
Module 1: Data Organization

Knowledge of the ways that data is commonly organized on a computer will be helpful to
you, both as you work with new types of data and applications and as you develop your html
and programming skills. In this module, you’ll learn about ways that data is categorized
(data types), organized (data structures), and named (including variables). You’ll apply
your knowledge in designing HTML web pages and in searching for data on a computer and
on the world wide web.

Learning Goals. After this module you should be able to

1.1 recognize examples of data types in every-day life and in the computing context and
illustrate how properties associated with familiar data types on a computer can influ-
ence the behaviour of computer applications which act on these data types;

1.2 recognize examples of data structures in every-day life and in the computing context
and classify data structures as networked, hierarchical, and/or tabular when applicable

1.3 use html to design networked, hierarchical and tabular structures in webpage content,
and use analysis and debugging skills to correct and avoid html errors;

1.4 explain how names convey properties and/or structure of data, with particular atten-
tion to names in computing environments such as domain names, file names, URL’s
or email addresses; and

1.5 explain how variables are used to ease data management and to describe actions on
data, and be able to use variables for these purposes in familiar contexts.

1

1.1 Data types: classifying data

We come to know things by differentiating them from other things. The traditional game
“Animal, vegetable, mineral” comes to mind: one person thinks of an object, the other tries
to determine the object by asking questions about its type:

Q: “Is it animal, vegetable, or mineral?”

A: “Animal.”

Q: “Is it a mammal?”

A: No.

Q: “Is it a fish?”

A: Yes.

...

Successive questions narrow down the type of the object until the questioner succeeds in
determining the object or has asked 20 questions.

Plants, animals, food, diseases— virtually everything around us— has been classified into
types. Knowing the type of a thing can help us know about its properties (an adult insect
has three pairs of legs and a body segmented into head, thorax, and abdomen) and predict
its behavior (is the disease genetic? is the food perishable?). Knowing the type of an
object can also influence our behaviour with respect to that object (how should we treat
this disease? should we put the food in the refrigerator?).

Similarly, data on a computer is often naturally distinguished by type. For example, as
we discuss in more detail below, files could be of several types: gif files, jpg files, txt files,
html files and so on. Knowing the type of a data item can help you understand what
properties (sometimes called attributes or modifiers) it has, and can also help you
predict what happens when you do something with the data (for example, when you click
on it). Following are several examples. We use the word “type” informally throughout
but note that in certain contexts (such as programming languages, as we will see in a later
module), the notion of data type is quite formal.

• Types of data in folders. Open up some folders on your computer. What do you
see? Most likely some files, perhaps some more folders, and possibly some applications.
These are three types of data objects that can reside in folders. Can you distinguish
objects of each type from each other? If so, how?

2

• Properties of files. Properties associated with files are quite different than proper-
ties associated with folders or applications. On your computer you can probably figure
out some properties associated with your files. (On a mac, select (click once on) the
file, then choose File > Get Info. On Microsoft Windows, select the file, then choose
File > Properties.) Examples of properties typically associated with a file include:
the date when it was last modified, its type or kind (e.g., txt or pdf document), its
size, its name and extension and what application it should be opened with. Other
properties of a file determine what users can read the file or modify (write to) the file.

• Types of data in documents. A document may contain different types of data:
text, images, or tables, for example. Consider the text within a document. One
property associated with the text is its font. What are some other properties that
the text has? How would you change these properties, using your favourite document
formatting system?

• Preferences. Preference settings are associated with typical applications that you
use, such as a web browser. Your preference settings influence how the application
behaves when you use it. Many of your preferences can be set by either checking a
box or leaving it unchecked. Your preference is indicated as checked or unchecked.
You could think of this as choosing between yes or no; true or false. Data like this
is considered to be Boolean data. That is, preference settings are examples of data
and the type of each preference setting is Boolean.

Exercises:

1.1.1 Can you figure out how to determine properties of folders or applications on your
computer? Compare the actions available under the File menu for files with the
actions available for folders. What differences do you notice?

1.1.2 Tired of being confused by your computer? Try to confuse your computer for a change!
Choose a file, let’s say a pdf file on your computer. Make a copy (so nothing happens
to the original file). Now, change the copy to a txt file by changing its extension to
.txt instead of .pdf. (You may need to ensure that preferences are set so that you can
indeed see and edit the extension.) Does this action change your view of the file on
the computer? Has the default application for opening the file changed? Have any
other properties of the file changed?

1.1.3 Shapes are a type of data you work with in many contexts, including on a com-
puter. What properties do you associated with simple shapes, such as circles, squares,
spheres, and so on? You may already be familiar with applications that create and

3

manipulate shapes. Do you recall any properties associate with shapes in these appli-
cations?

Curves or ovoids are more complex shapes. Experiment with properties of such shapes
when you use paint or image creation programs.

1.2 Data structures: organizing data

Organizing data, whether on a computer or in a file cabinet, helps when we later need to
find information. Data organization also helps to clarify relationships between data items,
by putting related items in the same folder, for example. Figure 1.1 shows some visual
examples. Although the examples are from very different contexts, some of the ways in
which the data is structured, or organized, share common attributes.

How does the way the data is structured reflect relationships between individual data items?
What do the data structures tell us about the underlying data? Do some classification
yourself! Find pairs of these data structures that you think share common attributes. List
those attributes. Group your examples into clusters. Is there any overlap? Why or why
not?

A data structure describes relationships among data. The examples of Figure 1.1 include
some the following:

• Networked data structure: describes general relationships between pairs of data
items. Visually, links (lines or edges) are often used to indicate a relationship between
a pair of items. A networked data structure is often called a network or a graph.

Links may be directed or undirected, depending on the type of the relationship.
Figure 1.1 parts (a) and (d) show representations of networks with undirected links.
Directed links are often represented as arrows. The world wide web is a gigantic ex-
ample of a network with web pages being data items and links indicating relationships
between pages. In this example links are directed: if page A points to page B it may
not necessarily be the case that page B points back to page A.

• Hierarchical data structure: in which relationships between data items resemble
those in a tree. That is, branches emanate from a single “root”; data items are
organized at the branch points and/or at the “leaves” of the tree. A hierarchical data
structure is often called a tree or a directed tree.

Examples include phylogenetic trees, organizational charts, or family trees. Phylo-
genetic trees illustrate relationships among biological species or groups of species.
Extant species (i.e. species which are not extinct) are arranged as “leaves” in the

4

(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Visual images of data structures. Images were obtained from the
Wikimedia Commons (http://commons.wikimedia.org/wiki/). (a) Social network dia-
gram (File:Social-network.png). (b) Calendar (File:2006 Calendar.JPG). (c) Phyloge-
netic tree of life (File:PhylogeneticTree.png). (d) Protein-protein interaction network
(File:STRING network image.png). (e) Periodic Table (File:IUPAC Periodic Table.PNG).
(f) Eukaryote tree (File:Eukaryote tree.svg).

5

tree, and internal nodes or branch points represent ancestral species from which the
extant species evolved (via genetic mutations, for example).

The tree of Figure 1.1 (c) is oriented with the root at the bottom and leaves at the
top. Trees are often oriented with the root at the top or at the left (as in Figure 1.1
(f)) or even with the leaves arranged in circular fashion1. (There are many visually
distinct ways of representing hierarchical data structures, such as Treemaps2).

• Tabular data structure: in which data items are organized into a table. The table
may be 1-dimensional, 2-dimensional, or have more than two dimensions. A tabular
data structure is often called an array or a table. A 1-dimensional table may be called
a linear data structure because its elements can be organized along a line. Calendars
are often displayed in tabular format and in fact can be laid out in a nested fashion.
For example, part (b) of Figure 1.1 has a 2-dimensional table for the six months with
three rows and two columns. Each entry in this table is itself a 2-dimensional table,
which shows the dates of each day of the week for one month. A timeline can be
thought of as a 1-dimensional table.

This list is by no means exhaustive. Think about other ways that data or objects you are
familiar with are commonly organized.

Exercises:

1.2.1 Books and articles typically organize their content in more than one way. Can you
think of examples of networked, hierarchical, or tabular (linear) organization in books?
How is each type of orderings useful when you use the book?

1.2.2 How would you describe the organization of files and folders on your computer?

1.2.3 A mathematical expression can be viewed as having a hierarchical structure. To see
this, consider the expressions

(((1 + 2) + (3− 4)) ∗ ((5 + 6) + (7− 8))) (1.1)

and
(((1 + 2) + (((3− 4)) ∗ (5 + 6))) + (7− 8)). (1.2)

(Here, the ∗ denotes “multiply”.) To evaluate these expressions, you have to first
evaluate the innermost terms, then work outwards, guided by the parentheses (i.e.,
(’s and)’s). Figure 1.2 shows the corresponding hierarchical structures.

1see http://www.utexas.edu/features/graphics/2008/tree/tree3.jpg
2see http://www.cs.umd.edu/hcil/treemap/

6

Can you draw a diagram which illustrates the hierarchical structure of the following
mathematical expression?

((1 + 2) + (((3− 4) ∗ (5 + 6)) + (7− 8))).

(1+2) (3-4) (5+6) (7-8)

3 -1 11 -1

((1+2)+(3-4))

2 10

((5+6)+(7-8))

(((1+2)+(3-4)) * ((5+6)+(7-8))

20

(1+2)

(3-4) (5+6)

(7-8)

-1 11

-1

3

((3-4)*(5+6))

((1+2)+((3-4)*(5+6)))

-11

-8

(((1+2)+((3-4)*(5+6)))+(7-8))

-9

(1.1) (1.2)

Figure 1.2: Hierarchical view of two mathematical expressions. Labels on the links, or
edges, show the value of the expression at the node just below.

1.3 From concepts to practice: HTML

HTML (hypertext markup language) is used to specify how information (data) is organized
in a web page. In this sense, HTML can be used to describe data structures. HTML also
provides ways to describe properties of the data such as the colour and font of text in
the web page. You can use HTML tags to specify networked, hierarchical and tabular
structures and can use HTML attributes to specify properties of data such as images and
text.

The HTML lab provides a hands-on introduction to HTML and the lecture slides provide
several examples of the use of HTML tags and attributes.3. Another way to learn HTML
is to look at the source code of web pages you like. You can do this by right-clicking (or

3You can find a reference guide of tags and attributes at:
http://www.devx.com/projectcool/Article/19816

7

ctrl-clicking) on the page and choosing “View Source”. The following very brief notes focus
on specifying lists and tables in HTML.

1.3.1 HTML lists

Figure 1.3 shows an example of a numbered list and its specification in HTML. The tags
 and delimit (i.e., denote the start and end of) the list and the tags and
 delimit each item in the list. Can you guess how to add a fourth item to the list?

Figure 1.4 shows an example in which one list is nested inside another. How you might you
try to write the specification of such a nested list in HTML?

(a) (b)

Figure 1.3: Lists in HTML. (a) HTML specification of a list with three items. (b) The list
specified in (a), as viewed in a browser.

Figure 1.4: Browser view of a nested list. Can you guess at its specification?

8

1.3.2 HTML tables

Figure 1.5 shows an example of a table and its specification in HTML. The overall table is
delimited by the tags <table> and </table>. Rows are delimited by the tags <tr> and
</tr>, while individual table data items are delimited by the tags <td> and </td>. How
might you make a nested table?

(a) (b)

Figure 1.5: Tables in HTML. (a) HTML specification of a table with five columns and two
rows. (b) The table specified in (a), as viewed in a browser.

1.3.3 Analyze and Debug

When designing HTML web pages, you can hone your analysis and debugging skills to
correct and avoid html errors.

You will likely design some of your own unique HTML data structures by generalizing from
examples you’ve already seen. In this process, you build a conceptual model of specific
HTML tags and attributes from the examples available to you. You then use this model
to design your own page. If your page does not turn out as expected it might be that you
need to refine your conceptual model or it might be that there is an error in your HTML
specification. If you are not sure how to so something, you can search on the web to get
more information on HTML tags and their attributes. You can experiment until the
page looks as you intended.

An advantage of working with HTML is that you can compare your HTML source and

9

the formatter web page often as you write the specification, making it easier to
debug than when writing all of the specification at once. As the lab emphasizes, if you lay
out your specification cleanly it will be easier to find missing or misspelled tags.

Exercises:

1.3.1 Figure 1.6 (a) shows an HTML specification of the formatted web page in (b). Some-
thing is wrong - the “8” should be aligned under the “1” in the Mon column, the “9”
under the “2” and the “10” under the “3”. Can you identify the error in the HTML
specification?

1.3.2 When writing your own HTML code, take a few moments occasionally to experiment.
See what happens when you leave out a tag. Sometimes the results might surprise you.
Share your most surprising examples with your TAs and classmates - they provide
valuable learning opportunities.

(a) (b)

Figure 1.6: (a) HTML specification of a web page containing a 2-dimensional table. (b)
View of the table in a web browser.

1.4 Names: describing data

“What’s your name?” This is often the first thing we want to know when meeting someone
for the first time. When you see an unfamiliar object, the first thing you’re likely to learn
in response to the simple question “What’s that?” is its name. Indeed, peoples’ interest in
naming things is probably even more ingrained than our tendency to classify and organize
things. Names are often synonymous with IDs or titles.

Here, we interpret “name” rather broadly and consider the many different ways in which
names are useful when describing data in computing contexts.

10

• Names are useful in identifying data. Let’s start with names of files on your computer.
Typically, a file has a name and an extension, usually separated from the file name by
a dot. (Sometimes, the extension is also considered to be part of the name, sometimes
not.) Within a folder, it’s not possible on typical systems to give two distinct files
the same name and extension. So, names and extensions uniquely identify files in a
folder. Can folders have the same names as files? (Can you confuse your computer to
be inconsistent on this point? Experiment!)

• Names can reflect the structure (organization) of data. Consider the names you use
when you want to refer to a file on the world wide web. These names are called
URL’s (universal resource locators). For example, the course web page for this class
is cs.ubc.ca/~condon/wmst201/index.html. You’ll notice that the URL ends with
what looks like a file name. On the computer I use, the file index.html for this course
web page is stored within one of my folders called wmst201. (A convention in our
department is that, by default, folders and files which are available on the world wide
web should be kept within a top-level folder (directory) called public html. In keeping
with this convention, my wmst201 folder is within my public html folder. You cannot
tell this from the URL: since public html is a default it turns out that it must always
be omitted from the URL.)

As another example, these notes on data organization can be found at cs.ubc.ca/
~condon/wmst201/notes/data-org-notes.pdf. Where do you think the file data-
org-notes.pdf is stored? I keep my lecture slides in a folder called “lectures”, which
is within my wmst201 folder. Slides from the first lecture is in a file called lec1.pdf.
What do you think is the URL for this file?

As you might guess, the term “~condon” is in the URL because the files are stored
in folders within my account. My account is on a cluster of computers maintained by
the Computer Science department at UBC. This cluster has domain name cs.ubc.ca,
and so cs.ubc.ca appears at the left end of the URL.

Many other people have accounts on the domain cs.ubc.ca. For example Steve
Wolfman, who has taught this class in the past, has his web page at cs.ubc.ca/
~wolf. Overall, as these URL’s indicate, many web pages within the computer science
department are organized hierarchically within the folders of individual accounts.

While names can be helpful in conveying meaning, it’s important to remember that names
may not always convey the true meaning. As a concrete example, suppose that I decided
to use the name “lec41.pdf” for the lecture slides of the fortieth lecture of this class and to
use “lec40.pdf” for the lecture slides of the forty-first lecture. (Don’t worry— there won’t
be that many lectures; this is just a hypothetical example.) This would be a very confusing
way to name the files. But if you were to click on

11

cs.ubc.ca/~condon/wmst201/lectures/lec41.pdf

you would get the lecture slides for the fortieth lecture of the class (and not the forty first
lecture). In this case, the name and the meaning would not match up.

Exercises:

1.4.1 What features do email addresses and URL’s have in common?

1.4.2 On typical computer systems, two files within the same folder cannot have both the
same name and extension. It turns out, however, that one file have two different
names. Why might that be useful? Can you think of examples in everyday life where
something is referred to by more than one distinct name? In such situations, the
second name for the file may be called an alias.

For example, the course web page for this class has both the name cs.ubc.ca/
~condon/wmst201/index.html and the name cs.ubc.ca/~condon/cpsc101/index.
html. Can you find a way to give a file two different names on your computer? Try
searching on the web, or consulting with others in the class, for clues as to how to do
this if you’d like help.

1.4.3 Recall that the computers within the computer science department have the domain
name cs.ubc.ca. Computers within UBC have domain name ubc.ca. Comput-
ers within the department of Art History, Visual Art and Theory have the domain
name ahva.ubc.ca. Computers at the University of Alberta have the domain name
ualberta.ca. Can you guess how domain names are structured? (Networked, hier-
archical, or tabular?)

Use your conceptual model of domain name structure to guess the domain name
of computers in the computer science department at the University of Alberta. To
check your model, check the actual URL of University of Alberta’s computer science
department. Try again, to see if you can guess the URL of the computer science
department at U. Manitoba or U. Toronto. (One of them breaks the model...)

1.4.4 Names are useful in HTML to create links within a single web page. See if you can
figure out how this is done to create a working table of contents in the course web
page that contains logistic information:

www.cs.ubc.ca/~condon/wmst201/logistic-info.html.

In closing, we note that good naming practices and data organization are very helpful to
humans who need to navigate file and folder structures on a computer. A file name can
often be chosen to convey much information about its contents. For example, when making

12

multiple revisions to a document it can be helpful to save copies periodically and add the
date at which the copy was saved to the file name.

1.5 Variables: describing data that changes over time

A name, or title, can be a place-holder. For example, the current Chancellor of UBC is Sarah
Morgan-Silvester. But in some of UBC’s organizational charts you won’t find her name;
rather you’ll find the title “Chancellor”. Often we use titles in this way when the person
(or object) being named changes over time. This has the advantage, for example, that
when there is a new chancellor, the organizational charts don’t have to be redone. In the
computing context, particularly when programming, we sometimes call such “placeholder”
names variables. Here are two reasons why variables are useful in computing contexts:

• Variables can make data management easier. For example, email addresses can
be placeholders: the head of the Computer Science Department can be reached at
head@cs.ubc.ca. You can still reach the head at this address next year, even though
it may be a new person by that time.

As another example, the course home page uses variables to store colours. These
variables are then used to set the colour of table rows in the course schedule. This
makes it possible, for example, to change the colours of all of the “Monday” rows
simply by changing one variable. See discussion in lecture for more details.

• Variables provide a general way to express actions on data. In particular, variables
enable you to express simple calculations without reference to particular data values.
You are probably already very familiar with this from high school algebra. For exam-
ple, suppose the distance from Vancouver to Seattle is 140 miles. To convert this to
kilometers (with room for a little approximation), multiply by 1.62. More generally,
we can say “Distance in kilometers is 1.62 times the distance in miles”. Or write:

distance in kilometers = 1.62 ∗ distance in miles

(where ∗ denotes multiplication). We are using “distance in kilometers” and “distance
in miles” as variables, or placeholders in describing the general rule for converting
distance in miles to distance in kilometers. If we need to calculate the distance in
kilometers to a new city, say Prince Rupert, given that we know the distance in
miles— it’s 933 miles— we can substitute the number 933 for the variable “distance
in miles” to calculate the answer.

13

You may already be familiar with web pages which convert between currencies, kilo-
meters to miles, and so on. Behind the scenes, these webpages use variables to express
the needed calculations.

It is often convenient to use headings of the table rows and columns to refer to individual
data items in a 2-dimensional table. For example, if the rows of a table are numbered
consecutively starting at 1, and similarly for the columns, then “the data item at row 5
and column 8” uniquely identifies a particular data item in the table. If the table has a
name, say T (a rather unimaginative name for a table) then a common convention is to use
T [5, 8] to refer to the table entry in row 5 and column 8 of the table. More generally, we
use T [i, j] could refer to the table entry in row i and column j of the table. Here, to explain
the general convention for referring to table entries, we use variables i and j.

1.6 Perspective

An important aspect of data organization on a computer which we have not touched on much
is how to present data to users in meaningful ways. Good data visualization techniques can
enable people to uncover important relationships among data elements of interest to them.

An example of a challenge in data visualization is that of visualizing phylogenetic trees—
trees that describe relationships among biological species. Biologists today want to under-
stand relationships among thousands of species and ultimately to infer a complete tree of
life with millions of species. There is still much controversy as to how species are related,
making it useful to have ways to understand differences in trees that represent competing
hypotheses as to how species are related.

Tamara Munzner in UBC’s Computer Science department is at the forefront in development
of methods that enable users to explore large phylogenetic trees and to compare different
trees in meaningful ways. Innovations of her TreeJuxtaposer software include the visual
cues that aid comparisons across trees, as well as a mode of interaction whereby users can
explore a small subtree in detail while maintaining a view of how it fits in the overall tree.

You can read more about the challenges in visualizing phylogenetic trees in a New York
Times article by Carl Zimmer4. The article includes comments from Tamara Munzner
and also cites the Tree of Life web project whose ”home team” includes Wayne Maddison,
an expert on jumping spiders and faculty member in UBC’s departments of Zoology and
Botany.

4at http://www.nytimes.com/2009/02/10/science/10tree.html?pagewanted=all

14

Project idea:

1.6.1 Visualization of graphs is also a very important topic and an active area of research.
Learn more about principles for drawing graphs in aesthetically appealing or useful
ways. Experiment with graph drawing tools that you can download on the web.

15

