x; t) - block x is clear at time t;

� on(x; y; t) - block x is directly on top of y at time t;

� move(x; y; z; t) - block x is moved from block y on block z at time t.

clear and on are state predicates, i.e., they are used to specify the state of the world, while
move is an action predicate which is used to describe actions that change the state of the
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instance blocks steps vars clauses

anomaly 3 3 48 261
medium 5 4 116 953
bw large.a 9 6 459 4,675
huge 9 6 459 7,054
bw large.b 11 9 1,087 13,772
bw large.c 15 14 3,016 50,457
bw large.d 19 18 6,325 131,973

Table 4.5: SAT-encoded Blocks World Planning instances (state-based encoding).

world. The axioms which specify the problem can be grouped into four categories:

� actions imply their preconditions and e�ects,

� exactly one action can be executed at each time t,

� classical frame conditions, which state that state predicates do not change between time
t and t+ 1 if they are not directly a�ected by the action at time t,

� in move(x; y; z; t), x, y, and z are di�erent.

Note that the last group of actions is redundant, but has been found to be useful for speeding
up local search. For a given Blocks World Planning instance, instantiating the predicates
listed above gives the propositional variables over which the axioms can then be formulated
as CNF clauses (for details, cf. [KS96]).

The SAT encoding used for generating the benchmark instances relies critically on two
important techniques for reducing the size of the CNF formulae: operator splitting [KMS96]
and simple propositional reductions (unit propagation and subsumption). Operator splitting
replaces a predicate which takes three or more arguments by a number of binary predicates.
This reduces the number of propositional variables for the given problem from O(kn3) to
O(kn2) where n is the number of blocks and k the number of plan steps. Unit propagation
and subsumption, two well-known propositional reduction strategies, are used to simplify
the formulae before applying stochastic local search. These reducations can be computed in
polynomial time and eliminate a number of propositional variables thus e�ciently reducing
the search space. Intuitively, by applying these strategies, the initial and goal states are
propagated into the planning structure.7

Our benchmark set contains seven Blocks World Planning instances taken from Henry
Kautz' and Bart Selman's SATPLAN distribution. These instances are described in Ta-
ble 4.5; despite the reductions mentioned above, they are still very large when compared

7Details on the SAT encoding used to generate the benchmark instances can be found in [KS96, KMS96].
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to other instances of our benchmark suit. At the time of this writing, bw large.c and
bw large.d belong to the hardest problem instances which can be solved by state-of-the-
art SAT algorithms in reasonable time.

4.4.4 All-Interval-Series

The All-Interval-Series (AIS) problem is an arithmetic problem which, to our best knowl-
edge, is used here for the �rst time in the context of evaluating SLS algorithms. It is
inspired by a well-known problem occurring in serial musical composition [Col40], which, in
its original form, can be stated in the following way:

Given the twelve standard pitch-classes (c, c#, d, : : : ), represented by numbers
0; 1; : : : ; 11, �nd a series in which each pitch-class occurs exactly once and in which
the musical intervals between neighbouring notes cover the full set of intervals from
the minor second (1 semitone) to the major seventh (11 semitones), i.e., for each
of these intervals, there is a pair of neigbhouring pitch-classes in the series, between
which this interval appears.

These musical all-interval series have a certain prominence in serial composition; they can
be traced back to Alban Berg and have been extensively studied and used by Ernst Krenek,
e.g. in his orchestral piece op.170, \Quaestio temporis" (A Question of Time) [Kre74]. The
problem of �nding such series can be easily formulated as an instance of a more general
arithmetic problem in Zn, the set of integer residues modulo n:

For given n 2 N, �nd a vector s = (s1; : : : ; sn), such that (i) s is a permutation of
Zn = f0; 1; : : : ; n�1g; and (ii) the interval vector v = (js2�s1j; js3�s2j; : : : jsn�sn�1j)
is a permutation ofZn�f0g = f1; 2; : : : ; n�1g. A vector v satisfying these conditions
is called an all-interval series of size n; the problem of �nding such a series is called
the All-Interval-Series Problem of size n and denoted by AIS(n).

In this form, the problem can be represented as a Constraint Satisfaction Problem in a rather
straightforward way. Each element of s and v is represented as a variable; the domains of
these variables are Zn and Zn � f0g, respectively; and the contraint relations encode the
conditions (i) and (ii) from the de�nition given above. Formally, the corresponding CSP is
de�ned in the following way:

For a given n 2 N, AIS(n) is represented by the Constrained Satisfaction Problem
(X;D; C), where X = fs0; : : : ; sn�1; v1; : : :vn�1g; for all k, Dsk = Zn and Dvk =
Zn� f0g; and C consists of the following constraints:8

8For clarity's sake, we are again using a di�erent notation here than in De�nition 1.6; however, both are
equivalent and can be easily transformed into each other.
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(1) si = x ^ sk = y () x 6= y _ i = k (i; k 2Zn)
(2) vi = x ^ vk = y () x 6= y _ i = k (i; k 2Zn� f0g)
(3) si�1 = x ^ si = y ^ vi = z () jx� yj = z (i; k 2Zn� f0g)

From this CSP formulation, AIS(n) can be easily transformed into a SAT instance by using
essentially the same encoding as for the Graph Colouring Problem. Again, each assignment
of a value to a single CSP variable is represented by a propositional variable; each of the
three sets of constraints from the de�nition above is represented by a set of clauses; and
two additional sets of clauses ensure that valid SAT assignments assign exactly one value
to each CSP variable:

For a given n 2 N, AIS(n) is represented as a SAT instance by the CNF formula over
the propositional variables si;x; vj;y (where i; x 2 Zn and j; y 2 Zn � f0g) consisting
of the following sets of clauses:

(1) :si;x _ :sk;x (i; k; x 2Zn; i 6= k)
(2) :vi;x _ :vk;x (i; k; x 2Zn� f0g; i 6= k)
(3) :si�1;x _ :si;y _ vi;z (x; y 2Zn; i; z 2Zn� f0g; jx� yj = z)
(4a) :si;x _ :si;y (i; x; y 2Zn; x 6= y)
(4b) si;0 _ si;1 _ : : :_ si;n�1 (i 2Zn)
(5a) :vi;x _ :vi;y (i; x; y 2Zn� f0g; x 6= y)
(5b) vi;1 _ vi;2 _ : : :_ vi;n�1 (i 2Zn� f0g)

instance n vars clauses

ais6 6 61 581
ais8 8 113 1,520
ais10 10 181 3,151
ais12 12 265 5,666

Table 4.6: SAT-encoded All-Interval-Series instances.

Using this encoding scheme, we generated four SAT instances ais6, ais8, ais10, and
ais12 corresponding to AIS(n); n = 6; 8; 10; 12. Table 4.6 shows the numbers of variables
and clauses for these CNF formulae. As we will later see, these problem instances are
extremely hard to solve for state-of-the-art SLS-based SAT algorithms; therefore we did not
include instances with n > 12 in our benchmark suite.

4.5 Comparing SLS Algorithms

In this section, we study the performance of the SLS algorithms introduced before applied to
our suite of benchmark problems. We use two basic methods: For individual instances, we
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Figure 4.11: Problem instance uf100-430/easy, RLDs for various algorithms, approx. op-
timal noise, based on 1,000 tries.
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Figure 4.12: Problem instance uf100-430/med (left) and uf100-430/hard (right), RLDs
for various algorithms, approx. optimal noise, based on 1,000 tries / instance.

compare the RLDs of the algorithms using approximately optimal noise parameter settings.
As an optimality criterion we used the expected number of steps required for �nding a
solution, as de�ned in Chapter 2, Section 2.3. For test-sets sampled from random instance
distributions, we analyse the correlation between the mean search cost per instance for
di�erent algorithms, again using approximately optimal noise settings.

4.5.1 Random-3-SAT

For Uniform Random-3-SAT, we �rst empirically analysed SLS performance on the hard,
medium, and easy problems from the test-set uf100-430. For comparing the algorithms'
performance, we determined the RLD for each algorithm using approximately optimal noise
settings (walk probability / length of tabu list). The RLDs are shown in Figures 4.11 and
4.12; the corresponding descriptive statistics are given in Tables 4.7{4.9, which also indicate
the optimal noise settings (in parentheses behind algorithms' names). As can be seen from
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algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.5) 270.63 240.62 0.89 202 133 313 91 504 2.35 5.54
gsat+tabu(20) 137.78 91.31 0.66 108 78 170 58 255 2.18 4.40
wsat(0.5) 177.86 135.78 0.76 139 93 206 69 336 2.22 4.87
wsat+tabu(5) 97.79 49.04 0.50 86 62 119 50 164 1.92 3.28
novelty(0.9) 77.36 37.29 0.48 68 52 92 41 124 1.77 3.02
r-novelty(0.9) 76.63 34.79 0.45 68 53 90 43 121 1.70 2.81

Table 4.7: Problem instance uf100-430/easy, basic descriptive statistics of RLDs for vari-
ous algorithms, approx. optimal noise, based on 1,000 tries.

algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.5) 2,432.03 2,159.87 0.89 1,785 886 3,345 472 5,434 3.78 11.51
gsat+tabu(20) 1,368.77 1,297.45 0.95 995 471 1,804 230 2,903 3.83 12.62
wsat(0.5) 1,877.78 1,776.33 0.95 1,333 644 2,510 322 4,133 3.90 12.84
wsat+tabu(3) 532.96 365.34 0.69 433 283 689 181 999 2.43 5.52
novelty(0.6) 504.77 372.03 0.74 416 247 647 157 962 2.62 6.13
r-novelty(0.7) 580.21 467.04 0.80 440 248 767 153 1,213 3.09 7.93

Table 4.8: Problem instance uf100-430/med, basic descriptive statistics of RLDs for various
algorithms, approx. optimal noise, based on 1,000 tries.

algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.6) 177,468.78 181,843.19 1.02 119,666 46,919 247,047 17,577 400,466 5.27 22.78
gsat+tabu(20) 84,578.80 84,301.05 1.00 57,778 23,993 120,286 7,874 196,493 5.01 24.95
wsat(0.5) 86,773.44 90,538.08 1.04 56,666 22,297 120,583 7,319 198,109 5.41 27.07
wsat+tabu(5) 87,031.08 86,692.41 1.00 60,019 23,207 119,246 7,884 206,822 5.14 26.23
novelty(0.7) 26,995.92 27,165.22 1.01 19,434 8,346 36,972 3,248 58,661 4.43 18.06
r-novelty(0.7) 19,118.53 19,827.00 1.04 12,819 5,669 26,707 1,880 43,911 4.71 23.36

Table 4.9: Problem instance uf100-430/hard, basic descriptive statistics of RLDs for vari-
ous algorithms, approx. optimal noise, based on 1,000 tries.
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the �gures, the RLDs for the di�erent algorithms have all roughly the same shape, and,
with one exception (R-Novelty and WalkSAT+tabu on the medium instance), no cross-overs
occur. This means that generally, there is a dominance relation between the algorithms
when applied to the same instance, i.e., when comparing two algorithms' performance, one
is uniformly better or worse than the other (cf. Chapter 2, Section 2.2.2). Given this
situation, it is admissible to base performance comparisons mainly on descriptive statistics,
as given in Tables 4.7{4.9.

As a �rst and general observation, we note that for all algorithms, the standard deviation
of the RLDs is very similar to the mean, i.e., there is a huge variance in the length of
di�erent runs of the same algorithm. Interestingly, as can be seen when comparing the
stddev/mean values between the easy, medium, and hard instance, the relative variance of
the RLDs increases with growing instance hardness; the same tendency can be observed
for the percentile ratios. This indicates that for harder problem instances, the variability
in the length of the algorithms' runs is even higher. In the semi-log plots of the RLDs
(Figures 4.11 and 4.12), this is reected by the fact that the distribution curves get less
steep with increasing problem hardness.

Since the RLDs do not cross over (except in one case, which will be discussed separately), for
comparing the algorithms' performance on these three problem instances, we can just com-
pare the mean or median of the corresponding RLDs, as given in Tables 4.7{4.9. Doing this,
we �nd the following situation: For the easy problem instance, Novelty and R-Novelty give
the best performance, followed by WalkSAT+tabu, GSAT+tabu, WalkSAT and GWSAT.
For the medium instance, Novelty, R-Novelty, and WalkSAT+tabu all give similarly good
performance, followed by GSAT+tabu, WalkSAT, and GWSAT. Here, the only instance of
crossing RLDs occurs; while R-Novelty shows better performance than WalkSAT+tabu for
short runs, for long runs the situation is reversed. For the hard problem instance, R-Novelty
shows the best performance, followed by Novelty; next are WalkSAT+tabu, WalkSAT, and
GSAT+tabu, the performance of which is roughly identical, and �nally GWSAT, which
shows a substantially weaker performance.

It may be noted that the di�erences in performance between the best and the worst algo-
rithm is far more dramatic for the hard instance (a factor of approx. 10 in the median) than
for the medium (factor � 4 in the median) and the easy instance (factor � 3 in the median).
For the hard instance, the factor between best and worst performance is roughly identical
for all percentiles, which is manifested as a horizontal shift of the RLDs in a semi-log plot.
For the medium and easy instance, the factor is larger for the higher percentiles; at the
same time, there is a positive correlation between the variance of the RLDs and their mean
(or median). This indicates that while for easy instances and short runs, the di�erences
between the SLS methods are not too substantial, for longer runs or when applied to hard
instances, the performance di�erences between the algorithms become much more obvious.

To generalise and re�ne these results, we did a pairwise hardness correlation analysis for the
same algorithms across the whole test-set uf100-430. As a measure for hardness we chose
the expected number of steps required for �nding a solution, based on 100 tries with a high
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Figure 4.13: Left: Hardness distributions across test-set uf100-430 for various algorithms;
x-axis: median number of local search steps / solution. Right: Correlation between average
local search cost for GWSAT (horizontal) and GSAT+tabu (vertical) for test-set uf100-430,
using approx. optimal noise.
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Figure 4.14: Left: Correlation between average local search cost for GWSAT (horizontal)
and GSAT+tabu (vertical) for test-set uf100-430, using approx. optimal noise. Right:
Same for GWSAT and WalkSAT+tabu.
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Figure 4.15: Left: Correlation between average local search cost for GWSAT (horizontal)
and Novelty (vertical) for test-set uf100-430, using approx. optimal noise. Right: Same for
GWSAT and R-Novelty.

algorithm mean stddev stddev
mean med Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat 6,532.04 10,639.43 1.63 3,398.10 1,844.02 7,040.34 1,099.45 13,880.52 3.82 12.62
gsat+tabu 4,783.97 9,741.31 2.04 1,621.54 757.77 4,260.16 457.23 11,399.68 5.62 24.93
wsat 3,672.59 5,698.34 1.55 1,995.42 1,143.13 4,142.59 701.81 7,296.75 3.62 10.40
wsat+tabu 2,485.44 6,263.64 2.52 1,041.02 565.51 2,215.02 351.74 4,751.42 3.92 13.51
novelty 28,257.51 191,668.71 6.78 851.87 479.14 1,845.30 302.88 4,390.39 3.85 14.50
r-novelty 1,245.90 1,893.65 1.52 640.140 375.91 1,402.15 232.30 2,625.92 3.73 11.30

Table 4.10: Test-set uf100-430, basic descriptive statistics of hardness distributions for
various algorithms with approx. optimal noise, based on 100 tries / instance; noise settings
as for medium instance (cf. Table 4.8).

cuto� value of 107 steps per try. In our analysis, we determined this hardness measure for
each instance from the problem set and analysed the correlation between the hardness for
di�erent algorithms. To reduce the overall amount of computation, we chose GWSAT as a
reference algorithm, i.e., for each other algorithm we analysed the correlation between its
performance and GWSAT's on a per instance basis. Figure 4.13 (left) shows the hardness
distributions of uf100-430 for various algorithms, while Figures 4.13 (right) to 4.15 show
the correlation data as log-log plots.

When comparing the hardness distributions for the di�erent algorithms, the most prominent
feature is that the curves are roughly parallel in a semi-log plot, which indicates that the
di�erences in search cost for these algorithms can be characterised by a uniform factor across
the whole hardness distribution. However, examining the top 10% of the cumulative dis-
tribution curves, there are three notable exceptions from that rule: those for GSAT+tabu,
WalkSAT+tabu, and | far more dramatically | Novelty have a signi�cantly heavier tail
than the curves for the other algorithms. Table 4.10 also reects this behaviour; comparing
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algorithms r a b o

gwsat vs gsat+tabu 0.9171 1.1456 -0.8007 0
gwsat vs wsat 0.9725 0.9229 0.0471 0
gwsat vs wsat+tabu 0.9464 0.9962 -0.4814 0
gwsat vs novelty 0.9431 0.9211 -0.3331 33
gwsat vs r-novelty 0.9492 0.9044 -0.3628 0

Table 4.11: Test-set uf100-430, pairwise hardness correlation for various algorithms with
approx. optimal noise, based on 100 tries / instance; r is the correlation coe�cient, a and b
are the parameters of the lms regression analysis, and o the number of outliers which have
been eliminated before the analysis (see text).

the normalised standard deviations and percentile ratios shows that GSAT+tabu, Walk-
SAT+tabu, and Novelty cause considerably more inter-instance hardness variation. For
Novelty, 33 of the 1,000 instances had a solution rate between 75% and 99%, whereas for
identical number of tries and cuto� per try all other algorithms solved all instances in each
try. This explains the huge standard deviation observed for the Novelty hardness distribu-
tion. Furthermore, this observation strongly suggests that Novelty is essentially incomplete
for the given test-set, and therefore for uniform Random-3-SAT in general.

However, the primary observation that the hardness distributions are mostly similarly
shaped (neglecting the heavy tails for the moment) suggests that the hardness of instances
for di�erent algorithms is tightly correlated. This hypothesis is con�rmed by the results
from a direct correlation analysis (Figures 4.13{4.15). The scatter plots show that in a
log-log scale there is a strong linear correlation between the hardness for GWSAT and the
other algorithms. This correlation is strongest for WalkSAT (Figure 4.14, left), somewhat
noisier for WalkSAT+tabu (Figure 4.14, right) and R-Novelty (Figure 4.15, right), and
again a bit weaker for GSAT+tabu (Figure 4.13, right). The correlation for GWSAT and
Novelty (Figure 4.15, left) shows a signifcant number of outliers, most (but not all of which)
mark instances with a solution rate of less than 100%. Interestingly, these outliers occur
across the whole hardness range of GWSAT, so even instances which are extremely easy for
GWSAT (and the other algorithms) can be very di�cult for Novelty. Nevertheless, except
for these outliers, hardness for Novelty and GWSAT is tightly correlated. This indicates
that the hardness for any of these algorithms (neglecting the outliers for Novelty) is an
intrinsic property of the instances. Note, however, that the hardness correlation gets noisier
for harder problems. This holds especially for the more e�ective variants of WalkSAT, like
WalkSAT+tabu or R-Novelty.

Table 4.11 shows the results of the correlation and least-mean-squares (lms) linear regression
analysis of the logarithm of the hardness (mean search cost per solution); the regression
lines shown in the log-log plots (Figures 4.13{4.15) correspond to power functions of the
type y = xa �exp(b). The data con�rms our earlier observation that the correlation between
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Figure 4.16: Problem flat100-239/easy, RLDs for various algorithms, approx. optimal
noise, based on 1,000 tries.

algorithm mean stddev stddev
mean med Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.6) 7,268.85 6,898.08 0.95 5,146 2,788 9,031 1,673 15,168 3.24 9.07
gsat+tabu(20) 1,636.08 1,156.67 0.71 1,320 756 2,242 481 3,215 2.97 6.68
wsat(0.5) 5,602.40 4,358.06 0.78 4,341 2,524 7,398 1,521 11,577 2.93 7.61
wsat+tabu(5) 2,453.86 1,924.93 0.78 1,863 1,118 3,155 734 4,978 2.82 6.78
novelty(0.6) 1,333.68 1,097.39 0.82 980 586 1,733 388 2,704 2.96 6.97
r-novelty(0.6) 2,253.83 1,912.84 0.85 1,687 860 2,958 516 4,721 3.44 9.15

Table 4.12: Problem instance flat100-239/easy, basic descriptive statistics of RLDs for
various algorithms, approx. optimal noise, based on 1,000 tries.

the hardness for di�erent algorithms is very strong; this holds also for Novelty after the
outliers (which were discussed above) have been removed. From the regression data we see
that the a parameter is almost equal to 1 for WalkSAT+tabu which indicates a constant
factor between GWSAT and WalkSAT+tabu hardness across the whole test-set. In other
words, regardless of the intrinsic hardness of an instance, the mean local search cost for
WalkSAT+tabu is on average by a factor of 1:64 lower than for GWSAT. For GSAT+tabu,
in contrast, a is signi�cantly greater than 1, indicating that this algorithm's performance
decreases relative to GWSAT's with increasing instance hardness. At the same time, the low
value of the b parameter indicates that for easy instances, GSAT+tabu shows signi�cantly
better performance than GWSAT. The situation for WalkSAT and R-Novelty is signi�cantly
di�erent: here, the a parameters are signi�cantly lower than 1; consequently, for harder
problems, their relative performance compared to GWSAT's increases with the hardness of
the problem instances.

4.5.2 Graph Colouring

Applying the same analysis as used for Random-3-SAT to the flat100-329Graph Colouring
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Figure 4.17: Problem flat100-239/med (left) and flat100-239/hard (right), RLDs for
various algorithms, approx. optimal noise, based on 1,000 tries / instance.

algorithm mean stddev stddev
mean med Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.6) 41,784.17 41,629.91 1.00 27,288 12,043 58,159 5,426 97,410 4.83 17.95
gsat+tabu(10) 9,811.36 9,765.54 1.00 6,539 3,203 13,041 1,656 22,443 4.07 13.55
wsat(0.5) 31,260.92 28,586.30 0.91 22,595 10,053 42,567 4,995 70,267 4.23 14.07
wsat+tabu(3) 11,881.07 11,094.59 0.93 8,548 4,160 16,086 2,091 26,590 3.87 12.72
novelty(0.6) 7,070.50 5,928.43 0.84 5,455 2,643 9,951 1,297 14,826 3.77 11.43
r-novelty(0.6) 16,183.90 16,333.39 1.01 11,291 4,769 20,790 1997 36,645 4.36 18.35

Table 4.13: Problem instance flat100-239/med, basic descriptive statistics of RLDs for
various algorithms, approx. optimal noise, based on 1,000 tries.

algorithm mean stddev stddev
mean med Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.6) 306,886.96 249,012.94 0.81 240,302 103,701 451,475 43,870 700,129 4.35 15.96
gsat+tabu(10) 107,872.02 111,690.08 1.04 73,594 31,683 142,838 11,779 251,477 4.51 21.35
wsat(0.5) 254,373.79 222,835.34 0.88 192,788 79,300 375,285 26,948 578,138 4.73 21.45
wsat+tabu(3) 297,778.48 245,045.43 0.82 229,496 97,486 453,820 32,462 674,915 4.66 20.79
novelty(0.6) 116,773.89 117,259.20 1.00 79,307 33,396 159,525 11,273 276,180 4.78 24.50
r-novelty(0.6) 195,965.22 183,408.23 0.94 140,671 54,880 284,093 22,413 433,875 5.18 19.36

Table 4.14: Problem instance flat100-239/hard, basic descriptive statistics of RLDs for
various algorithms, approx. optimal noise, based on 1,000 tries.
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Figure 4.18: Hardness distributions across test-set flat50-239 for various algorithms; x-
axis: median number of local search steps / solution.

test-set, we observe some surprising di�erences (cf. Figures 4.16 and 4.17, and Tables 4.12{
4.14). These concern mainly the performance of GSAT+tabu and R-Novelty. The latter
algorithm, which dominated the scene for the Random-3-SAT test-set, shows a relatively
weak performance on the Graph Colouring domain tested here, where it ranks third (on
the easy and hard instance) or fourth (on the medium problem). Novelty is signi�cantly
better than R-Novelty on all three test instances; the performance di�erence is uniformly
characterised by a factor of ca. 2 in the number of steps required to �nd a solution with a
given probability.

On the other hand, GSAT+tabu is much stronger when applied to the Graph Colouring
test-set than what we measured for Random-3-SAT. Here, for the easy and medium instance,
GSAT+tabu is only second to Novelty, which is the best algorithm for these instances; for
the hard instance, GSAT+tabu is slightly better than Novelty and thus leads the �eld.
Analogously to what we observed for Random-3-SAT, WalkSAT+tabu's performance is
relatively poor on the hard instance; on the flat100-239 test-set it is actually inferior to
WalkSAT which is somewhat surprising given the huge advantage GSAT+tabu realises over
GWSAT (for the hard instance, we observe a factor of ca. 3 between the performance of
these two algorithms).

Analysing the correlation of average search cost between di�erent SLS algorithms across
the whole test-set, like in the case of Random-3-SAT again gives a more detailed picture.
For practical reasons (computing time limitations), we used the flat50-115 test-set for
this analysis; however, our experimental experience indicates that these results directly
translate to flat100-239. The hardness distributions shown in Figure 4.18 (left) con�rm
and re�ne the observations from studying the three sample instances. Novelty, R-Novelty,
and GSAT+tabu clearly dominate the other algorithms on the major part of the test-set;
the hardness distributions of these algorithms appear to be almost identical. However, for
Novelty and R-Novelty, as well as for WalkSAT+tabu, the distributions have heavy tails
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algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat 7,023.25 7,060.91 1.01 4,846.90 3,066.88 8,122.62 2,118.13 13,640.42 2.65 6.44
gsat+tabu 1,040.80 855.10 0.82 787.85 539.67 1,220.34 393.27 1,963.95 2.26 4.99
wsat 3,913.76 2,779.63 0.71 3,132.93 2,097.73 4,648.53 1,574.41 7,287.42 2.22 4.63
wsat+tabu 61,393.42 720,406.37 11.73 1,265.48 835.27 2,252.70 584.23 4,675.93 2.70 8.00
novelty 20,065.04 330,262.72 16.46 776.34 512.90 1,282.32 377.06 2,335.16 2.50 6.19
r-novelty 7,109.64 97,543.64 13.72 739.61 490.34 1,282.53 356.66 2,142.78 2.62 6.01

Table 4.15: Test-set flat50-115, basic descriptive statistics of hardness hardness distribu-
tions for various algorithms with approx. optimal noise, based on 100 tries / instance; noise
settings as for medium instance (cf. Table 4.13).

algorithms r a b o

gwsat vs gsat+tabu 0.9021 0.7673 0.0715 0
gwsat vs wsat 0.9527 0.7738 0.6353 0
gwsat vs wsat+tabu 0.8417 0.8885 -0.1149 27
gwsat vs novelty 0.8398 0.8212 -0.1217 9
gwsat vs r-novelty 0.8247 0.7848 -0.0205 6

Table 4.16: Test-set flat50-115, pairwise hardness correlation for various algorithms with
approx. optimal noise, based on 100 tries / instance; r is the correlation coe�cient, a and b
are the parameters of the lms regression analysis, and o the number of outliers which have
been eliminated before the analysis (see text).

which indicate that the algorithms get stuck in local minima for a relatively small number
of instances. Consequently, their worst-case performance on the given test-set is drastically
worse than the other algorithms'. Note that for Novelty, a similar situation was observed
in the case of Random-3-SAT | where, however, neither WalkSAT+tabu, nor R-Novelty
showed any signs of essential incompleteness.

Studying the hardness correlations between GWSAT and the other algorithms, we again ob-
serve a tight correlation between GWSAT and WalkSAT; the correlation between GWSAT
and GSAT+tabu is somewhat weaker, while for R-Novelty, Novelty, and WalkSAT+tabu a
signi�cant number of outliers occur, which correspond to instances for which the algorithm
show stagnation behaviour (cf. Table 4.16). Again, as observed for Novelty when applied
to the uf100-430 test-set, the occurrence of the outliers is not correlated with the hardness
of the instances for GWSAT or WalkSAT.9 But even when removing these outliers, the
correlation between GWSAT's and Novelty's resp. R-Novelty's and WalkSAT+tabu's per-

9Further analysis shows that the instances which are problematic for Novelty tend to be also outliers
for WalkSAT+tabu. Also, for the \regular" instances the performance of these algorithms is tightly cor-
related. These results indicate that the features making a Graph Colouring instance hard for Novelty and
WalkSAT+tabu are either the same or highly correlated.
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Figure 4.19: Problem instance bw large.a, RLDs for various algorithms, approx. optimal
noise, based on 1,000 tries.

formance is signi�cantly more noisy than for the other algorithms. Nevertheless, neglecting
the outliers for Novelty, R-Novelty, and WalkSAT+tabu, the existence of a signi�cant cor-
relation between all these algorithms' local search cost across the test set indicates that,
as for Random-3-SAT, the hardness as measured for these local search algorithms is an
intrinsic property of the problem instances.

The regression �ts show additionaly that both, Novelty's and WalkSAT+tabu's performance
scale not as good as WalkSAT's and GSAT+tabu's with increasing hardness (see the a pa-
rameters in Table 4.16); as for Random-3-SAT, Novelty scales better than WalkSAT+tabu.
For R-Novelty, the scaling is signi�cantly better, but somewhat obscured by the relatively
weak correlation. Surprisingly, GSAT+tabu, for which we observed the worst scaling be-
haviour on Random-3-SAT, shows not only superior performance, but also the best hardness
scaling here.

4.5.3 Blocks World Planning

After evaluating the di�erent algorithms on random distributions of hard problem instances,
we now turn to single SAT-encoded instances from the Blocksworld Planning domain. Since
we are dealing with a small number of single instances, the type of correlation analysis
applied to the Random-3-SAT and Graph Colouring test-sets cannot be used in this context.
Thus, we are restricted to comparing the optimal RLDs for individual instances, like it
was done for the easy, medium, and hard instances from the distributions studied before.
Also, after preliminary experiments indicated that the GSAT variants are substantially
outperformed by the more e�cient WalkSAT variants on these problems, we focussed mainly
on algorithms from the WalkSAT family.
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algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

gwsat(0.6) 26,994.18 24,784.20 0.92 18,653 9,296 38,041 5,053 58,679 4.09 11.61
gsat+tabu(10) 10,635.56 10,515.06 0.99 6,977 3,162 14,917 1,263 25,291 4.72 20.02
wsat(0.5) 17,490.27 15,320.75 0.88 13,505 6,822 23,446 3,057 35,981 3.44 11.77
wsat+tabu(3) 10,603.31 9,665.12 0.91 7,563 3,686 14,169 1,780 23,870 3.84 13.41
novelty(0.4) 9,315.07 8,587.17 0.92 6,932 3,202 12,877 1,534 20,202 4.02 13.17
r-novelty(0.6) 6,053.87 5,583.55 0.92 4,317 2,097 8,413 1,085 12,875 4.01 11.87

Table 4.17: Problem instance bw large.a, basic descriptive statistics of RLDs for various
algorithms, approx. optimal noise, based on 1,000 tries.

algorithm mean stddev stddev
mean median Q25 Q75

Q75

Q25

wsat(0.35) 582,384.26 570,626.82 0.98 414,744 166,326 782,842 4.71
wsat+tabu(2) 152,104.03 137,108.76 0.90 107,586 54,611 215,564 3.95
novelty(0.30) 191,715.39 195,045.91 1.02 131,494 53,629 254,779 4.75
r-novelty(0.55) 234,304.18 215,100.55 0.92 166,922 73,673 341,827 4.64

Table 4.18: Problem instance bw large.b, basic descriptive statistics of RLDs for various
algorithms, approx. optimal noise, based on 250 tries.

For the smaller instances (medium, huge, and bw large.a) we observe a uniform perfor-
mance pattern: R-Novelty is uniformly better than Novelty, which show slightly improved
performance over WalkSAT+tabu, which in turn is signi�cantly better than WalkSAT (see
Figure 4.19, Table 4.17). For the larger instances, however, the situation is considerably
di�erent: Applied to bw large.b, R-Novelty ranks only third behind WalkSAT+tabu and
Novelty, which show a very similar performance (see Table 4.18).

For bw large.c, WalkSAT+tabu is signi�cantly better than Novelty (factor � 2), while
Novelty's performance is between WalkSAT's and WalkSAT+tabu's (see Figure 4.19, Table
4.19). The big surprise, however, is that R-Novelty performs extremely poorly: for noise
parameter settings up to 0.5, we observed stagnation behaviour with extremely low asymp-
totic solution probabilities (< 10%). However, if a solution is found, this requires only a
relatively small number of steps on average { thus by using restart and a small cuto� value,
competitive performance can be achieved. Nevertheless, even using an optimal cuto� value,

algorithm mean stddev stddev
mean median Q25 Q75

Q75

Q25

wsat(0.2) 14,061,484.00 15,594,687.33 1.11 9,757,075 3,500,013 16,967,151 4.85
wsat+tabu(2) 2,521,760.99 2,118,486.22 0.84 2,004,278 907,250 3,528,813 3.89
novelty(0.2) 6,385,022.16 7,125,793.91 1.12 4,401,794 1,738,668 8,163,114 4.70

Table 4.19: Problem instance bw large.c, basic descriptive statistics of RLDs for various
algorithms, approx. optimal noise, based on 250 tries.
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Figure 4.20: Problem instance bw large.c, RLDs for various algorithms, approx. optimal
noise, based on 250 tries.

algorithm bps� bEs meanc stddevc medianc

gwsat(0.4) 1.0 3,029.03 3,029.03 3,027.59 2,096
gsat+tabu(10) 1.0 627.73 627.73 612.79 452
wsat(0.5) 1.0 1,243.47 1,243.47 1,262.55 842
wsat+tabu(10) 0.98 21,940.6 490.16 468.02 343
novelty(0.7) 0.10 8:9 � 106 62.65 44.60 46
r-novelty(0.8) 1.0 7,122.56 7,122.56 8,099.91 4,595

Table 4.20: Problem instance ais6, basic descriptive statistics of conditional RLDs for
various algorithms, approx. optimal noise; bps� indicates the asymptotic maximal success
probability, cEs denotes the expected number of steps for �nding a solution (using random
restart).

R-Novelty's performance is still inferior to WalkSAT+tabu's (the best estimated factor be-
tween the corresponding average local search steps / solution values is 1.75). For higher
noise settings and a cuto� after 108 steps, we obtained a maximal success probability of less
then 15% and the best estimate for the median number of steps / solution is ca. 4 � 108);
in this situation, R-Novelty is completely dominated by WalkSAT, WalkSAT+tabu, and
Novelty.

4.5.4 All-Interval-Series

Finally, we compare the performance of our set of SLS algorithms for instances from the
All-Interval-Series domain. Figures 4.21 and 4.22 show the RLDs for our set of SLS algo-
rithms when applied to instances from the All-Interval-Series domain. All RLDs are based
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Figure 4.21: Problem instance ais6, RLDs for various algorithms, approx. optimal noise,
based on 1,000 tries.
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Figure 4.22: Problem instances ais8 (left) and ais10 (right), RLDs for various algorithms,
approx. optimal noise, based on 250 tries / instance.

algorithm bps� bEs meanc stddevc medianc

gwsat(0.4) 1.0 64,167 64,167 64,661 43,128
gsat+tabu(10) 1.0 43,421 43,421 42,835 29,545
wsat(0.4) 1.0 28,528 28,528 30,232 19,291
wsat+tabu(20) 0.94 82,463 14,086 14,815 9,472
novelty(0.5) 0.005 2:0 � 108 186.62 153.98 140
r-novelty(0.8) 0.92 231,482 139,779 135,747 99,880

Table 4.21: Problem instance ais8, basic descriptive statistics of conditional RLDs for
various algorithms, approx. optimal noise; bps� indicates the asymptotic maximal success
probability, cEs denotes the expected number of steps for �nding a solution (using random
restart).
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algorithm bps� bEs meanc stddevc medianc

gwsat(0.4) 1.0 494,718 494,718 509,034 336,556
gsat+tabu(5) 0.76 3:5 � 106 271,000 243,433 203,635
wsat(0.2) 1.0 173,422 173,422 198,887 122,283
wsat+tabu(20) 0.96 548,005 174,561 153,331 130,502

Table 4.22: Problem instance ais10, basic descriptive statistics of conditional RLDs for
various algorithms, approx. optimal noise; bps� indicates the maximal success probability,cEs denotes the expected number of steps for �nding a solution (using random restart).

on 250 or more tries for approx. optimal noise, where the cuto� settings were su�ciently
high (ms=106{107) to guarantee maximal success probabilities. Nevertheless, as shown in
Tables 4.20{4.22, stagnation behaviour occurs rather frequently. Only GWSAT and Walk-
SAT show approximately complete behaviour on all instances; WalkSAT always dominates
GWSAT, and the performance di�erence between the two is similar (� 2:5) for all the
instances considered here. Interestingly, the approx. optimal noise setting for GWSAT is
identical for all instances, while for WalkSAT, as for the Blocks World Planning instances,
it decreases with growing problem size.

GSAT+tabu shows approximately complete behaviour for the smaller instances, but seems
to become essentially incomplete for ais10 which leads to the poor performance documented
in the tables. But as can be seen from the RLDs, by using random restart with an appro-
priately chosen cuto�, GSAT+tabu will outperform GWSAT. However, the corresponding
di�erence in performance shrinks for the large instances, indicating that GSAT+tabu scales
worse than GWSAT. Similar observations hold for WalkSAT+tabu when compared to Walk-
SAT, but di�erent from GSAT+tabu, WalkSAT+tabu shows stagnation behaviour even
when applied to ais6. This indicates that, when applied to All-Interval-Series instances,
the tabu search variants scale worse than the random walk versions of the corresponding al-
gorithms; note that we made an analogous observation for Random-3-SAT. Interestingly, in
this domain, the optimal tabu-list length (noise setting) for WalkSAT+tabu is signi�cantly
higher than for any other domain studied here, while this does not hold for GSAT+tabu.

Novelty and R-Novelty su�er severely from premature stagnation, indicating essentially
incomplete behaviour of these algorithms. With growing problem size, their performance
deteriorates rapidly, such that, when applied to ais10, Novelty and R-Novelty achieved
maximal solution probabilities of less than 0.1% (for arbitrary noise settings, ms=1,000,
and 10,000 runs). For this problem instance, even when using random restart with optimal
cuto� values, these algorithms are dominated by all other SLS algorithms tested here.

For ais12, due to computing time limitations, we could not measure full RLDs. However,
WalkSAT(0.1) and WalkSAT+tabu(40) found solutions for short cuto� values (ms=10,000)
fromwhich we can estimate the expected number of steps / solution as� 5:0�106 and 2:6�106,
resp. Generally, the instances from the All-Interval-Series domain appear to be extremely
hard for the SLS algorithms studied here, considering the small size of the SAT-encodings.
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Especially when compared to the Blocks World Planning instances, where WalkSAT, Walk-
SAT+tabu, and Novelty could solve instances with several thousand propositional variables
within reasonable time, All-Interval-Series instances like ais12 (265 variables, 5,666 clauses)
seem to pose severe inherent di�culties for SLS algorithms.

In summary, our comparative analysis of di�erent SLS algorithms' performance across vari-
ous problem domains shows that there is no single best algorithm for all domains. However,
there is a tendency indicating that Novelty and R-Novelty are best-performing for ran-
dom, unstructured problems, while WalkSAT+tabu and GSAT+tabu might be superior for
relatively hard, large, structured problem instances, like the large Blocks World Planning
instances, the hard Graph Colouring instances, and the All-Interval-Series instances. How-
ever, all of these algorithms su�er from stagnation behaviour which severely compromises
their performance.

4.6 Related Work

There is a growing body of work on local search methods for solving propositional SAT
problems. Early work on SLS algorithms for SAT includes the seminal paper on GSAT by
Selman, Levesque and Mitchell [SLM92] and Jun Gu's paper on e�cient local search meth-
ods for SAT [Gu92]; however, stochastic hill-climbing was used before for solving MAXSAT
problems [HJ90] and CSPs [MJPL90, MJPL92]. Since then, many other local search al-
gorithms for SAT have been proposed and tested, including methods based on Simulated
Annealing [Spe93, SKC93, BAH+94], Genetic Algorithms [Fra94, GV98], Evolution Strate-
gies [Rec73, Sch81], and the Breakout Method [Mor93]. The GSAT algorithm itself has
given rise to a large number of variants, some of which, such as GSAT with random walk
[SKC93, SKC94], GSAT with clause weighting (GWSAT) [SK93, Fra97a], GSAT with tabu
lists [MSG97], and HSAT [GW93b] could be shown to outperform the basic algorithm on a
number of problem classes. The WalkSAT algorithm was originally described as a variant
of GWSAT, but lately gave rise to a new family of very powerful SLS algorithms for SAT,
including WalkSAT+tabu, Novelty, and R-Novelty [MSK97].

The idea to systematically study SLS algorithms for SAT by using algorithmic frameworks
which can be instantiated to realise di�erent local search strategies is not new. Gent and
Walsh introduced the GenSAT frame and used it for empirically studying the relevance of
certain features of GSAT and their inuence on to SLS performance [GW93b]; this frame-
work was later on further generalised to cover more recent and successful GSAT variants,
such as GWSAT [BAH+94]. By further abstracting this scheme, even SLS algorithms based
on Simulated Annealing could be realised within the same formal framework [HHSW94]. An-
other algorithmic framework is given by the WalkSAT architecture, as described in [MSK97].
Using algorithmic frameworks can be advantageous in the context of implemention. Some
frameworks for local search are focussed mainly on this aspect, such as the object oriented
scheme proposed in [Fra97b]. However, most such developments, including the GLSM model
introduced in this work, are mainly inspired by the idea that using a generic framework helps
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to clearly understand similarities and di�erences between algorithms; furthermore, they fa-
cilitate comparative studies and the systematic exploration and analysis of whole families
of algorithms.

When conducting empirical comparative studies of non-deterministic algorithms, it is ex-
tremely important to use identical test-sets of problem instances [HS98a]. As argued in
Chapter 2, this is especially relevant when using random problem distributions with large
inter-instance variability in hardness, like Random-3-SAT or Random Graph Colouring.
While for many problems in AI and Operations Research, standardised benchmark-suites
are available and widely used (e.g., TSPLIB [Rei91] or ORLIB [Bea90]), this is not the
case for SAT. There are some collections of SAT instances (such as the collections used in
the 2nd DIMACS Challenge and the International Competition on Satis�ability Testing),
but these are either rendered mostly obsolete by recent advances in algorithm development
or they are too small resp. specialised to be widely used as a benchmark. We therefore
designed a new set of benchmark problems for the empirical analysis of SAT algorithms in
the context of this work.

Some of the SAT sub-classes which comprise our benchmark suite have been used extensively
for the study of SAT algorithms. Random-3-SAT is probably one of the most frequently used
problem distributions; many of the earlier studies of SLS algorithms as well as newer work
use it as a test-bed [SLM92, PW96, MSK97]. Random-3-SAT has also received considerable
attention in the context of phase-transition phenomena [MSL92, CA93]. Graph Colouring
problems have also been used before for evaluating SLS algorithms [Hog96, SLM92]; while
previous work mostly uses single hard instances (such as the ones which can be found in
the DIMACS Challenge database), we deliberately chose test-sets sampled from random
distributions of Graph Colouring instances obtained by using Joe Culberson's at graph
generator [Cul92]. The SAT-encoding used in this context is the same as in [SLM92];
similar test-sets have been used before in [Ste96].

The Blocks World Planning domain has a long history in AI. In the context of SAT it has
been used as a benchmark since GSAT's early days [KS92], but only recently, after advances
in SLS algorithms for SAT (WalkSAT) and improved SAT-encodings had made it possible
to demonstrate the practicability of the approach [KS96], they became more prominent in
the context of evaluating SAT algorithms and studying SAT-encodings [KMS96, MSK97,
EMW97]. The instances we used for our benchmark suite are taken from Kautz' and
Selman's SATPLAN distribution (see [KMS96]). To our best knowledge, the All-Interval-
Series problem has not been used before as a benchmark for SLS algorithms; however, it is
well-known in music theory [Col40, Kre74] and, in its abstract form, it is loosely related to
other combinatorial algebraic problems, such as the Latin Square Problem [LP84].

There is a number of comparative studies of SLS algorithms for SAT [BAH+94, GW93b,
PW96]. However, to our best knowledge as to this writing there is only one other study
involving the latest algorithms of the WalkSAT family [MSK97], which is fairly limited in its
depth and scope. Furthermore, none of the other studies we are aware of involves analyses
of RLDs or performance correlations. While some of our �ndings con�rm or re�ne earlier
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results (such as the superiority of WalkSAT when compared to GWSAT [SKC94]), others
are quite surprising. This holds in particular for our observations regarding Novelty, R-
Novelty, and the tabu-search variants of GSAT and WalkSAT. In particular the stagnation
behaviour of Novelty and R-Novelty we observed for some of the algorithms has not been
reported (nor expected) before.

4.7 Conclusions

In this chapter, we formalised some of the most prominent SLS algorithms for SAT as
instances of the GLSM model developed in Chapter 3. Based on the GLSM representa-
tions, we discussed their speci�c similarities and di�erences. Furthermore, we introduced
a benchmark suite comprising test-sets and single instances from a number of subclasses
of SAT, including Random-3-SAT and SAT-encoded problems from di�erent domains such
as Graph Colouring, Blocks World Planning, and the All-Interval-Series problem. As ar-
gued in Chapter 2, such a benchmark suite is an important basis for comparing stochastic
algorithms; testing these algorithms on identical problem instances is crucial when us-
ing random problem distributions with large inter-instance variability in hardness, like
we observed for Random-3-SAT or Random Graph Colouring. Until now, however, no
widely used set of benchmark problems has been available for SAT; consequently, we had
to create our own benchmark suite, which is now publicly available at the SATLIB website
(www.informatik.tu-darmstadt.de/AI/SATLIB).

We used this benchmark suite for an extensive comparative study of the di�erent SLS
algorithm's performance. Di�erent from most previous studies, our methodology takes into
account the extreme inter-instance variability in instance hardness across test-sets sampled
from random instance distributions. Comparing the run-time distributions for di�erent
algorithms when applied to single problem instances using approximately optimal noise
parameter settings, we could show that complete domination seems to be the rule. This
means that when comparing two algorithms on the same instance, one of them shows
consistently better performance, independent of the cuto� time. There are exceptions to
that rule, in particular for the All-Interval-Series domain, where Novelty and R-Novelty are
often better for shorter runs while otherwise being inferior to the other WalkSAT variants.

Generally, the performance di�erences between the algorithms are not consistent across test-
sets or problem domains. While among the algorithms studied here, R-Novelty is clearly the
best for Random-3-SAT (particularly on hard instances), it is consistently outperformed by
Novelty and GSAT+tabu on the Graph Colouring domain and by WalkSAT+tabu for the
larger Blocks World Planning instances, where it increasingly shows stagnation behaviour.
Applied to the All-Interval-Series instances, WalkSAT, followed by GWSAT, dominates the
scene, since for all other algorithms, including R-Novelty and Novelty, the performance
rapidly deteriorates with increasing problem size (due to increasingly drastic stagnation be-
haviour). Furthermore, there are some performance relations which can be observed across
all problem domains from our benchmark set: GWSAT is mostly inferior to all WalkSAT
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variants (except in the cases, where Novelty or R-Novelty show stagnation behaviour); and
GSAT+tabu consistently outperforms WalkSAT, except in the cases where it su�ers from
premature stagnation.

In a more detailed study, we analysed the correlation between the di�erent algorithm's
performance across the Random-3-SAT and Graph Colouring test-sets. As a result, we
found that there is a relatively strong linear correlation between the logarithm of the average
local search cost for each pair of algorithms. In other words, instances which are hard for
one algorithm tend also to be hard for all other algorithms. Consequently it is justi�ed to
talk about the intrinsic hardness of problem instances. The existence of the tight correlation
in search cost we observed for various SLS algorithms is somewhat surprising, because the
underlying concepts are su�ciently di�erent to cause signi�cant di�erences in performance,
as we have seen. This suggests that the local search cost for these algorithms depends on
the same structural features of the search space. Later on, in Chapter 6, we try to identify
and analyse some of these features.

Another interesting result is the fact that Novelty, R-Novelty, and WalkSAT+tabu su�er
from stagnation behaviour on a number of instances (outliers) from the Random-3-SAT and
Graph Colouring test-sets; this phenomenon is not correlated to the intrinsic hardness of the
corresponding instances. We also observe that, when neglecting these outliers, WalkSAT's,
Novelty's, and R-Novelty's performance scales signi�cantly better with instance hardness
than GWSAT's and WalkSAT+tabu's. For GWSAT+tabu, which showed the worst scaling
behaviour (w.r.t. instance hardness) on Random-3-SAT, we observed not only superior
performance, but also the best scaling behaviour when applied to the Graph Colouring
domain. When comparing the performance of SLS algorithms for the Blocks World Planning
and the All-Interval-Series domain, we �nd that the former problem class appears to be
relatively easy (relative to the size of the formulae), while the latter seems to be very
hard. Since in both cases, as well as for the Graph Colouring domain, essentially the same
encoding was used, we conjecture that this must be a feature of the original problem rather
than an artifact introduced by the SAT encoding.

Summarising the results presented in this chapter, we found that although there are signif-
icant performance di�erences between the algorithms studied here, these are generally not
consistent across test-sets and problem domains. Thus, there is no single best algorithm,
dominating all others on all domains. There is however a notion of intrinsic hardness of
problem instances, rendering the same instances di�cult for all algorithms. At the same
time, there are systematic di�erences between algorithms w.r.t. their performance scaling
with increasing instance hardness across test-sets. Finally, we have found evidence that
some of the most recently proposed algorithms like Novelty and R-Novelty, su�er from es-
sential incompleteness, which severely compromises their performance, especially on hard
structured problems.



Chapter 5

Characterising and Improving
SLS Behaviour

Building on Chapter 4, here we extend and re�ne the analysis of SLS behaviour. We
perform this analysis for the SLS algorithms for SAT introduced and discussed before; for
empirical investigations we use the benchmark suite described in Section 4.4. However, the
methodology used here is not restricted to SAT but can be rather easily applied to other
problem domains and di�erent SLS algorithms. In our re�ned analysis of SLS behaviour we
�rst focus on qualitative norms of behaviour like approximate completeness. For the �rst
time we give theoretical results concerning the approximate completeness of some of the most
powerful currently known SLS algorithms for SAT. Next, we extend our empirical analysis
of SLS behaviour by functionally characterising the algorithm's RTDs for optimal and sub-
optimal noise parameter settings. Our analysis reveals a suprisingly regular behaviour of
some of the best SLS algorithms for SAT when applied to hard instances from di�erent
benchmark domains. From these empirical results we derive a number of theoretically
and practically interesting consequences, concerning parameterisation and parallelisation
of these algorithms as well as an interpretation of their run-time behaviour. Finally, we
show how, based on our characterisation results, some of the best currently known SLS
algorithms for SAT can be further improved.

5.1 Characterising SLS Behaviour

In the last chapter we compared di�erent SLS algorithms for SAT on our suite of benchmark
problems; now, we analyse the behaviour of these algorithms in more detail. For this
analysis we always use the algorithms without a restart mechanism, as the e�ects of the
restart mechanism depend crucially on the run-time behaviour of the pure strategies and
can be easily determined when its run-time distribution is known. In this section, we use the
functional characterisation of run-time distributions as a central method, i.e., we develop

111



112 CHAPTER 5. CHARACTERISING AND IMPROVING SLS BEHAVIOUR

a mathematical model which describes the empirically observed behaviour correctly and
accurately.

5.1.1 Asymptotic Run-time Behaviour

Local search algorithms as the ones we study here belong to the class of Las Vegas algo-
rithms. As discussed in an abstract context in Chapter 2, these can be classi�ed into three
qualitative norms of behaviour with respect to their asymptotic behaviour for arbitrarily
long run-times (see Section 2.1.1).

While all GSAT and WalkSAT variants are incomplete, when evaluating these algorithms
we already observed that some of them appear to be essentially incomplete, while others
seem to be approximately complete, i.e., with increasing run-time the probability of �nding
a solution for a soluble instance approaches one. We will use the term PAC behaviour1

to characterise a situation, where a Las Vegas algorithm, applied to a particular problem
instance, shows approximately complete behaviour. Algorithms which show PAC behaviour
for all soluble instances will be called PAC algorithms. Note, that empirical observations
can neither prove PAC behaviour for a given algorithm applied to a particular instance
(because based on a �nite number of runs, it cannot be ruled out that for some very
unlikely search trajectories, the algorithms gets stuck and will never �nd a solution), nor
the PAC property of an algorithm. Essential incompleteness cannot be proven empirically,
either: although it su�ces to �nd one instance for which the RLD does not converge towards
one, all experimental analyses have to be based on �nite run-times { consequently, it can
never be ruled out empirically that for even longer run-times convergence could be observed.
Nevertheless, empirical results can indicate PAC behaviour and essential incompleteness;
moreover, the signi�cance of such evidence can be improved by increasing the number and
run-time of experiments.

At the time of this writing we are not aware of any theoretical result concerning the ap-
proximate completeness or essential incompleteness of any of the SLS algorithms for SAT
studied here. Our empirical evaluations (cf. Chapter 4) suggest the following hypotheses:

� plain GSAT is essentially incomplete;

� GWSAT is approximately complete for wp > 0;

� GSAT+tabu is essentially incomplete for very small and very large tabu list lengths;

� WalkSAT is approximately complete for noise parameter settings wp > 0;

� WalkSAT+tabu is essentially incomplete for very small and very large tabu list lengths;

� Novelty is essentially incomplete at least for some noise parameter settings;

1PAC is the abbreviation for Probabilistically Aproximately Complete; the term is inspired by PAC

learning, a related concept from machine learning [KM90, Mit97].
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� R-Novelty is essentially incomplete at least for some noise parameter settings.

While some of these hypotheses can be proven or refuted theoretically, for others it is
not clear how to �nd a proof. To indicate how theoretical results concerning approximate
completeness can be derived, we give proof sketches for some cases here. First we prove the
approximate completeness for GSAT with random walk (GWSAT).

Theorem 5.1

GWSAT is approximately complete for all wp > 0.

Proof For a given instance with n variables and k clauses, we show that there exists a
p0 > 0 such that from each non-solution assignment GWSAT can reach a solution with a
probability p � p0: Let a be the current (non-solution) assignment, and s the solution with
minimal hamming distance h from a.

Lemma 1: For arbitrary a and s there is always one valid GWSAT step which decreases h
by one. In particular, there is always at least one such random walk step.

To see why this holds, assume that no such random walk step exists. Then none of the
variables whose values are di�erent in a and s can appear in an unsatis�ed clause. But
since a is not a solution, there has to be at least one clause c which is violated by a; now
the variables appearing in c have the same value in a and s, therefore s also violates c and
cannot be a solution. Since this contradicts the assumption, Lemma 1 has to be true.

Using Lemma 1 inductively, one can construct a sequence of h random walk steps from a
to s. Next, we derive a lower bound for the probability with which GWSAT will execute
this sequence.

Note �rst that for any assignment a0, the number of unsatis�ed clauses is always less or equal
to k, and the number of literals occurring in unsatis�ed clauses is less or equal to k �l, where l
is the length of the longest clause in the given instance. Therefore, if GWSAT decided to do
a random walk step, the probability to select a variable which decreases h is at least 1=(k �l).
Thus, the overall probability of executing a random walk step which decreases the hamming
distance to the nearest solution is at least wp=(k � l). Since GWSAT's steps depend only on
the current assignment (Markov property), a lower bound for the probability of executing
the correct h step sequence to reach the solution can be estimated as [wp=(k � l)]h.

Finally, note that h is always less or equal to n, and therefore the probability of reaching
a solution from any given assignment a is at least p0 = [wp=(k � l)]n. Since this probability
is independent from the number of steps which have been performed, the probability of
�nding a solution within t steps is at least

tX
i=1

(1� p0)i�1 � p0 = p0 �
(1� p0)t � 1

(1� p0)� 1
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For t ! 1, this geometric series converges to p0=p0 = 1, which proves GWSAT's approxi-
mate completeness. 2

Note that this proof relies critically on the fact that the algorithm can decrease the hamming
distance to the nearest solution in each step. Our proof shows that this is guaranteed
if arbitrarily long sequences of random walk steps can be performed with a probability
p � p0 > 0 which is independent of the number of steps which have been performed in
the past. Since our estimates for the probability of �nding a solution did not depend on
the actual variable selection strategy, the proof generalises easily to each algorithm which
satis�es this condition.

The algorithms of the WalkSAT family, however, generally do not allow arbitrarily long
sequences of random walk steps. In particular, for WalkSAT the variable selection strategy
does not allow a random walk step if the selected clause contains a variable which can
be ipped without breaking any currently satis�ed clauses. Therefore, approximate com-
pleteness cannot be proven using the scheme given above. Actually, although our empirical
results suggest that WalkSAT could be approximately complete, a proof seems to be di�-
cult to �nd. For the other members of the WalkSAT family, we can prove their essential
incompleteness using a very simple example instance. The proofs for WalkSAT+tabu, Nov-
elty, and R-Novelty are very similar; therefore we give only the proof for Novelty here, and
then discuss the corresponding results for the other algorithms.

Theorem 5.2

Novelty is essentially incomplete for arbitrary noise parameter settings.

Proof Let F =
V6
i=1 ci be the formula consisting of the clauses:

c1 � :x1 _ x2
c2 � :x2 _ x1
c3 � :x1 _ :x2 _ :y
c4 � x1 _ x2
c5 � :z1 _ y
c6 � :z2 _ y

F is satis�able and has exactly one model (x1 = x2 = >; y = z1 = z2 = ?). Now assume
that the algorithm's current assignment is A1 � (x1 = x2 = y = z1 = z2 = >). In this
situation, all clauses except c3 are satis�ed. Applying Novelty, c3 will be selected and the
variables receive the following scores: x1 : 0; x2 : 0; y : �1. Since regardless of the noise
parameter, Novelty always ips the best or second-best variable, either x1 or x2 will be
ipped.

Because both cases are symmetric, we assume without loss of generality that x1 is ipped.
This leads to the assignment A2 � (x1 = ?; x2 = y = z1 = z2 = >) which satis�es
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all clauses except c2. The scores for x1 and x2 are both 0, and since x1 is the most
recently ipped variable, x2 will be picked now. The current assignment at this point is
A3 � (x1 = x2 = ?; y = z1 = z2 = >) which satis�es all clauses except c4. Again, x1
and x2 have the same score of 0, but now x2 is the most recently ipped variable, so x1
will be ipped. Now, the current assignment is A4 � (x1 = >; x2 = ?; y = z1 = z2 = >),
which leaves only c1 unsatis�ed. As before, x1 and x2 both receive a score of 0, and x2 will
be ipped. But this leads back to the assignment A1 � (x1 = x2 = y = z1 = z2 = >);
therefore, Novelty got stuck in a loop.

Therefore, we found a soluble problem instance F and an initial assignment A1 for which
Novelty will never reach a solution, regardless of how long it runs. Consequently, Novelty
cannot be approximately complete but has to be essentially incomplete. 2

Note that this result does not mean that Novelty will show essentially incomplete behaviour
on each given problem instance. However, while for most of our benchmark problems, we
observed approximately complete behaviour, for some instances Novelty got stuck in loops
(cf. Chapter 4). Of course, in our example as well as in other cases, looping behaviour will
usually only occur with a certain probability, since many trajectories of the algorithm avoid
assignments leading into loops. Using the same example, one can easily prove:

Corollary 5.3 WalkSAT

+tabu and R-Novelty are essentially incomplete for arbitrary tabu-list lengths and noise
parameter settings, resp.

Note that for R-Novelty, even the built-in deterministic loop breaking strategy (randomly
picking a variable from the selected clause every 100th step) does not prevent the algorithm
from getting stuck in loops, since these can be timed such that the loop breaker will never
be activated when c3 is violated | which would be the only way of ipping y and reaching
a solution. In the case of WalkSAT+tabu, the same loop will be observed for any tabu list
length tl > 0. For tl � 2, the reason for this is the fact that when all variables in a clause
are tabu, WalkSAT+tabu will not ip any variable at all (cf. Section 4.3); for tl = 1, as for
Novelty, y can never be ipped when c3 is selected.

So generally, although algorithms like WalkSAT+tabu, Novelty, and R-Novelty show mostly
superior performance compared to GWSAT and WalkSAT, they su�er from essential incom-
pleteness. However, as we will discuss in Section 5.2, based on the proofs outlined here we
can overcome this weakness and thus substantially improve the most powerful SLS algo-
rithms for SAT.



116 CHAPTER 5. CHARACTERISING AND IMPROVING SLS BEHAVIOUR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06
steps

hard
medium

easy

Figure 5.1: RLDs for WalkSAT (approx. optimal noise, wp = 0:55) applied to easy, medium,
and hard problem instance from Random-3-SAT test-set uf100-430.

5.1.2 Functional Approximations for Optimal Noise

In the last section, we characterised the asymptotic behaviour of various modern SLS al-
gorithms for SAT; now, we re�ne our analysis by functionally characterising their run-time
behaviour. For this analysis, we apply the empirical methodology developed in Chapter
2, i.e., for a given algorithm, we approximate the empirical RLDs for individual problem
instances with continuous probability distributions; the goodness-of-�t of these approxima-
tions is tested using a standard �2 test. Our empirical results show that for optimal noise
parameter settings, the run-time distributions of the SLS algorithms studied here when
applied to hard problem instances can be well aproximated by exponential distributions.
We use the term EPAC behaviour2 to characterise a situation, where the RLD for a given
Las Vegas algorithm, when applied to a particular problem instance, can be well approxi-
mated by an exponential distribution. Informally, we refer to algorithms which show EPAC
behaviour for a wide range of hard problem instances as EPAC algorithms. In the follow-
ing sections, we will present the empirical results regarding the EPAC property of several
modern SLS algorithms for the di�erent problem domains from our benchmark suite.

Random-3-SAT Figure 5.1 shows the RLDs for WalkSAT (using an approximately opti-
mal noise setting of 0.55, 1,000 tries and cuto� settings high enough to guarantee 100% suc-
cess rate) when applied to the easy, medium, and hard problem instance from the uf100-430
test-set. For the hard instance, the RLD can be approximated3 using the cumulative form
of an exponential distribution ed[m](x) = 1 � 2�x=m where m is the median of the distri-

2EPAC is the abbreviation for Exponentially Probabilistically Aproximately Complete.
3All approximations were done using C. Gramme's \Gnu�t" implementation of the Marquart-Levenberg

algorithm.
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instance median #steps m �2 for ed[m] passed (�)

uf100-430/easy 132 501.68 no
uf100-430/medium 1,433 69.41 no
uf100-430/hard 61,082 27.51 yes (0.05)

Table 5.1: RLD approximations using exponential distributions ed[m] for WalkSAT (approx.
optimal noise) applied to the easy, medium, and hard instance from uf100-430 test-set.

test-set acceptance level � number passed

uf50-218 0.01 11.4%
uf50-218 0.05 7.1%

uf100-430 0.01 16.6%
uf100-430 0.05 10.3%

uf200-860 0.01 30%
uf200-860 0.05 26%

Table 5.2: Fraction of instances passing the �2 test for di�erent Random-3-SAT test-sets.

bution and x the number of steps required to �nd a solution.4 For testing the goodness of
this approximation we use a standard �2-test [Roh76]. Basically, for a given empirical RLD
this is done by estimating the parameter m and comparing the deviations to the predicted
distribution ed[m]. The result of this comparison is the �2 value, where low �2 values indi-
cate a close correspondence between empirical and predicted distribution. Table 5.1 shows
the estimated parameters m and the �2 values for the easy, medium, and hard instance
mentioned before. It can be clearly seen that with increasing median search cost m, the �2

values decrease, indicating that the harder the problem, the closer WalkSAT's RLD on this
problem approximates an exponential distribution. For the medium and easy problem, this
approximation is still reasonably good for the tail of the distribution (i.e., for long runs),
while for shorter runs the actual distribution is steeper than an exponential distribution.
We conjecture that the deviations are caused by the initial hill-climb phase of the local
search procedure (cf. [GW93a]).

This observation leads to the following hypothesis: Applied to hard Random-3-SAT in-
stances from the phase transition region, WalkSAT with optimal noise setting shows EPAC
behaviour, i.e., its behaviour can be characterised using exponential distributions. To test
this hypothesis, we apply the methodology outlined above to the entire 50, 100, and 200
variable test-sets. The resulting correlation between median search cost and �2 values can

4In the statistical literature, the exponential distribution Exp(�) is usually de�ned by P (X � x) =
1 � e��x, which is equivalent to our representation ed[m] using m = ln 2=�. A similar argument applies to
the Weibull distribution mentioned later.
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Figure 5.2: Correlation between hardness of problems (horizontal) and �2 values (vertical)
from testing the RLDs of individual instances versus a best-�t exponential distribution for
test-set uf100-430. The horizontal lines indicate the acceptance thresholds for the 0.01 and
0.05 acceptance level (one of these lines is hard to see, since it coincides with the �2 = 50
line).

be seen from the scatter plots given in Figures 5.2 and 5.3. Obviously, there is a strong
negative correlation, indicating that, indeed, for harder problem instances, WalkSAT's be-
haviour can be more and more accurately characterised by exponential distributions. The
�gures also indicate two standard acceptance levels5 for the �2 test (� = 0:01 and � = 0:05).
As can be seen from the plots, for high median search cost, almost all instances pass the
�2 test. Table 5.2 shows the overall percentage of the instances which passed the test for
the di�erent acceptance levels. The data suggests that for increasing problem hardness, a
relatively higher number of instances pass the test, i.e., the deviations of the RLDs from
ideal exponential distributions apparently become less prominent for larger problems.

Table 5.3 reports the results of an analogous analysis for di�erent algorithms when applied
to the test-set uf100-430. This time, the �2 test was restricted to the hardest 25% of
the test-set. For WalkSAT+tabu and Novelty, stagnation behaviour was observed for some
instances; these were removed from the test-set before approximating and testing the RLDs.
As can be seen from Table 5.3, for ca. 50% of the tested instances the RLDs could be
successfully approximated using exponential distributions. In the majority of the cases
where the approximations failed the �2 test, like pointed out earlier for WalkSAT, the
reason lies in the deviations caused by the initial search phase. In summary, this shows
clearly that the result established for WalkSAT generalises to the other, more powerful
WalkSAT variants: Applied to hard Random-3-SAT instances, these show approximally

5The acceptance level � speci�es the probability with which a statistical test incorrectely rejects the
given hypothesis. Therefore, for lower acceptance levels, the test has to be more cautious with rejecting the
hypothesis than for higher acceptance levels.
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Figure 5.3: Correlation between hardness of problems (horizontal) and �2 values (vertical)
from testing the RLDs of individual instances versus a best-�t exponential distribution for
test-set uf200-860. The horizontal lines indicate the acceptance thresholds for the 0.01 and
0.05 acceptance level.

exponential RLDs when using optimal noise settings. However, since these algorithms are
essentially incomplete, there are instances for which they show stagnation behaviour and to
which, consequently, this characterisation does not apply.

Graph Colouring In further experiments, we applied the same methodology to the
flat100-239 test-set from the graph colouring domain. As for the Random-3-SAT test-sets,
we used approximally optimal noise parameter settings. For each algorithm we performed
1,000 tries, using an extremely large maxSteps value (107) to ensure maximal success rates
for all instances. The results of the �2 vs median search cost correlation analysis are sum-
marised in Table 5.4. As for Random-3-SAT, we observe a strong negative correlation
between the hardness of the problem instances and the �2 values, indicating that with in-
creasing median local search cost, the RLDs are more and more accurately approximated
by exponential distributions. This holds for WalkSAT as well as for its more powerful, but
essentially incomplete variants; for the latter the instances for which essentially incomplete
behaviour is observed are not considered in the correlation analysis. Comparing the results
for the flat100-239 test-set with those for flat50-115 (not reported here) con�rm the
observation we made for Random-3-SAT: with increasing problem size, the fraction of in-
stances from the test-set for which the approximation using exponential distributions pass
the �2-test increases considerably. Note also that compared to the uf100-430 test-set, the
acceptance rates are generally higher for the flat100-239 test-set. This is most probably
caused by the fact that the flat100-239 instances are larger and harder than the uf100-430
instances.
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algorithm acceptance level � fraction passed number removed

wsat(0.55) 0.01 57.6% 0
0.05 34% 0

wsat+tabu(3) 0.01 49.6% 1
0.05 36% 1

novelty(0.7) 0.01 57.2% 35
0.05 40.2% 35

r-novelty(0.7) 0.01 49.6% 0
0.05 34.8% 0

Table 5.3: Fraction of instances from the hardest 25% of the uf100-430 Random-3-SAT
test-set passing the �2 test for di�erent algorithms with approx. optimal noise settings; the
last column indicates the number of instances for which essentially incomplete behaviour
was observed, these were removed from the test-set.

algorithm acceptance level � fraction passed number removed

wsat(0.5) 0.01 52% 0
0.05 40% 0

wsat+tabu(3) 0.01 64% 1
0.05 48% 1

novelty(0.6) 0.01 84% 1
0.05 76% 1

r-novelty(0.6) 0.01 100% 1
0.05 100% 1

Table 5.4: Fraction of instances from the hardest 25% of the flat100-239 Graph Colouring
test-set passing the �2 test for di�erent algorithms with approx. optimal noise settings; the
last column indicates the number of instances for which essentially incomplete behaviour
was observed, these were removed from the test-set.
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Figure 5.4: RLDs for Novelty with approx. optimal noise setting on SAT-encoded
blocksworld planning problems.

instance median #steps m �2 for ed[m] � passed (�)

medium 847 162.07 29 no
huge 14; 905 73.93 29 no
bw large.a 6; 839 60.37 29 no
bw large.b 119; 680 11.40 16 yes (0.05)
bw large.c 4:27 � 106 8.71 16 yes (0.05)
bw large.d 8:51 � 106 10.14 10 yes (0.05)

Table 5.5: RLD approximations using exponential distributions ed[m] for Novelty (approx.
optimal noise) applied to Blocks World Planning instances; last column indicates whether
the approximation passed the �2 test.

Blocks World Planning Fig. 5.4 shows the RLDs for Novelty when applied to SAT-
encoded problem instances from the blocks-world planning domain. We used the optimal
noise parameters from Section 4.5 and maxSteps settings high enough (107 and 108, resp.)
to ensure 100% success rate. For the smaller instances (up to bw large.a) we used 1,000
runs, for bw large.b and bw large.c 250, and for bw large.d 100 runs to approximate the
actual RLDs as described before. The estimates for the parameterm and the corresponding
�2 values for the approximation by exponential distributions are shown in Table 5.5. The
critical �2 values for a standard � = 0:05 acceptance level are 42:6 for 1,000 tries (� = 29)
and 26:3 for 250 tries (� = 16). This means, that only for the smaller instances the
approximation does not pass the test. As for the easy Random-3-SAT instances, this can
be explained by the initial hill-climb phase of local search.

Table 5.6 reports the results of approximating the RLDs of various SLS algorithms applied
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algorithm median #steps m �2 for ed[m] passed (�)

wsat(0.35) 119,680 11.40 yes (0.05)
wsat+tabu(2) 110,416 27.50 yes (0.01)
novelty(0.3) 133,453 14.47 yes (0.05)
rnovelty(0.55) 170,734 12.68 yes (0.05)

Table 5.6: RLD approximations using exponential distributions ed[m] for various algorithms
applied to Blocks World Planning instance bw large.b (using approx. optimal noise); the
last column indicates whether the approximation passed the �2 test (� = 16).

instance algorithm median #steps m �2 for ed[m] � passed (�)

ais6 gwsat(0.5) 1,898.1 33.34 29 yes (0.05)
ais6 wsat(0.5) 857.78 28.31 29 yes (0.05)

ais8 gwsat(0.4) 44,187.5 35.72 29 yes (0.05)
ais8 wsat(0.4) 19,439.9 23.01 16 yes (0.05)

ais10 gwsat(0.4) 343,096 25.51 16 yes (0.05)
ais10 wsat(0.2) 118,237 19.29 16 yes (0.05)

Table 5.7: RLD approximations using exponential distributions ed[m] for GWSAT and
WalkSAT applied to All-Interval-Series instances (using approx. optimal noise); the last
column indicates whether the approximation passed the �2 test.

to instance bw large.b with exponential distributions. The RLD data is based on 250 runs
of each algorithm; the critical �2 value for a standard � = 0:05 acceptance level is 26:3. The
approximations for all algorithms pass the test; only WalkSAT+tabu does not pass for the
� = 0:05 acceptance level, but for the � = 0:01 acceptance level. The corresponding results
of the larger Blocks World Planning instances are very similar. This con�rms that our result
concerning approximately exponential RLDs generalises to WalkSAT+tabu, Novelty, and
R-Novelty also when applied to hard instances of the Blocks World Planning domain.

All-Interval-Series For the All-Interval-Series domain, we already know from Section 4.5
that only GWSAT and WalkSAT show approximately complete behaviour; all other algo-
rithms su�er from stagnation behaviour. Therefore, we study only RLD characterisations
for GWSAT and WalkSAT here. As can be seen from the approximation and test data
reported in the Table 5.7, the exponential RLD approximations for both algorithms and all
three instances passed the �2 test for a standard acceptance level of � = 0:05. Interest-
ingly, for this problem domain, the e�ect of the initial search phase seems to be much less
prominent than for the other problem classes studied here.

In summary, the results presented in this section show that some of the most powerful SLS
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Figure 5.5: The new, generalised distribution class ged[m; ; �] for di�erent  and � values;
note the di�erence to the standard exponential distribution.

algorithms for SAT show a very regular behaviour when applied to hard instances from a
broad range of both problem domains: Using optimal noise parameter settings, the RLDs
for these algorithms are approximately exponentially distributed. Furthermore, the quality
of the corresponding functional approximations monotonically increases with the hardness
of problem instances.

5.1.3 Modelling the Initial Search Phase

As pointed out before, the RLD approximations using exponential distributions show a
systematic deviation at the left end of the RLD graphs which corresponds to the behaviour
during the initial search phase. To study this phenomenon in more detail, we developed
a new probability distribution which facilitates modelling the run-time behaviour during
the initial search phase in great detail. This new distribution is based on the Weibull
distribution6 wd[m; �](x) = 1 � 2�(x=m)� , a well-known generalisation of the exponential
distribution; the underlying intuition is that during the initial search phase, the performance
of an SLS algorithm (i.e., its probability of �nding a solution within a �xed number of steps)
is lower than later in the search process. This can be modeled by a Weibull distribution
with a dynamically changing � parameter (which controls the steepness of the cumulative
distribution curve in a semi-log plot).

Our new model is de�ned by the following cumulative distribution function:7

ged[m; ; �](x) = wd[m; 1+ (=x)�](x) = 1� 2�(x=m)1+(=x)
�

Although the full de�ning term looks quite complicated, the de�nition reects exactly the
idea of a Weibull distribution with dynamically changing � parameter as given above.

6Weibull distributions are used in reliability theory to model failure rates in systems which are subject
to aging phenomena [KGC77].

7We denote it ged, because it is a generalised form of the exponential distribution, as discussed later.
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Figure 5.6: RLD for WalkSAT (approx. optimal noise) applied to Blocks World instance
bw large.a and three functional approximations.

distribution �2 � passed (�)

ed[11800] 93.56 29 no
ged[12800; 1400; 1] 66.70 28 no
ged[12800; 600; 0:6] 37.53 27 yes (0.05)

Table 5.8: RLD approximations for WalkSAT (approx. optimal noise) applied to
bw large.a, using di�erent distribution classes; parameters have been manually deter-
mined, the last column indicates whether the approximation passed the �2 test. The �
values specify the degrees of freedom for the used distribution class; they are reported here
for technical reasons only.

More precisely, the new distribution is obtained from a Weibull distribution by introducing
a hyperbolically decaying � parameter. Like for the exponential and Weibull distribution,
m in the formula above is the median of the distribution. The two remaining parameters
intuitively correspond to the length of the initial search phase () and to its impact on the
overall behaviour (�). High  values indicate a long initial search phase, while high � values
are used to model a strong inuence of the initial search phase. Figure 5.5 shows the new
generalised distribution for various parameter values.

Note that the exponential distribution is a special case of this new class of distributions,
since ged[m; 0; �] = ed[m], while generally, Weibull distributions cannot be represented
within this family. As can be easily seen from the de�nition, ged[m; ; �](x) asymptotically
approaches an exponential distribution ed[m](x) for large x, regardless of the values for 
and �. For small and decreasing x, however, the relative di�erence between ged[m; ; �](x)
and ed[m](x) increases monotonically, which is qualitatively exactly what we observed for
the empirical RLDs of SLS algorithms.
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problem instance �2 for ed[m] �2 for ged[m; ,1] �2 for ged[m; ; �] �

medium (198.47) 40.68 33.57 29{27
huge (69.58) 31.96 20.74 29{27
bw large.a (74.21) 35.57 25.31 29{27
bw large.b 27.50 16.51 16.46 16{14
bw large.c 21.43 21.43 21.43 16{14

Table 5.9: Blocks World Planning instances, functional approximation of RLDs for Walk-
SAT+tabu (approx. optimal noise) with di�erent distribution classes; �2 values in paren-
theses indicate that the approximation did not pass the test for � = 0:01.

Because of computation time limitations and for brevity's sake we exemplify the RLD analy-
sis based on the new distribution only for a selection of algorithms and benchmark problems.
Figure 5.6 shows the RLD of WalkSAT (approx. optimal noise = 0.5) when applied to blocks
world instance bw large.a and three successively more precise functional approximations
(these approximations have been manually determined). While the approximation using an
exponential distribution �ts very well for the upper part of the empirical RLD, it does not
adequately model the algorithm's behaviour for shorter runs and consequently does not pass
the �2 test (cf. Table 5.8). The new, generalised distribution gives a signi�cantly better
approximation even when �xing the � parameter to one. While this approximation is often
su�cient for characterising the initial search phase, in this example, it still does not pass
the �2 test. However, using the � parameter as an additional degree of freedom, we can
model the given RLD so precisely that the corresponding approximation passes the �2 test.

As shown in Table 5.9, using ged approximations we can characterise the behaviour of Walk-
SAT+tabu (approx. optimal noise) when applied to the Blocks World instances such that
all approximations pass the �2 test. Interestingly, we can achieve this even when �xing � to
one. Analogous results can be shown for the other SLS algorithms. The advantages of the
ged approximation over ed approximations are reciprocal to the size of the instances. This
is consistent with our earlier observation that for smaller and easier instances the initial
search phase is more prominent. On the other hand, for large and/or very di�cult problem
instances, like bw large.c, by using ged approximations no improvement of the approxima-
tion can be achieved. In particular, this can be observed for the All-Interval-Series instances;
here, e.g., when characterising WalkSAT's behaviour using using exponential approxima-
tions, these generally pass the �2 test for all, even the smallest, instances. While using ged
approximations, minor improvements can be achieved for the smallest instance, for the other
instances these do not realise any advantage over standard exponential approximations.

Next, we used ged approximations of SLS behaviour for Random-3-SAT and Graph Colour-
ing test-sets. Table 5.10 shows the results of approximating RLDs of R-Novelty applied to
the uf100-430 test-sets with di�erent distribution classes. While using ed approximations,
12.9% of the instances passed the �2 test for the � = 0:01 acceptance level; by using ged's
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Figure 5.7: Correlation between hardness of problems (horizontal) and �2 values (vertical)
from testing the RLDs of individual instances versus a best-�t ed (left) and ged approxima-
tion (right) for R-Novelty (approx. optimal noise = 0.7) applied to Random-3-SAT test-set
uf100-430. The dashed horizontal lines indicate the acceptance thresholds for the 0.01 and
0.05 acceptance level.

distribution class acceptance level � fraction passed

ed[m] 0.01 12.9%
ed[m] 0.05 8.7%

ged[m; ; 1] 0.01 66.2%
ged[m; ; 1] 0.05 52.9%

ged[m; ; �] 0.01 85.0%
ged[m; ; �] 0.05 70.0%

Table 5.10: Random-3-SAT, test-set uf100-430, functional approximation of RLDs for R-
Novelty (approx. optimal noise = 0.7) with di�erent distribution classes.
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distribution class acceptance level � fraction passed

ed[m] 0.01 2.5%
ed[m] 0.05 1.5%

ged[m; ; 1] 0.01 63.4%
ged[m; ; 1] 0.05 50.5%

ged[m; ; �] 0.01 78.0%
ged[m; ; �] 0.05 67.6%

Table 5.11: Graph Colouring, test-set flat50-115, functional approximation of RLDs for
Novelty (approx. optimal noise = 0.6) with di�erent distribution classes; essentially incom-
plete behaviour was observed for 9 of 1,000 instances, these were removed from the test-set.

with � = 1, the acceptance rate could be increased to 66.2%; approximating the RLDs with
unrestricted ged's, 85.0% of the instances passed the test. At the same time, as can be seen
in Figure 5.7, by using the new, generalised distribution, the negative correlation between
the hardness of instances and the goodness of functional RLD approximations which is very
prominent for exponential approximations is no longer observed. This indicates that, in-
deed, ged approximations are an adequate model for SLS behaviour over the whole range
of instance hardness.

Applying the same correlation analysis to Novelty and Graph Colouring test-set flat50-115
yields analogous results (cf. Table 5.11). Note that since these problem instances are
very easy for Novelty, the e�ect of the initial search phase on the RLDs is very strong;
consequently, the acceptance rates of the �2 test, when applied to ed approximations, are
very low. Here, by using ged approximations which adequately model the initial search phase
an even more drastic improvement can be achieved: while for ed approximations, only 2.5%
of the instances passed the �2 test for the � = 0:01 acceptance level, this acceptance rate
is increased to 78.0% when using ged's.

Nevertheless, one might ask why for a small fraction of problem instances even ged approx-
imations are not good enough to pass the �2 test. Figure 5.8 shows the RLD corresponding
to the most extreme outlier from Fig. 5.7 with a �2 value of 23,753.20 for the best ged
approximation. This RLD is multi-modal and shows a premature stagnation behaviour of
the algorithm between 200 and 1,000 steps; then, however, the perfomance improves again
and the RLD converges to one. This example seems to be typical for the instances in which
the given RLD cannot be adequately characterised by ged approximations. The intuitive
interpretation of this behaviour is that initially the algorithm behaves in a regular way
(which can be characterised by a ged approximation), but then gets stuck in some sort
of \trap". It will, however, eventually escape from this trap and then continue its search
in a regular way. These traps probably correspond to attractive non-solution areas of the
search space (e.g., complex local minima areas) which are hard to escape for the algorithm.
As also shown in Fig. 5.8, a combination of two ged functions reecting this interpretation
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Figure 5.8: RLD for R-Novelty (approx. optimal noise = 0.7) applied to instance
uf100-430/n717; note, how using a combination of two overlayed ged approximations,
the observed behaviour can be almost perfectly modeled.

algorithm median of RLD m �2 for ed[m] passed (�)

wsat(0.5) 13,505 13,094.9 98.41 no
wsat(0.6) 15,339 16,605.5 76.17 no
wsat(0.7) 27,488 27,485.9 42.13 yes (0.5)
wsat(0.8) 72,571 74,289.8 20.78 yes (0.5)

Table 5.12: ed[m] approximations of RLDs for WalkSAT applied to Blocks World Planning
instance bw large.a, using optimal and larger-than-optimal noise parameter settings.

gives an almost perfect approximation of the observed RLD. This strongly suggests that
simple combinations of ged approximations can be used to adequately model and explain
the irregular behaviour observed for a small fraction of problem instances from our test-sets.

Results analogous to the ones presented here could be obtained for other WalkSAT al-
gorithms when applied to various test-sets and instances from our benchmark suite. In
summary, our analysis shows that using the new probability distribution type ged devel-
oped here, we can model the run-time behaviour of state-of-the-art SLS algorithm for SAT
in great detail. In particular, this extended model captures the SLS behaviour during the
initial search phase very accurately.

5.1.4 Functional Approximations for Non-optimal Noise

While up to this point, we always concentrated on approximately optimal noise parameter
settings, in the following, we present some results regarding SLS behaviour for non-optimal
noise. For larger-than-optimal noise settings, we observe essentially the same EPAC be-



5.1. CHARACTERISING SLS BEHAVIOUR 129

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06

wsat(0.5)
wsat(0.6)
wsat(0.7)
wsat(0.8)

Figure 5.9: RLDs for WalkSAT applied to Blocks World Planning instance bw large.a,
using di�erent noise parameter settings (0.5 is approx. optimal).

haviour as for optimal noise, but run-times compared to optimal noise are uniformly higher
for all success probabilities. This can be easily seen in the semi-log plots of the correspond-
ing RLDs, where for larger-than-optimal noise, the RLD curves have the same shape while
being shifted to the right. At the same time, when increasing the noise, the e�ects of the
initial search phase become less prominent | consequently, the approximations using ex-
ponential distributions are usually better for higher noise. This can be seen in Figure 5.9,
showing the RLDs for WalkSAT with di�erent noise settings when applied to Blocks World
Planning instance bw large.a (RLD data is based on 1,000 runs). The results for a �2

test, using ed approximations, are reported in Table 5.12. For optimal noise, the ed ap-
proximation does not pass the test, because the deviation caused by the initial search phase
is too strong. While this e�ect decreases for a slightly increased noise setting (as can be
seen from the lower �2 value), the ed approximation still does not pass the test. When
further increasing the noise setting, the initial search phase becomes less prominent and
the ed approximation passes the �2 test. It should be noted, however, that when using
ged approximations (cf. Section 5.1.3), the initial search phase can be correctly modeled
in all three cases in such a way that the corresponding RLD approximations pass the �2

test. Note also the increasing median run-times, indicating the decrease of performance for
larger-than-optimal noise settings.

As a second example, we report the results of analysing the e�ects of increasing the noise
parameter for R-Novelty, applied to the Graph Colouring test-set flat50-115. Table 5.13
shows the fraction of instances from this test-set, for which a best-�t ed approximation
passed the �2 test. As can be seen from this data, the fraction of the hardest 25% of the
test-set which passed the test increases for larger-than-optimal noise, as the e�ects of the
initial search phase become less prominent. At the same time the median hardness (mean
number of steps / solution) increases considerably. Analogous results could be obtained for
di�erent SLS algorithms and other problem domains from our benchmark suite.

While for larger-than-optimal noise, the SLS performance decreases but the algorithms still
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algorithm median hardness acceptance level � fraction passed

r-novelty(0.6) 739.61 0.01 19.0%
0.05 13.3%

r-novelty(0.7) 832.92 0.01 23.8%
0.05 14.9%

r-novelty(0.8) 1,043.29 0.01 40.7%
0.05 24.2%

Table 5.13: Fraction of instances from the hardest 25% of the flat50-115 Graph Colouring
test-set passing the �2 test for Novelty with optimal and larger-than-optimal noise settings;
instances, for which essentially incomplete behaviour was observed, were removed from the
test-set.
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Figure 5.10: Left: RLDs for GWSAT applied to easy instance from Graph Colouring test-set
flat100-239, using di�erent noise parameter settings (0.6 is approx. optimal); right: same
for WalkSAT applied to medium instance from Random-3-SAT test-set uf100-430 (approx.
optimal noise = 0.5).
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Figure 5.11: Left: RLDs for GSAT+tabu applied to medium instance from Graph Colouring
test-set flat100-239, using di�erent noise parameter settings (10 is approx. optimal); right:
same for R-Novelty applied to Blocks World Planning instance bw large.a (approx. optimal
noise = 0.6).
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Figure 5.12: Left: RLDs for Novelty applied to medium instance from Graph Colouring test-
set flat100-239, using di�erent noise parameter settings (0.6 is approx. optimal); right:
same for WalkSAT+tabu applied to Blocks World Planning instance bw large.a (approx.
optimal noise = 3).
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algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

gwsat(0.2) 595,388.77 580,061.58 0.97 413,064 168,375 797,305 66,640 1,431,559
gwsat(0.3) 69,778.76 73,354.57 1.05 47,511 20,531 96,839 7,134 158,442
gwsat(0.4) 64,167.11 64,661.00 1.01 43,128 19,079 85,901 7,150 143,875
gwsat(0.5) 79,258.66 82,593.77 1.04 50,887 22,172 109,799 8,387 181,464
gwsat(0.6) 169,139.57 170,347.50 1.01 115,024 49,558 229,213 17,247 389,196

Table 5.14: ed[m] approximations of RLDs for GWSAT applied to All-Interval-Series in-
stance ais8, using approx. optimal (=0.4) and non-optimal noise parameter settings.

show EPAC behaviour, for lower-than-optimal noise parameter settings we �nd a completely
di�erent situation. While for all algorithms, the performance decreases non-uniformly for
di�erent solution probabilities, some of them remain approximately complete, while others
show essentially incomplete behaviour. We demonstrate this here by giving a small num-
ber of examples, which are nevertheless typical for our overall observations. As shown in
Figure 5.10, GSAT and WalkSAT show a similar behaviour for smaller-than-optimal noise:
While for short runs, the performance even improves, for longer runs and the corresponding
higher success probabilities, the performance deteriorates considerably. Consequently, the
RLDs are less steep than exponential distributions and su�er from an increasingly long and
heavy tail. Both GSAT+tabu and R-Novelty show a similar, but additionally essentially
incomplete behaviour; as can be seen from Figure 5.11, the maximal success probabilities
for both algorithms are decreasing with the noise parameter. For Novelty, no increasingly
essential incomplete behaviour is observed, but the performance also decays non-uniformly
as for GSAT and WalkSAT (cf. Figure 5.12). In comparison, WalkSAT+tabu seems to
be relatively mildly a�ected; the main reason for this might be that typically, both the
clause-length and the optimal tabu-list-length are rather small.

Summarising these results, typically the detrimental e�ects of non-optimal noise parameter
settings are much worse for lower-than-optimal noise settings than for larger-than-optimal
noise. This is particularly the case for the higher percentiles of the corresponding RLDs (cf.
Table 5.14); additionally, for essentially incomplete SLS algorithms, stagnation behaviour
occurs more frequently with decreasing noise settings. However, the behaviour for very short
runs is usually not a�ected by lower-than-optimal noise and sometimes, even performance
improvements can be observed for the early phases of local search (this is consistent with
the intuition that greedier local search behaviour should pay o� during the initial search
phase, where gradient descent dominates the search.)

5.1.5 Consequences and Interpretations

The empirical results presented in the previous sections have a number of theoretically and
practically interesting consequences.
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Random restart For all of the SLS algorithms studied here, the standard implemen-
tations include a restart mechanism which allows to restart the local search process after
a �xed maximal number maxSteps of steps, if at that point no solution has been found.
Restarting the local search is the most simple method for escaping from local minima, and
for essentially incomplete algorithms like plain GSAT, using restart leads to signi�cantly
improved performance. For EPAC algorithms, however, restart is not e�ective, since in
the case of exponential run-time distributions the probability of �nding a solution within
a �xed time interval is independent of the run-time spent before. These SLS algorithms
are essentially memoryless, as for a given total time t, restarting at time t0 < t does not
signi�cantly inuence the probability of �nding a solution in time t.8 Based on the re-
sults reported before, many modern SLS algorithms for SAT show EPAC behaviour for
optimal and larger-than optimal noise settings when applied to our benchmark problems.
Consequently, for these algorithms random restart is mostly ine�ective. However, due to
the e�ects of the initial search phase, this does not hold for relatively easy problem in-
stances and short run-times. However, in practice the ine�ectivity of random restart for
hard instances can be easily veri�ed over a broad range of maxSteps settings (this will be
exempli�ed in Section 5.2.2 in a slightly di�erent context). As we have seen in Section 5.1.4,
the EPAC property is usually lost when using lower-than-optimal noise parameter; in this
case, random restart is advantageous for appropriately chosen cuto� times (cf. Chapter 2).

Search space reduction One surprising consequence of our characterisation results is
based on the well-known fact that blind guessing (i.e., repeatedly testing a randomly se-
lected variable assignment), one of the most na��ve search methods, is also characterised by
exponential RLDs. Therefore, our results suggest that the behaviour of modern, power-
ful SLS algorithms for optimal and larger-than-optimal noise settings can be interpreted as
blind guessing in a signi�cantly reduced search space. More precisely, these SLS algorithms,
when applied to a problem instance with search space S and search space size jSj, behave
exactly like blind guessing in a \virtual search space" S0. Assuming that S0 has the same
(known) number of solutions as S, the size jS0j of the virtual search space can be easily
calculated from the empirical RLD of the given SLS algorithm A and the original search
space size jSj. For a given problem instance, jS0j gives an indication for the e�ectiveness
of algorithm A: the smaller jS0j, the more e�ective is A. This can be easily generalised to
test-sets of problems or problem distributions by combining the jS0j values for the individual
instances. Note that this interpretation holds for all situations where an SLS algorithm ap-
plied to a given problem instance or problem class shows EPAC behaviour, i.e., it exhibits
exponential RLDs.

This result immediately raises the following question: How is the virtual search space related
to the actual search space? For now, we have no conclusive answer to this question. But
ideally, we would like to be able to identify structural features of the original search space
which can be shown to be tightly correlated with the virtual search space size. One would

8Because the exponential distribution is memoryless, it is often used in reliability theory to describe
components that are not subject to aging phenomena like transistors [BP81].
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assume that size and number of plateaus (including those consisting of solutions) in the
original search space should be important factors. However, preliminary studies have shown
that these features alone are not su�cient for explaining the observed search space reduction
phenomenon.

5.2 Improving Existing SLS Algorithms

After characterising the behaviour of several state-of-the-art SLS algorithms for SAT, in
this section we show how based on these results the algorithms can be further improved.
In the following, we discuss three ways of improving SLS algorithms based on the empirical
analyses given before: using hybrid GLSM extensions, multiple independent tries, and
algorithm portfolios. While the �rst approach is used to improve the behaviour of speci�c
SLS algorithms, the other two approaches are very general and can be exploited for parallel
as well as sequential time-sliced processing.

5.2.1 Hybrid GLSM Extensions

As discussed in Section 5.1.1, some of the most powerful SLS algorithms for SAT, like
WalkSAT+tabu, Novelty, and R-Novelty su�er from essential incompleteness. In practice,
this can be easily overcome by introducing random restarts. Obviously, if for a given
cuto� time t the probability of �nding a solution for a given problem instance is p > 0, the
probability of �nding a solution within n independent runs is p0 = 1�(1�p)n which converges
to 1 for n!1. Therefore, by introducing random restart after a �xed cuto� time, any Las
Vegas algorithm can be made approximately complete. Moreover, the modi�ed algorithm
will have an approximately exponential run-time distribution for large numbers of restarts.

In the context of the GLSM model, random restart is realised by connecting at least one
local search state with the initialisation state by a deterministic transition with condition
mcount(maxSteps). This is realised in the implementations of all the SLS algorithms for
SAT discussed in the context of this work (cf. Sections 4.2 and 4.3). In this sense, all
the actual implementations correspond to hybrid GLSM extensions obtained from the pure
local search strategy by adding restart.

Unfortunately, in general it is extremely di�cult to �nd good cuto� times a priori (a
posteriori they can be easily derived from the RLD data, as detailed before). Today, to our
best knowledge, there exist no theoretical results on how to determine good cuto�s. The
only empirical results we are aware of, are for GSAT when applied to hard Random-3-SAT
problem distributions [GW93a]; but since these results are based on potentially problematic
methodology, their signi�cance is unclear (cf. Section 2.3). While using inappropriately
chosen cuto�s generally still eliminates essential incompleteness, in practice, it leads to
extremely poor performance.

Another way of overcoming essential incompleteness of a SLS algorithm is to extend it with
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a random walk state. This extension can again be interpreted in the GLSM framework by
adding a random walk state and connecting it to the local search state(s) via unconditional
probabilistic transitions. As an example, consider GSAT and GWSAT; this also demon-
strates that adding random walk induces approximate completeness, as proven for GWSAT
in Section 5.1.1. As mentioned there, the proof for GWSAT's approximate completeness
easily generalises for all algorithms which guarantee that arbitrarily long sequences of ran-
dom walk steps can be performed with a probability p > 0 which is independent of the
number of steps that have been performed in the past. Thus, any GLSM G satisfying the
following conditions will provably correspond to a PAC algorithm:

1. G has a random walk state RW ;

2. RW has a probabilistic, unconditional self-transition;

3. for any point in time, there is a positive, bounded probability for G being in state RW ,
i.e., 8t : 9p0 > 0 : P (G is in state RW at time t) � p0.

As a convention, we assume that the random walk state has a bounded, positive probability
of decreasing the hamming distance to the nearest solution in each step, as is the case for
the random walk state used by GWSAT (cf. Chapter 4, Section 4.2 for formal de�nition).
While these conditions are su�cient for guaranteeing approximate completeness, they can
be further weakened. But because of the simplicity of the algorithms we are dealing with
here, the conditions as given above are fully adequate for our purposes. More speci�cally,
since all GSAT and WalkSAT variants discussed here are 1-state+restart GLSMs, we extend
them with random walk using the generic scheme shown in Figure 5.13, where LS is any
local search state and RW the random walk state as de�ned for GWSAT. It can be easily
veri�ed that this scheme satis�es the conditions for approximate completeness as given
above; therefore, any instantiation will show approximately complete behaviour.

Random walk apparently has an advantage over random restart, since at least in GWSAT,
it is more robust w.r.t. the additionally introduced parameter wp than random restart is
w.r.t. maxSteps (the cuto� time). One reason for this empirically observed phenomenon is
related to the inherent randomness of the random walk sequences; random restarts occur
after a �xed cuto� time, whereas random walk sequences are probabilistically variable in
their length and frequency of occurrence. Furthermore, when using random restart, the
search process is re-initialised; consequently, a new try cannot bene�t from the search e�ort
spent in previous tries (unless information is carried from one run to the next, which is not
the case for the algorithms considered here). The amount of perturbation introduced by
a random walk sequence, however, probabilistically depends on the length of the sequence
such that small pertubations are much more likely to occur.

We use the random walk extension here to improve the behaviour of Novelty and R-Novelty.
For R-Novelty, we replace the deterministic loop breaking strategy, which is essentially
equivalent to performing one random walk step each 100 steps, by a random walk extension
as described above; for Novelty, we newly introduce an equivalent extension. We call
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Figure 5.13: Random walk extension of a 1-state+restart GLSM; transition types: Tr �
CPROB(C; 1) with condition C � mcount(maxSteps);Tw � CPROB(:C;wp);Tg �
CPROB(:C; 1� wp).

these modi�ed algorithms R-Novelty+ and Novelty+; their approximate completeness (PAC
property) follows immediately using the argument given above.

Although these modi�ed algorithms have theoretically considerable advantages, a priori, it
is not clear how their performance compares with the original versions in practice. Table 5.15
shows the basic descriptive statistics for the mean local search cost (hardness distribution)
across two Random-3-SAT and Graph Colouring test-sets (the data is based on 100 runs
/ instance, using maxSteps = 106.). As can be seen when comparing the statistics for
the original and modi�ed versions of Novelty and R-Novelty, the latter show dramatically
reduced means and standard deviations. The percentiles, however, are not too di�erent,
although for the Random-3-SAT test-set, the higher percentiles are also signi�cantly lower.
This indicates that the essentially incomplete behaviour which causes the high means and
standard deviations of these hardness distributions is e�ciently eliminated by the random
walk extension, while for instances which do not su�er from essentially incomplete be-
haviour, the performance remains mainly una�ected. This interpretation is con�rmed by
the RLD statistics for Novelty and R-Novelty and their respective modi�ed versions when
applied to Blocks World Planning and All-Interval-Series instances (cf. Tables 5.16 and
5.17, all RLD data is based on 250 or more runs of each algorithm). Note that, as discussed
earlier, even when using random restart, essentially incomplete behaviour makes an algo-
rithm's performance extremely dependent on appropriately chosen cuto� parameters. This
e�ect is especially drastic for extremely low asymptotic success probabilities, as observed
for Novelty and R-Novelty when applied to large and hard Blocks World Planning and
All-Interval-Series instances.

In summary, these results indicate that R-Novelty+ and Novelty+ show signi�cantly im-
proved performance over the original algorithms where these su�ered from essentially in-
complete behaviour, while in the remaining cases the performance is approximately iden-
tical. Thus, extending Novelty and R-Novelty with random walk generally improves their
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test-set algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

uf100-430 novelty(0.6) 28,257.51 191,668.71 6.78 851.87 479.14 1,845.30 302.88 4,390.39
novelty+(0.6) 1,570.39 2,802.01 1.78 801.75 467.04 1,663.20 288.72 3,049.70

at50-115 r-novelty(0.6) 7,109.64 97,543.64 13.72 739.61 490.34 1,282.53 356.66 2,142.78
r-novelty+(0.6) 1,084.01 1,053.71 0.97 747.37 486.65 1,245.42 358.74 2,167.39

Table 5.15: Performance comparison for Novelty and R-Novelty (approx. optimal noise) vs
Novelty+ and R-Novelty+ for Random-3-SAT and Graph Colouring test-sets. The reported
basic descriptive statistics refer to the hardness distributions (mean number of steps /
solution) over the test-sets.

instance algorithm bps� maxSteps bEs meanc stddevc medianc

bw large.c r-novelty(0.3) 0.028 108 3:47 � 109 169,810.86 157,752.57 32,334
r-novelty+(0.3) 1.0 108 8:09 � 106 8,086,468.24 8,414,928.96 5,292,830

ais6 novelty(0.7) 0.101 106 8:90 � 106 62.65 44.60 46
novelty+(0.7) 1.0 106 9:94 � 103 9,944.67 10,828.49 6,909

ais8 r-rnovelty(0.8) 0.916 107 1:06 � 106 139,779.01 135,746.86 99,880
r-novelty+(0.8) 1.0 107 1:51 � 105 151,051.11 152,669.01 112,413

ais10 r-rnovelty(0.7) 0.012 108 8:23 � 109 7,603.33 1,667.32 7,313
r-novelty+(0.7) 1.0 108 2:41 � 106 2,410,863 2,240,534 1,697,646

Table 5.16: Performance comparison for Novelty and R-Novelty (approx. optimal noise) vs
Novelty+ and R-Novelty+ for Blocks World Planning and All-Interval-Series instances; bps�
indicates the asymptotic maximal success probability, cEs denotes the expected number of
steps for �nding a solution (using random restart); the reported basic descriptive statistics
refer to the corresponding conditional RLDs.

instance algorithm mean stddev median Q25 Q75 Q10 Q90

bw large.a novelty(0.4) 9,315.07 8,587.17 6,932 3,202 12,877 1,534 20,202
novelty+(0.4) 9,598.46 8,852.51 6,730 3,253 13,198 1,611 20,522

bw large.b r-novelty(0.55) 234,305.18 215,100.55 166,922 73,673 341,827 21,524 538,266
r-novelty+(0.55) 223,493.79 251,273.29 141,353 53,223 315,074 22,499 496,085

Table 5.17: Performance comparison for Novelty and R-Novelty (approx. optimal noise) vs
Novelty+ and R-Novelty+ for Blocks World Planning instances when no essentially incom-
plete behaviour is observed.
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performance. However, it should be noted that these algorithms, as well as WalkSAT+tabu,
can be also improved in a di�erent, more speci�c way. Re-examining the proof for Nov-
elty's essential incompleteness (cf. Section 5.1.1), one might have noted that the looping
behaviour for the given example is caused by the fact that Novelty always picks between
the best and second-best variable. What is needed to break the loop in the example given
in the proof, is a mechanism which allows y to be ipped when c3 is selected. But in this
situation, y's score will always be lower than x1's and x2's. Therefore, to generally prevent
this situation, a picking mechanism is needed which allows variables with arbitrarily bad
scores to be picked once in a while. Similar considerations hold for R-Novelty. Thus, by
modifying the picking mechanism according to this requirement, the essential incomplete-
ness of both Novelty and R-Novelty can be removed. Note that adding a random walk state
is equivalent to one speci�c modi�cation of this kind. Other possibilities include weighting
the probabilistic choice of the variable to be ipped by the score. However, it is not clear
whether such variants show a best-case performance comparable to the original algorithms'.

ForWalkSAT+tabu, the main reason for essential incompleteness when using long tabu-lists
is the fact that, if all variables in a clause are tabu, none of them is ipped. This problem
can be easily overcome by allowing a uniform or score-weighted random variable selection in
this situation. Note, however, that | as opposed to the random walk extension discussed
above | in general this will be insu�cient to guarantee approximate completeness.

5.2.2 Parallelisation Based on Multiple Independent Tries

Randomised algorithms lend themselves to a straightforward parallelisation approach by
performing independent runs of the same algorithm in parallel. In the given context, this
is equivalent to using a homogenous cooperative GLSM model without communication as
discussed in Chapter 3.1, Section 3.8. If the base algorithm is EPAC, this approach is par-
ticularly e�ective: Based on a well-known result from the statistical literature [Roh76], if
for a given algorithm the probability of �nding a solution in t time units is exponentially
distributed with parameter m, i.e., the RLD can be characterised by ed[m], then the prob-
ability of �nding a solution in p independent runs of time t is distributed along ed[m=p].
Consequently, if we run such an algorithm once for time t, we get exactly the same success
probability as when running the algorithm p times for time t=p. This means that using
multiple independent runs of an EPAC algorithm, an optimal speedup can be achieved for
arbitrary numbers of processors.

In practice, however, SLS algorithms are not perfectly EPAC due to the systematic devia-
tions during the initial search phase (cf. Section 5.1.3). Furthermore, usually a setup time
(for initialising data structures etc.) has to be taken into account. Therefore, for very short
runs (i.e., very high numbers of processors), the speedup will generally be less than optimal.
More precisely, for a given lower bound s0 on the speedup, a minimal cuto� time t0 and, sub-
sequently, a maximal number of processors p0 can be derived from the RLD data such that
for p < p0, a speedup s � s0 will be realised. However, if the RLDs converge against expo-
nential distributions and the initial search phase and setup time are rather short compared
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Figure 5.14: E�ciency of multiple independent try parallelisation (vertical) vs number of
processors (horizontal) for Novelty (approx. optimal noise settings) applied to Blocks World
Planning instances. An e�ciency value of 1 indicates optimal speedup.

to the time required for solving typical problem instances, this e�ect becomes almost negli-
gible. Based on the characterisations from the previous sections, this situation is given for
most modern SLS algorithm for SAT when applied to hard problem instances from various
domains. Furthermore, it holds for optimal as well as larger-than-optimal noise parameter
settings (see also [HS98a]). Thus, parallelisation using independent tries will generally yield
almost optimal speedup.

To illustrate this for a concrete example, we analysed the parallelisation e�ciency for Nov-
elty applied to several Blocks World instances based on the given RLDs (cf. Figure 5.4,
page 121). Figure 5.14 shows the predicted parallelisation e�ciency E as a function of the
number of processors p; E(p) is de�ned as the speedup S = T1=Tp divided by p, where T1
is the sequential and Tp the parallel computation time, using p processors. For Las Vegas
algorithms like Novelty, it is reasonable to de�ne the computation times such that T1 is
the cuto� time required to guarantee a solution probability of at least ps, or technically:
T1 = min(ft0 j P (RT � t0) � psg). Given T1 and the empirical RTD or RLD data, we can
easily calculate Tp:

Tp = min(ft0 j bP (RT � t0) � 1� (1� ps)
1=pg)

In our example, we chose p2 = 0:95, i.e., we want to guarantee a success probability of
95%. The curves were cut o� at the right end to guarantee that the reported results were
based on not less than ten runs of the algorithms; the underlying RLDs were based on
1,000 tries for the smallest instance and on 250 tries for the larger instances. As can be
seen from the e�ciency graphs, we observe an e�ciency of one (corresponding to optimal
speedup) up to a certain maximal number pmax of processors. This pmax value depends
directly on the relative length of the initial search phase (cf. Sections 5.1.2 and 5.1.3)
and, consequently, increases monotonically with instance hardness. In our example, for the
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can be characterised by a Weibull distribution. An e�ciency value of 1 indicates optimal
speedup.

smallest instance, bw large.a, the e�ciency drops almost immediately when parallelising,
while for the largest instance, bw large.c, optimal speedup can still be achieved with ca. 100
processors. Furthermore, pmax is positively correlated with the desired success probability
ps such that for tighter success guarantees, the maximal number of processors such that
optimal e�ciency is still achieved, is higher.

However, in cases, where the RLDs are generally steeper than an exponential distribution,
using independent tries will always lead to a suboptimal speedup (cf. Chapter 2); again,
using RLD data, it is possible to predict the speedup as a function of the number of proces-
sors. This is shown for the example of Weibull distributions wd[m; �] with � � 1 as RLDs
in Figure 5.15; note that while for � = 1 (exponential distribution) optimal e�ciency is
observed, with increasing � (i.e., steepness of the distribution) the e�ciency decays faster
for large number of processors. However, leaving aside the e�ects of the initial search phase
for EPAC algorithms (as discussed above), we have never observed this type of behaviour
in our experiments with SLS algorithms for SAT.

For RLDs which are partially less steep than an exponential distribution, optimal cuto�
times can be derived as detailed in Chapter 2, Section 2.2.2. This situation can be observed
particularly for smaller-than-optimal noise parameter settings (cf. Section 5.1.4); here,
the optimal cuto� implies an optimal number of processors for which a maximal speedup
can be obtained when compared to the sequential case p = 1. This is exempli�ed in
Figure 5.16, showing the RLD for GWSAT with a suboptimal noise setting when applied
to a small Blocks World Planning instance. The \hump" in the multi-modal RLD indicates
the existence of an optimal cuto� which corresponds to the optimal number of processors
for multiple independent tries parallelisation represented by the maximum in the e�ciency
graph. Note that the e�ciency compared to the sequential algorithm without restart is
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Figure 5.16: GWSAT with suboptimal noise setting (wp = 0:4) applied to Blocks World
Planning instance bw large.a. Left: RLD and corresponding asymptotic exponential dis-
tribution; right: parallelisation e�ciency vs number of processors (ps = 0:95).

greater than one, i.e. super-optimal, over a wide range of parallelisation.

Generally, using multiple independent tries is an extremely attractive model of parallel
processing, since it involves basically no communication overhead and can be easily im-
plemented and run on almost any parallel hardware platform, from networks of standard
workstations to specialised MIMD machines with thousands of processors. Therefore, these
results are not only relevant for the application of SLS algorithms to hard combinatorial
problems like SAT to time-critical tasks (like robot control or online scheduling), but also
for the distributed solving of very large and hard problem instances.

5.2.3 Parallelisation Based on Algorithm Portfolios

For SLS algorithms, algorithm portfolios are equivalent to the heterogeneous cooperative
GLSM model without communication, introduced in Chapter 3. Intuitively, the idea is to
execute a set of algorithms (\portfolio") in parallel, applying each individual algorithm to
the same problem instance. Note that, like multiple independent tries parallelisation, this
scheme can be easily realised on a single-processor system by using processor multiplex-
ing to interleave the execution of the individual algorithms. Multiple independent tries
parallelisation can be interpreted as a special case of an algorithm portfolio, where all in-
dividual algorithms are identical. Portfolios comprising di�erent algorithms, or di�erently
parameterised instances of an algorithm, only realise advantages over this simpler case if

1. no single individual algorithm dominates all the others, and

2. there are situations in which it is not possible to decide a priori which algorithm will be
most e�ective.

If condition 1 is violated, i.e., there is a completely dominant individual algorithm, obviously
replacing all other elements of the portfolio with this algorithm will improve the overall
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Figure 5.17: Left: Crossing RLDs for GSAT+tabu, applied to Random-3-SAT instance
uf100/hard, using di�erent tabu-list lengths; right: crossing RLDs for R-Novelty and Walk-
SAT+tabu (approx. optimal noise settings) when applied to Blocks World Planning instance
bw large.b.

performance. Condition 2 is considerably weaker. Of course, based on an RLD analysis,
it is always possible to decide a posteriori which algorithm of a given portfolio is best
for each problem instance and run-time interval. But only if this information is a priori
available, it can be used to optimise the portfolio. Since generally, complete domination
between algorithm seems to be rather the exception than the rule for hard combinatorial
problems, the ability to successfully establish or approximate this a priori knowledge would
be a great improvement for many problem classes. At least for SAT, the problem of �nding
methods for successfully predicting dominance relations between di�erent algorithms, or
even algorithm classes (such as complete search vs incomplete local search) is essentially
unsolved. Therefore combining individual algorithms which show superior performance in
certain situations or for certain domains into portfolios appears to be a promising method
for solving hard SAT problems.

For the SLS algorithms considered here, we have observed di�erent phenomena suggesting
that the portfolio approach will be bene�cial. First, while for a given problem instance,
strict domination between di�erent algorithms and parameterisations seems to be the rule,
we occasionally observed crossing RLDs. Within our benchmark suite, such examples could
be found for all algorithms presented here. Figure 5.17 shows two di�erent cases for crossing
RLDs: On the left-hand side, we see how GSAT+tabu applied to a hard Random-3-SAT
instance exhibits crossing RLDs for di�erent tabu-list lengths. Clearly, the shorter tabu-
lists give superior performance for shorter run-times, but su�er from stagnation for longer
runs. This phenomenon can also be observed for GSAT+tabu when applied to the Graph
Colouring domain. The right-hand side of Figure 5.17 shows an example for crossing RLDs
between di�erent algorithms using optimal noise settings. Here, R-Novelty is superior to
WalkSAT+tabu for short runs, while for long run-times, WalkSAT+tabu is signi�cantly
better. Again, a similar situation can be observed for other problem domains from our
benchmark suite.
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Apart from crossing RLDs, we also observed that for di�erent problem domains, di�erent
SLS algorithms show the best performance. The results reported in Chapter 4 suggest
that Novelty and R-Novelty are best-performing for random, unstructured problems, while
WalkSAT+tabu and GSAT+tabu might be superior for relatively hard, large, structured
problem instances, like the large Blocks World Planning instances, the hard Graph Colour-
ing instances, and the All-Interval-Series instances. Thus, to optimise performance over
a broad range of domains, or in a situation where the relative performance of the di�er-
ent algorithms is unknown, combining several of the best-performing algorithms mentioned
above into a mixed portfolio is advantageous. Furthermore, such a portfolio can also include
promising complete algorithms, like Satz [LA97] or Satz-Rand [GSK98], which outperform
the best currently known SLS algorithms for certain highly structured problem domains,
like Quasigroup Completion, or All-Interval-Series.

Given the current state of knowledge regarding the performance of SAT algorithms across
di�erent domains, we conjecture that for solving SAT instances from a broad range of
problem domains, or instances the structure of which is largely unknown, heterogeneous
portfolios comprising powerful algorithms, like Novelty+, R-Novelty+, WalkSAT+tabu, and
GSAT+tabu, as well as state-of-the-art complete algorithms, like Satz-Rand, will prove to
be the best and most robust solution methods. Such portfolios can probably be further
enhanced by including di�erent parameterisations (e.g., noise settings) for the di�erent
algorithms; and in a last step, performance might be even further improved by automatically
optimising the portfolios within single runs or over a number of runs, in the spirit of the
evolutionary cooperative GLSM models discussed in Chapter 3.

5.3 Related Work

Although SLS algorithms for SAT, in particular GSAT and WalkSAT variants, have been
intensively studied in the past, there is only a small number of studies which attempt to char-
acterise SLS behaviour. One of these investigates the behaviour of GSAT and di�erentiates
its behaviour into an initial hill-climbing and subsequent plateau phases [GW93a]. These
phases are mathematically modeled; however, the characterisation is based on averaged
local search trajectories on hard Random-3-SAT instances rather than on RLDs. A more
recent study identi�es invariants in local search behaviour [MSK97] for various algorithms
of the WalkSAT family. Again, the characterisation is based on local search trajectories and
no mathematical model is speci�ed. However, it is empirically observed and conjectured
that optimal behaviour of WalkSAT algorithms seems to occur for close-to-minimal mean
to variance ratio of the objective function as sampled along the search trajectory. This is
shown for single problem instances from various domains, including hard Random-3-SAT
and Blocks World Planning.

Our approach of functionally approximating the run-time behaviour of SLS algorithms
is partly related to the methodology used in [FRV97]. This concerns primarily the use
of continuous probability distributions (which can also be found in [Hoo96b, HS96]) for
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approximating the behaviour of discrete algorithms and the �2-test for testing the goodness-
of-�t of these approximations. But while they study the search cost distribution of �nding
a satisfying assignment on an ensemble of instances for complete procedures for SAT, we
characterise the behaviour of SLS algorithms applied to single problem instances based on
run-time distributions. Gomes and Selman give a functional characterisation of the run-
time behaviour of randomised complete search procedures for SAT applied to single problem
instances from the Quasigroup Completion Problem [GSC97]. While they observe heavy-
tailed behaviour which can be exploited using rapid random restarts, we did not observe
heavy-tailed RLDs for SLS algorithms (using reasonably good parameter settings) when
applied to any of our benchmark instances.

To our best knowledge, the approximative completeness of SLS algorithms for SAT has not
been theoretically studied before. Thus, the results presented in Section 5.1.1 are novel and
original. The same holds for the functional charactisations of SLS behaviour developed in
Sections 5.1.2 and 5.1.3. Our main characterisation result, the EPAC behaviour of modern
SLS algorithms (using optimal or larger-than optimal noise settings) when applied to hard
problem instances from various domains, explains earlier observations regarding the e�ec-
tiveness of random restart for GWSAT and WalkSAT [GW95, PW96] (cf. Section 5.1.5).

The improvements of SLS algorithms for SAT we discuss in Section 5.2 are inspired by pre-
vious work: Our study of multiple independent try parallelisation is conceptually related
to Hogg's and Williams' work on the potential of parallel processing for complete Graph
Colouring algorithms [HW94a]. Our discussion of algorithm portfolios is mainly based on
ideas presented by Carla Gomes and Bart Selman in the context of complete algorithms
for Quasigroup Completion Problems [GS97a]. Finally, the random walk extension of Nov-
elty and R-Novelty is inspired by earlier work on GSAT variants [SKC93] and builds on
McAllester's, Selman's, and Kautz's work on the WalkSAT family [MSK97]. Interestingly,
combining our essential incompleteness result for WalkSAT+tabu with the ideas of random
walk extension, sheds a new light on earlier work which claimed that adding random walk
to tabu search algorithms for SAT does not improve SLS performance [SSS97]. Our results
for SAT-encoded Graph Colouring instances show that essential incompleteness occurs in
practice when using optimal tabu-list length (cf. Section 4.5); but the fact that essential
incompleteness can generally be overcome by adding random walk (cf. Section 5.2) indi-
cates that extending WalkSAT+tabu with random walk will improve the overall behaviour
of the algorithm. The fact that in [SSS97] evidence for a contradicting conclusion could
be observed is most probably a consequence of the problematic methodology their result is
based on (cf. Chapter 2, Section 2.3).

5.4 Conclusions

In this chapter we presented three types of results regarding the run-time behaviour of mod-
ern SLS algorithms for SAT: theoretical results characterising their asymptotic behaviour,
functional characterisations of their actual behaviour, and a number of strategies to improve
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existing algorithms.

Regarding the asymptotic behaviour of SLS algorithms, we proved a series of novel results,
establishing the approximative completeness (PAC property) of GWSAT (forwp > 0) as well
as the essential incompleteness of WalkSAT+tabu (for all tl > 0), Novelty, and R-Novelty
(for arbitrary wp). Although for the latter algorithms, which are among the most powerful
SAT algorithms known today, essential incompleteness does not imply that stagnation of the
local search will occur for each problem instance and each run of the algorithm, stagnation
behaviour can be observed in practice (cf. Chapter 4) and severely a�ects the otherwise
superior performance of these algorithms.

However, essential incompleteness can be easily overcome by extending the given algorithms
with random walk, as shown in Section 5.2.1. We introduced this type of extension using the
GLSM framework where it is easy to see under which conditions the resulting hybrid GLSM
algorithm will be approximately complete. Of course, approximate completeness is also
achieved by using a random restart mechanism; however, since in practice good cuto� values
for the local search process are not known, and poorly chosen cuto�s lead to extremely poor
performance, using random restart alone is substantially inferior to a random walk extension.
To demonstrate the practical e�ectiveness of the random walk extension, we modi�ed R-
Novelty and Novelty accordingly and showed empirically that the extended variants achieve
superior performance. To our best knowledge, these R-Novelty and Novelty variants are
the most powerful currently known SLS algorithms for SAT. However, for certain problems,
such as the All-Interval-Series instances, these algorithms, as all other SLS algorithms we
are aware of, are substantially outperformed by state-of-the-art systematic SAT algorithms
like Satz [LA97] or Satz-Rand [GSK98].

Regarding the functional characterisation of SLS behaviour, we empirically studied the run-
time behaviour of WalkSAT, WalkSAT+tabu, Novelty, and R-Novelty. We could show that,
using optimal noise parameter settings, the RLDs of these algorithms when applied to hard
problem instances from various domains, can be approximated by exponential distributions
(EPAC property). The same phenomenon is observed for larger-than-optimal noise settings,
while for smaller-than-optimal noise, qualitatively di�erent behaviour occurs. We further
introduced a re�ned mathematical model based on a new distribution type which is asymp-
totically exponential, but allows to model the e�ects of the initial search phase. As we have
shown, this extended model allows a precise characterisation of SLS behaviour for a vast
majority of the problem instances from our benchmark suite. Thus, for the �rst time, we
can model the behaviour of some of the most powerful and prominent SLS algorithms for
SAT in great detail.

Our characterisation result has a number of interesting implications. As a direct conse-
quence, random restart is ine�ective for the algorithms studied here, when using optimal
noise settings. Even worse, when the restart occurs during the initial search phase, i.e., the
cuto� occurs too early, the performance will be negatively e�ected. A second consequence
of exponential RTDs is a new interpretation of the local search process as random picking
in a drastically reduced, \virtual" search space. The size of this reduced search space can
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be calculated from the RTD data and, when compared to the actual search space size,
gives an indication of the e�ectivity of the SLS algorithm. This novel interpretation of SLS
behaviour raises the question, whether it is possible to identify structural features of the
actual search spaces which directly correspond to the reduced search space. The analysis of
search space structure is addressed in Chapter 6; however, so far we could not identify any
features which are strongly correlated to the virtual search space size.

Finally, regarding the improvement of existing SLS algorithms for SAT, besides the hybrid
GLSM extensions mentioned above, we discussed two forms of parallelisation. Multiple
independent tries parallelisation, which is equivalent to using homogeneous cooperative
GLSM models without communication (cf. Chapter 3), is particularly attractive for EPAC
algorithms, since in this case optimal speedup and e�ciency are obtained. Moreover, since
no communication is involved, this model is simple to implement and extremely scalable.
The second approach uses portfolios of di�erent SLS algorithms; it can be easily modeled
using heterogeneous cooperative GLSMs without communication. This model shows im-
proved robustness and performance over the homogeneous model, when there is no clear
domination relation between a set of individual algorithms, i.e., when di�erent algorithms
show superior performance in di�erent situations. As we have seen in Chapter 4, this is
the case for modern SAT algorithms based on stochastic local search. Therefore, using the
portfolio approach appears to be a promising way for improving robustness and performance
of complex SAT algorithms.

Both parallelisation approaches are of particular interest in the context of time-critical
application scenarios; however, using processor multiplexing, they can generally be also
realised on single-processor systems. As a direct consequence of the EPAC behaviour ob-
served for modern SLS algorithms, multiple independent tries will not improve performance
on a single-processor system. For algorithm portfolios, the situation is di�erent: based
on the observations on our benchmark suite, improvements can be expected even for the
single-processor case.

Summing up our results, we have shown how, based on a careful empirical analysis, SLS
behaviour can be mathematically modeled in great detail by functionally approximating
RTDs. Doing this, we �nd that the behaviour of some of the most powerful and popular
SLS algorithms for SAT exhibit a surprising regular behaviour over a broad range of problem
domains. Based on our characterisation of SLS behaviour, we developed and discussed a
number of strategies for improving these algorithms. We expect (and have some preliminary
evidence as of this writing) that our results on comparing, characterising, and improving
SLS behaviour will generalise to SLS algorithms for problem domains like CSP or other
hard combinatorial problems.



Chapter 6

Search Space Analysis

Stochastic local search algorithms are among the most powerful methods for solving hard
combinatorial problems like SAT or CSP. Thus, there is a considerable interest in improving
the algorithms as well as in the understanding of the factors which inuence their perfor-
mance. The behaviour of local search algorithms crucially depends on structural aspects
of the underlying search space. Recently, a growing number of researchers have been in-
vestigating the nature of this dependency for the propositional satis�ability (SAT) and
constraint satisfaction problems (CSP) [CFG+96, Yok97, FCS97]. The main motivation for
this kind of work lies in the assumption that knowledge about structural aspects of search
spaces and their correlation to the performance of SLS algorithms can ultimately be ex-
ploited to improve the algorithms as well as SAT or CSP encodings of problems from other
domains. Furthermore, this kind of knowledge can be used for evaluating SLS algorithms
and encoding strategies.

In this chapter, we explore several approaches for search space analysis. After giving some
motivation and background on the topic, we �rst analyse the dependence of local search per-
formance on the number of solutions, an issue which has been investigated before [CFG+96].
Our study, however, avoids some weaknesses of this earlier work while extending both the
scope and the depth of the analysis signi�cantly, e.g., by studying the observed phenomena
for more powerful SLS algorithms and in dependence of problem size. Then, we introduce
some novel approaches for search space analysis, based on analysing the trajectories of SLS
algorithms. Our results indicate that the most dominant factor for local search performance
is given by the number of solutions. However, other factors, like solution clustering, rugged-
ness of the search space, and local minima branching have a measurable inuence on the
behaviour of SLS algorithms.

147
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test-set instances clause-len vars clauses

uf10-49 1,000 4 10 49
uf20-91 1,000 3 20 91

uf50-163 1,000 3 50 163
uf50-273 1,000 3 50 237

Table 6.1: Additional Uniform Random-3-SAT test-sets which are used for search space
structure analysis.

6.1 Motivation and Background

Compared to the development of SLS algorithms for SAT, search space analysis is a rather
young research subject. The methods we use for analysing search space structure and its
impact on SLS behaviour are to some extent based on the approaches taken in previous
work [CFG+96, Yok97, FCS97]. However, we �nd a number of weaknesses occurring in
some or all of these studies:

� GSAT, or simpli�ed versions of this algorithm are used as a reference local search pro-
cedure. While GSAT has the advantage of conceptual simplicity, its performance is
considerably inferior to modern SLS algorithms like GSAT with random walk or Walk-
SAT, which in particular have the ability to escape from local minima without using a
restart mechanism.

� The empirical methodology used to characterise SLS behaviour is often problematic. For
example, [CFG+96] use only one maxSteps setting for all experiments, which is claimed
to be optimal for the middle of the phase transition. While there is some doubt about
the validity of this optimal value itself [HS98a], it is at least not clear, whether this value
is also optimal for other clauses/variable ratios. On the other hand it is known that
GSAT's performance critically depends on good maxSteps settings [GW95].

� Most of the studies are mainly based on the empirical analysis of Random-3-SAT in-
stances, while other problem classes, in particular SAT-encoded problems from other
domains, are somewhat neglected. Furthermore, the dependence of the results on the
problem size is usually not investigated. This seems to be particularly problematic,
since the importance of taking scaling properties into account is well-known in the �eld
[Fuk97].

In our investigation presented here, we try to avoid these weaknesses. Instead of GSAT,
we use GWSAT with approximately optimal noise settings for our experiments. While
still being conceptionally very simple, the inuence of maxSteps on the performance of this
algorithm is minimal (cf. Chapter 5, [HS96, HS98a]). For our experiments we used instances



6.2. THE NUMBER OF SOLUTIONS 149

and test-sets from the benchmark suite introduced in Chapter 4. Additionally, we generated
two test-sets of very small Random-3-SAT instances (from the phase transition region) as
well as two test-sets from the under- and over-constrained regions of Uniform Random-3-
SAT (cf. Table 6.1). For these latter test-sets we chose the number of clauses such that the
clauses/variable ratios are 25% below and above the phase transition point. Furthermore,
for comparative analyses involving problems from other domains, we used instances from
various other Uniform Random-3-SAT test-sets; this will be described in more detail in
Section 6.4. All additional test-sets were generated as described in Chapter 4, i.e., by
�ltering randomly generated Random-3-SAT formulae with a complete SAT algorithm.

If not indicated otherwise, the local search cost reported for individual problem instances was
determined by running GWSAT (with approx. optimal noise setting) for at least 100 tries
and estimating the expected local search cost per solution as de�ned in Chapter 2, taking
into account the success-rate as well as the length of successful tries. Generally, maxSteps

was chosen high enough (� 106) to ensure success probabilities close to one; this way, the
error in extrapolating the local search cost is relatively small. As we have shown before,
there is a strong correlation between GWSAT's performance and that of other modern SLS
algorithms (cf. Chapter 4), therefore most of our results regarding local search cost will
equally apply to other SLS algorithms for SAT, such as WalkSAT or Novelty.

When analysing search space structure and its impact on SLS performance, one of the
most important techniques is the investigation and characterisation of correlations between
structural features of the search space and local search cost. For our Random-3-SAT and
Graph Colouring test-sets, we characterise these correlations establishing functional models
using least-mean-squares �tting and regression analysis techniques known from literature
[CFG+96].

6.2 The Number of Solutions

Intuitively, for a given problem instance, its number of solutions should have a considerable
e�ect on local search performance: One would expect that instances with a high solution
density, i.e., a large number of solutions, are much easier to solve for SLS algorithms than
instances with very few solutions. In previous work [CFG+96], it was shown that this
intuition is correct regarding stochastic local search algorithms for SAT and CSP which are
based on hill-climbing, such a GSAT. In this section, we �rst present the results of analysing
the distribution of the number of solutions for di�erent Random-3-SAT test-sets. Based on
these results, we then discuss the correlation between local search cost and the number of
solutions, re�ning and extending the methodology and results of [CFG+96].

Figure 6.1 (left) shows the empirical cumulative distributions of the number of solutions
for the di�erent test-sets at the phase transition for Random-3-SAT [CA96]. The coarse
granularity which can be observed at the left end of the curves, especially for n = 20, is due
to the fact that the number of solutions is a discrete measure and that for small problem
sizes many instances have a very small number of solutions. The graphs show clearly
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Figure 6.1: Distributions of the number of solutions for Random-3-SAT test-sets with n

variables, k clauses (1,000 instances per test-set); left: di�erent problem sizes at phase
transition; right: for n = 50 across phase transition.
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Figure 6.2: Number of solutions distributions for test-sets uf100-430 (left) and uf50-218

(right) at the phase transition (solid curves); the corresponding empirical probability density
functions (bar diagrams) can be approximated by log-normal distributions (dashed curves).

that for increasing problem size, the distributions become progressively less steep, i.e., the
relative variance in the number of solutions increases signi�cantly for larger problems. Note
the di�erence between this scaling behaviour and the observations for the corresponding
hardness distributions, where increasing the problem size a�ects mainly the tail.

At the �rst glance, the general shape of the distributions of local search cost and the number
of solutions seems to be roughly similar (compare Figure 6.1 and Figure 4.13, page 95). But
closer analysis of the empirical probability density functions of the number of solutions
distributions indicates that (in contrast to the local search cost distributions) these can
be reasonably well approximated using log-normal distributions (Figure 6.2). This is an
e�ect of the random generation process, where each point in the search space (i.e., each
assignment) is uniformly a�ected by each independently generated clause. Note the absence
of long and heavy tails, as observed for the corresponding hardness distributions, for which
we could not �nd a functional approximation.
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Figure 6.3: Correlation between average local search cost (vertical) and number of solutions
(horizontal) for Random-3-SAT test-sets from the phase transition region with n = 100
(left) and n = 50 (right) and regression lines from lms regression �ts.

test-set a b r

uf20-91 -0.494 2.309 -0.82
uf50-218 -0.366 3.491 -0.83
uf100-430 -0.283 4.586 -0.83

test-set a b r

uf50-163 -0.282 3.436 -0.90
uf50-218 -0.366 3.491 -0.83
uf50-273 -0.222 2.827 -0.51

Table 6.2: Data from regression analysis of the correlation between number of solutions and
local search cost for Random-3-SAT test-sets; a; b are the parameters of the lms linear �t
ax+b, r is the correlation coe�cient; left: for di�erent problem sizes at the phase transition,
right: across the phase transition.

Combining the data from hardness and number of solutions analysis, we can now analyse
the correlation between the logarithm of both values. Figures 6.3 depicts this correlation
for various problem sizes at the phase transitions. The graphs show scatter plots of the data
and the corresponding lms regression �ts. For all problem sizes, there is a strong negative
correlation between the number of solutions and the average local search cost per solution.
Also note that while for a high number of solutions, the variability in local search cost
is very small, it increases considerably for lower numbers of solutions. Again, the coarse
granularity which can be observed at the left side of the graphs for the smaller problem size
is caused by the large number of problem instances with few solutions.

As can be seen from Table 6.2 (left), we measure a stronger correlation between the number
of solutions and average local search cost than reported in [CFG+96] (r = �0:83 vs �0:77).
At the same time, for n = 100 we �nd a signi�cantly smaller gradient a for the regression
�t (�0:283 vs �0:44 in [CFG+96]). Remarkably, a decreases strictly monotonically with
growing problem size n, meaning that for larger problems the functional dependency of
the local search cost from the number of solutions gets weaker. The main reason for this
stems from the fact that with growing problem size, the relative variance of the number
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Figure 6.4: Correlation between local search cost (horizonal) and number of solutions (ver-
tical) for Random-3-SAT test-sets with n = 50 from the underconstrained region (left) and
from the overconstrained region (right).

of solution distribution increases signi�cantly faster (and more uniformly across the whole
distribution) than that of the corresponding hardness distribution. The dependency between
log a and logn appears to be roughly linear. More speci�cally, a very good lms �t can be
obtained using the parametric function a = exp(u � nv), where the optimal parameters
are determined as u = 1:53 and v = �0:37. Not surprisingly, the average local search
cost for problem instances with exactly one solution (as estimated by the b parameter of
the linear lms �t) also increases strictly monotonically with n. Interestingly, using the
same �tting approach as above, the dependency between b and n can be approximated by
b = exp(0:61n0:44). This con�rms earlier observations that the search cost of GSAT-like
algorithms might grow slower than a simple exponential [GW93b, GMPW97]. Our results
indicate furthermore that the same holds for the extrapolated local search cost for problem
instances with exactly one solution.

Applying the same correlation analysis across the phase transition, i.e., for di�erent clauses
per variable ratios, reveals some interesting facts. First, the results in Table 6.2 (right)
show that the correlation coe�cient r is clearly dependent on the clauses per variable ratio
(cvr): for increasing cvr, r decreases monotonically. This can be also seen in Fig. 6.4,
which shows considerably more noise in the scatter plot for the overconstrained than for
the underconstrained test-set. One explanation for this phenomenon could be based on the
simple fact that the number of solutions tends to decrease with a growing constrainedness,
assuming that for a smaller number of solutions there is more variability in the average local
search cost. This hypothesis is not only consistent with the results for n = 50 across the
phase transition, but also with the fact that within all our test-sets, we found the variability
in the number of solutions to be decreasing with growing number of solutions.

Another interesting observation can be made from Table 6.2 (right): The regression gradient
a is maximal at the phase transition and signi�cantly lower above and below the critical
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Figure 6.5: Hardness distributions (mean number of local search steps/solution using
GWSAT, approx. optimal noise) for Random-3-SAT test-sets across the phase transition.

cvr. Consequently, the number of solutions has the most signi�cant impact on local search
cost at the phase transition. This result is a direct contradiction to the result for GSAT
(without random walk) reported in [CFG+96], but consistent with their results for various
CSP algorithms on Random-CSP problems. The most probable reason for this disagreement
is given by the fact that they are using basic GSAT in combination with a rather crude
methodology for evaluating the algorithm's behaviour. Note, that the extreme behaviour at
the phase transition is also reected in the hardness and number of solutions distributions
(cf. Figures 6.5 and 6.1, right). We will come back to this issue in Section 6.3.

One last observation on the data presented in Table 6.2 (right) is the fact that the b para-
meters of the lms linear �ts are roughly similar for test-sets uf50-163 and uf50-218, while
for uf50-273 it is considerably lower. Since the b parameter gives an estimate for the average
search cost on problem instances with exactly one solution, this observation implies that
single solution instances tend to be harder when taken from the underconstrained region
than when being overconstrained. One possible explanation for this phenomenon is given by
the observation that underconstrained problems tend to have larger plateau regions [Yok97]
which are probably more di�cult to search for SLS algorithms like GWSAT or WalkSAT
[FCS97].
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Figure 6.6: Hardness distributions for di�erent strata [li; ui] of Random-3-SAT test-sets
with n = 100 (left) and n = 50 (right) at the phase transition.
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Figure 6.7: Same as Figure 6.6, but for n = 20.

6.3 Strati�ed Random-3-SAT

Although our results show a stronger correlation between the number of solutions and
local search cost than reported in [CFG+96], we still observe a considerable variability in
the local search cost for instances from the same test-set with a similar or equal number of
solutions. To abstract from the predominant inuence of the number of solutions on problem
hardness, we study this phenomenon in more detail by stratifying our test-sets (de�ned by
purely syntactic properties of the formulae) according to the number of solutions (a semantic
property). More precisely, we measure hardness distributions (using the same method and
parameters as in Chapter 4, Section 4.5), for the strata si obtained from the test-sets by
restricting the number of solutions to an interval [li; ui].

For various problem sizes at phase transition, the results of this analysis are shown in
Fig. 6.6 and 6.7. Surprisingly, in a semi-log plot, the shapes of these distributions are very
similar for the di�erent strata. For larger numbers of solutions, the corresponding curves
are shifted to the left and they become slightly steeper, indicating that problems with many
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Figure 6.8: Hardness distributions for di�erent strata of Random-3-SAT test-sets with
n = 50 from the underconstrained region (left) and from the overconstrained region (right).

solutions are uniformly easier and exhibit a smaller relative variance of instance hardness.
Note also that the overall shape of the distributions for the strata is very similar to that
of the overall hardness distributions (cf. Figure 6.5). However, the variance of the overall
hardness distribution is signi�cantly higher than for the strata; closer examination also
reveals slightly heavier tails for the former.

Applying the same analysis across the phase transition, we observe an interesting di�er-
ence (cf. Figure 6.8). While for the overall hardness distribution, minimal steepness (i.e.,
maximal relative variance) can be observed at the phase transition (cf. Figure 6.5), the
steepness of the corresponding distributions for the strata appears to be monotonically de-
creasing with growing constrainedness (cf. Figures 6.6{6.8). This means that across the
phase transition, the shape of the overall distribution depends not only on the shape of
the distributions for the strata, but also on the distribution of the number of solutions. In
particular, the fact that the regression gradient for the correlation between local search cost
and number of solutions is minimal at the phase transition (cf. Section 6.2) appears to be
caused by the shape of the number of solutions distributions (cf. Figure 6.1, right).

Generally, the results reported in this section show that the noise observed in the correlation
between local search cost and the number of solutions is mainly caused by some factor which
is not related to the number of solutions. In particular, clustering of the solutions is most
likely not the feature responsible for the variation in hardness within the strata: If clustering,
i.e., the distribution of the solutions within the search space, would have a major impact on
local search cost, we should observe an increased solution cost variability for problems with
higher numbers of solutions (where more pronounced di�erences in clustering can occur).
But there is no signi�cant di�erence between the hardness distributions on problems with
only one solution (where clustering is irrelevant) and a higher number of solutions.
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6.4 Sampling the Objective Function

Up to this point, our analysis was mainly concerned with the number of solutions and their
distribution in the search space. But of course, other aspects of the search space topology
play an important role in the context of SLS behaviour. One such factor is the ruggedness
or smoothness of the objective function across the search space. It is intuitively clear that
a mainly at objective function which is only locally punctuated by the solutions should
be much harder to deal with for any local search algorithm than one in which the solutions
are surrounded by sloping basins. Unfortunately, the topological property corresponding to
this intuitive notion of ruggedness is very di�cult to measure directly.

We therefore use a simple indirect method for analysing the inuence of objective function
topology on SLS performance. This method essentially correlates the variance of the objec-
tive function, which is an indication of the ruggedness of the search space, to the average
solution cost. For small problem instances (n � 30), we can use exhaustive search to deter-
mine the exact variance. For larger n, however, this becomes impractical; consequently, we
use random sampling to estimate the objective function's variance. The intuition underly-
ing this method is that at, feature-less search spaces characterised by a low variance of the
objective function should pose greater di�culties for SLS algorithms than rugged search
spaces with a high objective function variance.

Random-3-SAT We performed this analysis for the Random-3-SAT test-sets for variable
problem size and constrainedness. Because of computation time limitations, we reduced
each test-set to 50 instances by selecting each 20th instance from the original test-set after
ordering it according to the average local search cost for GWSAT (approx. optimal noise).
We then measured the standard deviation of the objective function (number of unsatis�ed
clauses) for each remaining instance; for n = 20, the measurement is based on a systematic
sample across the full search space (obtained by exhaustive search), for n = 50 and 100, it
is based on a sample of 105 randomly picked assignments.

Preliminary results on single instances of the uf50-218 test-set suggested a negative cor-
relation between the standard deviation of the number of unsatis�ed clauses (sdnclu) and
the average local search cost. The result of a correlation analysis across the whole test-set
con�rms this hypothesis. Figure 6.9 shows the correlation between sdnclu and the average
local search cost (for GWSAT). The negative correlation, although quite noisy, is clearly
observable (cf. Table 6.3 for correlation coe�cient and parameters of the linear lms �t).

This result is consistent with our initial intuition that a smaller standard deviation indicates
a more uniform search space structure, possibly providing less guidance for local search. An-
other explanation would suggest that for hard Random-3-SAT instances, a smaller variance
of the objective function coincides with a lower number of solutions. This is consistent
with our observation that the values of the objective function are approximately normally
distributed:1 in this situation, a smaller variance naturally implies smaller tail probabilities

1This is not very surprising, since for a given Random-3-SAT instance, clauses are generated randomly
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Figure 6.9: Correlation between sdnclu values (horizontal) and mean local search cost
(vertical) for reduced test-set uf50-218 (50).

test-set r a b

uf20-91 (50) -0.31 -0.42 3.28
uf50-218 (50) -0.35 -0.65 6.02
uf100-430 (50) -0.44 -0.97 10.31

test-set r a b

uf50-163 (50) -0.52 -0.56 4.37
uf50-218 (50) -0.35 -0.65 6.02
uf50-273 (50) -0.02 -0.02 2.75

Table 6.3: Correlation between sdnclu and average local search cost; a; b are the parameters
of the linear �t ax + b, r is the correlation coe�cient; left: for di�erent problem sizes at
phase transition, right: across phase transition
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Figure 6.10: Correlation between sdnclu values (vertical) and number of solutions (hori-
zontal) for reduced test-set uf50-218 (50).

of this distribution and, consequently, a smaller number of solutions.

While both explanations could be correct, it is a priori not clear, whether one or the other
plays a more important role in the given context. To further investigate this issue, we
analysed the correlation between the sdnclu value and the number of solutions across the
same test-set. The results of this analysis is shown in Figure 6.10: a positive correlation can
be clearly observed (correlation coe�cient r = 0:46) and a lms linear �t of the correlation
data gives a gradient of 2.07. Note that this correlation is slightly stronger than the one
between sdnclu and the average solution cost reported before. This suggests the following
interpretation: For hard Random-3-SAT instances, a uniform search space structure, besides
other factors, tends to come along with a small number of solutions, which itself has a major
impact on the local search cost for �nding a solution. Compared to this e�ect, the more
uniform search space structure seems to play a minor role. This was veri�ed by analysing
the correlation between sdnclu and average solution cost for strata of the unreduced test-set
uf50-218 with equal or similar numbers of solutions. Here, a negative correlation between
sdnclu and the average solution cost could not be observed. Thus, the sdnclu / solution
cost correlation can apparently not be used to re�ne the analysis from Section 6.2.

Next, we studied the observed correlation for various problem sizes at the phase transition
as well as across the phase transition. The results are shown in Figures 6.11{6.12 and in
Table 6.3. While for the underconstrained test-set, the correlation between sdnclu and
average solution cost is quite strong, it is getting weaker as the number of clauses increases.
For the overconstrained test-set, no signi�cant correlation could be observed. Note that this

and the inuence of each clause on a given assignment is mostly independent of other clauses. Note, however,
that by restricting the test-sets to satis�able formulae, strict probablistic independence between the impact
of clauses on the search space is lost.
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Figure 6.11: Correlation between sdnclu values (horizontal) and mean local search cost
(vertical) for reduced test-sets uf100-430 (50) (left) and uf20-91 (50) (right).
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Figure 6.12: Correlation between sdnclu values (horizontal) and mean local search cost
(vertical) for reduced test-sets uf50-163 (50) (left) and uf50-273 (50) (right).



160 CHAPTER 6. SEARCH SPACE ANALYSIS

instance variables clauses solutions avg lsc sdnclu

at30-60/n19 90 300 432 1,775.8 205.84
uf90-388/med 90 388 404 2,492.1 45.00

at50-115/n4 150 545 5,892 4,539.2 421.20
uf150-645/med 150 645 5,884 10,231.9 70.05

Table 6.4: Comparison of the average local search cost and sdnclu values for Graph Colour-
ing and Random-3-SAT instances.

result is analogous to our observations concerning the correlation between the number of
solutions and average solution cost (see Section 6.2). Therefore, this result is consistent with
the explanation for the sdnclu / solution cost correlation proposed above. The same holds
with respect to varying problem size; here, we observe that the correlation gets stronger
with increasing problem size. This is particularly interesting as, despite the huge di�erences
in search space size between n = 20 and n = 100, our observations were obtained with a
�xed sample size per instance. This is an indication that the observed correlations can be
established for quite small relative sample sizes. At the same time, increasing the sample
size for small problems does not signi�cantly improve the observed correlation.

Graph Colouring Next, we applied the same analysis to problem instances from the
Graph Colouring domain. Because of computational limitations we had to restrict the in-
vestigation to individual instances for di�erent problem sizes. Our analysis is based on
comparing problem instances with identical search space size (number of variables) and, to
abstract from the dominant inuence of this feature, a closely matching number of solutions.
To achieve this, we newly generated two hard Random-3-SAT test-sets with 90 variables /
338 clauses and 150 variables / 645 clauses, consisting of 100 satis�able instances (unforced,
�ltered generation) each. From these test-sets, we picked the median instances w.r.t. av-
erage local search cost for GWSAT (approx. optimal noise) and compared them with the
instances from the flat30-60 and flat50-115 Graph Colouring test-sets which had the
closest matching number of solutions, resp.

For these problem pairs, we compared the average local search cost for GWSAT (approx.
optimal noise) and the sdnclu value. The results of this analysis are reported in Table 6.4;
avg lsc refers to the average number of steps per solution when using GWSAT with ap-
proximately optimal noise settings. First, we observe that the more structured Graph
Colouring instances tend to be easier to solve than corresponding Random-3-SAT instances
with identical search space size and similar number of solutions. This e�ect apparently
becomes more prominent with increasing problem size. Furthermore, the sdnclu values for
the Graph Colouring instances are signi�cantly higher than those for the Random-3-SAT
instances. This con�rms our initial intuition that the standard deviation of the objective
function values should be negatively correlated with the hardness of an instance. Appar-
ently, this e�ect, which we could not clearly detect within hard Random-3-SAT test-sets,
can be observed when comparing structured and random instances.
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instance variables clauses solutions avg lsc sdnclu

bwp/anomaly 48 261 1 944.2 166.57
uf48-210/n49 48 210 1 1,509.5 24.84

bwp/medium 116 953 2 1,787.9 1,157.83
uf116-499/n92 116 499 16 12,484.5 57.31

Table 6.5: Comparison of the average local search cost and sdnclu values for Blocks World
Planning and Random-3-SAT instances.

instance variables clauses solutions avg lsc sdnclu

ais6 61 581 24 2,766.42 84.12
uf61-263/n75 61 263 24 1,695.37 28.98

ais8 113 1,520 40 64,167.11 3,711.34
uf113-486/n17: 113 486 40 58,267.11 51.74

Table 6.6: Comparison of the average local search cost and sdnclu values for All-Interval-
Series and Random-3-SAT instances.

Blocks World Planning Applying the same methodology to small instances from the
Blocks World Planning domain essentially con�rms the observations from the previous sec-
tion. The results are reported in Table 6.5; just as for the graph colouring domain, the
Blocks World Planning instances are signi�cantly more di�cult for SLS algorithms than
Random-3-SAT instances with identical search space size and a similar number of solu-
tions. Again, with growing problem size, the di�erence in local search cost becomes more
pronounced. At the same time, when compared with the corresponding Random-3-SAT
instances, the Blocks World Planning instances show signi�cantly higher average sdnclu
values which also appear to grow faster with increasing problem size.

Note that because the Blocks World Planning instances have only one resp. two solutions,
when taking into account the correlation between the number of solutions and average local
search cost for Random-3-SAT, the corresponding Random-3-SAT instances are amongst the
hardest of the respective test-sets. Therefore, we could not extend our analysis to the larger
Blocks World Planning instances, because the corresponding Random-3-SAT problems are
beyond the reach of even the most powerful SLS algorithms, given our computational re-
sources and the type of analysis performed.

All-Interval-Series Performing the same analysis for the two smaller All-Interval-Series
instances shows that for those, also much higher sdnclu values than for corresponding
Random-3-SAT instances can be observed (cf. Table 6.6). However, the All-Interval-Series
instances are more di�cult to solve. This is not consistent with our observations for the
instances from the Graph Colouring and Blocks World Planning domains and indicates that
there are other factors which render the All-Interval-Series instances so hard for stochastic
local search.
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In summary, in this section we found some evidence that the standard deviation of the objec-
tive function (sdnclu), which intuitively corresponds to the ruggedness of the search space,
is much lower for Random-3-SAT than for any of the more structured problem instances.
The sdnclu value might also be correlated to the average local search cost for GWSAT.
However, this correlation is somewhat noisy and does not account for the di�erences in
hardness between Random-3-SAT instances with an identical or similar number of solutions
or the relative hardness of All-Interval-Series instances when compared to instances from
other structured problem domains. On the other hand, for Graph Colouring and Blocks
World Planning instances, which are signi�cantly easier to solve than Random-3-SAT in-
stances with identical search space size and an almost identical number of solutions, we
consistently observed signi�cantly higher sdnclu values.

6.5 State Types and their Distribution

To further re�ne the analysis, in this section we classify search space states (or positions)
according to the topology of their local neighbourhood and analyse the distributions of these
state types. A similar approach has been followed in [Yok97]; it is based on the obvious
fact that SLS algorithms are mainly guided by the local neighbourhood of the search space
states along their trajectories. We classify the state types in the following way:

De�nition 6.1 (Search Space State Types)

Let S be a search space, N � S � S a neighbourhood relation, and f : S 7! N an
objective function on S. For a search space state s 2 S, we de�ne the following
functions which determine the number of upwards, sidewards, and downward steps
from s:

upw(s) := #fs0 2 N(s) j f(s0) > f(s)g
sidew(s) := #fs0 2 N(s) j f(s0) = f(s)g

downw(s) := #fs0 2 N(s) j f(s0) < f(s)g

Based on these functions, we de�ne the following state-types:

SLMIN(s) :, downw(s) = sidew(s) = 0
LMIN(s) :, downw(s) = 0 ^ sidew(s) > 0 ^ upw(s) > 0
IPLAT(s) :, downw(s) = upw(s) = 0
BPLAT(s) :, downw(s) > 0 ^ sidew(s) > 0 ^ upw(s) > 0
SLOPE(s) :, downw(s) > 0 ^ sidew(s) = 0 ^ upw(s) > 0
LMAX(s) :, downw(s) > 0 ^ sidew(s) > 0 ^ upw(s) = 0
SLMAX(s) :, sidew(s) = upw(s) = 0

2

The intuition behind these state types is that SLMIN and SLMAX states are strict local
minima and strict local maxima, resp., LMIN and LMAX are (non-strict) local minima
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and local maxima which may occur on plateau regions; IPLAT states occur in the interior
of plateaus, BPLAT characterises plateau border states, and SLOPE states correspond to
sloping regions of the search space, where any direct step either increases or decreases the
value of the objective function.

Obviously, for any given search space S, neighbourhood relation N , and objective function
f , the classes of search space states induced by these predicates form a complete partition
of S, i.e., every search space state falls into exactly one of these types. Note also that
these types can be weakly ordered according to the restrictiveness of their de�ning predi-
cates when assuming that de�ning equalities are more restrictive than inequalities; in this
respect, SLMIN, SLMAX, and IPLAT are most restricted, followed by LMIN, LMAX, and
SLOPE, while BPLAT is least restricted. This ordering can be further re�ned by addition-
ally assuming that conditions on the number of sideward steps are more restrictive than
those on the number upwards or downward steps; the underlying intuition is that in the
latter case are many options (i.e., objective function values), while for sideward steps, the
objective function value is �xed. Thus, type SLOPE is more constrained than LMIN and
LMAX, and IPLAT is more restrictive than SLMIN and SLMAX. For random search space
structures, we would therefore expect a distribution of the state types according to this
ordering, i.e., the more constrained a state type is, the more seldomly it should occur.

However, it is not clear whether and to what extent the search spaces induced by the SAT
instances from our benchmark suite, assuming the standard GSAT neighbourhood relation
and objective function, exhibit random structure. Even for the Random-3-SAT instance
distributions considered here, due to the restricted number of clauses (compared to the
search space size, the number of clauses is logarithmic), the search space structure cannot
expected to be truly random.2 Therefore, to get a clearer picture of how local features of the
search space topology a�ect SLS behaviour, we take an empirical approach to investigating
state type distributions.

Before we report the results of our empirical analysis of state type distributions, we de�ne
the important notion of a plateau region.

De�nition 6.2 (Plateau Region)

Let S be a search space, N : S 7! S a neighbourhood relation, and f : S 7! N

an objective function on S. A set S 0 � S of search space states is a region, if
it is connected by N , i.e., for each pair of states s0; s00 2 S0, a connecting path
s0 = s0; s1; : : : ; sk = s00 exists, for which all si are in S0 and all si, si+1 are direct
neighbours w.r.t. N. The border of a region S0 is de�ned as the set of states within S0

which have at least one neighbour state which does not belong to S0.

2One potential way for generating truly random search space structure is by means of random canonic
normal form formulae; this approach would, however, require a number of clauses which is exponential larger
than the number of variables.
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instance avg lsc SLMIN LMIN BPLAT IPLAT SLOPE LMAX SLMAX

uf10-49/easy 5.48 0.10% 1.46% 87.21% 0% 10.35% 0.78% 0.10%
uf10-49/medium 24.59 0.10% 3.42% 83.50% 0% 11.82% 0.90% 0.20%
uf10-49/hard 244.15 0.20% 3.22% 86.52% 0% 7.51% 2.44% 0.10%
uf20-91/easy 13.05 0% 0.11% 99.27% 0% 0.59% 0.04% < 0:01%
uf20-91/medium 83.25 < 0:01% 0.13% 99.40% 0% 0.31% 0.06% < 0:01%
uf20-91/hard 563.94 < 0:01% 0.16% 99.23% 0% 0.56% 0.05% < 0:01%

Table 6.7: Distribution of search space state types for instances from Random-3-SAT test-
sets uf10-49 and uf20-91, based on complete exhaustive sampling.

Now, a plateau region is de�ned as a region S 0 for which

(i) all states s0 2 S0 have the same objective function value, i.e., 9l 2 N : 8s0 2 S0 :
f(s0) = l, and

(ii) no state s0 from the border of S0 has a neighbour state with the same level as s0,
i.e., :9s0 2 S0; s00 2 S � S0 : N(s0; s00) ^ f(s0) = f(s00).

2

Obviously, the combined size of all plateau regions in S0 is given by the sum of the number
of IPLAT, BPLAT, LMIN, and LMAX states. In the following, we will use the term local
minima region to refer to plateau regions containing LMIN states. Note that this de�nition
covers the notions of both, local minima and benches, as de�ned in [FCS97]. As we will
argue later (cf. Section 6.6), this approach makes sense in the light of our �ndings regarding
the topology of local minima regions, considering that we are mainly concerned with SLS
algorithms which can e�ectively escape local minima, such as GWSAT.

Random-3-SAT In a �rst experiment, we determined the complete state type distri-
bution for the easy, medium, and hard instance of test-set uf20-91 (the search space of
these instances is small enough for exhaustive sampling). Table 6.7 shows the results of
this analysis; avg lsc refers to the mean local search cost for GWSAT (measured in steps
per solution, using approximately optimal noise, 100 tries per instance); the percentages
for the state types specify the fraction of the sample matching this state type. Entries
reading < 0:01% and > 99:99% indicate that the corresponding values are in the open
intervals (0%; 0:01%) and (99:99%; 100%), respectively. The results are consistent with the
ordering based on the restrictiveness of the state types discussed above: BPLAT states are
predominant, followed by SLOPE, LMIN, and LMAX states; SLMIN and SLMAX states
occur very rarely, and no IPLAT states were found for any of the instances analysed here
or later. First of all, this suggests that the search spaces of Random-3-SAT instances show
indeed structural properties (regarding state type distributions) similar to enirely random
search spaces. But while random search spaces can be expected to contain equal numbers
of LMIN and LMAX resp. SLMIN and SLMAX states, this is apparently not the case for
Random-3-SAT search spaces. Here, LMIN states occur more more frequently than LMAX
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instance avg lsc SLMIN LMIN BPLAT IPLAT SLOPE LMAX SLMAX

uf50-218/medium 615.25 0% 47.29% 52.71% 0% < 0:01% 0% 0%
uf100-430/medium 3,410.45 0% 43.89% 56.11% 0% 0% 0% 0%
uf150-645/medium 10,231.89 0% 41.95% 58.05% 0% 0% 0% 0%

Table 6.8: Distribution of search space state types for medium hardness problem instance
from various Random-3-SAT test-sets, based on sampling along GWSAT trajectories (wp
= 0.5).

states. This is most probably an e�ect of the CNF generation mechanism for Random-3-
SAT instances; since each added three-literal CNF clause \lifts" the objective function for
one eighth of the search space states by one, while the remaining states remain una�ected,
local maxima are more likely to be eliminated when more and more clauses are added.

Our results also suggest that for Random-3-SAT at the phase transition, instance hardness
might be correlated to the number of LMIN states, which conforms to the intuition that local
minima states impede local search (cf. [Yok97]). But more interestingly, since we do not
observe any IPLAT states, for algorithms using random walk (like GWSAT), there is always
a direct escape route from any local minimum state. Thus, the common analogy relating
local minima regions to basins is apparently not correct for Random-3-SAT instances from
the phase transition, as each local minimum state has at least one neighbour which is not
part of its plateau region.

We do not include analogous results for larger Random-3-SAT instances, since for these,
exhaustive sampling is impractical (due to their huge search spaces) and random sampling
�nds almost exclusively BPLAT (and, very seldomly, SLOPE) states. Instead, in the fol-
lowing, we turn to sampling the state distributions from the trajectory of GWSAT using a
noise setting of 0.5.3 For obtaining these samples, we used 100 tries of the algorithm with
a maximum of 1,000 steps each. If within one of these short tries a solution was found,
this try was aborted as usual, to prevent solution states from being over-represented in the
sample.4 Therefore, the actual sample sizes vary; however, we made sure that each sample
contained at least 50,000 search space states.

The results of this analysis, reported in Table 6.8, show clearly that GWSAT is strongly
attracted to local minima states (as is to be expected, given its close relation to gradient
descent). They also suggest that neither SLMIN, nor IPLAT or SLOPE states play a
signi�cant role in SLS behaviour on Random-3-SAT instances. This is consistent with our
earlier observation for small instances, that these state types are extremely rare or do not
occur at all.

3We chose this noise setting, because it is close to optimal for almost all the domains from our benchmark
suite, and we prefer to use identical parameter settings for all problem domains to enhance comparability of
our results across problem domains.

4GWSAT will, once it has found a solution, return to that solution over and over again with a very high
probability, unless the search is restarted.
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instance avg lsc SLMIN LMIN BPLAT SLOPE

at30/n19 1,775.8 0.44% 72.86% 26.58% 0.12%
uf90-388/medium 2,492.1 0% 49.41% 50.59% 0%

at50/n4 4,539.2 1.30% 61.13% 37.10% 0.46%
uf150-645/medium 10,231.9 0% 41.95% 58.05% 0%

bwp/anomaly 944.2 18.68% 16.01% 54.94% 10.37%
uf48-210/n49 1,509.5 0% 46.01% 53.97% 0.02%

bwp/medium 1,787.9 6.56% 33.40% 56.31% 3.73%
uf116-499/n92 12,484.5 0% 44.77% 55.23% 0%
ais6 2,766.42 8.35% 40.78% 44.33% 6.55%
uf61-263/n75 1,695.37 0.03% 50.51% 49.46% 0%
ais8 64,147.11 4.73% 41.31% 48.35% 5.61%
uf113-486/n17 58,267.11 0% 42.14% 57.86% 0%

Table 6.9: Distribution of search space state types for instances from the Random-3-SAT
(uf-�), Graph Colouring (flat-�), Blocks World Planning (bwp-�), and All-Interval-Series
(ais-�) domains; based on sampling along GWSAT trajectories (wp = 0.5).

Graph Colouring, Blocks World Planning, and All-Interval-Series Applying an
analogous analysis to the other problem domains from our benchmark suite, we �nd essen-
tially the same situation (cf. Table 6.9). To abstract from the predominant inuence of the
number of solutions on local search behaviour, we used the same pairs of instances as in
Section 6.4. IPLAT, MAX, and SLMAX states were not observed for any of the instances
and are therefore not listed in the table. The results show several di�erences between the
problem domains. First, while for Random-3-SAT, SLMIN states are almost never encoun-
tered, they regularly occur for the other problem domains. The same holds for SLOPE
states. For the Blocks World Planning and All-Interval-Series instances, both observations
can be intuitively explained by the fact that these have a signi�cantly higher clauses per
variable ratio than Random-3-SAT instances from the phase transition (cf. Chapter 4).
Adding clauses tends to break up plateau regions [Yok97], which eventually converts some
LMIN states into SLMIN states. Using a similar argument, it is easy to see that at the same
time, BPLAT states are converted into SLOPE states. However, this explanation does not
account for the corresponding observation regarding Graph Colouring instances, as these
have a slightly lower clauses per variable ratio than Random-3-SAT at phase transition. As
the All-Interval-Series instances are harder than corresponding Random-3-SAT instances,
while Graph Colouring and Blocks World Planning instances are signi�cantly easier, our
results give no indication that the more frequent occurrence of SLMIN or SLOPE states for
the SAT-encoded instances has any disadvantages, nor advantages w.r.t. SLS performance.

Second, the ratio between BPLAT and LMIN states is di�erent for most of the domains:
While for the Graph Colouring instances, more LMIN states are encountered, Blocks World
Planning instances show more BPLAT states. For Random-3-SAT as well as All-Interval-
Series, the ratio is more even, with a slight dominance on the side of the BPLAT states.
However, since both, the Graph Colouring and the Blocks World Planning instances are
signi�cantly easier for GWSAT than the corresponding Random-3-SAT instances, this does
not suggest any correlation between the hardness of a problem instance and the BPLAT to
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LMIN ratio along GWSAT trajectories. Intuitively, this means that neither LMIN states
nor BPLAT states induce signi�cantly more di�culties for SLS algorithms.

Summarising these results, we found that IPLAT states do not occur for any of the instances
analysed here, regardless of whether the search space is randomly sampled, or whether the
samples are based on GWSAT trajectories. Furthermore, SLOPE as well as SLMIN states
occur very seldomly for Random-3-SAT instances and only occasionally for SAT-encoded
instances from any of the other domains when sampling GWSAT trajectories. Instead,
the state type distributions thus obtained are dominated by BPLAT states, which mainly
represent the gradient descent and plateau escape behaviour of GWSAT, and LMIN states,
which characterise the plateau search phases of GWSAT's search. Somewhat surprisingly,
our results regarding the ratio of BPLAT and LMIN states along GWSAT's trajectories
when applied to instances from various problem domains, do not give clear evidence for the
plateau search phase having a signi�cantly larger or smaller impact on SLS performance
than the gradient descent and plateau escape phases.

Thus, analysing state type distributions did not provide a simple feature that could account
for the observed di�erences in SLS performance between various problem instances and
domains. Consequently, we have to consider other, less localised features in our attempt to
gain a better understanding of SLS behaviour. To this end, the fact that BLMIN states are
never observed, provides an interesting starting point.

6.6 Local Minima Branching

Obviously, local minima regions play an important role for local search and it is a well-
known fact that the number of local minima states and regions has a major impact on SLS
performance [Yok97, FCS97]. But of course, not only the number of local minima states
in the search space matters, but also their distribution. In earlier work, the metaphor of
plateaus consisting of local minima was often used in the context of characterising SLS
behaviour or search space structure. The number and size of these plateaus, as well as the
number of their exits have been studied for Random-3-SAT [FCS97], while their geometry
has not been addressed. This is somewhat surprising, since it is intuitively clear that, under
the standard assumption that SLS algorithms spend most of their search e�ort in plateau
regions, notions like the diameter, or the length of escape routes from a given plateau, should
be extremely relevant. The topology of local minima regions is particularly interesting
given the proven e�ectiveness of random walk techniques in the context of modern SLS
algorithms, as, assuming a plateau-like, compact structure, random walk steps are only
e�ective for escaping from a plateau if they are executed at its border. From Section 6.5
we know that interior plateau states are non-existent, or extremely rare, both for Random-
3-SAT and SAT-encoded problems. Therefore, every state in a plateau is a border state |
which partly explains the e�ectiveness of simple escape strategies.

In the following, we study the geometry of local minima regions for classes of random and
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Figure 6.13: Empirical blmin probability distributions for easy and hard Random-3-SAT
instances from uf50-218 test-set.

structured SAT problems in more detail. Our analysis is based on measuring the branching
of local minima states, where the branching factor of a local minimum state (blmin) is
de�ned as the number of its direct neighbours with identical objective function value.5

Thus, blmin is a positive integer between 0 and n (the number of variables for the given
instance). It is quite obvious to assume that the branching, i.e., the number of direct escapes
from a given plateau state, should have an important impact on the e�ectiveness of escape
mechanisms like random walk. But measuring blmin is not as simple as one might think;
given the low relative proportion of local minima states when compared to the total size of
the search space (cf. Section 6.5), random sampling is not an option. Therefore, we sample
along trajectories of GWSAT (for approx. optimal noise); this has the additional e�ect of
concentrating the analysis to the regions of the search space which are more relevant for SLS
behaviour. If not indicated otherwise, our analyses are based on a sample obtained from
100 GWSAT tries with a maximal number of 1,000 steps per try. Thus, our samples usually
contain 100,000 search space states; since in some of the tries, GWSAT �nds a solution, the
actual size of the samples might be slightly lower in some instances.6

Random-3-SAT To study the dependence of SLS performance on the branching of local
minima, we investigate the correlation between the average solution cost for GWSAT and the
average blmin values obtained by sampling GWSAT trajectories (as described above). First,
we study some blmin distributions; later on, as in previous sections, we do a correlation
analysis, computing correlation coe�cients and performing linear regression. To keep the
computation times within acceptable limits, we use the same reduced Random-3-SAT test-
sets as in Section 6.4.

5Note that, for the SLS algorithms considered here, the number of direct neighbours is equal to the
number of variables.

6To limit this e�ect, we had to keep the tries rather short.
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Figure 6.14: Correlation between average blmin and average local search cost for GWSAT
(approx. optimal noise) for test-sets uf50-218 (left) and uf100-430 (right) (Random-3-SAT
at phase transition).

Figure 6.13 shows two typical blmin distributions, here for the easy and hard instance from
the uf50-218 test-set. As can be seen from the plots, the average branching of LMIN states
is quite low; this indicates that the overall structure of plateaus is very brittle, and for
most problems, the LMIN states encountered have a large number of direct escapes when
using random walk. Consequently, when encountering a local minimum region, an SLS
algorithm's chance for escaping within a small number of random walk steps is rather high.
Also, the branching seems to be even lower for the hard instance. This observation suggests
a possible correlation between the average local minima branching and the hardness of a
problem.

The results of an analysis of this correlation for the reduced Random-3-SAT test-sets with
di�erent problem sizes are shown in Figure 6.14. The scatter plots and lms �ts indicate a
negative correlation which gets stronger with increasing problem size. Table 6.10 shows the
corresponding correlation coe�cients and regression parameters; for the larger instances,
also a greater inclination of the regression line is observed.

Generally, the observed correlation indicates that problems having a less branched plateau
structure tend to be harder for GWSAT. This might seem a bit counter-intuitive, because
using random walk, less branched plateau structures should be both easier to escape from
and less di�cult to search. But somehow this e�ect is either not present or dominated by
another phenomenon. Since we know from Section 6.2 that the number of solutions is highly
correlated with local search cost, one could hypothesise that, like the standard deviation of
the objective function sdnclu, the average branching is somehow coupled with the number
of solutions, which in turn dominates other inuences on the mean local search cost.

Figure 6.15 (left) shows the correlation between the average local minima branching and
the number of solutions for test-set uf50-218. The correlation coe�cient of 0:68 indicates
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Figure 6.15: Left: Correlation between average blmin and number of solutions; right: same
for average blmin vs sdnclu; all data for test-set uf50-218 (Random-3-SAT at phase tran-
sition).

test-set a b r

uf20-91/50 -0.06 2.13 -0.13
uf50-218/50 -0.20 4.14 -0.44
uf100-430/50 -0.19 5.84 -0.44

test-set a b r

uf50-163/50 -0.14 3.48 -0.68
uf50-218/50 -0.20 4.14 -0.44
uf50-273/50 -0.14 3.30 -0.35

Table 6.10: Correlation between average blmin and the average local search cost, left:
for di�erent problem sizes at phase transition, right: across phase transition; a; b are the
parameters of a lms linear �t using the function ax + b, r is the correlation coe�cient.

that there is a slightly stronger correlation than the one observed between sdnclu and the
number of solutions for the same test-set. As shown in Figure 6.15 (right), we also observe a
rather strong correlation (correlation coe�cient = 0:66) between the average local minima
branching and sdnclu for the same test-set. This suggests the following explanation: For
Random-3-SAT, a larger number of solutions tends to come along with clustering phenomena
which, in turn, are characterised by both a larger branching of local minima as well as a
higher standard deviation of the objective function values, i.e., a more \rugged" search space
topology. As a consequence, the average local minima branching can be used to estimate
the number of solutions and therefore also the hardness of Random-3-SAT instances.

Determining the correlation between the average local minima branching and the mean
local search cost for the 50 variable test-sets across the phase transition, we get similar
results as the ones for sdnclu reported in Section 6.4. As can be seen from Figure 6.16 and
the correlation data in Table 6.10, the correlation gets weaker with an increasing clauses
per variable ratio. At the same time, for an increasing number of clauses, the average
local minima branching decreases monotonically. This suggests that, for a �xed number of
variables, the search space topology gets more and more rugged with an increasing number
of clauses | an assumption which is con�rmed by the results of [Yok97]. Furthermore,
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Figure 6.16: Correlation between average blmin and average local search cost (GWSAT,
approx. optimal noise) for under- and overconstrained Random-3-SAT instances, test-sets
uf50-163 (left) and uf50-273 (right).

instance variables clauses solutions avg lsc avg blmin

at30-60/n19 90 300 432 1775.8 3.40
uf90-388/med 90 388 404 2492.1 10.35

at50-115/n4 150 545 5892 4539.2 3.73
uf150-645/med 150 645 5884 10231.9 16.87

Table 6.11: Comparison of average local search cost and average local minima branching
factors for Graph Colouring and Random-3-SAT instances.

at the phase transition the inclination of the regression line is maximal which indicates a
stronger dependence of the average solution cost on the average local minima branching.
Again, this observation is consistent with analogous observations for the dependence of the
local search cost on the number of solutions and the explanation given above. Note that for
high clauses per variable ratios, the average local minima branching seems to be a better
estimator for the local search cost than sdnclu (cf. Tables 6.3 and 6.10).

Graph Colouring Next, we analysed the average local minima branching factor for in-
stances from the Graph Colouring domain as compared to Random-3-SAT instances with
the same search space size. The results are reported in Table 6.11; they indicate that Graph
Colouring instances, which are signi�cantly easier to solve for SLS algorithms, have a much
lower average local minima branching factor than the hard Random-3-SAT instances. Also,
with increasing problem size, the branching factor seems to grow faster for the Random-3-
SAT instances than for the more structured Graph Colouring instances.
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instance variables clauses solutions avg lsc avg blmin

bwp/anomaly 48 261 1 944.2 2.69
uf48-210/n49 48 210 1 1,509.5 6.34

bwp/medium 116 953 2 1,787.9 3.44
uf116-499/n92 116 499 16 12,484.5 13.44

Table 6.12: Comparison of average local search cost and average local minima branching
factors for Blocks World Planning and Random-3-SAT instances.

instance variables clauses solutions avg lsc avg blmin

ais6 61 581 24 2,766.42 2.33
uf61-263/n75 61 263 24 1,695.37 7.19

ais8 113 1,520 40 64,147.11 2.83
uf113-486/n17 113 486 40 58,267.11 12.01

Table 6.13: Comparison of average local search cost and average local minima branching
factors for All-Interval-Series and Random-3-SAT instances.

Blocks World Planning Performing a similar analysis for the two smallest Blocks World
Planning instances, we obtained very similar results to those for the Graph Colouring do-
main (cf. Table 6.12). Clearly, the Blocks World Planning instances, which are signi�cantly
easier to solve for GWSAT, have a much lower average local minima branching factor than
the hard Random-3-SAT instances. As for observed for the Graph Couloring instances,
with increasing problem size, the branching factor seems to grow faster for Random-3-SAT
than for the more structured Blocks World Planning domain.

All-Interval-Series Applying analogous methodology to the two smaller All-Interval-
Series instances surprisingly gives a di�erent result (cf. Table 6.13). Although compared to
corresponding Random-3-SAT instances the local search cost (for WalkSAT, approx. opti-
mal noise setting) is signi�cantly higher, we observe much lower local minimum branching
factors. This is not consistent with our observations for the other problem domains and
strongly suggests that there are other factors which account for the relative hardness of
instances from the All-Interval-Series domain.

Summing up the results of this section, by analysing the local minima branching factor blmin
along GWSAT trajectories we found evidence that the local minima structure is generally
rather brittle than compact, i.e., for the LMIN state visited by GWSAT, there is usually
a relatively large number of direct escape routes when using random walk. In contrast,
the often used plateau metaphor would suggest that the average blmin value should be
rather high, i.e., close to n (the number of variables of the given problem instance), making
it much more di�cult for algorithms like GWSAT to escape from such plateaus. We also
observed a positive correlation between the average blmin value and the average local search
cost for Graph Colouring and Blocks World Planning instances. This is consistent with our
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intuition that highly branched structures, which tend to have a higher potential for non-
deterministic looping behaviour, are more di�cult for SLS algorithms to search for solutions.
However, for the All-Interval-Series domain, we observed very low branching factors despite
the hardness of the instances. For Random-3-SAT, a negative correlation between the
number of solutions and the average blmin value dominates our observed results, suggesting
that the average local minima branching factor can be used for estimating the number of
solutions for Random-3-SAT instances.

6.7 Related Work

The analysis of search space structure and its inuence on SLS performance is a rather new
area of research. There is, however, a number of studies which are related to the approaches
followed here.

Section 6.2 is mainly based on methodology used by Clark et al. [CFG+96] for studying
the correlation between the number of solutions and local search cost for CSP and SAT.
However, reviewing the results reported in [CFG+96], we �nd that their results for SAT are
considerably less conclusive than those for CSP: Mainly, the reported correlation is consid-
erably weaker, and while for CSP, a minimal regression gradient can be found at the phase
transition, an analogous phenomenon could not be observed for SAT. Our results reported
in Section 6.2 eliminate these inconsistencies by overcoming several methodological weak-
nesses of their analysis. Nevertheless, their main result, the existence of a strong negative
correlation between the number of solutions and average local search cost, is con�rmed by
our re�ned analysis.

Parkes [Par97] follows a di�erent approach by analysing the clustering of solutions for
Random-3-SAT instances. His results show that solutions usually occur in large clusters;
however, from his study it remains unclear whether this is bene�cial or detrimental for
SLS performance. Our analysis of strati�ed Random-3-SAT test-sets suggests that, while
clustering e�ects might have an inuence on SLS performance, there have to be other, more
dominant factors. These probably include clustering phenomena regarding non-solution
plateaus, which could be related to Parkes' results concerning \failed clusters".

Our approach of analysing state type distributions and local minima structure is partly
related to Yokoo's analysis of how constrainedness a�ects a simple hill-climbing algorithm's
performance for Random-3-SAT and (un-encoded) Graph Colouring test-sets across the
phase transition [Yok97]. Our approach of measuring search space state type distributions
is related to his counting of local minima states. However, his analysis is solely based on
the exhaustive analyis of search spaces for very small instances. He also observes that strict
local minima are very rare, but does not investigate the frequency of occurrence for other
state types. His main result, stating that with increasing constrainedness, the number of
local minima states and the size of the local minima basins decrease, are complemented by
our analysis presented here.
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Probably the most detailed study of search space topology so far can be found in [FCS97,
Fra97b]. Unlike our approach, this work focusses on more global features of search space
structure, like the size and number of di�erent types of plateau regions. Their analysis is
mainly restricted to a number of random problem instance distributions, including hard
Uniform Random-3-SAT, the search spaces of which are sampled using GSAT. While many
aspects of their approach towards search space analysis appear to be promising, their results
are very limited in their scope. They show that local minima regions as well as \benches",
i.e., plateau regions with neighbouring states that have a lower objective function value,
are the characteristic structures for a large part of the search space and are highly variable
in size. Their analysis addresses neither the correlation between these features and SLS
performance, nor the topology of local minima regions, which is highly relevant in the
context of SLS behaviour. It is also not clear how their results apply to SAT-encoded
instances from other problem domains.

The importance of plateaus and local minima for SLS behaviour has been also stressed
by Gent and Walsh [GW93b, GW93a], who established that GSAT spends most of its
time searching plateaus. Many SLS methods are based on the notion that the ability of
escaping from local minima leads to considerably improved performance. Among these are
GSAT variants like GWSAT [SKC94], HSAT [GW93b], and WalkSAT; but also di�erent
approaches like Tabu Search [MSG97, Glo89], Simulated Annealing [KJV83, SKC93, Spe93],
or the Breakout Method [Mor93]. Recently it could be shown that information on search
space structure can be successfully used for automatically tuning search behaviour: Boyan's
and Moore's Stage approach [BM98] improves local search behaviour based on features
of the underlying search spaces which are measured during the search.

6.8 Conclusions

In this chapter, we investigated various aspects of search space structure and studied their
correlation to the search cost for SLS algorithms. Analysing the number of solutions per
instance and its correlation to average local search cost for GWSAT across various Random-
3-SAT test-sets, we con�rmed earlier results for basic GSAT by observing a strong negative
correlation. The strength of this correlation, however, decreases monotonically for growing
constrainedness, indicating that for over-constrained problem instances, there is consider-
ably more variance in local search cost than for critically or under-constrained instances
with a similar or identical number of solutions. At the same time, we could show that the
inuence of the number of solutions is maximal at the phase transition region.

To abstract from the strong impact of the number of solutions on local search cost, in our
further analysis, we used mainly sets or pairs of instances with a similar or identical number
of solutions. Analysing hardness distributions for such subsets (strata) of Random-3-SAT,
we found that the local search cost is still extremely variable within these strata. From an
analysis of a single-solution stratum we found evidence that the clustering of solutions, as
studied in [Par97], seems to have no major e�ect on local search cost for Random-3-SAT.
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Consequently, there have to be other features of search space structure which are responsible
for the large hardness variation within the strata.

As possible candidates for such features, we have studied the standard deviation of the
objective function (sdnclu) over the search space and the average local minima branching
factor (avg blmin) along GWSAT trajectories. To our best knowledge, these two measures
have not been studied before in the context of search space structure. Intuitively, large
sdnlcu values should indicate a rugged search space structure for which stochastic local
search approaches based on hill-climbing are more e�ective than for featureless, at search
spaces with many plateaus. This intuition could be empirically con�rmed for the Graph
Colouring and Blocks World Planning domains, while for Random-3-SAT test-sets and All-
Interval-Series instances we did not observe this correlation.

Since we know from previous work, that the number of local minima states has an impact on
local search cost [Yok97], we extended these results by studying the structure of local minima
regions. Surprisingly, we found that local minima regions have a very brittle structure, such
that for each local minimum state only a small number of its neighbours belong to the same
plateau region. Thus, the plateau regions resemble multi-dimensional systems of narrow
canyons rather than compact basins. Consequently, using techniques like random walk, it
should be extremely easy to directly escape from plateau regions with only a small number
of escape steps.

For Graph Colouring and Blocks World Planning instances, we observed a positive correla-
tion between the average blmin value and the average local search cost. This conforms to
the intuition that highly branched structures are more di�cult for SLS algorithms, because
they have a higher potential for non-deterministic looping behaviour and a smaller number
of escape routes per local minima state. For the Random-3-SAT and All-Interval-Series
domains, our observations did not con�rm this intuition. This indicates the existence of
other search space features, which have a signi�cant inuence on SLS performance.

In summary, we identi�ed and analysed a number of search space features inuencing the
hardness of instances for local search. Some of these features, like the average local minima
branching, appear to be considerably di�erent between Random-3-SAT and SAT-encoded
instances from other domains. However, our results cannot explain all the observed di�er-
ences in instance hardness within and across problem domains. Consequently, there have
to be other, yet unknown factors which a�ect local search performance. In this sense, our
analysis of search space structure is far from being complete, but extends the previous state
of knowledge with new methodological approaches and novel insights.
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Chapter 7

SAT Encodings
and Search Space Structure

SLS algorithms for SAT have been successfully applied to hard combinatorial problems from
di�erent domains. On one hand, these applications have become possible by using powerful
SLS algorithms like WalkSAT. But they also critically rely on the use of suitable SAT-
encodings. Because of theNP-completeness result for SAT [Coo71], we know that instances
from any NP-complete problem can be encoded in SAT, and even 3-SAT, in polynomial
time; consequently, the size of the encoded instances is also polynomial in the size of the
original representations. However, this alone does not guarantee the existence of suitable
SAT-encodings, since su�ciently small and e�ciently computable SAT representations could
still be extremely hard for existing SLS algorithms. In particular, this might happen if the
encoding induces search space features which impede local search. Thus, the analysis of how
encoding strategies a�ect search space structure and SLS performance is a very interesting
and relevant issue in the context of a generic problem solving approach based on SAT as
an intermediate representation domain and SLS algorithms as solvers for this domain (cf.
Chapter 1).

In this chapter, we investigate the impact of encoding strategies on SLS performance and
search space structure. Since this is a complex issue which has rarely been studied before,
we can only undertake an initial investigation here. After giving further motivation and
background on SAT-encodings, we present two case studies. First, we study sparse versus
compact encodings for hard Random Binary CSP instances. Furthermore, we compare the
performance of a state-of-the-art SLS algorithm for CSP with the performance of some of the
best SLS algorithms for SAT applied to instances from this domain. The second case study
extends the analysis of sparse versus compact encodings to hard Random Hamilton Circuit
instances. For this problem domain, we also investigate the e�ects of symmetry elimination
on di�erent problem representations and encodings. After a brief look on related work, the
chapter closes with a summary of our main results and some conclusions.

177
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7.1 Motivation and Background

Until now, our study of SLS algorithms, their behaviour, and their applications has been
focussed on the algorithms themselves, the analysis and characterisation of their run-time
behaviour, and on the factors which inuence their performance. Coming back to the
generic problem solving model from Chapter 1, one issue has not been addressed so far: the
inuence of the encoding strategies used for translating problems from other domains into
the intermediate domain (in our case, SAT) on the performance of SLS algorithms for the
encoded problem instances. In Chapter 4, where we evaluated a number of modern SLS
algorithms for SAT on various problem classes, we always used encodings which are already
known to be e�ective in the sense that they facilitate good SLS performance. However,
devising such encodings is usually not simple. At the same time, �nding e�ective encodings
is a crucial condition for successfully applying the generic problem solving scheme.

When developing encodings, two fundamental issues are space and time complexity: As
argued before, both encoding problem instances and decoding solutions have to be e�cient
enough that the overhead compared to directly using a solver for the original domain is
not too high. Also, the encoded problem instances should not grow too large compared
to the original representation. When using SAT as an intermediate domain, and applying
SLS algorithms for solving the encoded instances, intuitively it seems that the number of
propositional variables should be kept small, because this way, smaller search spaces are
obtained. However, it is not clear whether encodings which are optimised for a minimal
number of propositional variables are really advantageous, as they might induce search space
features which signi�cantly impede stochastic local search.

Furthermore, some problem domains (such as the Hamilton Circuit Problem discussed later
in this chapter, or problems from various planning domains) allow di�erent basic represen-
tations, where a priori it is not clear which of several representations is most e�cient in
conjunction with the generic problem solving approach outlined before. Another issue is
symmetry elimination and pruning | depending on the original problem formulation, often
the search space can be pruned before encoding the problem; also, problems have often sym-
metric solutions which can be collapsed before encoding them into the intermediate domain.
This is the case for the Hamilton Circuit Problem, where for the basic representations we
will use later, a symmetry is given by the starting point of the cyclic tour through a given
graph. Again, a priori it is not clear, whether eliminating such symmetries is advantageous
w.r.t. maximising SLS performance on the encoded problem instances.

Today, these and many other issues are not well understood. Clearly, at this point and in
the context of this thesis we can only study some particular aspects of this widely open
problem. In the following, we therefore restrict ourselves to three basic questions:

� Does it pay o� to minimise the number of propositional variables, i.e., are compact
encodings which achieve small search spaces preferable to sparse encodings?

� Is it advisable to reduce the number of propositional variables required for a given en-
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coding by eliminating symmetric solutions from the original problem formulation?

� Is the generic problem solving approach competitive with applying SLS algorithms di-
rectly to the un-encoded problem instances?

While we cannot give de�nitive answers to these questions here, the two case studies pre-
sented in the following demonstrate how these issues can be investigated and also suggest
tentative answers which can and should be tested and further investigated in the future.

7.2 Constraint Satisfaction Problems

Constraint Satisfaction Problems have been formally introduced in Chapter 1. Like SAT, �-
nite discrete CSP is an NP-complete combinatorial problem. Conceptually it is very closely
related to SAT; as a consequence, most SLS algorithms for SAT can be generalised to CSP
in a rather straightforward way. Many combinatorial problems from di�erent domains can
be quite naturally represented as CSP instances; compared to SAT encodings of these prob-
lems, CSP representations are more compact and often easier to devise. Therefore, when
transforming combinatorial problems into SAT, CSP is often implicitly or explicitly used as
an intermediate representation (cf. Chapter 4, the SAT-encodings of the Graph Colouring
and All-Interval-Series problems). Nevertheless, as mentioned before, SAT is conceptually
simpler than CSP, and consequently, SAT algorithms are often easier to develop, implement,
and evaluate. In this section, we investigate SAT-encodings of binary CSPs and compare
the application of SLS-based SAT algorithms to SAT-encoded CSPs with directly solving
CSP instances using SLS algorithms for CSP.

7.2.1 SAT Encodings of the CSP

CSP instances can be easily encoded into SAT by using propositional variables to represent
the assignment of values to single CSP variables and clauses to express the constraint
relations [dK89]. To simplify the formalism for specifying SAT encodings of discrete �nite
CSP instances, we assume (without loss of generality) that the variable domains Di are all
equal to Zk = f0; 1; : : : ; k � 1g, where k is an arbitrary positive integer. Furthermore, we
denote the arity of a constraint relation Cj by �(Cj).

A very natural SAT-encoding for a given CSP P = (X;D; C) with X = fx1; : : : ; xng,
D = fD1; : : : ; Dng, and C = fC1; : : : ; Ckg is based on propositional variables ci;� which,
if assigned the value >, represent the assignment xi = �, where � 2 Di. P can then be
represented by a CNF formula comprising the following sets of clauses:
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(1) :ci;�1 _ :ci;�2 (1 � i � n; �1; �2 2 Di; �1 6= �2)

(2) ci;1 _ ci;2 _ : : :_ ci;k (1 � i � n)

(3) :ci1;�1 _ :ci2;�2 _ : : :_ :cis;�s (xi1 = �1; xi2 = �2; : : : ; xis = �s violates
some constraint C 2 C with �(C) = s)

Intuitively, these clause sets ensure that each constraint variable is assigned exactly one
value from its domain (1, 2) and that this assignment is compatible with all constraints (3).
Obviously, the number of propositional variables required for encoding a given CSP instance
is linear in the number of constraint variables and their domain sizes while the number of
clauses is at least linear in the number of constraint variables and depends critically on the
domain sizes and the arity of the constraints. This encoding has been frequently used for
translating problems from other domains into SAT (cf. Chapter 4, Section 4.4). We call
it the sparse encoding, because it generates large SAT instances the models of which have
only a small fraction of the propositional variables set to >.

Since the search space size for a given formula is exponential in the number of propositional
variables it comprises, it appears to be reasonable to minimise the number of variables re-
quired by a SAT-encoding. In the case of the SAT-encodings for CSP instances, the number
of propositional variables required for encoding a given CSP instance can be signi�cantly
reduced compared to the sparse encoding. This is achieved by a binary encoding of the value
assigned to a constraint variable xi using a group of � = dlog2 ke propositional variables ci;j
(k is the domain size of the CSP instance). To formalise this compact encoding, we use an
auxiliary function which maps a positive integer � to a propositional clause which is true
exactly if the corresponding assignment does not correspond to the binary representation
of �:

c(i; �) =
W�
j=1 l(�; j; ci;j)

l(�; j; z) =

(
:z if (� div 2i�1) mod 2 > 0
z otherwise

Now, we can represent a CSP instance P by a CNF formula using the following sets of
clauses:

(1) c(i; �) (1 � i � n; k � � < 2�)

(2) c(i1; �1) _ c(i2; �2) _ : : :_ c(is; �s) (xi1 = �1; xi2 = �2; : : : ; xis = �s violates
some constraint C 2 C with �(C) = s)

Intuitively, these groups of clauses ensure that no constraint variable is assigned an invalid
value (1) and that the assignment does not violate any constraint in C (2). This compact
encoding requires O(n � logk) propositional variables which is a considerable reduction com-
pared to the O(n � k) variables used for the sparse encoding. Usually, the clauses encoding
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test-set instances variables domain size � � vars clauses

csp20-10-s 100 20 10 0.5 0.38 200 � 4,305
csp20-10-c 100 20 10 0.5 0.38 80 � 3,504

Table 7.1: Random Binary CSP test-sets, using sparse (-s) and compact (-c) SAT-encoding;
as the number of clauses varies between the instances, we report the average number of
clauses here.

the constraint relations dominate the size of the formulae produced by both encodings, such
that the number of clauses will be similar. But because of the di�erence in the number of
propositional variables, the compact encoding generates search spaces which are smaller by
a factor of O(n � (k � log k)).

7.2.2 Benchmark Instances

For our empirical study presented in the next sections, we focussed on Uniform Random
Binary CSP, a random distribution of CSP instances based on random binary constraint
relations. More speci�cally, the problem distribution is characterised by the constraint graph
density � and the constraint tightness �; � speci�es the �xed probability that between two
randomly chosen constraint variables a constraint relation exists, while � is the expected
fraction of value pairs which are compatible with a given constraint relation between two
variables.

For this problem class, a phase transition phenomenon, similar to the one for Uniform
Random-3-SAT, has been observed [Smi94]. To obtain a test-set of hard problem instances,
CSP instances were sampled from the phase transition region of Uniform Random Binary
CSP with 20 variables and domain size 10, characterised by a constraint graph density of
� = 0:5 and a constraint tightness of � = 0:38. Filtering out the insoluble instances with
a complete CSP algorithm, test-set csp20-10, containing 100 soluble instances from this
problem distribution, was generated. These instances were translated into corresponding
sets of SAT instances using the sparse and the compact encodings (cf. Table 7.1). The
generator and the test-sets used for the subsequent studies were kindly provided by Thomas
St�utzle (TU Darmstadt, Germany).

7.2.3 Two SLS Algorithms for CSP

To study the performance di�erence between SLS algorithms for SAT applied to SAT-
encoded CSP instances and SLS algorithms for CSP directly applied to the CSP instances,
we use two competetive variants of the well-knownMin-Conicts Heuristic (MCH) [MJPL92],
which are obtained by extending the basic MCH with random walk (WMCH) and tabu-
lists (TMCH), respectively [SSS97]. These algorithms are conceptually closely related to
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function WMC(a) is

% stage 1: variable selection:

randomly select a variable xi occurring in a currently violated constraint;

% stage 2: value selection:

with probability wp do

V 0 := set of values for xi which minimise the number of conicts;

otherwise

V 0 := Di;

end with;

� := draw(V 0);
a0 := a with xi set to �;
return (a0);

end WMC;

Figure 7.1: GLSM state for realising WMCH.

WalkSAT and WalkSAT+tabu and can be modelled as 1-state+init GLSMs using the same
overall structure as GSAT (cf. Figure 4.1, page 75) but theWMC and TMC states de�ned in
Figures 7.1 and 7.2 instead of the GD state, and using a modi�ed initialisation state which
assigns a randomly chosen value to each constraint variable and, for TMCH, initialises the
tabu-list (initially empty).

For both algorithms, in each local search step, �rst a constraint variable involved in a
violated constraint is randomly selected,1 then a new value � for this variable is chosen.
The Min-Conicts Heuristic's general approach for selecting the new value � is to minimise
the number of constraint violations (conicts); thus, the scoring function is closely related
to the one used by GSAT or Novelty. WMCH and TCMH use di�erent mechanisms for
selecting �; while WMCH extends the basic selection strategy with random walk much in
the spirit of WalkSAT, TCMH uses a tabu-list of variable/value pairs to avoid stagnation
behaviour. Additionally, TMCH incorporates an aspiration criterion which allows values
which are tabu to be selected when they improve on the overall best solution since the last
restart.

7.2.4 SLS Performance

Our analysis of SLS performance is divided into three parts. First, we compare the perfor-
mance of WalkSAT on the di�erent encodings; as a result of this, we see that while the local
search cost for the sparse encodings is uniformly lower than for the compact encoding, there
is a tight correlation of SLS performance between both encodings of individual instances
across the test-set. Next, we compare the di�erent SLS-based SAT algorithms' performance
when applied to the sparsely encoded test-set. As we will show, the performance of all SLS
algorithms, when applied to the same problem instance, is closely correlated | which in-

1in this context, all random choices from sets are based on uniform distributions, i.e., each element has
the same probability for being selected.
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function TMC(a) is

% stage 1: variable selection:

randomly select a variable xi occurring in a currently violated constraint;

% stage 2: value selection:

s0 := minimal number of conicts when setting xi to any value 2 Di;

if s0 < minimal number of conicts ever encountered during this search then

V 0 := set of values for xi which minimise the number of conicts;

else

V 0 := set of values for xi which are currently not tabu;

V 00 := elements of V 0 which minimise the number of conicts;

end if;

� := draw(V 0);
a0 := a with xi set to �;
if length of tabu-list > tl then

remove oldest element from tabu-list;

add (xi; �) to tabu list;

return (a0);
end TMC;

Figure 7.2: GLSM state for realising TMCH.

algorithm mean stddev stddev
mean median Q25 Q75

Q75

Q25

csp20-10-s 23,408.70 28,770.74 1.23 12,516.37 6,168.41 30,260.64 4.91
csp20-10-c 137,689.53 199,287.07 1.45 70,042.56 22,841.89 162,885.79 7.13

Table 7.2: Test-set csp20-10, basic descriptive statistics of hardness distributions for sparse
and compact SAT-encoding, using WalkSAT (approx. optimal noise, 100 tries/instance).

dicates that the performance of the di�erent SLS methods depends on the same intrinsic
features of the problem instances. Finally, we compare the performance of SLS algorithms
for CSP applied to the original CSP instances with that of the SLS-based SAT algorithms
applied to the sparsely encoded test-set; the result of this analysis indicates that the latter
approach is quite competitive.

Sparse vs Compact SAT Encodings

To investigate the performance di�erences for SLS-based SAT algorithms between the two
di�erent encodings, we �rst determined the distribution of the average local search cost
(hardness distribution) for WalkSAT across the test-sets csp20-10-s and csp20-10-c. For
these and all the following experiments, we used approx. optimal noise settings and cuto�
parameters high enough (maxSteps � 106) to guarantee maximal success probabilities. The
average local search cost for each instance is estimated from 100 tries. The results, as can
be seen in Figure 7.3, clearly indicate that WalkSAT works signi�cantly more e�cient on
the sparse than on the compact encoding. Furthermore, it can be seen from the normalised
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Figure 7.3: Hardness distributions (average local search cost per instance) for WalkSAT,
using approx. optimal noise, when applied to test-sets csp20-10-s and csp20-10-c (sparse
vs compact SAT-encoding for CSP).

standard deviation and the percentile ratios of the hardness distributions (cf. Table 7.2)
that the compact encoding induces more variability between the instances than the sparse
encoding. Note that the variability for the sparse encoding is comparable to Random-3-SAT
at the phase transition (cf. Table 4.10, page 96).

To investigate this in more detail, next, we analysed the correlation between WalkSAT's
performance on the di�erent encodings of the individual instances, using the same method-
ology as in Chapter 4 and the parameter settings described above. Figure 7.4 shows the
correlation results as a scatter plot; as can be easily seen, there is a strong linear correlation
between the logarithm of WalkSAT's mean local search cost on the di�erently encoded test-
sets. This indicates that generally, the algorithm's behaviour depends more on properties of
the original problem instance than on features induced by the encoding. However, the cor-
relation shows some noise, especially for instances with high local search cost, which means
that independent from instance hardness, the encoding has an additional inuence on SLS
performance. But since the correlation is very strong (correlation coe�cient � 0:95), this
inuence seems to be rather limited.

As we have seen from our analysis of the hardness distributions, w.r.t. SLS performance,
the compact encoding seems to be generally inferior compared to the sparse encoding.
Performing regression analyses (as introduced in Chapter 4) for the performance correlation
in Figure 7.4 shows additionally that the performance di�erence slightly decreases as the
instances get harder. Thus, the compact encoding is particularly inferior for relatively easy
problem instances, while for intrinsically hard instances, the inuence of the encoding on
SLS performance is somewhat weaker.

To make sure that WalkSAT behaves regularly on both test-sets, we analysed the RLDs
for the easy, medium, and hard instance (determined as described in Chapter 4) in both
encodings. As expected, the results show that for RLDs, best-�t ged approximations (cf.
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Figure 7.4: Correlation of average local search cost per instance between sparse (horizontal)
and compact SAT-encoding (vertical) for CSP instances from test-set csp20-10 when using
WalkSAT with approx. optimal noise.

Chapter 5) pass a standard �2 test for the � = 0:05 acceptance level. Interestingly, when
using standard exponential distributions (which do not model the initial search phase), the
approximations for the medium and hard instances for both encodings still pass the test.
This indicates that these instances are relatively hard, such that the initial search phase
has no signi�cant inuence on WalkSAT's behaviour.

Comparison of SLS Performance

Next, we compared the performance of di�erent SLS algorithms on the sparsely encoded
test-set csp20-10-s. We applied the same methodology as in Chapter 4, Section 4.5, when
we evaluated SLS algorithms on Random-3-SAT test-sets. In particular, for each SLS al-
gorithm we measured the distribution of the average local search cost across the test-set,
using approximately optimal noise settings and su�ciently high maxSteps settings to guar-
antee maximal success rates in all cases. The resulting hardness distributions are shown
in Figure 7.5. Obviously, for the major part of the test-set, the following performance
ordering can be observed: Novelty shows almost identical performance as GSAT+tabu,
followed closely by R-Novelty and WalkSAT+tabu; next comes WalkSAT, which performs
signi�cantly worse, and �nally GWSAT. Not very surprisingly, given their essential incom-
pleteness, Novelty, R-Novelty, and WalkSAT+tabu su�er from stagnation behaviour on
3{7% of the problem instances. Interestingly, for GSAT+tabu, although most probably es-
sentially incomplete as well, such stagnation behaviour could not be observed on the given
test-set.

In a next step, we analysed the correlation between the di�erent algorithm's average per-
formance across the test-set. As for Random-3-SAT (Chapter 4, Section 4.5), we chose
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Figure 7.5: Hardness distributions (average local search cost per instance) for di�erent SLS
algorithms, when applied to test-set csp20-10-s (using approx. optimal noise).

encodings r a b o

gwsat vs gsat+tabu 0.9845 0.9471 -0.6609 0
gwsat vs wsat 0.9874 0.9587 -0.1108 0
gwsat vs wsat+tabu 0.9676 0.9047 -0.4128 6
gwsat vs novelty 0.9809 0.8571 -0.3775 7
gwsat vs r-novelty 0.9567 0.9105 -0.4939 3

Table 7.3: Test-set csp20-10-s, pairwise hardness correlation for various algorithms with
approx. optimal noise, based on 100 tries / instance; r is the correlation coe�cient, a and b
are the parameters of the lms regression analysis, and o the number of outliers which have
been eliminated before the analysis (see text).
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Figure 7.6: Correlation of average local search cost per instance for WalkSAT vs WMCH
(left) and WalkSAT+tabu vs TMCH (right) applied to test-set csp20-10; all algorithms
use approx. optimal noise, the SAT algorithms use the sparse encoding.

encodings r a b

wsat vs wmch 0.9793 0.9752 -0.5715
wsat+tabu vs tmch 0.9894 1.0458 -0.0556
novelty vs tabu-gh 0.9614 1.0153 -0.3615

Table 7.4: Test-set csp20-10, pairwise hardness correlation for CSP and SAT algorithms
(applied to sparse encoding) with approx. optimal noise, based on 100 tries / instance; r is
the correlation coe�cient, a and b are the parameters of the lms regression analysis, outliers
have been eliminated before the analysis (see text).

GWSAT as a reference algorithm. The results of the correlation analysis are reported in
Table 7.3. When ignoring the cases, where stagnation behaviour occurred, there is generally
a strong correlation between the algorithms' average local search cost across the test-set,
indicating that the hardness of instances w.r.t. to the given set of algorithms is an intrinsic
property of the instances. The data from the regression analysis (a and b values in Table 7.3)
indicate that Novelty scales best with instance hardness, followed by WalkSAT+tabu and R-
Novelty, WalkSAT and GSAT+tabu, and �nally, GWSAT. The interesting observation here
is that, analogously to the results on Random-3-SAT instances (cf. Table 4.11, page 97),
GSAT+tabu shows very competitive average performance but scales worse with instance
hardness than the WalkSAT variants.

SLS Algorithms for SAT vs CSP

Given the close conceptual relation between SLS algorithms for SAT and CSP, directly
comparing the performance of the corresponding algorithms is interesting in the light of
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Figure 7.7: Correlation of average local search cost per instance for Novelty vs Galinier's
and Hao's tabu search algorithm for CSP applied to test-set csp20-10; all algorithms use
approx. optimal noise, Novelty uses the sparse encoding.

investigating the e�ectivity of the generic problem solving approach discussed in Chapter 1.
Speci�cally, we �rst compare the performance of WalkSAT and WMCH as well as Walk-
SAT+tabu and TMCH, where the CSP algorithms work directly on the instances of test-set
csp20-10, while the SAT algorithms are applied to the sparsely encoded problem instances
(test-set csp20-10-s). The TMCH and WMCH implementations used for our empirical
study were kindly provided by Thomas St�utzle (TU Darmstadt, Germany).

Our performance comparison is based on correlation analyses, using the same methodology
as in the previous section. The results of these correlation analyses are graphically depicted
in Figure 7.6 and summarised in Table 7.4. Clearly, there is a very strong correlation between
the performance of the SAT algorithms and the corresponding CSP algorithms across the
test-set. While WMCH is slightly better than WalkSAT (both using approx. optimal noise),
the performance di�erence between TMCH and WalkSAT+tabu is practically negligible,
except for the fact that WalkSAT+tabu su�ers from stagnation behaviour for 6 instances,
while TCMH shows no such outliers. However, as argued in Chapter 5, this e�ect of
WalkSAT+tabu's essential incompleteness should be easy to overcome by slightly modifying
the algorithm.

The results from the corresponding regression analyses (cf. Table 7.4) indicate that while
WMCH scales slightly better than WalkSAT with instance hardness, for TMCH and Walk-
SAT+tabu, the situation is reversed: here, WalkSAT+tabu has a slight scaling advantage,
as can be seen from the fact that the slope of the regression line (a parameter) is greater
than one.

Finally, we apply the same analysis to the best-performing SLS-based SAT algorithm and
the best SLS-based CSP algorithm we are aware of | the tabu search algorithm by Galinier
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and Hao [GH97]. Again, using optimal noise parameters for both algorithms, we �nd
that, measuring the average number of local search steps per solution, Galinier's and Hao's
CSP algorithm has an advantage of a factor between 2 and 4 over Novelty (ignoring the
outliers, see below). The correlation between both algorithm's performance is very strong
(cf. Figure 7.6, Table 7.4); however, like WalkSAT+tabu, Novelty su�ers from stagnation
behaviour (on 7 instances), while the CSP algorithm shows no such behaviour. Interestingly,
the regression analysis indicates that both algorithms show approximately the same scaling
behaviour w.r.t. instance hardness. This is somewhat surprising, since Galinier's and Hao's
algorithm and Novelty are conceptually signi�cantly less closely related than WMCH and
WalkSAT, or TMCH and WalkSAT+tabu.

Generally, the results from comparing the performance of SLS-based algorithms for CSP
and SAT on the test-set of problem instances indicate that when measuring the average
number of steps per solution, the di�erences are surprisingly small. We deliberately refrained
from comparing CPU-times for these algorithms, because the implementations for the SAT
algorithms are signi�cantly more optimised. Furthermore, while the SAT algorithms can
be applied to arbitrary CNF formulae, the implementations of the CSP algorithms are
restricted to binary CSPs | which severely limits the range of their application. Of course,
our analysis is too limited to give a conclusive answer, but the results reported here suggest
that for solving hard CSP instances, encoding them into SAT and using a state-of-the-
art SLS algorithm for SAT to solve the SAT-encoded instances might be very competitive
compared to using specialised SLS-based CSP solvers.

7.2.5 Search Space Structure

After investigating the inuence of the encoding strategy on SLS performance, we now
analyse the search space structure using the methods from Chapter 6. In particular, we
measure the number of solutions, the standard deviation of the objective function, and local
minima branching for both encodings of the easy, medium, and hard problem instance from
the csp20-10 test-set using the same methodology as in Chapter 6. Only here, because
the formulae generated by the di�erent encodings have di�erent numbers of clauses and
variables, these measures have to be normalised to make them comparable. Speci�cally, the
normalised sdnclu value is de�ned as the standard deviation of the objective function after
it has been scaled to the interval [0; 1], while for a LMIN state, the normalised blmin value
measures the fraction of neighbouring states with the same objective function value.

Table 7.5 summarises the results from the analyses of the various search space features.
Obviously, the number of solutions is identical for both encodings (this is guaranteed by
the de�nition of the encodings). Since at the same time, the compact encoding achieves a
signi�cant reduction of search space size, we observe a vast di�erence in solution density
between the sparse and compact encoding. Given the dominant role of this factor on SLS
performance established earlier (cf. Chapter 6), it is rather surprising that WalkSAT's per-
formance is so much worse for the compact encoding. However, comparing the normalised
sdnclu and average blmin values between the two encodings, we see that for the compact
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instance solutions solution density norm. sdnclu norm. blmin avg lsc

csp20-10-s/easy 37,297 2:01 � 10�56 0.03655 0.015 775.80
csp20-10-s/medium 6 3:73 � 10�60 0.03606 0.017 11,162.69
csp20-10-s/hard 2 1:24 � 10�60 0.03597 0.017 134,777.38
csp20-10-c/easy 37,297 3:09 � 10�20 0.00114 0.131 2,249.19
csp20-10-c/medium 6 4:96 � 10�24 0.00111 0.157 77,883.52
csp20-10-c/hard 2 1:65 � 10�24 0.00113 0.161 1,000,456.82

Table 7.5: Easy, medium, and hard instance from test-set csp20-10, number of solutions,
solution density, normalised sdnclu and average blmin values, as well as average local search
cost (w.r.t. WalkSAT, using approx. optimal noise, 1,000 tries) for easy, medium, hard
instance using di�erent encodings.

encoding, the standard deviation of the objective function is much lower while the local
minima are signi�cantly more branched than for the sparse encoding. Intuitively, as argued
in Chapter 6, this explains why WalkSAT has signi�cantly more di�culty �nding solutions
in the search spaces induced by the compact encoding.

Regarding the di�erences in local search cost between the easy, medium, and hard problem
instances when the same encoding is used, these are most probably mainly caused by the
di�erences in solution density, as both, sdnclu and average blmin values, are relatively
similar. This shows that while for a given encoding, the number of solutions is the dominant
factor regarding local search cost, the di�erent features induced by the encodings (some of
which are measured by the sdnclu and average blmin values) have a drastically stronger
inuence on SLS performance.

7.3 Hamilton Circuit Problems

The Hamilton Circuit Problem (HCP) is a well-known combinatorial decision problem from
graph theory. It is based on the notion of a Hamilton Circuit (sometimes also called Hamil-
ton Cycle), i.e., a cyclic path in a given graph G which visits evey vertex of G exactly once.
For a given graph G, the Hamilton Circuit Problem is to decide whether G contains at least
one Hamilton Circuit. The HCP is closely related to the Traveling Salesperson Problem
(TSP), which can be regarded as a generalisation of the HCP where additionally the graph
is weighted and the goal (in the optimisation variant) is to �nd a Hamilton Circuit with
minimal weight, i.e., a shortest round trip. Like the TSP, the HCP can be formulated for
directed and undirected graphs and is NP-complete in both cases. In this section we study
the di�erences in SLS performance and search space structure for di�erent SAT-encodings
of directed HCP.
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7.3.1 SAT Encodings of the HCP

The fundamental idea for encoding HCP into SAT is based on the observation that for a
given graph G = (V;E), each Hamilton Circuit (HC) corresponds to a cyclic permutation
of G's vertex set V . However, a cyclic vertex permutation �V corresponds only to a HC, if
additionally for each pair of successive elements of �V , there is an edge in E connecting the
corresponding vertices. This can be formalised as a CSP the variables of which represent
the positions of the permutation and their values determine the vertices appearing at these
positions:

For a given directed graph G = (V;E),HCPp(G) is represented by the CSP (X;D; C),
where X = fp0; : : : ; p#V�1g, for all i, Dpi = V , and C consists of the following
constraints:2

(1) pi = x ^ pk = y () x 6= y _ i = k (i; k 2Z#V )
(2a) pi�1 = x ^ pi = y () (x; y) 2 E (i 2Z#V � f0g)
(2b) p#V�1 = x ^ p0 = y () (x; y) 2 E

This can be transformed into SAT using the sparse or compact SAT-encodings for CSP
from Section 7.2. We refer to this encoding as the position-based encoding, since in the
CSP formulation we assign vertices to permutation positions. However, there is a dual
representation, based on the idea of representing the permutations by assigning permutation
positions to vertices rather than vertices to permutation positions. The corresponding CSP
formalisation of this vertex-based encoding is very similar to the one given above:

For a given directed graph G = (V;E) with V = f0; : : : ; n � 1g, HCPv(G) is repre-
sented by the CSP (X;D; C), where X = fv0; : : : ; vn�1g, for all i, Dvi = Zn, and C
consists of the following constraints:

(1) vi = x ^ vk = y () x 6= y _ i = k (i; k 2Zn)
(2a) vi = x� 1 ^ vk = x () x � 1 ^ (i; k) 2 E (i; k 2Zn)
(2b) vi = n� 1^ vk = 0 () (i; k) 2 E (i; k 2Zn)

As for the position-based encoding, this CSP representation can be easily translated into
SAT using one of the CSP encodings discussed before. Thus, we obtain four di�erent
SAT-encodings for the Hamilton Circuit Problem.

When re-examining these CSP-encodings, one might notice that they contain a certain
redundancy. For any Hamilton Circuit, it is irrelevant which vertex is visited �rst, while the
permutation-based encodings di�erentiate between solutions with di�erent starting points.
Thus, for each Hamilton Circuit in a given graph with n vertices, the corresponding CSP
instance has n symmetrical solutions. This symmetry can be exploited to reduce the problem

2For clarity's sake, we are using a di�erent notation here than in De�nition 1.6; however, both are
equivalent and can be easily transformed into each other.
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test-set instances vertices edges d vars clauses

hc10-p 100 10 15 3 100 1,060
hc10-v 100 10 15 3 100 1.060
hc10-vc 100 10 15 3 40 1,110
hc10-pe 100 10 15 3 81 � 733
hc10-ve 100 10 15 3 81 � 733
hc10-vce 100 10 15 3 36 � 781

Table 7.6: Random HCP test-sets, using di�erent SAT-encodings; v = vertex-based, p

= permutation based, c = compact (if not speci�ed, encoding is sparse), e = symmetry
eliminated (only, if speci�ed); d is the mean vertex degree.

size of the CSP (and SAT) instances generated by our two encoding schemes. To achieve this
symmetry elimination, we just �x an arbitrary element of the permutation to an arbitrary
vertex; this eliminates one CSP variable for both encodings and reduces the size of all the
remaining variables' domains by one.

For a graph with n vertices, we thus reduce the number of propositional variables from n2

to (n � 1)2 when using the sparse encoding, and from ndlog2 ne to (n � 1)dlog2(n � 1)e
when using the compact encoding. The number of clauses also shrinks because for the �xed
element of the permutation, the number of constraints of type (2a) and (2b) is reduced. At
the same time, the number of solutions is reduced by a factor of n. Consequently, for the
sparse encoding, the net result of symmetry elimination is a reduction of the search space
size by a factor of 22n�1 (= 2n

2
= 2(n�1)

2
= original search space size / reduced search space

size) and an increase in solution density (solutions / search space states) by a factor of
22n�1=n. For the compact encoding, the search space shrinks only by a factor of ca. 2, while
the solution density decreases by a factor of ca. n=2. Considering the strong correlation
between the number of solutions and local search cost observed in Chapter 6, one might
expect that symmetry elimination reduces search cost for the sparse encoding, while for the
compact encoding, savings are less likely.

7.3.2 Benchmark Instances

For empirically investigating SLS performance for di�erent SAT-encodings of the HCP, we
focussed on the Hamilton Circuit Problem in random graphs. In earlier work, when inves-
tigating the dependence of the existence of Hamilton Circuits on the average connectivity
(edges per vertex), a phase transition phenomenon was observed [CKT91]. The associated
peak in hardness for backtracking algorithms was located between � = e=(n logn) � 0:9 and
1:2, where n is the number of vertices and e the number of edges [FM95]. Based on these re-
sults, we created a test-set by randomly sampling soluble HCP instances from distributions
of random graphs with n = 10 and � = 1.

The test-set was generated using a HCP generator and solver developed and provided by Joe
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Figure 7.8: Hardness distributions (average local search cost per instance) for WalkSAT
(using approx. optimal noise), when applied to di�erent encodings of test-set hc10.

Culberson; insoluble instances were �ltered out using the integrated systematic HCP solver,
such that the test-set contains only soluble instances. This test-set (named hc10) was then
encoded into SAT using an encoder implemented in the course of this work. This encoder
allows to generate position- and vertex-based as well as sparse and compact encodings
with and without symmetry elimination. For the study conducted here, we generated the
test-sets described in Table 7.6; each test-set comprises 100 instances. Note that for the
encodings using symmetry elimination, the number of clauses varies depending on the actual
in- and out-degree of the vertex which is clamped to a �xed position in the permutation; in
Table 7.6, we therefore report the average number of clauses across the test-set.

To reduce computational and overall experimental expenses, for some of our experiments
we only used the minimum, median, and maximum elements (denoted as easy, medium,
and hard instance) from the hardness distributions for WalkSAT with approx. optimal
noise setting, using the position-based, sparse encoding. As we will see later, the hardness
(here: average local search cost for WalkSAT with approx. optimal walk) is rather tightly
correlated for the di�erent encodings.

7.3.3 SLS Performance

In a �rst series of experiments, we studied the distribution of instance hardness (average
local search cost) for WalkSAT over di�erent encoding of the ten-vertex test-set (hc10-�).
Since we are mainly interested in optimal performance here, we used approximately optimal
noise settings for each of the encodings. These were determined based on measuring average
local search cost for a particular, arbitrarily chosen instance from the original HCP test-
set. Interestingly, we observed signi�cant di�erences in the optimal noise for the various
encodings; generally, the optimal noise was signi�cantly higher for the compact encodings
as well as for those using symmetry elimination.

Figure 7.8 shows these hardness distributions; the corresponding basic descriptive statistics



194 CHAPTER 7. SAT ENCODINGS AND SEARCH SPACE STRUCTURE

algorithm mean stddev stddev
mean median Q25 Q75 Q10 Q90

Q75

Q25

Q90

Q10

p 572.56 339.75 0.59 435.21 351.94 694.32 289.45 1034.35 1.97 3.57
v 931.11 504.98 0.54 781.28 589.54 1148.76 386.17 1680.76 1.95 4.35
vc 1463.52 606.03 0.41 1258.44 1013.17 1904.27 800.31 2324.88 1.88 2.90
pe 826.46 364.63 0.44 753.26 524.86 989.15 452.85 1318.97 1.88 2.91
ve 935.02 433.64 0.46 883.92 616.22 1076.89 514.13 1496.82 1.75 2.91
vce 1648.54 680.20 0.41 1545.27 1113.37 1960.47 896.29 2514.87 1.76 2.81

Table 7.7: Test-set hc10, basic descriptive statistics of hardness distributions for di�erent
SAT-encodings, using WalkSAT (approx. optimal noise, 100 tries/instance).

are reported in Table 7.7. As we can see, the position-based, sparse encoding (p) is most
e�cient w.r.t. local search cost, followed by the vertex-based, sparse encoding (v); the
vertex-based compact encoding (vc) induces signi�cantly higher local search cost. Also,
symmetry elimination generally leads to signi�cantly increased local search cost (compare p
vs pse, etc.). However, this increase is strongest for the sparse position-based encoding, and
relatively moderate for the vertex-based compact encoding. This is quite plausible, since
in the latter case, SLS behaviour is apparently already signi�cantly hindered by the basic
encoding, such that the additional impediments induced by symmetry elimination are less
relevant to SLS behaviour. Note that the observed variation in instance hardness across
the test-sets is signi�cantly smaller than for Random-3-SAT or Random Binary CSP (cf.
Tables 4.10, page 96 and 7.2, page 183).

Another interesting observation from the data presented in Table 7.7 is the fact that the
relative variability of instance hardness across the test-set is negatively correlated with the
e�ciency of the encoding w.r.t. local search cost. In particular, the normalised standard
deviation (stddev/mean) and the percentile rations are lower for the compact encodings than
for the sparse encodings; also, these values are lower when symmetry elimination is applied.
This suggests that for relatively easy problem instances, the inuence of the encoding on
SLS performance is much higher than for instances which are intrinsically harder | a fairly
plausible assumption.

In a next step, we perform the same correlation analysis as for the Random-3-SAT and
Graph Colouring test-sets in Chapter 4; only now, we don't compare di�erent algorithms,
but rather the same algorithm (WalkSAT with approx. optimal noise) applied to di�erent
encodings of the same set of HCP instances. The results of this analysis are shown in
Table 7.8. As in the case of CSP (cf. Section 7.2), we observe a relatively strong correlation
between the local search cost for di�erent encodings of the same instance, indicating that
features of the original instance, rather than those induced by the encoding, dominate SLS
behaviour. Interestingly, the inuence of symmetry elimination seems to be stronger for
sparse than for compact encodings, as can be seen from the lower correlation coe�cients
for the corresponding hardness correlations (the higher noise in these correlations is caused
by the encoding).
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Figure 7.9: Left: Correlation between average local search cost for WalkSAT for test-sets
hc10-p and hc10-pse, using approx. optimal noise. Right: Same for hc10-v vs hc10-vc.

encodings r a b

hc10p vs hc10v 0.74 0.81 0.72
hc10v vs hc10vc 0.85 0.63 1.29

hc10p vs hc10pe 0.63 0.52 1.49
hc10v vs hc10ve 0.59 0.44 1.64
hc10vc vs hc10vce 0.79 0.80 0.67

Table 7.8: Test-set hc10, pairwise hardness correlation for WalkSAT with approx. optimal
noise applied to di�erent encodings, based on 100 tries / instance; r is the correlation
coe�cient, a and b are the parameters of the lms regression analysis.
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Furthermore, the results from the regression analyses (a and b values in Table 7.8, cf.
Chapter 4) show that the more e�cient encodings (w.r.t. resulting local search cost for
WalkSAT) scale worse with instance hardness (compare a values for p, v, and vc) | con-
�rming our earlier observation for CSP that the inuence of the encoding decreases with
instance hardness. When applying symmetry elimination, this e�ect can also be observed:
while generally, the local search cost tends to increase, this increase is stronger for relatively
easy than for harder instances.

We also analysed the individual RLDs for di�erent encodings of the medium hardness prob-
lem instance, using ed and ged approximations as described in Chapter 5. Since regardless
of the encoding, this instance is rather easy to solve for WalkSAT, it is not surprising that
the approximations using exponential distributions did not pass a standard �2 test (except
for the vertex-based, compact encoding) because of the e�ect of the initial search phase on
SLS behaviour for short run-times. But when using generalised exponential distributions
which take into account the initial search phase (cf. Chapter 5), all RLD approximations
pass the �2 test for the � = 0:05 con�dence level. This indicates that for HCP, indepen-
dently from the encoding chosen, WalkSAT shows the typical behaviour as characterised in
Chapter 5 for a number of di�erent problem domains.

Generally, our results indicate that, as for CSP, sparse encodings are signi�cantly superior
w.r.t. SLS performance than compact encodings. Also, SLS performance is generally rather
impeded than improved by symmetry elimination. Finally, there is a signi�cant performance
advantage for the vertex-based encoding over the position-based encoding.

7.3.4 Search Space Structure

After analysing the inuence of the di�erent encodings on local search cost, in this section,
we investigate the role of some search space features (cf. Chapter 6) in this context. As
we have seen before, SLS performance strongly depends on the number of solutions, but is
also a�ected by other factors such as the standard deviation of the objective function and
the average local minima branching.

Obviously, the number of solutions of a given HCP instance is identical for the position-
based and vertex-based encodings, and it is not a�ected by using compact instead of sparse
encodings. Symmetry elimination, however, reduces the number of solutions by a factor
n (where n is the number of vertices in the given graph), as can be easily seen from the
description of the encodings. At the same time, the search space is much smaller when
symmetry elimination has been applied. As detailed in Section 7.3.1, this results in a net
increase in the average solution density for the sparse encodings, while for the compact
encoding, the net solution density descreases.

Table 7.9 shows the number of solutions and solution density for the easy, medium, and
hard instances from the hcp10 test-set for vertex-based, sparse encodings with and without
symmetry elimination as well as the corresponding average local search cost for WalkSAT.
Clearly, despite the higher solution density, the average local search cost increases when
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instance symmetry elim. solutions solution density avg. lsc

hc10-p/easy no 60 4:73 � 10�29 174.45
hc10-pse/easy yes 6 2:48 � 10�24 529.33

hc10-p/medium no 20 1:58 � 10�29 361.78
hc10-pse/medium yes 2 8:27 � 10�25 740.10

hc10-p/hard no 20 1:58 � 10�29 917.40
hc10-pse/hard yes 2 8:27 � 10�25 935.06

Table 7.9: Test-sets hc10-p and hc10-pse; number of solutions, solution density and average
local search cost for WalkSAT (using approx. optimal noise, based on 1,000 tries / instance)
fo easy, medium, and hard problem instance.

instance norm. sdnclu norm. blmin avg. lsc

hc10-p/medium 0.0503 0.057 361.78
hc10-v/medium 0.0502 0.056 476.30
hc10-vc/medium 0.0017 0.181 1,255.02

hc10-pe/medium 0.0561 0.063 740.10
hc10-ve/medium 0.0561 0.063 858.06
hc10-vce/medium 0.0021 0.196 1,776.35

Table 7.10: Medium hardness instance from test-set hc10, normalised sdnclu and blmin
measures and average local search cost (w.r.t. WalkSAT, using approx. optimal noise, 1; 000
tries) for di�erent encodings.

using symmetry elimination | a result, which is not consistent with our intuition about
the dominant inuence of the solution density on SLS performance. However, as observed
before (cf. Section 7.3.3), the performance loss is most drastic for the easy instance, while
for the hard instance the detrimental e�ect of symmetry elimination is very small. Similar
observations can be made for the compact encodings; there, however, because symmetry
elimination decreases the solution density, the increase in local search cost matches our
intuition.

Next, we analysed the two other measures of search space structure discussed in Chap-
ter 6: the standard deviation of the objective function (sdnclu) and the average local
minima branching (blmin). As in Section 7.2, we normalise these measures to enhance their
comparability between the di�erent encodings. Table 7.10 shows the normalised sdnclu
and average blmin values, as well as the average local search cost (w.r.t. WalkSAT, using
approx. optimal noise) for the medium instance of test-set hc10 under all six encodings
discussed before. The results con�rm our original intuition regarding the inuence of these
search space features on SLS performance: the local search cost seems to be negatively cor-
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related to the normalised sdnclu value, and positively correlated to the normalised average
local minima branching. In the analysis of SAT-encodings for the given HCP instance, this
can be clearly seen from the results reported in Table 7.10, when comparing the correspond-
ing values between the sparse and compact encodings, as well as between encodings with
and without symmetry elimination. In the latter case, the e�ect of the increased local min-
ima branching seems to outweigh a possible bene�cial e�ect of a slightly increased sndclu

value. Applying the same analysis to the easy and hard problem instances from the same
test-set con�rms these results.

In the light of these results, WalkSAT's performance di�erences on the various encodings
can be explained in the following way: As for CSP, compact encodings induce search spaces
characterised by extremely at and feature-less objective functions and relatively highly
branched local minima regions | features, which impede stochastic local search. A similar
e�ect, but considerably weaker, is generally induced by symmetry elimination. This
demonstrates that analysing relatively simple features of the search space can be useful for
assessing di�erent strategies for SAT-encoding instances from other problem domains, such
as HCP.

7.4 Related Work

SAT-encodings of combinatorial problems are frequently used in the context of NP-com-
pleteness proofs in complexity theory [GJ79]. A systematic approach to transforming hard
combinatorial problems into SAT has been proposed by Stamm-Wilbrandt [SW93], who
also gives space-e�cient SAT-encodings for many NP-complete problems from di�erent
domains. Iwama and Miyzaki introduced the concept of SAT-variable complexity and dis-
cussed di�erent encodings of hard combinatorial problems, including the Hamilton Circuit
Problem, which are optimised for a minimal number of propositional variables [IM94].

In contrast, the inuence of di�erent encoding strategies on the performance of SAT solvers
is mainly unexplored. Although from the beginning of the development of modern SLS
algorithms for SAT, these have been tested on SAT-encoded problems from domains like
Graph Colouring or Blocks World Planning [SLM92, KS92], the inuence of the encodings,
to our best knowledge, has rarely been systematically investigated. Only recently, when
it became clear that hard Blocks World Planning instances can be e�ectively solved using
SLS algorithms for SAT, the issue of the inuence of SAT-encodings on SLS performance
has been further studied. Kautz and Selman use various techniques for optimising SAT-
encodings for various well-known planning domains (including Blocks World) to achieve
maximal SLS performance [KS96, KMS96]. The �rst systematic study of SAT-encodings and
their impact on the average solution cost for state-of-the-art SAT algorithms we are aware
of, is the study on automatic SAT-compilation for planning problems by Ernst, Millstein,
and Weld [EMW97]. Di�erent from [KS96], who use hand-crafted encodings, [EMW97]
systematically evaluate a number of general encoding strategies which have been built into
a fully automated SAT-encoder for planning problems from various domains. One of their
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results states that compact encodings of planning instances are typically very di�cult for
SLS-based SAT algorithms | an observation which is con�rmed by our results for CSP and
HCP.

Random binary CSPs have been studied extensively by various researchers, especially in
the context of phase transition phenomena and their impact on the performance of CSP
algorithms [Smi94, SD96, Pro96]. The sparse SAT-encoding of CSP has been introduced by
de Kleer [dK89], who used it in the context of a comparative study of CSP and assumption-
based truth maintainance system (ATMS) concepts and techniques. The compact CSP
encoding is inspired by Iwama's and Miyazaki's work on SAT-variable complexity (see also
below). Regarding SLS algorithms for CSP, one of the �rst and most inuential algorithms
is the Min-Conicts Heuristic (MCH), which has been introduced by Minton et al. in
1992 [MJPL92]. Recently, the basic algorithm, which is conceptually closely related to
WalkSAT [SKC94], has been extended with random walk and tabu search techniques by
St�utzle et al. [SSS97]. Analogous to the corresponding SAT algorithms, these extensions
show a superior performance compared to the original MCH. The best currently known
algorithm for the subclass of CSP studied here is the tabu search algorithm by Galinier and
Hao [GH97], which is conceptually closely related to GSAT, as it is based on an analogous
neighbourhood relation. Despite the close relationship between SLS algorithms for SAT
and CSP, we are not aware of any previous comparative analysis of their performance on an
identical set of problem instances. The problem instances, as well as the implementations of
the CSP algorithms used in the context of this work have been kindly provided by Thomas
St�utzle (TU Darmstadt, Germany).

The Hamilton Circuit Problem in random graphs has been studied by Cheeseman et al.
[CKT91] as well as by Frank and Martel [FM95]. Both studies focus on phase transition
phenomena and their inuence on the performance of complete HCP algorithms. Although
the solubility phase transition does not as nicely coincide with the peak in di�culty as
for other problem domains, such as Random-3-SAT, we used the results from [FM95] for
generating the test-sets used in the context of this work. The actual test-sets were created
using an HCP instance generator kindly provided by Joseph Culberson (University of Al-
berta, Canada). SAT-encodings of HCP were previously discussed in [IM94], who developed
the compact, vertex-based SAT-encoding with symmetry elimination in the context of min-
imising the number of propositional variables required for translating hard combinatorial
problems to SAT. In [Hoo96c, Hoo96b], we analysed and characterised the performance
of GSAT and GWSAT on sets of randomly generated HCP instances using the compact,
vertex-based encoding with symmetry elimination, showing that these problem instances
are exceptionally di�cult for both algorithms. However, in [Hoo96b], we also developed
an HCP-speci�c SLS algorithm (GHC) which is conceptionally closely related to the Min-
Conicts Heuristic as well as to GWSAT and shows signi�cantly improved performance on
the given test-sets.
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7.5 Conclusions

In this chapter, we studied the impact of encoding strategies on search space structure
and SLS performance. Based on two case studies, covering Constraint Satisfaction and
Hamilton Circuit Problems, we exempli�ed how some of the methods developed in the
previous chapters can be used to investigate how di�erent SAT encodings induce certain
search space features which, in turn, a�ect the behaviour of SLS algorithms.

At the beginning of this chapter, in Section 7.1, we formulated three questions regarding
the e�ectivity of speci�c encoding strategies and the competitiveness of the generic problem
solving approach in general. Based on the results of our case studies for CSP and HCP, we
will give some tentative answers here | however, as the underlying empirical evidence is
very limited in its scope, these answers should be rather understood as testable hypotheses.

Does it pay o� to minimise the number of propositional variables, i.e., are compact encodings
which achieve small search spaces preferable to sparse encodings?

No. According to our results for CSP and HCP, while compact encodings have a signi�cantly
higher solution density, they induce search spaces which are rather at and feature-less
(characterised by low sdnclu values). At the same time, their local minima are signi�cantly
more branched, which makes escaping from these minima considerably more di�cult for SLS
algorithms like WalkSAT. In contrast, sparse encodings induce rugged search spaces with
lowly branched local minima | features which generally increase the performance of SLS
algorithms. So, in a nutshell, it seems to be much more advisable to use sparse rather than
compact encodings, as the former tend to induce vast, but well-structured search spaces
which are much easier to search than the search spaces produced by compact encodings,
which are much smaller, but provide far less guidance for local search.

Is it advisable to reduce the number of propositional variables required for a given encoding
by eliminating symmetric solutions from the original problem formulation?

Apparently not. Although, for the given example (HCP), when using sparse encodings,
symmetry elimination increases the solution density, it seems to have detrimental e�ects on
SLS performance which are similar to those induced by compact encodings, although the
impact on SLS performance is less drastic. However, since we did not study the scaling of
these e�ects with problem size, it cannot be ruled out that, for bigger instances, a di�erent
situation can be found. Preliminary experimentation indicates that for the problem class
studied here, the detrimental e�ect of symmetry elimination can be also observed for larger
problem sizes.

Is the generic problem solving approach competitive with applying SLS algorithms to the
un-encoded problem instances?

Our results for Random Binary CSP instances indicate that this is the case. Although,
when comparing the number of steps per solution for state-of-the-art algorithms, we ob-
served a slight advantage for the direct CSP approach, this is easily outweighed by other
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advantages of the generic problem solving approach, such as the availability of extremely
e�cient implementations and its more general applicability. However, again it is not clear
how the observed performance di�erence scales with problem size. Nevertheless, our result is
good news regarding the generic problem solving approach based on e�cient SAT-encodings
and modern SLS algorithms for SAT, especially, since the same, simple encoding strategies
and SLS algorithms could be successfully used to competitively solve a number of hard
combinatorial problems from di�erent domains.
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Epilogue

In this thesis we have studied various aspects of stochastic local search (SLS), an algorithmic
paradigm for solving hard combinatorial problems which has become increasingly popular in
Arti�cial Intelligence and Operations Research over the past few years. Our work focussed
on modelling SLS algorithms, empirically evaluating their performance, characterising and
improving their behaviour, and understanding the factors which inuence their e�ciency.
We studied these issues for the SAT problem in propositional logic as our primary applica-
tion domain. SAT has the advantage of being conceptually very simple, which facilitates the
design, implementation, and presentation of algorithms as well as their analysis. However,
most of the methodology generalises easily to other combinatorial problems like CSP. The
main contributions of this work can be summarised as follows.

� We introduced theGLSM model, a novel formalism for representing SLS algorithms which
is based on the concept of a clear separation between search strategies and search control
(Chapter 3). The GLSM model allows the adequate representation of many modern SLS
algorithms for SAT (Chapter 4) and provides a basis for analysing and improving these
(Chapter 5).

� We developed an adequate methodology for empirically analysing the behaviour of Las
Vegas algorithms (a more general class of algorithms than SLS) which avoids weaknesses
of established approaches (Chapter 2). We used this methodology for studying SLS
algorithms for SAT and characterising their behaviour (Chapters 4 and 5).

� We studied the performance of a number of popular and very powerful SLS algorithms
for SAT across a broad range of problem domains (Chapters 4 and 7). We found that
the relative performance of modern SLS algorithms varies with the problem domain such
that there is no single best algorithm. We could also show that there is a tight correlation
between the performance of di�erent SLS algorithms within the domains, which suggests
that SLS performance generally depends on the same features of the underlying search
spaces.

� We proved a number of results concerning the asymptotic behaviour (PAC property)
of various modern SLS algorithms for arbitrary long runs of the corresponding pure
strategies. We could show that some of the most powerful SLS algorithms for SAT su�er
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from essential incompleteness and demonstrated how to overcome this defect in practice
(Chapter 5).

� We developed a functional characterisation of SLS behaviour, showing that for optimal
and larger-than-optimal noise parameter settings, the RTDs for modern SLS algorithms,
when applied to hard problem instances from di�erent domains, can be well approximated
using exponential distributions (EPAC behaviour, cf. Chapter 5). This result has a
number of interesting consequences regarding the parameterisation and parallelisation
of SLS algorithms, and it suggests a novel interpretation of SLS behaviour as random
picking in a signi�cantly smaller \virtual" search space.

� We analysed various aspects of search space structure and their inuence on SLS per-
formance (Chapter 6). We con�rmed and re�ned earlier results regarding the dominant
role of the number of solutions and investigated other search space features such as the
variability of the objective function and the topology of local minima regions. Our re-
sults show that local minima regions resemble systems of narrow canyons rather than
large basins; the branching of these structures is very low, especially for SAT-encoded
problems from other domains. This explains the e�ectiveness of simple escape strategies
like random walk.

� We investigated the inuence of di�erent SAT-encoding strategies on search space struc-
ture and SLS performance for test-sets of hard Constraint Satisfaction and Hamilton
Circuit Problems (Chapter 7). Con�rming earlier results for planning domains, our
results show that compact encodings induce relatively small search spaces which are
nevertheless very di�cult for search for SLS algorithms. Similarly, eliminating symmet-
ric solutions of the Hamilton Circuit Problem seems to have detrimental e�ects on SLS
performance. We show how the techniques and methods developed earlier in this thesis
can be used to analyse and identify and some of the search space features which are
responsible for these e�ects. Furthermore, we show that for solving hard Random Bi-
nary CSP instances, using e�cient SAT-encodings and state-of-the-art SLS algorithms
for SAT is competitive to the best SLS algorithms for CSP.

Open Questions and Future Work

Many contributions of this thesis, including methodological aspects as well as the results of
empirical and theoretical investigations, are interesting on their own. However, they also
give rise to a number of questions, shed new light on some open problems, and suggest many
routes for further research. In the following, we will briey address some of these issues.

� Our empirical studies of SLS algorithms for SAT were mainly limited to algorithms
which could be represented using simple instances of the basic GLSM model. Many
of the advanced features and extensions of the GLSM model have not been used in this
context; their potential for SAT and other problem domains has to be further investigated
and assessed. In the light of our results for SAT, the heterogenous cooperative models,
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possibly including learning schemes and evolutionary population dynamics, appear to be
particularly attractive.

� We have shown that the GLSM model can be used to improve some of the best currently
known SLS algorithms for SAT. However, the corresponding GLSMs are still very simple;
it remains to be seen, whether more complex combinations of pure SLS strategies show
substantially improved performance and / or robustness. Further research on this issue
should probably not be exclusively focussed on combinatorial decision problems like SAT,
but also include classical optimisation problems like TSP or scheduling.

� While we could prove approximate completeness for GWSAT and essential incomplete-
ness for WalkSAT+tabu, Novelty, and R-Novelty, the question whether WalkSAT is
approximately complete remains open. Our empirical results give no indication of essen-
tial incompleness, therefore we suspect that WalkSAT might be approximately complete.
Furthermore, we did not prove essential incompleteness for GSAT and GSAT+tabu; but
we believe that the proofs are not di�cult. As we have shown, essential incompleteness
leads to poor performance and robustness of SLS algorithms in practice. Therefore, ap-
proximate completeness and the avoidance of stagnation behaviour in practice should be
considered as important design objectives for future development of SLS algorithms.

� We developed functional characterisations of the run-time behaviour of a number of SLS
algorithms for SAT when using optimal or larger-than-optimal noise settings. Since the
same EPAC behaviour was found for all the algorithms and all hard problems studied
here, we suspect that this type of behaviour is characteristic for SLS algorithms when
applied to hard combinatorial problems. This hypothesis is backed up by preliminary
results on modelling the behaviour of SLS algorithms for Constraint Satisfaction Prob-
lems. We did not model SLS behaviour for lower-than-optimal noise; but we believe that
the corresponding RTDs can be approximated using combinations of the generalised
exponential distribution family introduced in Chapter 5.

� As discussed in Chapter 5, the observed EPAC behaviour suggests a novel interpretation
of SLS behaviour as random picking in a reduced \virtual" search space. The size of this
search space is directly related to the average local search cost for solving the correspond-
ing problem instance. While in Chapter 6, we found some search space features which
are to some extent correlated to the average local search cost, we could not �nd any
structural search space features which directly correspond to the virtual search space.
Generally, from our perspective the attempt to �nd explanations for the observed SLS
behaviour based on the simple mathematical models developed here seems to be one of
the most exciting and promising issues for further research.

� While we studied search space structure and its inuence on SLS performance as well as
the e�ect of di�erent SAT-encodings on search space structure, many questions in this
context remain unanswered. Our results suggest that features di�erent from the ones
investigated here play an important role; further work should try to identify and charac-
terise these. Furthermore, the analyses of the search space structural features induced by
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di�erent encodings and their impact on SLS peformance presented in Chapter 7 should
be extended to di�erent problem sizes and other domains. We are convinced that further
insights into these dependencies will be crucial for the further development of SLS algo-
rithms, encoding strategies, and the general applicability of the generic problem solving
approach discussed in Chapter 1.

� Finally, we are convinced that most of the methodology developed in the context of this
thesis can equally well be used for studying SLS algorithms for optimisation problems.
To some extent, the required generalisations have already been introduced in this work
(cf. Chapter 2). Consequently, conducting investigations analogous to the ones presented
here for optimisation problems like MAXSAT or MAXCSP should not be di�cult. Since
SLS algorithms for decision problems like SAT implicitly solve the corresponding optimi-
sation problem, we expect that this line of future work will provide interesting insights
into SLS behaviour in general.

Building on previous work on stochastic local search, our goal in this work was to enhance the
general understanding of SLS algorithms and their behaviour, to evaluate their performance,
and, ultimately, to improve existing algorithms. While, hopefully, we reached this goal to
some extent, many fundamental questions regarding SLS algorithms and their applications
remain unanswered. From our point of view, the most important of these are the precise
understanding of the factors which determine the e�ciency of SLS algorithms and a general
assessment of the role of SLS algorithms in the context of the generic problem solving
approach discussed in Chapter 1 of this thesis. While we cannot provide the ultimate
solutions to these important problems, we hope that the contributions of this thesis might
be regarded as a further step towards �nding satisfying solutions to these problems and will
prove to be useful for future SLS research.
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List of Symbols / Abbreviations

#S cardinality (number of elements) of set S

� generally used for denoting problem instances;
also: direct search transition function (GLSM model)

� generally used for denoting a problem class

a, ai search space positions, for SAT: propositional assignments

AIS the All-Interval-Series Problem

AIS(n) instance of the All-Interval-Series Problem with length n

blmin branching of local minima states

BPLAT plateau border state

BWP Blocks World Planning Problem

draw random selection function, selects element from given set according to uniform
random distribution

D, D0, D00 generally used for denoting probability distributions

D(X ) the set of all probability distributions over set X

CSP Constraint Satisfaction Problem (usually over �nite, discrete domains)

cvr clauses per variable ratio (for Random-3-SAT)

e; e0 probabilistic events, i.e. elements of the domain of a probability distributions

EPAC exponentially distributed, probabilistically approximately complete

FSM �nite state machine

GCP the Graph Colouring Problem

GCP(G; k) graph colouring instace with graph G and k colours

GLSM generalised local search machine

HC Hamilton Circuit
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218 List of Symbols / Abbreviations

HCP Hamilton Circuit Problem

init local search initialisation function

IPLAT interior plateau state

LMAX local maximum state

LMIN local minimum state

lsc local search cost

M ,Mi,M
0

i generally used for denoting GLSM instances

N neighbourhood relation (for local search)

NP complexity class NP (non-deterministic, polynomial time)

N the set of natural numbers, including zero

p, pi generally denote probabilities

P complexity class P (deterministic, polynomial time)

PAC probabilistically approximately complete

R the set of real numbers

R
+ the set of positive real numbers (without 0)

SAT the Propositional Satis�ability Problem

sdnclu standard deviation of the objective function (i.e., number of unsatis�ed
clauses) for SLS-based SAT algorithms

SQD solution quality distribution

stddev standard deviation

SLMAX strict local maximal state

SLMIN strict local minimum state

SLOPE slope state

SLS stochastic local search

step local search step function

TSP the Travelling Salesperson Problem

UNSAT the Propositional Unsatis�ability Problem (complement of SAT)

VAL the Propositional Validity Problem

Zn = f0; 1; : : : ; n� 1g the integer residues modulo n


