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The age of machines

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – by what course of calculation can these results be arrived at
by the machine in the shortest time?”

Charles Babbage (1864)
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Lesson #1:

Pay attention to theory,

but not too much.
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Stochastic Local Search
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s
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Key problem: getting stuck at locally optimal candidate solutions

Remedy:

I multiple runs with random initialisation

I randomise search steps

 balance heuristic guidance (given by evaluation function)
and diversification features (often stochastic)
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Some prominent SLS methods:

I Random Walk (of theoretical interest)

I Simulated Annealing (inspired by physical model)

I Ant Colony Optimisation (inspired by biological model)

I Iterated Local Search (very successful for TSP, ...)

I . . .
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SLS vs branch& cut on TSP (RUE benchmark)

 0.0001

 0.01

 1

 100

 10000

 1e+006

 100  1000  10000

ru
n-

tim
e 

[C
PU

 s
ec

]

problem size [# vertices]

median run-time IHLK+R (SLS)
4.93*10-11 * x3.65

median run-time Concorde (branch+cut; find only)
2.79*10-14 * x5.16
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Advantages of SLS:

I high performance potential

I broadly applicable, flexible

I typically easy to implement

I anytime behaviour

I easy to parallelise
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Problems for which I developed SLS algorithms:

I SAT, MAX-SAT

I TSP, QAP

I Combinatorial auction winner determination

I Linear planning

I MPE finding in Bayes nets

I RNA secondary structure design,
DNA word design,
protein structure prediction

I Voice separation in music
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My methodological work on SLS methods:

I Max-Min Ant System (with Thomas Stützle)

I Empirical properties

I Dynamic parameter adjustment

I Stagnation criteria

I Search space analysis

I Generalised Local Search Machines
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WalkSAT has exponential RTDs
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Lesson #2:

Don’t give up easily

– the best mountains

are hard to climb.
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Lesson #3:

If it looks too good to be true,

it typically isn’t true.
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Lesson #4:

Look at the data!

Investigate unexpected behaviour!
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Almost identical medians,
completely di↵erent RTDs!
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Lesson #5:

It’s never perfect, it’s never finished,

– let it go when it’s good enough.
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Modelling the run-time behaviour of Concorde
Hoos & Stützle (EJOR 2014)

Goal:

Study empirical time complexity of solving 2D Euclidean
TSP instances using state-of-the-art solver.

Consider two classes of TSP instances:

I random uniform Euclidean (RUE)

I TSPLIB (EUC 2D, CEIL 2D, ATT)
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State-of-the-art exact TSP solver: Concorde
[Applegate et al., 2003]

I complex heuristic branch & cut algorithm

I iteratively solves series of linear programming relaxations

I uses CLK local search procedure for initialisation
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Empirical scaling of running time with input size
(state-of-the-art exact TSP solver, Concorde)
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mean run-time (find+prove)
best fit exponential: 15.04*1.0036n

best fit subexponential: 0.25*1.276438√n

best fit polynomial: 2.20*10-10 * n4.15

RMSE (test): exp = 5820.66, poly = 3058.22, root-exp = 329.79
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Statistical validation of scaling model

Compare observed median run-times for Concorde on large TSP instances
against 95% bootstrap confidence intervals for predictions

instance size exponential model observed median run-time

2 000 [3 793.00 , 5 266.68] 3 400.82 (1000/1000)
3 000 [70 584.38 , 147 716.740] 30 024.49 (99/100)
4 500 [5 616 741.54 , 21 733 073.57] 344 131.05 (65/100)

instance size polynomial model root-exponential model

2 000 [2 298.22 , 3 160.39] [2 854.21 , 3 977.55]
3 000 [9 430.35 , 16 615.93] [19 338.88 , 49 132.62]
4 500 [38 431.20 , 87 841.09] [253 401.82 , 734 363.20]

root exponential: a · b
p
n with a 2 [0.115, 0.373], b 2 [1.2212, 1.2630]
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Empirical performance models
Hutter, Xu, HH, Leyton-Brown (AIJ 2014)

Goal:

Predict running time of state-of-the-art solvers for SAT, TSP, MIP
on broad classes of instances, using many instance features

Holger Hoos: From Stochastic Search to Programming by Optimisation 23



MiniSAT 2.0 on SAT Competition Benchmarks
gRandom Forest Modelg

Spearman correlation coe�cient = 0.90
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Instance features:

I Use generic and problem-specific features that correlate with
performance and can be computed (relatively) cheaply:

I number of clauses, variables, . . .
I constraint graph features
I local & complete search probes

I Use as features statistics of distributions,
e.g., variation coe�cient of node degree in constraint graph

I For some types of models, consider combinations of features
(e.g., pairwise products  quadratic basis function
expansion).
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Lesson #6:

Talk to and work with

good people.
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Lesson #7:

Do something bold and crazy

(every once in a while).
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Poly-time prediction of satisfiability
Hutter, Xu, HH, Leyton-Brown (CP 2007)

I Crazy idea: Use machine learning techniques to build a
poly-time satisfiability predictor

I Sparse Multinomial Logistic Regression (SMLR) on
84 polytime-computable instance features per instance

I Surprising result: 73–96% correct predictions on a wide
range of SAT benchmark sets!

(Predictor used in SATzilla, a state-of-the-art, portfolio-based SAT solver

developed by Xu, Hutter, HH, Leyton-Brown)
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Algorithm selection
Rice (1976)

Observation: Di↵erent (types of) problem instances are
best solved using di↵erent algorithms

Idea: Select algorithm to be applied in a given situation from
a set of candidates

Per-instance algorithm selection problem:

I Given: set A of algorithms for a problem,
problem instance ⇡

I Objective: select from A the algorithm expected to solve
instance ⇡ most e�ciently
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Per-instance algorithm selection

selector

component
algorithms

feature extractor
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Key components:

I set of state-of-the-art solvers
with weakly correlated performance

I set of cheaply computable, informative features

I e�cient procedure for mapping features to solvers (selector)

I training data

I procedure for building good selector based on training data
(selector builder)
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SATzilla 2011–12
Xu, Hutter, HH, Leyton-Brown (SAT 2012)

I uses cost-based decision forests to select solver
based on features

I one predictive model for each pair of solvers (which is better?)

I majority voting (over pairwise predictions) to select
solver to be run

 1st prizes in 2 of the 3 main tracks, 2nd in the 3rd main track,
1st in the sequential portfolio track of the 2012 SAT Challenge
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SAT-based software verification
Hutter, Babic, HH, Hu (2007)

I Goal: Solve suite of SAT-encoded software verification
Goal: instances as fast as possible

I new DPLL-style SAT solver Spear (by Domagoj Babic)

= highly parameterised heuristic algorithm
= (26 parameters, ⇡ 8.3⇥ 1017 configurations)

I manual configuration by algorithm designer

I automated configuration using ParamILS, a generic
algorithm configuration procedure
Hutter, HH, Stützle (2007)
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Spear: Empirical results on software verification benchmarks

solver num. solved mean run-time

MiniSAT 2.0 302/302 161.3 CPU sec

Spear original 298/302 787.1 CPU sec
Spear generic. opt. config. 302/302 35.9 CPU sec
Spear specific. opt. config. 302/302 1.5 CPU sec

I ⇡ 500-fold speedup through use automated algorithm
configuration procedure (ParamILS)

I new state of the art
(winner of 2007 SMT Competition, QF BV category)
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Iterated Local Search

(Initialisation)
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Iterated Local Search

(Local Search)
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Iterated Local Search

(Perturbation)

Holger Hoos: From Stochastic Search to Programming by Optimisation 35



Iterated Local Search

(Local Search)
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Iterated Local Search

(Local Search)
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Iterated Local Search

?

Selection (using Acceptance Criterion)
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Iterated Local Search

(Perturbation)
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ParamILS

I iterated local search in configuration space

I initialisation: pick best of default + R random configurations

I subsidiary local search: iterative first improvement,
change one parameter in each step

I perturbation: change s randomly chosen parameters

I acceptance criterion: always select better configuration

I number of runs per configuration increases over time;
ensure that incumbent always has same number of runs
as challengers (cf. racing)
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Lo Hi
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The algorithm configuration problem

Given:

I parameterised target algorithm A
with configuration space C

I set of (training) inputs I

I performance metric m
(w.l.o.g. to be minimised)

Want: c⇤ 2 argmin
c2C m(A[c], I )
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Algorithm configuration is challenging:

I size of configuration space

I parameter interactions

I discrete / categorical parameters

I conditional parameters

I performance varies across inputs (problem instances)

I evaluating poor configurations can be very costly

I censored algorithm runs

 standard optimisation methods are insu�cient
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CPLEX on Wildlife Corridor Design
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 52.3⇥ speedup on average!
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Sequential Model-based Optimisation

parameter response

measured

(Initialisation)
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Sequential Model-based Optimisation

parameter response

model

measured

(Initialisation)
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Sequential Model-based Optimisation

parameter response

model

predicted best

measured

(Initialisation)
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Sequential Model-based Optimisation

parameter response

model

measured
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Sequential Model-based Optimisation

parameter response

model

predicted best

measured

new incumbent found!

(Initialisation)
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Sequential Model-based Algorithm Configuration (SMAC)
Hutter, HH, Leyton-Brown (2011)

I uses random forest model to predict performance
of parameter configurations

I predictions based on algorithm parameters and instance
features, aggregated across instances

I finds promising configurations based on expected improvement
criterion, using multi-start local search and random sampling

I impose time-limit for algorithm based on
performance observed so far (adaptive capping)

I initialisation with single configuration
(algorithm default or randomly chosen)
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Results for combined selection & configuration
of classification algorithms in WEKA

(mean error rate in %)

Auto-WEKA

Dataset #Instances #Features #Classes Best Def. TPE SMAC

Semeion 1115+478 256 10 8.18 8.26 5.08

KR-vs-KP 2237+959 37 2 0.31 0.54 0.31

Waveform 3500+1500 40 3 14.40 14.23 14.42

Gisette 4900+2100 5000 2 2.81 3.94 2.24

MNIST Basic 12k+50k 784 10 5.19 12.28 3.64

CIFAR-10 50k+10k 3072 10 64.27 66.01 61.15

Auto-WEKA better than full grid search in 15/21 cases

Further details: Thornton, Hutter, HH, Leyton-Brown (KDD 2013)
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Citations to key publications on algorithm configuration
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Algorithm Scheduling

algorithms
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Algorithm Scheduling

schedule
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Questions:

1. How to determine that sequence?

2. How much performance can be obtained from solver
scheduling only?
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Methods for algorithm scheduling methods:

I exhaustive search (as done SATzilla)
 expensive; limited to few solvers, cuto↵ times

I based on optimisation procedure

I using integer programming (IP) techniques
3S – Kadioglu et al. (2011)

I using answer-set-programming (ASP) formulation + solver
aspeed – HH, Kaminski, Schaub, Schneider (2012)
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Empirical result:

Performance of pure scheduling can be suprisingly close
to that of combined scheduling + selection (full SATzilla).

HH, Kaminski, Schaub, Schneider (2012);

Xu, Hutter, HH, Leyton-Brown (in preparation)
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Notes:

I the ASP solver clasp used by aspeed is powered by a
(state-of-the-art) SAT solver core

I pure algorithm scheduling (e.g., aspeed) does not require
instance features

I sequential schedules can be parallelised easily and e↵ectively
HH, Kaminski, Schaub, Schneider (2012)
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Parallel Algorithm Portfolios
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Application to decision problems (like SAT, SMT):

Concurrently run given component solvers until the first of them
solves the instance.

 running time on instance ⇡ =
 (# solvers) ⇥ (running time of best component solver on ⇡)

Examples:

I ManySAT
Hamadi, Jabbour, Sais (2009); Guo, Hamadi, Jabbour, Sais (2010)

I Plingeling
Biere (2010–11)

I ppfolio
Roussel (2011)

 excellent performance (see 2009, 2011 SAT competitions)
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Constructing portfolios from a single parametric solver

HH, Leyton-Brown, Schaub, Schneider (under review)

Key idea: Take single parametric solver, find configurations that
make an e↵ective parallel portfolio.

Note: This allows to automatically obtain parallel solvers
from sequential sources (automatic parallisation)

Methods for constructing such portfolios:

I global optimisation:
simultaneous configuration of all component solvers

I greedy construction:
add + configure one component at a time
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Preliminary results on competition application instances
(4 components)

solver PAR1 PAR10 #timeouts

ManySAT (1.1) 1887 16 003 213/679

ManySAT (2.0) 1998 17 373 232/679

Plingeling (276) 1850 15 437 205/679

Plingeling (587) 1684 13 812 183/679

Greedy-MT4(Lingeling) 1717 13 712 181/679

ppfolio 1646 13 310 176/679

CryptoMiniSat 1600 12 271 161/679

VBS over all of the above 1282 10 296 136/679
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Lo Hi
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Programming by Optimisation (PbO)
HH (2010 – present)

Key idea:

I program  (large) space of programs

I encourage software developers to
I avoid premature commitment to design choices
I seek & maintain design alternatives

I automatically find performance-optimising designs
for given use context(s)
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Levels of PbO:

Level 4: Make no design choice prematurely that
cannot be justified compellingly.

Level 3: Strive to provide design choices and
alternatives.

Level 2: Keep and expose design choices considered
during software development.

Level 1: Expose design choices hardwired into
existing code (magic constants, hidden
parameters, abandoned design alternatives).

Level 0: Optimise settings of parameters exposed
by existing software.
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Success in optimising speed:

Application, Design choices Speedup PbO level

SAT-based software verification (Spear), 41
Hutter, Babić, HH, Hu (2007)

4.5–500 ⇥ 2–3

AI Planning (LPG), 62
Vallati, Fawcett, Gerevini, HH, Saetti (2011)

3–118 ⇥ 1

Mixed integer programming (CPLEX), 76
Hutter, HH, Leyton-Brown (2010)

2–52 ⇥ 0

... and solution quality:

University timetabling, 18 design choices, PbO level 2–3
 new state of the art; UBC exam scheduling
Fawcett, Chiarandini, HH (2009)

Machine learning / Classification, 786 design choices, PbO level 0–1
 outperforms specialised model selection & hyper-parameter optimisation
 methods from machine learning
Thornton, Hutter, HH, Leyton-Brown (2012–13)

Holger Hoos: From Stochastic Search to Programming by Optimisation 54



Further successful applications:

I macro learning in planning (Alhossaini & Beck 2012)

I garbage collection in Java (Lengauer & Mössenböck 2014)

I kidney exchange (Dickerson et al. 2012)
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Software development in the PbO paradigm

use context

PbO-<L>
source(s)

parametric
<L>

 source(s)

instantiated
<L>

 source(s)

deployed
executable

design
space

description

   PbO-<L>
   weaver

PbO 
design

optimiser

benchmark
inputs
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application context

solver

optimised
solver

design space 
of solvers
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application context

plannerplanner

solver

optimised
solver

parallel
portfolio

instance-

based

selector

design space 
of solvers
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application context

plannerplanner
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Lesson #8:

Focus on big ideas,

but don’t forget

to take care of small details.
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Lesson #9:

Don’t search for a big idea

– it will come to you, eventually.
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Problems I currently work on

SAT

MIP

TSP

Planning

ASP

SMT

Timetabling

supervised 
ML

cluster 
editing
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Current research directions/projects

selectors/schedules from 
parametric sources

parallel portfolios from 
parametric sources

configuring algorithm 
selection/scheduling systems

multi-objective !
configuration

configuration for !
scaling performance

parallel model-based!
algorithm configuration! per-instance!

algorithm configuration

PbO best practices

PbO software!
development support! scaling analysis!

algorithm selection!
for TSP

selection, configuration,!
performance prediction!
for planning

new SAT / SMT!
solvers

Auto-ML

algorithm selection!
+ configuration for MIP
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Overall research goal:

Take computation to the next level,

by combining machine learning and optimisation,

human ingenuity and computational power

+
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Lesson #10:

Find your passion

and stick with it!
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Caminante, no hay camino,
se hace camino al andar.

Traveller, there is no path,
paths are made by walking.

Antonio Machado (1912)



Lessons learnt:

1. Pay attention to theory, but not too much.

2. Don’t give up easily – the best mountains are hard to climb.

3. If it looks too good to be true, it typically isn’t true.

4. Look at the data! Investigate unexpected behaviour!

5. It’s never perfect, it’s never finished
– let it go when it’s good enough.

6. Talk to and work with good people.

7. Do something bold and crazy (every once in a while).

8. Focus on big ideas, but don’t forget
to take care of small details.

9. Don’t search for a big idea – it will come to you, eventually.

10. Find your passion and stick with it!


